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Abstract

We prove that quasi-isometries of horospherical products of hyperbolic spaces are geometrically
rigid in the sense that they are uniformly close to product maps, this is a generalization of the result
obtained by Eskin, Fisher and Whyte in [EFW12]]. Our work covers the case of solvable Lie groups
of the form R x (N7 x Ny), where N; and N» are nilpotent Lie groups, and where the action on
R contracts the metric on N; while extending it on No. We obtain new quasi-isometric invariants
and classifications for these spaces.
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Introduction

Let (X,dx) and (Y, dy) be two Gromov hyperbolic spaces. Their horospherical product, denoted
by X Y is constructed by combining X and Y, and lies in the direct product X x Y. It has no longer
negative curvature, however its geometry is still very rigid (see Section[L.2for the definition). This way
of combining two hyperbolic spaces appeared to unify the construction of metric spaces such as Diestel-
Leader graphs, treebolic spaces and Sol geometries, which are the horospherical products constructed
out of a regular infinite tree or the hyperbolic plane H.

Quasi-isometric classification and existing rigidity results

In [Gro93l], a mainstay of geometric group theory, Gromov points out the importance of quasi-isometric
invariants in groups. The quasi-isometric classification of groups, or metric spaces, has since been a
wide and prolific research domain (see [Kap14] for a nice survey on this topic). For the family of solvable
groups, there is still a lot of open cases.

The first result was obtained in [FM98] where Farb and Mosher provided a quasi-isometric clas-
sification of solvable Baumslag-Solitar groups BS(1,n). Then Eskin, Fisher and Whyte obtained the
quasi-isometric classification of lamplighter groups and Sol geometries in [EFW12]] and [EFW13]. In
both the works [FM98]] and [EFW12]], the horospherical product construction of their respective groups
is crucial in their proofs.

The paper [EFW12] also permitted to answer a question ask by Woess in [SW90] about the exis-
tence of vertex-transitive graphs not quasi-isometric to any Cayley graph. Eskin, Fisher and Whyte
showed that when m and n are coprime integers, the Diestel-Leader graphs 7T,,, » T}, are such graphs.

Throughout [Pen11]], [Pen11Il] and [Dymo09]], using similar methods as in [EFW12]] and [EFW13]], Peng
and Dymarz generalized the description of the quasi-isometries for Lie groups of the form R x RP. In
[Pen11l] and [Pen11Il], Peng proved that a subgroup of finite index of the quasi-isometry group of Lie
groups of the form R™ x R" is a product of groups of bilipschitz maps.

Statement of results

The main goal of our work is to generalize the methods and techniques developed by Eskin, Fisher and
Whyte to a wider set of horospherical products X x Y. In order to do that, the spaces X and Y are
endowed with appropriate measures (see Definition[3.1). Once endowed with suitable measures, X and
Y are called horopointed admissible spaces.

To be more precise let X (respectively X', Y, Y') be a horopointed admissible space with exponential
growth parameter m (respectively m/, n, n’). When X is a regular tree, the parameter m is related to
the degree of X. When X is a negatively curved Lie group R x 4 N, the parameter m is R(tr(A)), the
real part of the trace of A.



Let ®: X xY - X’ x Y’ be a quasi-isometry. The map @ is called a product map if and only if
there exist two maps ®X and ® such that for all (z,y) € X x Y we have either:

O(z,y) = (2% (2), 2" () or @(x,y)=(2" (y), 2% (2)).

Our main theorem states that, when m > n and m’ > n/, any quasi-isometry ® : X x Y > X'« Y" is
close to a product map.

Theorem A (Geometric rigidity).

Let X, X', Y and Y’ be horo-pointed admissible measured metric spaces with m > n and m’ > n’ and
let®: X xY — X' wY' be a quasi-isometry. Then there exist two quasi-isometries ®~ : X — X' and
®Y .Y - Y’ such that:

du (®,(2%,2)) < +oo.

This is a generalization of Theorems 2.1 and 2.3 of [EFW12]]. While completing the proof of this
result, we obtained a first quasi-isometry invariant in horospherical products.

Theorem B. When m > n, the parameter ™ is a quasi-isometry invariant.

Let R x 4, N7 and R x 4, N3 be two simply connected, negatively curved, solvable Lie groups (also
called Heintze groups). In Chapter 5l we show that this couple of Heintze groups is admissible, and that
the condition m > n is equivalent to R(tr(A1)) > R(tr(Asz)). We obtain a necessary condition for the
existence of a quasi-isometry on solvable Lie groups. The horospherical product of these two Heintze
groups is isomorphic to

G:=R KDiag(Al,—Ag) (Nl x NQ)’

defined by the diagonal action of R, ¢t — (exp(tA;1),exp(-tAz)) on N1 x Na.

We say that GG is Carnot-Sol type if N1 and N are Carnot groups and if A; and Ay are multiples of
Carnot derivations of V] and N respectively. In the literature (see [Pan89]] for example), Carnot type
stands for Lie groups with Ny = {1}. Here we extend the denominations to non-hyperbolic Lie groups.

Using the previous quasi-isometry invariants we obtain the following quasi-isometry classification.

Theorem C. Let G = R xpjpg(a,,-4,) (N1 x N2) and G’ = R X Diag(A],~AL) (N{ x N3) be Carnot-Sol
type, non-unimodular Lie groups, then

G and G' are quasi-isometric < G and G’ are isomorphic. (1)

The case where Ny = {1} is treated in Corollary 12.4 of [Pan89].

Recall that a group G is called metabelian if [G, G| is abelian (when both N7 and Ny are euclidean
spaces). In this case, a similar quasi-isometry classification is deduced from the work of Peng [Pen11I]
and [Pen11II]. Both the quasi-isometry classification for the metabelian groups and for Carnot-Sol type
groups are special cases of the conjecture 19.113 of [Cor18] that we recall.

Conjecture 0.1. Let S and S’ be completely solvable Lie groups. Then S and S’ are quasi-isometric if
and only if they are isomorphic.

Classifying completely solvable Lie groups up to quasi-isometry would yield the quasi-isometry
classification of all connected Lie groups, see [Cor12].

For i € {1,2}, let N; and N, be two simply connected, nilpotent groups and let A; € Lie(N;) and
Aj € Lie(N;) be derivations. Let G := R xpyja0(4,,-4,) (N1 X N2) and G’ := R X Diag( A/~ AY) (N x N3).
In this general setting of horospherical products of Heintze groups we have the following necessary
conditions for being quasi-isometric.

Proposition D. Let us assume that R(tr(A1)) > R(tr(Az2)) and R(tr(A})) > R(tr(AL)). If G and

G’ are quasi-isometric, then we have that fori € {1,2}



1. N; and N] are bilipschitz;
2. A; and %fl; share the same characteristic polynomial.

With the same setting, using the geometric rigidity on self quasi-isometries of this family of solvable
Lie groups, we provide a characterisation of their quasi-isometry group.

Recall that for F' a metric space, QI(F) / ~ is the group of self quasi-isometries of F, up to finite
distance. (This equivalence relation is required since a quasi-isometry only has a coarse inverse.) Recall
also that Bilip(F") stands for the group of self bi-Lipschitz maps of F'. Then we have:

Theorem E. IfR(tr(A;)) + R(tr(A2)):

QI (R Xpiag(a;,-a5) (N1 x N2)) [~ = Bilip (N) x Bilip (N3) 2)

Where we choose the horospherical product metric on R xpja(4,,-4,) (V1 X N2). In the course of
this proof we also obtain that any self quasi-isometry of R xpyj,q(4, —4,) (N1 x N2) is a rough isometry.
Le Donne, Pallier and Xie proved in [DPX22]] that when you change the left-invariant Riemannian
metric of one of these solvable Lie groups, the identity map is a rough similarity. Hence self quasi-
isometries are rough isometries with respect to any left-invariant distances.

Let F}, and F},, be two filiform groups of class respectively n and m. Let §,, and 9,,, denote a Carnot
derivation of their respective Lie algebra (See Section[Alfor definitions). Using Theorem[Eland closely
related results of Section[5] Pallier proves in the appendix an analogue of Theorem 1.2 of [EFW12]].

Theorem F (See the appendix). Let n,m be positive integers such that 3 < n < m. Then, no finitely
generated group is quasiisometric to the group Gy m = (Fy x i) %5, —5,.) R.

Outline of the proof

Let X and Y be two Gromov hyperbolic spaces, and let Sx : X - R and Sy : Y — R be two Buse-
mann functions. We call height functions hx and hy the opposite of the Busemann functions. The
horospherical product of X and Y, denoted by X x Y, is defined as the set of points in X x Y such that
the two Busemann functions (or the height functions) add up to zero.

XwuY :={(z,y) e X xY [ Bx(z) + By (y) = 0}.

To a Busemann function is associated a unique point on the boundary, we call vertical any geodesic ray
in the equivalence class of that point on the boundary.

In order to generalize the proof of Eskin, Fisher and Whyte developed in [EFW12] and [EFW13], the
horospherical products have to be equipped with appropriate measures presented in Definition[3.1]

Briefly speaking, for the measured space (X, 1), the measure X must verify three assumptions.
Assumption (E1) allows us to disintegrate 1~ on its horospheres, assumption (E2) provides us with
a bounded geometry on horospheres and (E3) ensures an exponential contraction (of exponent m) of
the horospheres’ measures in the upward vertical direction.

Let X (respectively X', Y, Y') be a horopointed admissible space with exponential growth param-
eter m (respectively m’, n, n').
Most of this paper focuses on proving Theorem[Al To do so we will use three major tools:

o The coarse vertical quadrilaterals, which are realised by four points (the vertices) whose neigh-
bourhoods are linked by vertical geodesics (the edges). In Lemma 217} we show that in coarse
vertical quadrilaterals are rigid: two of the four points almost share the same X -coordinate and
the two other almost share the same Y -coordinate.



o Box Tilings of different scales for X » Y, suitable for the vertical flow. The boxes correspond to
euclidean rectangular cuboid in the Sol geometry.

e The coarse differentiation: given a quasi-isometry ® : X » Y — X’ x Y’ there exists a suitable
scale R for the box tilling of X » Y. Suitable here means that the image by ® of most vertical
geodesic segments of length R are close to a vertical geodesic segment.

With these tools, the proof can be summarized as follows. Let ® : X x Y — X’ x Y/ be a quasi-
isometry.

Step 1 By the coarse differentiation, there exists a scale R such that in the box tilling at scale R of
X »Y, the quasi-isometry ® mostly preserve the vertical direction on most of the boxes at scale
R. It means that on most of the boxes, most vertical geodesic segments are sent close to a vertical
geodesic segment by .

Step 2 Then in most of the boxes at scale R, most of the vertical quadrilateral are sent close to vertical
quadrilateral by ®. Therefore, by the rigidity property of these configurations, on most of the
boxes B the quasi-isometry ® is close to as product map ® |5 = (@X, <I>Y) or (<I>Y, <I>X).

Step 3 If m > nand m’ > n’ then all product maps have the form dp = (<I>X, <1>Y). Therefore by gluing
them together, we show that there exists L >> R such that on all boxes at scale L, ® is close to
a product map @ = (<I>X, <1>Y).

Step 4 We show that ® quasi-respect the height, then we use this last result on ®~! to show that ®
send all vertical geodesics close to vertical geodesics. Therefore all vertical quadrilateral config-
urations are preserved by ®, hence @ itself is close to a product map on all X x Y.

A major technical issue in this proof is to manage the notion of "almost all" vertical geodesic seg-
ments having a certain property. The disintegrable measure p of assumption (E1) is not suited for this
role since it concentrates the measure of a box on its bottom part. Therefore we introduce another dis-
integrable measure A, constructed from g, which (almost) equally weights the level-sets of the height
function h in boxes.

Such a measure AX on X, together with a similar measure \Y on Y, allows us to define a suitable
measure (later denoted by 1) on the family of vertical geodesics contained in abox Bc X x Y.

The geometric rigidity has useful consequences when we understand the boundaries of X and Y. In
this case, Theorem[Alleads to a description of the quasi-isometry-group of X Y. In the last section
of this paper, we detail such a description for the horospherical product of two Heintze groups.

Organization of the paper

This work, about the geometric rigidity of quasi-isometries between two horospherical products, is
organized as followed.

o In Section2lwe display the coarse differentiation in our context, and we discuss particular quadri-
lateral configurations of X x Y.

o Section[3lfocuses on developing all the measure theoretical tools required to achieve the rigidity
results.

o Then, in Section[d] we follow the structure of the proof proposed by Eskin, Fisher and Whyte in
[EFW12]], invoking technical tools of previous chapters when required.

o In the last section we present an application of our theorem by providing new quasi-isometric
classifications for some families of solvable Lie groups. We also provide a description of the
quasi-isometry group of a wider family of solvable Lie groups.



o In the appendix, Pallier proves that a family of solvable Lie groups are not quasi-isometric to any
finitely generated groups.
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1 Context

1.1 Gromov hyperbolic, Busemann spaces

Let 6 > 0, and let (X,dx) and (Y, dy ) be two d-hyperbolic spaces (See [GH90] or chap.III H. p.399
of [BH99]] for more details on Gromov hyperbolic spaces). We present here the context in which we
will construct our horospherical product. We require that X and Y are both proper, geodesically
complete, Busemann spaces.

+ A metric space is called proper if all closed metric balls are compact.

« A geodesic line, respectively ray, segment, of X is the isometric image of a Euclidean line,
respectively half Euclidean line, interval, in X. We denote by [z, 22] a geodesic segment linking
z1 € X toxg e X.

+ A metric space X is called geodesically complete if all geodesics are infinitely extendable.

+ A metric space is called Busemann if the distance between any couple of geodesic parametrized by
arclength is a convex function. (See Chap.8 and Chap.12 of [Pap04] for more details on Busemann
spaces.)

An important property of Gromov hyperbolic spaces is that they admit a nice compactification thanks
to their Gromov boundary. We call two geodesic rays of X equivalent if their images are at finite
Hausdorff distance. Let w € H be a base point. We define 9,,.X, the Gromov boundary of X, as the
set of families of equivalent rays starting from w. The boundary 9,,X does not depend on the base
point w, hence we will simply denote it by 0.X. Both 0X and X u X, are compact endowed with the
Hausdorff topology. In this context, both the visual boundary and the Gromov boundary coincide.

Let us fix a point @ € 0X on the boundary. We call vertical geodesic ray, respectively vertical
geodesic line, any geodesic ray in the equivalence class a, respectively with one of its rays in a. The
study of these specific geodesic rays is central in this work.

The Busemann assumption removes some technical difficulties in a significant number of proofs in this
work. If X is a Busemann space in addition to being Gromov hyperbolic, for all z € X there exists
a unique vertical geodesic ray, denoted by V,, starting at X. In fact the distance between two verti-
cal geodesics starting at x is a convex and bounded function, hence decreasing and therefore constant
equal to 0.

The construction of the horospherical product of two Gromov hyperbolic space X and Y requires the
so called Busemann functions. Their definition is simplified by the Busemann assumption. Let us
consider X, the Gromov boundary of X (which, in this setting, is the same as the visual boundary).
Both the boundary 0X and X u0X, endowed with the natural Hausdorff topology, are compact. Then,
given a € JX a point on the boundary, and w € X a base point, we define a Busemann function .,
with respect to @ and w. Let V,, be the unique vertical geodesic ray starting from w.

VaeX, Bguw(r):=limsup(d(z,Vy(t)) -1t)
t—+o00

In all our results, X and Y will be proper, geodesically complete, Gromov hyperbolic, Busemann spaces,
with some additional assumption from time to time.

1.2 Horospherical products

Let a® € 0X,a” e OY be points on the boundaries and let wX € X,w" € Y be base points. Let
us denote by b~ := —B(ax wx) and RY = —B(av wv) the two corresponding height functions. The
horospherical product of X and Y, relatively to (aX Jw™ ) and (ay,wy) , denoted by X » Y is
defined by:

XxY = {(x7y) e X xY | ¥ (x) +nY (y) :O}



Figure 1: Horospherical product X x Y.

The set X x Y, can be seen as a diagonal in X x Y. It is constructed by gluing X with an upside down
copy of Y along their respective horospheres. This construction, illustrated in Figure [I] can also be
seen as the union of the direct products between opposite horospheres in X and Y

XNY:|_|XZ><Y_Z.
zeR

From now on, with a slight abuse, we omit the reference to the base points and points on the
boundaries in the construction of the horospherical product.

To study the geometry of a horospherical product X » Y, we make additional assumptions on X
and Y. We require them to be Gromov hyperbolic, Busemann, geodesically complete and proper metric
spaces.

1. X is geodesically complete if and only if all geodesic segments of X can be extended into a geodesic
bi-infinite line.

2. X is proper if and only if all closed metric balls of X are compact.

If X and Y satisfy these two additional conditions, the horospherical product X » Y is connected (see
Property 3.11 of [Fer20]).

Example 1.1. Let X be a Gromov hyperbolic, Busemann, geodesically complete and proper metric space.
Then X w R is isometric to X. In particular, if VY is a vertical geodesic line of Y, X w V¥ is an isometric
embedding of X in X n Y.

The three (non-trivial) first examples of horospherical products appeared independently in the lit-
erature. They correspond to the case where X and Y are either a regular infinite tree 7},, of degree m
or the hyperbolic plane H?.

1. T,, » T, is the Diestel-Leader graph DL(m,n). When m = n, this horospherical product is a
Cayley graph of the lamplighter group Z : Z,,. See Figure [2lfor a subset of T3 » T5.

2. H?™ wx H?" is the Lie group R X (1m,m) R? = Sol(m,n), one of the eight Thurston geometries.
By H*™ we mean the manifold R? endowed with the infinitesimal Riemannian metric ds? =
e ?m2dz? + d22. The action associated to the aforementioned semi-direct product is described

by (2, (z,y)) = (™, e™"y).



Figure 2: Small neighbourhood in 73 » T5.

3. T, x Hj is a Cayley 2-complex of the Baumslag-Solitar group BS(1,m).

The awareness of them being identically constructed from Gromov hyperbolic spaces came later, a
survey on these three examples is provided by Wolfgang Woess in [Woe13]].

An other approach, is to consider the hyperbolic plane H?™ as the affine Lie group R x,, R with
action by multiplication (z,7) = €™z, and the Sol geometry Sol(m,7) as the Lie group R x(,, R2,
In this context we have that (R x,,, R) » (R x;, R) = R x(,y, ) R2. The natural next step, is to consider
which Lie group can be taken as a component in a horospherical product.

A Heintze group is a Lie group of the form R x4 N with IV a nilpotent Lie group, and where all
eigenvalues of A have positive real part. Heintze proved in [Hei74] that any simply connected, nega-
tively curved solvable Lie group is isomorphic to a Heintze group.

Moreover, a Busemann metric space is simply connected, hence any Gromov hyperbolic, Busemann
Lie group is isomorphic to a Heintze group. Consequently, Heintze groups are natural candidates for
the two components from which a horospherical product is constructed. Let R x 4, Nj and R x 4, N»
be two Heintze groups, we have

(Rxgy N1)w(Rxy Np)=R XDiag(A1,~As2) (N1 x Na),
where Diag( Ay, —Aj3) is the block diagonal matrix containing A; and —As on its diagonal.

In his paper [Xiel4], Xie classifies the subfamily of all negatively curved Lie groups R x R" up to
quasi-isometry. In Chapter[5] we provide a description of the quasi-isometry group of the horospheri-
cal product of two Heintze groups, namely the solvable Lie groups R xpjag(4,,-4,) (V1 x N2).

1.3 Settings

In this chapter we recall some material about horospherical products.
In order to lighten the notations, we will not fully describe the multiplicative and additive constants
involved in inequalities. We will use the following notations instead.

Notation 1.2. Let A, B € R and e a parameter (set, real numbers, ...). Let us denote:
1. A <. B if and only if there exists a constant M (e) depending only on e such that A < M (e)B
2. Ax. Bifandonlyif B<., A<. B

If the constant M is a specific integer such as 2, we will simply denote A < B, and similarly A > B,
A < B. The notation <, might also appear for parameters in several results of this paper. In this context
it means that there exists a constant depending only on e such that the implied result holds.



hdiv(‘/h ‘/2)

Figure 3: Figure of Lemma [L.4

A metric space is called geodesically complete if all its geodesic segments can be extended into
geodesic lines, therefore when the space is also Gromov hyperbolic and Busemann space, with respects
to a € 0X, any point is included in a vertical geodesic line (not necessarily unique).

We recall Lemma 4.7 of [Fer20].

Lemma 1.3.
Let X be a proper, -hyperbolic, Busemann space. Let Vi and Vo be two vertical geodesics of H. Let
t1,t2 € R and let us denote D := %dr(Vl(tl), Va(t2)). Then forallt € [0, D]

|d, (Vi(t1+ D —t),Va(ta + D - t)) - 2t| < 2886 3)

Corollary 1.4. Let Vi, Vi be two vertical geodesics of X. Then there exists a height hqi,(V1,V2) € R
from which Vi and Vs diverge from each other:

1.Vt > haiv(V2,Va), d(Vi(t),Va(t)) <51

2. Vi < hdiv(VhVQ)f

d(Vl(t), Vg(t)) - 215‘ <51
This corollary is illustrated in Figure Bl We also have a more quantitative version.

Lemma 1.5 (Lemma 4.3 of [Fer20]). Let H be a §-hyperbolic and Busemann metric space, let x and
y be two elements of H such that h(x) < h(y), and let o be a geodesic linking x to y. Let us denote
z = a(Ah(z,y) + 2d,(2,y)), 21 := Vi (h(y) + 3d,(z,y)) the point of V, at height h(y) + 3d,(z,y)
and y1 =V, (h(y) + %dr(x, y)) the point of V, at the same height h(y) + %dr(x, y). Then we have:

1. h*(a) 2 h(y) + %dr(ﬂ:,y) - 960
2. d(z,x1) <1446

3. d(z,y1) <1446

4. d(z1,y1) < 2886.

We list here some notations we will use in later sections.
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7. (A)

Figure 4: Projection of A on X,.

Notation 1.6. Let X be a proper, geodesically complete, §-hyperbolic, Busemann space.

1. Let us denote the r-neighbourhood of U for allU c X and forallr >0 by

N, (U):={xeX|d(z,U)<r} (4)

2. Forallx € X let us denote by V, the unique vertical geodesic ray such that V;(0) = x.

3. For a subset A c X, let us denote
h™(A) := inﬁ(h(x)) i hY(A) :=sup(h(z)). (5)
ze zeA
4. Fora subset A c X and a height z € R, we denote the slice of A at the height z by A, := Anh™!(2).
Therefore the horospheres of X are denoted by X, for z € R.

5. Given a point p € X and a radiusr € R*, let us denote the ball of radius r included in the horosphere
Xn(p) by Dr(p) :={x € X [ h(z) = h(p) and d(z,p) <7} = B(p,r) N Xp(p).

6. VzeR, VU c X, Vr > 0, the r-interior of U in X, is defined by

Int,(U):={peU|d(p,q)>2r, Vge X, \U}.

Vertical geodesics of X can be understood as being normal to horospheres of X.

Definition 1.7 (Projection on horospheres).
Let X Gromov hyperbolic, Busemann, proper, geodesically complete metric space. Then for all A c X and
all z<h™(A)

T (A) ={zx e X, |V, n A+ 3} (6)

The definition of this projection along the vertical flow is illustrated in Figure [4l The following
Lemma shows that the projection of a disk on a horosphere is almost a disk, It will be used in further
Sections.

Lemma 1.8. Let X be a Gromov hyperbolic, Busemann, proper, geodesically complete metric space. Let
2o € R and p € X,. Then for M > 2880 we have that for all z < zy and for all p, € 7,({p})

DQ(ZO—Z)—M(pz) c 71'Z(DM(p)) c DQ(zo—z)+M(pz)-

11



o [P,

Ve |V

p L T.(p)

2(2—20) + M

Figure 5: Proof of Lemma[1.8]

Proof. This Lemma is a corollary of Lemma [I.3] and is illustrated in Figure 5l Let M = 288 be the
constant involved in Lemma

Let us prove the first inclusion. Let x € Dy, _.)_as (p-), then d(z,p.) < 2(20 — z) — M. Let us denote
V. a vertical geodesic containing = and V), a vertical geodesic containing p and p,. We apply Lemma

I3lwitht; =ta=2,Vi =V, and Vo =V, then D = %. Moreover

d M
z+D:z+%§z+(zo—z)—7§zo.

Therefore, by the Busemann convexity of X, the distance between vertical geodesic ray is convex and
bounded, hence decreasing. Therefore

d(Vi(20),p) = d(Vi(20), Vp(20)) < d(Va(2 + D), Vy (2 + D))
<M , by Lemma[l3used with t = 0,

which means that z € 7.( Dy (p)).
Let us now prove the second inclusion, which is

Wz(DM(p)) c D2(zo—z)+M(pz)- (7)

Let z € 7.(Dar(p)), then d(Vz(20), Vp(20)) < M. Therefore by the triangle inequality

d(,p:) = d(Va(2), Vp(2)) < d(Va(2), Vi (20)) + d(Va(20), Vo (20)) + d(Vp(20), Vp(2))
<(z0-2)+M+(20-2)=2(z0-2)+ M

Hence = € Dy —y+nr(P2)- O
Notations[I.6] can be extended to horospherical products.

Notation 1.9. Let X and Y be two proper, hyperbolic, geodesically complete, Busemann spaces. Then:

12



1. We denote the r-neighbourhood of U, for allU c X »Y and forallr >0, by

N, (U):={pe X wY |du(p,U) <r}. (8)

NS

. The difference of height between two pointsa,b € X xY is still denoted by Ah(a,b) := ‘h(a) —h(b)|.

w

We still denote, forall z€e R and Ac X wY, by A, := Anh™'(2) the "slice” of A at the height z.

b

We still denote, forallr >0 andpe X » Y, by
Dy (p) = {x e X [ h(p) = h(x) and dw(p, ) <7} = B(p, 1) n (X %Y )n(p)
the ball of radius r in the height level set containing p.

We recall other useful results of [Fer20] we will use later. First the fact that the height function is
Lipschitz.

Lemma 1.10 (Lemma 3.6 of [Fer20]). Let N be an admissible norm, and let d,. the distance on X nY
induced by N. Then the height function is 1-Lipschitz with respect to the distance d., i.e.,

Vp,ge XY, du(p,q) 2 Ah(p,q). ©)
Here is a description of the distance in Horospherical products

Theorem 1.11 (Corollary 4.13 of [Fer20]). Forallp,ge X nY

de(p.0) (dx (0,6™) + dx (0. 6%) = Ah(p,0))] 0 1
Here is one central result of [BH99], let us denote by I(c) the length of a path c.

Proposition 1.12 (Proposition 1.6 p400 of [BH99]). Let X be a J-hyperbolic geodesic space. Let c be a
continuous path in X. If [p, q] is a geodesic segment connecting the endpoints of c, then for every x € [p, q]:

d(z,im(c)) < d|logy I(c)| + 1.

We also provide two more definitions that will be used in future sections. First a projection on
level-sets of the height function.

Definition 1.13. Let 2p,z € R and let U c (X = Y"),,. Then we define the projection of Uon (X xY'),
by

o (U) = {p € (X xY), |3V avertical geodesic such thatp eV and V nU + @}

Then we define X -horospheres and Y -horospheres as horospheres of hyperbolic spaces embedded
in X « Y, illustrated in Figure[d

Definition 1.14. The set H ¢ X n Y is called
1. an X -horosphere if there exists y € Y such that H = X w {y} = X_p(,) x {y}
2. aY -horosphere if there exists x € X such that H = {x} w Y = {2} x Y_j,,)

From now on, we will work in a horospherical product X » Y of two proper, geodesically complete,
d-hyperbolic and Busemann spaces.
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X — horosphere = X_,) x {y}

Figure 6: X-Horosphere in X » Y.

2 Metric aspects and metric tools in horospherical products

Through out this section we fix two constants k£ > 1 and ¢ > 0. We recall the notions of quasi-isometry
and quasi-geodesic.

Definition 2.1. ((k, ¢)-quasi-isometry)
Let (E,dg) and (F,dr) be two metric spaces. A map ® : E — F is called a (k, c)-quasi-isometry if and
only if:
1. Forallz,x' € B, k™ dg(z,2") - c < dp (®(2),®(2")) < kdp(z,2") +c.
2. Forally € F, there exists x € E such that d(®(z),y) < c.
A map verifying 1. is called a quasi-isometric embedding of E.

Definition 2.2. ((k,c)-quasigeodesic)
Let E be a metric space. A (k,c)-quasigeodesic segment, respectively ray, line, of E is a (k,c)-quasi-
isometric embedding of a segment, respectively [0;+00), R, into E.

In Lemma 2.1 of [GS19], Gouézel and Shchur prove that any (k, ¢)-quasigeodesic segment is in-
cluded in the 2¢-neighbourhood of a continuous (k, 4¢)-quasigeodesic segment sharing the same end-
points. Therefore, without loss of generality, we may consider that all quasi-geodesic segments are
continuous.

This section gathers several geometric results on horospherical products, including the generali-
sation in our context of Lemmas 4.6, 3.1 and the coarse differentiation previously obtained by Eskin,
Fisher and Whyte in [EFW12]]. Proposition Corollary 271 and Proposition of this section will
be especially useful in the following proofs.

At first, a reader who is more interested in the rigidity result on horospherical product can take
these propositions for granted and jump to the next sections.

When A X, B, and e = (X » Y, d) is a horospherical product, we shall write A x,, B as a short-cut,
and similarly <,, >, and M () for a constant depending only on the metric horospherical product

(X wY,dy).
2.1 e-monotonicity

We introduce e-monotone quasigeodesics. They happen to be close to vertical geodesics.

Definition 2.3. (s-monotone quasigeodesic)
Lete >0 and leta: [0, R] - X Y be a quasigeodesic segment. Then « is called e-monotone if and only

if
vt € [0,R], (h(a(t)) = h(a(t2))) = (|t - 12| <R) (10)
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Figure 7: Proof of Theorem [2.4]

Since « is assumed to be continuous, a 0-monotone quasigeodesic has monotone height, h o « is
either nondecreasing or nonincreasing. We first show that in X » Y, the projections on X and Y of an
e-monotone quasigeodesic are also quasigeodesics.

Theorem 2.4. Letc > 0, R > % and o = (aX,aY) : [0,R] - X nY be an e-monotone (k,c)-
quasigeodesic segment. Then there exists a constant M (x, k, c) (depending only on w, k and c) such that
X and o are (4k, M<R)-quasigeodesics.

A portion of the proof of Theorem [2.4]is illustrated in figure[7]

Proof. We know that Vp; = (p{( , p{), po = (pg( , p%/) e X xY we have (this is the admissible assumption
we made on the norm underneath the distance d,)

x (s p3) +dy (010}
2

d
dw(p1,p2) > (11)

Therefore we have that o™X satisfies the upper-bound assumption of quasigeodesics
Vs1,82€[0,R], dx (OéX(Sl),OéX(SQ)) < 2dw(a(31),a(32)) < 2k|sy — so| + 2¢

We want to find an appropriate ¢/ > ¢ such that oX satisfies the lower-bound condition of a (4k, c’)-
quasigeodesic. Let ¢’ > ¢ and let us assume that a”X does not satisfy the lower-bound condition of a
(4k, ¢')-quasigeodesic, we will show that this provides us with an upper-bound on ¢’. Indeed, consider
s1,s2 € [0, R] such that

0<dx (a (s1), (32))<—|31—32|—c (12)
therefore by the Lipschitz property of h
Ah (a (s1), (82)) < (aX(sl),aX(SQ)) < i|51 - 89| - ¢,
dw(a(s1), 04(32)) -, since ais a (k,c)- quasigeodesic.  (13)

dx
1
4
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Theorem [L.I1] gives us the existence a constant M (x) depending only on X, Y and the underlying
norm of d,, such that

dy (a¥ (s1),0" (s2)) (14)

2dw((s1),a(s2)) = dx (o (s1), 0™ (s52)) = Ah(a(s1), a(s2)) -

>d,(a(s1),0(s2)) - 2dX (o™ (1), (s2)) = M, by Lemmal[LI0,

>dy(a(s1), (s2)) - —|51 — 59|+ 2¢ = M, by assumption (I2),

sdu(a(s),a(s2)) - %d (a(s1),2(52)) = - +2¢ = M, since avis a (k,c)-quasigeodesic
Z%dw(a(sl),a(sﬂ) - g +2¢ — M, since k> 1. (15)

Without loss of generality, we may assume that max (h (a¥ (1)), h(a¥ (s2)) ) = h(a¥ (s2)). Ap-
plying Lemma[I5] on the geodesic [ay(sl), OéY(SQ)] of Y gives us

h* ([ay(sl),aY(SQ)]) > h(aY(SQ)) + %(dy (ay(sl),aY(SQ)) - Ah (O[Y(Sl),aY(SQ)) ) - M(x)

However o is a continuous path between a¥ (s1) and o (s1), then by Proposition .12} there exists

S0 € [$1, 2] such that

h (ay(so)) >h (OZY(SQ)) + %(dy (OéY(Sl),OéY(SQ)) - Ah (ay(sl),aY(SQ)) )
— 8logy (dy (¥ (s1),0" (s2)) ) - M (%)
Therefore by inequalities (I3) and (I5)
h(a¥ (s0)) 2h(a¥ (s2)) + idw (a(s1),a(s2)) - %dw (a(s1).a(s2)) = 7+ ¢/~ o+ L

2
— §logy (dy ((XY(Sl),(XY(Sg)) ) - M;N)

Zh(aY(SQ))‘l‘%dN (a(s1), a(s2)) - 6logy (dy (« Y(s1),a (32)))+ —c' - M(»,c)

However 2d,, > dx + dy > dy, hence
h(a¥ (s0)) 2 h(a¥ (s2)) + %dN (a(s1), a(s2)) - 81ogy (du (a(s1),a(s2)) ) + gc' _M(x,c) (16)

Furthermore, there exists ro € R depending only on ¢ such that Vr > ro, 5 Ly — §logy(r) > 7“ holds.
Therefore, one of the two following statements holds:

(@) dw (as1),a(s2)) <ro
gdn (a(s1),a(s2)) = 0logy (dw (a(s1), a(s2))) > 15du (a(s1), a(s2))
We will deal with the first case (a) at the end of the proof. Let us assume that d,, (a(s1),a(s2)) > rg
hence (b), then by inequality (I6)
h(ay(so)) >h (OZY(SQ)) + 1—10d,>4 (a(s1),a(s2)) + gc' - M(m,c) (17)

Then either d.(a(s1),a(s2)) < M(x,c) (up to multiplying by 10 the constant M), or h(a¥ (so)) >
h(aY (s2)). In the case du(a(s1), a(s2)) < M(x,c), then |s1 — S| <4 . 1 since a is a quasigeodesic,

X

and therefore ¢ <, . . 1 following assumption (I2), hence o is a quasigeodesic segment. In the other
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case we have h(a¥ (sg)) > h(a (s2)), therefore there exists s{ € [s1,50] such that h(a¥ (s})) =
h (¥ (s2)), since o is continuous. Hence

1 1
du(a(s]),(s2)) ZEM - Sol—c> E(|s'1 — So| +|so — s2|) — M(c), since « is a quasigeodesic,
1
Zﬁ(dw(a(s'l), a(s0)) + dw((s0), a(sz))) - M(k,c), since « isa quasigeodesic,

> (Ah(a(sh). 0(50)) + Ah(a(s0), 0(2))) ~ M(k,c), by Lemma LT

Z%Ah(a(So),a(SQ)) - M(k,c), since h(a(s'l)) = h(a(SQ)),

1
2@0{»« (04(81),04(82))+%c’_M(kJ,C,N), by ([@2). (18)

Moreover assumption (I2) implies |s1 — s3| > 4k¢’. Then
1 /
du(a(s1),(s2)) > E|Sl —-so|—c>4c -¢
Combined with inequality (I8) it gives us
du(a(s]),a(s2)) > Ec' - M(k,c,»)
5k?
Since « is e-monotone and because h (oY (s])) = h (Y (s2)), we have

1
eR >dy(a(s)), a(s2)) > 5%0' - M(k,c,»)

Hence
' < M(k)eR+ M(k,c,»)

We proved that if o does not verify the lower bound inequality of being a (4k,¢’)-quasigeodesic
then ¢’ < M(k)eR + M (k,c,»). Furthermore R > 1, then there exists M (k,c, x) such that a* is a
(4k, MeR)-quasigeodesic. Similarly we show that o is a (4k, MeR)-quasigeodesic segment of Y.

For case (a), let us assume that each couple of times (s1, s2) € [0, R]? that contradicts the lower-bound
hypothesis of a (4k, MeR)-quasigeodesic verifies that dy(a(s1),a(s2)) < ro. Then « is a (4k,79)-
quasigeodesic, with 7o depending only on 4. Therefore « is in both cases a (4k, MeR)-quasigeodesic,
with M depending only on k,cand X x Y. O

In the sequel we denote by dpg the Hausdorff distance induced by d,. In the the proof of Lemma
2.6l we use a quantitative version of the quasigeodesic rigidity in a Gromov hyperbolic space, provided
by the main theorem of [GS19]].

Theorem 2.5. ([GS19])
Consider a (k,C')-quasigeodesic segment cv in a -hyperbolic space X, and y a geodesic segment between
its endpoints. Then the Hausdorff distance dyg(cv,7y) between o and vy satisfies

dug (o, 7) <92k (C +0)

This quantitative version allows us to have a linear control with respect to C' on the Hausdorff
distance, which is mandatory in our cases since C' < ¢ R. Combining this rigidity with the fact that pro-
jections X and oY are also e-monotone provides us with the existence of vertical geodesic segments
close to a.
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Figure 8: Proof of Proposition [2.6]

Proposition 2.6. Lete > 0, R > % and o : [0,R] - X n'Y be an e-monotone (k, c)-quasigeodesic
segment. Then there exists a vertical geodesic segment V : [0, R] - X Y such that

ng(im(a),im(V)) <k ER (19)
Figure [gis an illustration of the proof.

Proof. By Theorem[Z4, o is a (4k, MeR)-quasi-geodesic in X which is 6-hyperbolic, hence by The-
orem [Z5 there exists a geodesic 7 with the same endpoints as o such that

dHﬂ‘(im (aX) ,im (’yX) ) <k,c,5 ER.

Let us denote x1 := o™ (0) and 3 := oX (R). The quasigeodesic o is also e-monotone. Furthermore

Proposition 2.2 page 19 of [CDP90] gives us that vX, which links x| to x, is included in the 246-
neighbourhood of two vertical geodesic rays V; and V5 such that V;(0) = z1 and V2(0) = x2. Let us
denote 7 := h* (), and let us recall that V#1,t, € R* and for i € {1,2} we have Ah (V;(t1), V;(t2)) =
|t1 — to|. Let us also denote by slight abuse v~ := im ('yX), a® = 1im (aX), Vi :=im (Vl‘[O,T,h(ml)])
and V5 := im (V2|[0,r—h(x2)])- Since 7 = h* (y*) = h* (V1) = h* (V2) we have

dHﬁr(’}/X,Vl @] Vz) <5 1.
Hence by the triangle inequality
duge (0™, Vi UVh) < R, (20)

Without loss of generality we can assume that i(x1) < k(). Furthermore 4 is continuous, therefore
there exists a point of ¥~ close to both vertical geodesics (less than 246 apart). Furthermore X is
Busemann convex, hence the distance between the two vertical geodesics is decreasing. Therefore

dX(Vl (r-h(z1)), VQ(T—h(xg))) <5 1. We will use the e-monotonicity of aX to prove that 7 ~ h(x2).
Let us denote by 2} a point of o such that h(z}) = h(x2) and such that dx (z], V1) <j.cs €R. Since
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o is e-monotone and a (4k, MeR)-quasigeodesic we have that dy (2], 22) <. €R, hence using the

triangle inequality we have
dX(Vl(h(acg) - h(;cl)),@) < dX(Vl(h(:nz) - h(wl)),x'l) +dx (), )
<k ER (21)
Let g1 € im (7~ ) be the closest point to z7 at height 2(z2). Then we have:
1. dX(gl,Vl(h(xQ) - h(:cl))) <1

2. dx(gl,m'g) >2 (h+ (’YX) - h(l'Q))

We recall that 7 = h* (y™), then dx (g1, 22) > 27 — 2h(z2) > 0, hence

7~ h(2)| < %dx(gl,u) < %dx(gl,vl(h(:cz) - h(z1))) + %dx(vl(h(m) - h(21)),22)

<k €R, Dby definition of g; and inequality (21I).

Hence V5[o,7-h(x,)] IS a vertical geodesic segment of length <, . s € R. Furthermore, dx (V1 (7-h(z1)), Va(7~
h(z2))) <s. Therefore by the triangle inequality, any point of Vy|[g 7_4(s,)] is (up to a multiplicative
constant) e R-close to Vi (7 — h(z1)). Therefore dg (Vi U Vo, V1) =i .5 €R. Therefore, by the triangle
inequality we can improve inequality (20) as follows

dHff(aX, Vl) < dHff(OéX, Viu Vg) + dHﬁr(Vl u Vs, Vl)
<k €R, by inequality (20).

We deduce similarly that o is included the MeR-neighbourhood of a vertical geodesic segment V.
Therefore, « is included in the MeR-neighbourhood of the vertical geodesic segment (V7, V7). O

As a corollary, we show that the height function along an e-monotone quasigeodesic is a quasi-
isometry embedding of a segment into R.

Corollary 2.7. Let o : [0, R] = X Y be an e-monotone (k, c¢)-quasigeodesic segment. Then there exists
a constant M (k,c,d) such that the height function verifies Vt;,t5 € [0, R]

1
E|t1 —to| - MeR < Ah(a(t1),a(ts)) < klty — to| + MeR (22)

Proof. Let t1,ty € [0, R]. The quasigeodesic upper-bound inequality is straightforward since h is 1-
Lipschitz and « is a (k, ¢)-quasigeodesic.

Ah(a(tl), Oé(tg)) <dy (Oé(tl), Oé(tg)) < k|t1 - t2| +c.

To achieve the lower-bound inequality we use Proposition [2.6] hence there exists a vertical geodesic
segment V' : [0, R] > X » Y and a constant M (k, ¢,d) such that

du (im (), im(V)) < MeR. (23)
Forie {1,2}, let s; € [0, R] be such that di(a(t;),V (s;)) < MeR. Then by the triangle inequality

Ah(a(ty), a(ts)) > Ah(V(s1),V (s2)) - 2MeR

=|s1 —s2| —2MeR, since V is vertical.
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Figure 9: Subdivision of a quasi-geodesic.

However we can achieve the lower-bound inequality on |s; — s2|
|s1 — s2| = dw((V(51),V(s2)) 2 du(a(t1),a(t2)) —2MeR, by the triangle inequality,

1
> %|t1 —ta]—c—2MeR, since « is a quasigeodesic.
Which provides us with

1
Ah(a(tl),a(tg)) > |81 - 82| -2MeR > E|t1 - t2| -b5MeR.

2.2 Coarse differentiation of a quasigeodesic segment

The coarse differentiation of a quasigeodesic « consists in finding a scale r > 0 such that a subdivision
by pieces of length 7 of o contains almost only e-monotone components (which are therefore close to
vertical geodesic segments).

Proposition 2.9 provides us with the existence of such an appropriate scale .

Lemma 2.8. Letk > 1, ¢ >0 ande > 0. There exists M (k,c,n, &) such that forallr > M, N > M and
for all non e-monotone, (k, c)-quasigeodesic segment o : [0,7] - X x'Y we have

Nl T ] T
Z% Ah (a(%),a(%)) —Ah(a(O),a(r)) ) cm ET (24)

Proof. Since « is non e-monotone, there exist t1,¢3 € [0,7] such that
h(a(t1)) = h(a(ts)) and |t; —t3|>er (25)

We can assume without loss of generality that h(«(0)) < h(a(t1)) < h(a(r)) with ¢; < t3. Since «
is a (k, ¢)-quasigeodesic we have d (a(t1), a(t3)) > %T — ¢. By Corollary [I17] of the first part of this

manuscript, there exists M (x) such that d,, < dx + dy + M. Then at least one of the two following
inequalities holds:
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1. dx (aX(tl),aX(tg)) > i?“—M(M,C)
2. dy (¥ (t1),a" (t3)) 2w 27— M(%,c)

Let us assume that the first inequality is true. By Lemmal[L.5applied to the geodesic segment [aX (t1),aX (tg)]
we have

b ([eX(t), 0™ (t3)]) 2dx (o™ (t1), 0™ (t3)) = Ah (¥ (t1),a™ (t3)) - 966
=dX (aX(tl),OéX(tg)) -966

Hence by Proposition[[.12 and the assumed inequality, there exists t5 € [¢1,¢3] such that
er
Ah(a(t), 0(12)) 20 &~ dloy (de(a(tr), a(15))) ~ M ()

> % —0logy(r) — M(™,¢)

Similarly, assuming the second inequality provides us with the same lower-bound on Ah(a(t1), a(t2)).
Furthermore there exists M (e, x, ¢) such that for r > M we have %67’ > dlogy(r) + M(x,c), hence

Ah(a(tr), a(tz)) . ;—; (26)

Furthermore Vi € {1, 2,3} there exists n; € {0, ..., N — 1} such that

mr o it r
N N

Computing the sum of the successive differences of heights provides us with

(o () o (S5)
> (a0 (")) an (a0 ) o ("))« an (o (") o ("))
+Ah( (W) a(r))

> Ah(a(0),a(t1)) + Ah(a(ty),a(te)) + Ah(a(ta),a(ts)) + Ah(a(ts),a(r))

N
> Ah(a(0),e(r)) +2Ah(a(t1), a(t2)) - 6 (% + c) , since h(a(t1)) = h(a(ts)).

k
-6 (—T + c) , because h is Lipschitz, « is a quasigeodesic and by the triangle inequality,

Using inequality (26) we have

N-1 : :
jr (G+Dr er 6kr
Ah — —— Ah(a(0 — —— —6¢
% 80(n () o (457 -arte@ o) = 555
>i e €T, since we assumed N > M (k,c,», ).
O

The next lemma asserts that, at some scale, most segments of a quasigeodesic are e-monotone.

Proposition 2.9. Letk > 1,¢ > 0, ¢ > 0 and let S be an integer. There exists M (k,c,n,e) such that
forrg > M and N > M the following occurs. let us denote by L = N°rq. Let o : [0,L] - X n Y be a
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(k, ¢)-quasigeodesic segment. For all s € {0, ..., S} we cut « into segments of length N°ry, and we denote
by As the set of these segment, that is

A= {a ([kN®ro, (k + 1)N°ro]) |k € {0,..., N5 — 1} },
and let 65(cv) be the proportion of segments in A5 which are not e-monotone

# {8 € A|B is not e-monotone}

0s() := iy

(27)

Then
S 1
Z 53(05) <k,em — (28)
s=1 €

Proof. The idea is to cut v into IV segments of equal length, then to apply Lemma[2.8]to the elements of
this decomposition which are not e-monotone. Afterwards we decompose every piece of this decom-
position into N segments of equal length to which we apply Lemma [2.8] if they are not e-monotone.
The result follows by doing this sub-decomposition S times in a row. To begin with, we need to deal
with « being e-monotone or not. Hence dg(a) = 0 or 1 and in either case thanks to Lemma[2.8 we have

N-1
S AR(a (GN o) o (G + 1)N1r) ) 2p e AR(a(0),a(L)) + ds(a)eL. (29)
j=0

Then for all j € {0, ..., N — 1} such that a([stflro’ G+ 1)N571T0]) is not e-monotone
N-1
S Ah(a (kNS2r + NS rg) a ((k + 1)NS2rg + NS 1) )

k=0

TS . _ eL
> e wAR(@(GN® " rg), a((j + 1)Nrg)) + N

which happens Ndg_1(«) times. Therefore we have that

N2-
Zl Ah(a (iNszro) o ((i+ 1)N5727“0) ) Zk.enAR(a(0),a(r)) +5s(a)eL + Nés_l(a)%
i=0

>k ewAR((0), a(r)) + (05 (a) + 0g-1(c))eL.

By doing this another S — 2 times we obtain

N5-1 S
Z(:] Ah(a(irg) ,a ((i+1)rg) ) 2k wAR((0),a(r)) + L 255(04).

Furthermore we have the following estimate using the Lipschitz property of h

NS-1 NS-1

Z(:) Ah(a (irg) ,a ((i+1)rg) ) < Z(:) dw(c (iro) ,a ((i + 1)rg) )

< Ns(kro +¢)<2kL, withry> %
Hence
S 1 1
Y 05() Shen —2kL Sp 0 — (30)
s=1 eL 9
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2.3 Height respecting tetrahedric quadrilaterals

In this subsection we show that a coarse tetrahedric quadrilateral whose sides are vertical geodesics,
has two vertices on the same X -horosphere, and the other two on the same Y -horosphere (see [L. 14l for
the definition of such horospheres). We call such a configuration a vertical quadrilateral.

Definition 2.10. (Orientation) We define the orientation function on the paths of X »'Y as follows. For
allT >0and~:[0,T] > X xY we have

tifh((0)) < h((T)), upward

orientation () = { L ifR(7(0)) > h(v(T)), downward

(1)

Proposition 2.11. (Vertical quadrilateral lemma)

Letay, az, b1, by € X xY. Let D > 1 and fori,j € {1,2}, let V;; : [0,1;;] = X x Y be vertical geodesic
segments linking the D-neighbourhood of a; to the D-neighbourhood of b;, and diverging quickly from
each other. More specifically, we assume for alli,j € {1,2}:

(@) d(Vij(0),a:) < D
(b) d(Vij(lij),b5) <D

(©) d(Via(£),im(Vi)) > 1% _D, Vte[0,1n]

(d) d(Vlj(llj —t),im(VQj)) > % -D, Vte [O,llj]

If foralli,j € {1,2}, l;; > 2D and the vertical geodesic segments V;; share the same orientation, then
there exists a constant M (») such that one of the two following statements holds:

1. The four vertical geodesics V;j are upward oriented and ay is in the (M D)-neighbourhood of the X -
horosphere containing ay, and by is in the (M D)-neighbourhood of the Y -horosphere containing by .
Otherwise stated, we have dy (a{, a%/) <MD anddx (b{(, bg() <MD.

2. The four vertical geodesics V;; are downward oriented and as is in the (M D)-neighbourhood of the
Y -horosphere containing a1, and by is in the (M D)-neighbourhood of the X -horosphere contain-
ing by. Otherwise stated, we have d x (a{(, ag() <MD and dy (b{, bg) <MD.

Proposition 2.11]is illustrated in Figure [10]

Proof.
For all 7,5 € {1,2} let us denote by

ai = (a¥,a}); by = (bF.0)); Vij = (Vi V). (32)

The hypothesis (a) gives us
d(Vi(0),Via(0)) < d(Via (0), i) + d(as, Vie(0)) < 2D (33)

By hypothesis (b)
d(Vij(Lij), Va;(l2;)) <2D

Without loss of generality we can assume that for all 7, j € {1,2} orientation(V;;) =1, which means

that h(a;) < h(bj). Then Vi, j € {1,2} and ¢ € [0,l;1] we have h(V;;(t)) =t + h(V;;(0)), hence

h(Vi¥ (1)) =t +h(V;;(0))
h(V} (t)) = =t = h(V;;(0))
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Figure 10: A coarse vertical quadrilateral of Proposition 2.11]

Since X and Y are Busemann convex spaces, Vi,j € {1,2}

t v dy (ViY (1), Vi3 ()) is convex on [0,min(li1, li2)]-

tedy (Vl)j((llj -t), VQ)]»((ZQJ- - t)) is convex on [0, min(l1;,l2;)].

These two applications are also bounded by 2D on the end-points of the intervals, hence on all the
intervals. Therefore

vt € [0, min(l1,li2)], dy (Vi (£), Vi3 (t)) <2D (34)
Vit e [O,min(llj, lgj)], dX (Vl)j((llj - t), ‘/;;(lgj - t)) <2D

We can assume without loss of generality that /1; < o7 and that 15 < l29. Then

dx (Vi{ (0), Vi (I1 1)) <2D (35)
dx (Vi3 (0), Vi (ls2 = l12)) < 2D (36)

Let us denote Alj = l9; — I3 and Aly = log — 112, our goal is to show that these two real numbers are
sufficiently close. We have Vi,j € {1,2}

Ah(a;,b;) = 2D <l;; < Ah(a;,bj) + 2D
By subtracting these inequalities we get

—h(az) + h(al) —4D <191 — 117 < —h(ag) + h(al) +4D
—h(az) + h(al) —4D <l9g — 112 < —h(ag) + h(al) +4D

Then |Al; — Alp| < 8D. However

dx (V3 (Al), Vay (Alr)) <dx (Vi) (Aly), VY (0)) + dx (Vi) (0), Vi3 (0))
+dx (Vi3 (0),Viy (Als)) + dx (Vas (Ala), Vi (Aly)) .
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By the inequalities (35) and (36) we obtain

dx (Vs (Al1), Vi (Al)) <2D +dx (VY (0), Vi3 (0)) + 2D + |Aly - Aly|
<4D +2D +8D <14D. 37)

By using assumption (c¢) and the characterisation of the distance on horospherical products we have

Al
D+ 1—01 <dy (Va1 (AL, Voo (Aly))

<dx (Vg1 (Al), Viy (Al)) + dy (Var (Al), Vay (Al))

— Ah (Vo1(Aly), Vag(Aly)) + M(x), by Corollary[L.11]
<dx (Vz)f(All), V2)2((Al1)) +2D + M, by inequality (34)
<16D + M, by inequality (37),

which provides us with Al; < 10(16D + M + D) = 170D + 10M. We have

dx (a7',a3 ) <dx (ai', Vi1 (0)) +dx (Vi1 (0), Vi (0)) +dx (Vi (0),a5 )
<dx (VX (0),Va) (Al)) +dx (Vi) (Alr), Vi (0)) +2D
<2D +170D + 10M +2D < 174D + 10M , by inequality (35).

From this inequality we deduce that |h(a1) — h(a2)| < 174D + 10M <, D. Similarly we deduce the
following inequalities.

dy (b} b3 ) <x D,
|h(b1) = h(b2)| <u D.

O

Four points which satisfies the assumption of Proposition are called a coarse vertical quadri-
lateral with nodes of scale D.

2.4 Orientation and tetrahedric quadrilaterals

From now on we fix a (k, ¢)-quasi-isometry ® : X x Y — X x Y. The second tetrahedric configuration
consists of two points on an X-horosphere and pairwise linked to two points on a Y-horosphere by
four vertical geodesic segments.

The following proposition [Z.13] states that if two points on an X-horosphere are sufficiently far from
each other, if two points on an Y'-horosphere are sufficiently far from each other and if the vertical
geodesic segments have e-monotone images under a (k, ¢)-quasi-isometry @, then all the images of
the vertical geodesic segments by ® share the same orientation.

We first show that their exists a constant M (k, ¢, ») such that the concatenation of two consecutive
e-monotone quasigeodesic segments sharing the same orientation is an M e-monotone quasigeodesic
segment. This result will only be used in the proof of Proposition [2.13]

Lemma 2.12. Letk>1,¢>0,D >0, >0,T > % andlety:[0,T] » XxY and~": [0,T] » XxY
be two e-monotone, (k, c)-quasigeodesic segments such that:

1. orientation(~y) = orientation(y")

2. du(7(T),7'(0)) < D
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Let”:[0,2T] - X wY be the concatenation of y and ~'

) t) ift € [0,T]
V() = { VG-TY it eIl 21 (38)

Then there exists M (k,c,») such that 7 is an Me-monotone, (k, M eT')-quasigeodesic segment.

Proof. We can assume without loss of generality that v and 4" are upward oriented, we first show that
there exists M (k, ¢, d) such that 7 is M e-monotone. Let t1, t5 € [0,27] such that h((t1)) = h(F(t2)).
Ifboth ¢y and t5 are in [0, T'] or both are in |T', 2T'], there is nothing to do since y and 4" are e-monotone.
Then we can assume without loss of generality that ¢; € [0,7"] and ¢9 €]T,27T]. Since v is upward
oriented we have h(~(0)) < h(~(T)), therefore, because y is e-monotone and continuous, we have

h(v(t1)) < h(y(T)) + €T, (39)

otherwise, by continuity there exists ¢] in [0,¢1] such that h(v(t})) = h(~(T')) contradicting the e-
monotonicity. Two cases arise:

(@) Ah(Y (t2-T),7'(0)) <eT
(b) AR(~'(t2-T),7'(0)) >eT

Let us consider the first case (a). We know that h(v(t1)) = h(3(t1)) = h(7(t2)) = h(y'(t2 = T')) and
that Ah(y(7T),~'(0)) < D, then by the triangle inequality we have

AR(y(01).AT)) = Ah(y (b2~ T),4(T)) < Ah(4'(t2 = T).4'(0)) + Ah(y(0).(T)) < T + D
According to Corollary[27] h is a (k, MeT')-quasi-isometry along e-monotone quasigeodesics. Hence

t = T| < kAR(y(t1),v(T)) + MeT < (k+ M)eT + kD < (2k + M)eT, quadby assumption on T,
lto = T| < kAL(y'(t2 = T),~'(0)) + MeT < (k + M)eT

Therefore by the triangle inequality we obtain [t — to| < (2k + M)e(27).
We consider now the second case (b). By Corollary2.7, h is a (k, M eT')-quasi-isometry, therefore

1
Ah(Y (t2-T),7'(0)) > E|t2 ~T| - MeT

Furthermore, v is upward oriented, hence we have that h(+'(0)) < h(y'(t2 — T')), otherwise, as for
~,by continuity one can construct t, € [t2,7 + T"] contradicting the e-monotonicity of 7'. Hence we
have

1
h(7'(t2=T)) > h(7'(0)) + %|t2 ~-T|- MeT
In combination with inequality (39) it provides us with

h(1(t1)) < h(3(T)) + €T < h(v/(0)) + D + €T

1
<h(y (t2-T)) - E|t2 ~T|+D+(1+M)eT

However h(~(t1)) = h(+'(t2—T)) by definition of ¢; and ¢5, therefore 0 < —%|t2 ~T|+D+(1+M)eT,
which gives

[to —=T|< (1 + M)keT + kD < 3MEeT. (40)
Hence

AR (ts = T),7'(0)) < du(~ (t2 = T), 7' (0)) < klta = T| + ¢ < (3ME? + 1)eT
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Since h(7y'(to = T)) = h(~(t1)), thanks to the triangle inequality we obtain
Ah(y(t1),7(T)) < Ah((t1),7(0)) + Ah(~'(0),4(T))
< (BME? +1)eT + D < (3Mk? +2)eT (41)

Both inequalities (@0) and (1) in combination with the fact that 4 is a (k, MeT')-quasigeodesic segment
provide us with

[ty —to| = [t1 = T| + |T — to| < k(3ME? +2)eT + MeT + 3MkeT

9k* M
<K MeT < 5 e(2T) , sincek>1, M >1.
In the view of cases (a) and (b) we conclude that 7 is gk;M e-monotone.

To prove that 7 is a (k,3MeT")-quasigeodesic segment, we must check the upper-bound and lower
bound required. Let ¢1,to € [0,27], as for the e-monotonicity property, since v and v are (k, c)-
quasigeodesics, we can assume that ¢1 € [0,7'] and t5 €]|T,2T']. By the triangle inequality, the upper-
bound is straightforward.

d(Y(t1),5(t2)) = du(y(t2),7 (t2 - T))
<dw(v(t1),Y(T)) + du(¥(T),7(0)) + du(7'(0), 7" (t2 = 7))
Sk(T-t1))+c+D+k(ta-T)+c=klta—t1|+2c+ D
< kl|ta —t1|+ 3T, by the assumed lower bound on 7.

Last inequality holds because v and 7' are (k,c)-quasigeodesics. To prove the lower-bound we will
proceed similarly as for the e-monotonicity. We have

i (Y(t1),7(t2)) = du(y(t1),7 (t2 = T))
> Ah(y(t1),7'(t2=T)), since h is Lipschitz.
Similarly to inequality (39) we have
h(y'(t2=T)) 2 h(7'(0)) - €T. (42)
Therefore
Ah(y(t1),7'(t2 = T)) 2 h(+'(t2 = T)) = h(~(t1))
=(h(y/(t2 = T)) +eT) = h(7'(0)) + h(~'(0)) = h(x(T)) + h(x(T)) = (h(7(t1)) ~€T) = 2T
=|(h(/(t2 = 1)) +€T') = h(+/(0)] + [M(A(T)) = (h(~(t1)) - T))|
+h(7/(0)) = h(y(T)) —2eT , by inequalities (39) and (42),
> ‘h(w'(tz -T)) - h(y'(()))‘ +|h(~v(T)) = h(v(t1))| - D —4eT , by the triangle inequality,
Z%hfg -T|- MeT + %|T —t1| - MeT — D - 4eT, because h is a (k, MeT')-quasigeodesic.

Hence
du(3(t1),7(t2)) 2AR(Y(t1),7 (82 = T))
> 2tz = 11) = D = (2M + 4)eT 2 3t = 1) - TMET.
Which is the lower-bound we expected and proves that 7 is a (k, 7TMeT')-quasigeodesic. O

Proposition 2.13. Let h € Randletk > 1,c>0ande > 0. Let ®: X xY - X' wY' be a (k,c)-
quasi-isometry. Let D > 1 and R > @. Fori,j € {1,2} let a;, b; be four points of X w'Y verifying
d(ai,a2) > 10kMeR + 2kc and d(by,by) > 10kMeR + 2kc, where M is the constant involved in Lemma
and let V; ; : [0, R] = X x'Y be four vertical geodesic segments linking the D-neighbourhood of a;
to the D-neighbourhood of b;, such that:
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Figure 11: Case (a) in proof of Proposition 213l

h(V11(0)) = h(Va2(0)) = h(a1) = h(az) = h

h(Vii(R)) = h(Vaa(R)) = h(b1) = h(b2) = h+ R

h(V12(0)) = h(V21(0)) =h+ R

h(Vi2(R)) = h(Va1(R)) = h
o oV ise-monotone
Then the following statement holds:

orientation(fb o V11) = orientation(fb o Vgg)

Proof. Up to the additive constant I, one can consider V7 1 U V51U V52UV 5 as a coarse quadrilateral
composed with a; and b; as its vertices, and with V; ; as its edges. To make the proof easier to follow,
we shall use a vector of arrows to describe the orientations of the edges of the quadrilateral in play as
follows:

orientation (Vi 1, Va1, Va2, Vi) = (1,4, 1,1)

Similarly, we consider orientations of the image of V1 1 U Vo 1 U Va2 U V] 2 by @ as the successive ori-
entations of the paths ® o V; ;. We will proceed by contradiction to prove the lemma. Let us assume
that orientation(fb o VLl) * orientation(fb o Vg,g). We can assume without loss of generality that
orientation(fb(vl,l)) =1, therefore orientation(fb(VQ,g)) =|. Hence there are four possible orienta-
tions for <I>(V1,1 uVaiulhau Vl,g):

@ (1) (b) (. 1,11) © L4 @ 41
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Let us consider the case (a) (illustrated in Figure [[1)), we have orientation(@(vm)) =1 and
orientation(fb(VLg)) =1. Hence we have
orientation(®(V;,2)) = orientation(®(V;,1)) = orientation(®(V5,1))
Furthermore @ is a (k, ¢)-quasi-isometry and both Vi 2(R) and V} 1(0) are close to ay, hence
d (®(V12(R)), ®(V1,1(0))) < k2D + ¢
Similarly we have
d (P(V11(R)), ®(V2,1(0))) < k2D + ¢

Then by Lemma there exists M (k,c,») such that the concatenation of ®(V;2), ®(V; 1) and
®(V2,1) is an Me-monotone (k, MeT')-quasigeodesic. Therefore by Proposition there exists a
constant M (k, ¢, «) and a vertical geodesic segment V' such that

dug(V,2(Vi2) u®(Vi1) u®(Va1)) < MeR (43)

Furthermore, applying Proposition[2.6lon ® (V53 2) provides us with the existence of a vertical geodesic
segment V' such that

dug(V', @(Va2)) < MeR. (44)
Moreover dy(V22(0),Va,1(R)) < 2D (the two points are close to as) and du(V22(R),V12(0)) <
2D (the two points are close to by), therefore V and V' are two vertical geodesics with endpoints

(k2D +c¢)+2MeR close to ®(ay) and ®(bs). Thereby, these two vertical geodesic segments stay close
to each other, we have

dug(V, V') < (k2D + ¢) + 2MeR < 3Me, by assumption on R.
Then, we show by the triangle inequality that ®(a;) is close to ®(V52).
dur (®(a1), ®(Var2)) < dur (®(a1), V) + dua(V, V') + dug(V', @(Va2)) < 5MeR (45)
However, the assumption d(a1,az) > 10kMeR + 2kc gives us that a; is sufficiently far from V3 5
Vit e [O,R], dy (al, V2,2(t)) > Ah(al, V2,2(t)) =t
and, dw(a1,V2,2(t)) > du(a1,a2) — du(az, Vo2(t)) > 10kMeR + 2kc - t.
Therefore
Vte [O, R], dNr((I)(al), (I)(Vgg(t))) > kildw (al, V272(t)) —C
S t+10kMeR +2kc—t
2k
Which contradicts inequality (43). Thereby, in case (a), o V; ; and ®oV; 5 share the same orientation.
The other three cases (b), (¢) and (d) are treated similarly. We first show that <I>(V171 uVa UVQQUVLQ)

is in the M e R-neighbourhood of two vertical geodesic segments which, depending on the case, have
endpoints

(b) close to ®(ay) and P(as).
(c) close to ®(b1) and ®(be).

(d) close to ®(a1) and ®(by).
Which, depending on the case, contradicts the fact that:
(b) du(b1,Va2(t)) >5MeR.

—c=5MEeR,

(©) du(a1,Vap(t)) >5MeR.
() du(b2,V1,1(t)) >5MeR.
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3 Measure and Box-tiling

3.1 Appropriate measure and horopointed admissible space

In the setting of horospherical product, an important characteristics is that they are union of products
of horospheres.

As such, if one wants to endow them with a measure, it makes sense that the measure should
disintegrate along these horospherical product, and should be related somehow to the measures and
the geometries of the initial spaces and its horospheres.

The properties we present are satisfied when our initial space are Riemannian manifolds for in-
stance, or graphs of bounded geometry. We will also see in Section [5] that Heintze group are another
set of spaces which satisfies them, making our requirements sound.

Definition 3.1. (Admissible horopointed measured metric spaces.)

Let (X, d) be a §-hyperbolic, Busemann, proper, geodesically complete, metric space, and let a € 0X be a
point on the Gromov boundary of X. A Borel measure i on X will be said (X, a) horo-admissible if and
only if (E1), (E2) and (E3) are satisfied.

(E1) (There exists a direction a € 0X such that) u is disintegrable along the height function hq, that is

For all z € R, there exists a Borel measure ,uf on X, = h™'(2) such that for any measurable set A c X

XA = [ 1 (A2)dz
zeR

(E2) Controllable geometry for the measures j12 on horospheres, there exists My > 2886 such that
V1,79 € X, we have ,uff(ml) (D (1)) 2x Mi((m) (D, (22))
(E3) There exists m > 0 such that for all zy € R, and for all measurable set U c X,

Vz < 2, em(zo_z),uig(U) 2x pX (m(U))

The space (X, a,d, X ) will be called a horo-pointed admissible metric measured space, or just admissible.

The assumption (FE2), in combination with Lemma[L.8] provides us with a uniform control on the
measure of disks of any radius.

Lemma 3.2. Letr > My. Then for all z € X we have

fin(zy (Dr(2)) %x €™2

Proof. The proof is illustrated in Figure 12l Let V, be a vertical geodesic line containing = and let
My > 2880 be the constant involved assumption (E£2). Let us denote z1 the point of V,, at the height
h(x)+ % and let 3 be the point of V;, at the height h(x) + r_é\/[(’. Applying Lemma[L.8 with p = x,
20 = h(x) + % and z = h(x) provides us with

Dr(x) = DQ(zo—z)—Mo (x) C Th(z) (DMO (wl)) :
Similarly, applying Lemmal[l.8lwith p = x4, 29 = h(ac)+r_§/[° and z = h(x) provides us with 7y, () (D, (72)) ©
D,.(z). Furthermore by assumption (E3) then assumption (E2) we have

m( r+§fo

tiniy (Ti(ey (Dasy (1)) =x € Jtiiery (Do (1)) =x €™3,

since My depends only on X. Similarly we have /‘2((3;) (wh(x) (DMO(:UQ))) <x €™3, therefore by the

two previously obtained inclusions we have i5,(;) (D (7)) Xx ems. O
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h(x) 4+ #

h(z) + 5
h(z) + —’”_2M°

Figure 12: Proof of Lemma[3.2]

Heuristically, the next lemma asserts that the measure of the boundary of a disk is small in com-
parison to the measure of the disk.

Lemma 3.3. Let My be the constant involved in assumption (E2) and let M be the constant involved in
Corollary[L4 Let zp € R, z¢ € X, andC c X, be a set containing D s, (xo) and contained in Doy, (o).
Then for all z1 < zg, and for all v < 2|z — 29| = 2My — M we have

iz, (It (7)) 2w 422, (7€)

This Lemma might seems to contradict Lemma [3.2] however the r-interior of a disk of radius R is
very different from a disk of radius R — r on horospheres, for R sufficiently greater than r.

Proof. Let us denote .J := Int, (72X (C)). By definition we have
X ()N T = {z e X(0)|dx (z, 75X (C)°) <7} (46)

At the height z; + 5, let z1 € wi% )~ 7T§i+% (J), then, at the height z1, there exists ] € 72 (C) \ J

such that x; € Vit Furthermore by the characterisation (@€)), there exists xf, € wi (C)¢ such that
d(z!,2z}) < r. Then by LemmalL4] there exists M (4) such that

dx (Vgcl2 (2’1 + %)7V$’1 (2’1 + %)) =dx (VJC/2 (2’1 + %),1‘1) <M, (47)

With V., (z1+%)e Wi or (C)¢. Therefore by the triangle inequality and Lemma [L.8]

r r
d(:ﬂl,wi%(azo)) >-d (ml, Vay (zl + 5)) + d(Vx/2 (21 + 5) ,wi%(azo))
22|ZQ—21|—T—M0—M

Since last inequality holds for all x; € 71'5&z (C)~ Wi+£ (J), we have
2 2

X X
D2\zg—z1|—r—Mo—M(7Tz1+§ (mO)) c 7Tz1+§ (J)
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Therefore by Lemma[L8]
D2\z07z1|7M07M(7T§(1Y (.%'0)) cJ

Moreover, J c X (C) c Doz 1My (72 (20)), hence by Lemma[3.2]

ui(J) <y elomalm o ,ufl (ﬂi(C))
O

In order to achieve a rigidity result on horospherical products, we will need another measure AX
in the same measure class as 11~

Definition 3.4. (measure \X of X)
Let X be an admissible horopointed space. The measure A on X is defined from a set of weighted measure
MY on the level set X ,:

1. VzeR X = em2 X

2. For all measurable set A c X, \*(A) = [ A\ (A,)dz,
zeR

where m is the constant involved in (E3).

For the Log model of the hyperbolic plane, this measure AX turns out to be the Lebesgue measure
on R?, and the measure ;1 is the Riemannian area. Up to a multiplicative constant, the measure A\~ is
constant along the projections. By assumption (£3), the following property is immediate:

Property 3.5. For all measurable set U c X we have

Vz1,20 <h7(U), AX (12, (U)) xx Aoy (72, (V) (48)

2

Otherwise stated we have the following relation between two push-forwards of the measure on horospheres
X o X
Tay * Mgy XX Tay * A

Following the fact that height level sets of X Y are direct products of horospheres, we define
disintegrable measures on the horospherical products from the disintegrable measures on X and Y.
We recall that Vz € R

(XwY), =X, xY_,

Definition 3.6. (Measure pon X »Y)
Let (X, pi”X) and (Y, 1Y) be two admissible spaces. Then for all measurable set U ¢ X xY, we define the
measure (L on X x Y by

pxoy (U) ::fﬂf o 1Y (U.)dz.
R

For all measurable set U c X x Y we have
pxwy (U) = / f pX(UY)dpt, | dz,
R eY_,
where UY := {z € X | (z,y) € U,}. (This measure might be not well defined).

Remark 3.7. A couple (X,Y") of horo-pointed admissible spaces is called admissible if the measure (i x vy
of Definition[3.4 is well defined.
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From now on we fix four horo-pointed metric spaces X, X', Y and Y’, with m > 0 (respectively
m’, n, n') the constant of assumption (E3) for X (respectively X', Y, Y'). We will assume in Section
[43 and afterwards that (X,Y") and (X', Y") are two admissible couples with m > n and m’ > n'.

We define similarly a measure Ax,y on X x Y.

Definition 3.8. (Measure A\on X »Y)
Let (X, X)) and (Y, u¥") be two admissible spaces. Then for all measurable subset U ¢ X n'Y’

Axwy (U) := / e )\YZ(UZ)dz = [ elm-mz ;X ®,u¥Z(Uz)dz
R R
For all measurable subset U ¢ X x Y we have

AXNY(U):f / A (U2)dAY, | de.
R

eY_,

From now on, we will simply denote by u the measure px .y and by A the measure Ax.y.

3.2 Box-tiling of X

In this subsection we tile a proper, geodesically complete, Gromov hyperbolic and Busemann space X
with pieces called boxes.

Definition 3.9. (Box at scale R)

Let X be admissible horo-pointed space. Let My be the constant of (E2), let R > 0, let x be a point
of X and let C(x) be a subset of X,(,y containing Dy, () and contained in Dopg,(x). Then, the box
B(z,C(x), R) is defined by

B(z,C(x), R) := U 7 (C(x))

ze[h(z)-R,h(z)[

We will often omit the parameter C(x) in the notation of a box. Later we depict an appropriate
choice for these spaces C(x). The idea of the tiling is first to distinguish layers of thickness R, then to
decompose each of these layers into disjoint boxes using a tiling of disjoint cells C(z) as the top of these
boxes. In the Log model of the hyperbolic plane, when the cell C(x) is a segment of an horosphere, the
associated box is a rectangle of R2. In [EFW12]], Eskin, Fisher and Whyte tile the hyperbolic plane with
translates of such a rectangle. However the space we consider might not be homogeneous, therefore we
will tile Gromov hyperbolic spaces with boxes which are generically not the translate of one another.
We recall that V, refers to the r-neighbourhood of a subspace.

A subset of a metric space X is k-separated if and only any two of its elements are at least at distance
k. A maximal such set for the inclusion is called maximal separating set. We shall denote by D(X) such
a set.

One easily sees that a maximal separated set is then k covering. That is the union of the metric ball
of radius k centred at the points of D(X) cover the whole space.

To construct a box tiling of X we first fix a scale R > 0. Let M, be the constant involved in
assumption (F2), then we chose a 2Mj-maximal separating set D (X,,g) of the horospheres X, g,
with n € Z. Such maximal separating sets exist since X is proper and so are X,,g. Let us call nuclei
the points in these maximal separating sets. For every nucleus = € D(X,gr), we fix a cell C(x) such
that Dy, (2) © C(x) c Dapg, (). Therefore, given two different nuclei z,2" € D (X, r), we have
Dy, () n Dy, (2") = @. We choose these cells such that they are y,, g measurable and such that they
tile their respective horospheres:

vneZ, || C(z)=Xng.
:L‘ED(XRR)
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As an example, one can take Voronoi cells:
VC(z) = {p € Xpnrld(p,z) <d(p,2’), forallz’ e D (X,r)}

These cells might not be disjoint, but a point p € X, is contained in a finite number of Voronoi cells
since X is proper. Therefore, by choosing (for example thanks to an arbitrary order on D (X,g)) a
unique cell containing p, and removing p from the others, there exists a tiling X,z by cells C(x).
Now, for all n € Z and for all = € D (X,,g) we define the box B(x, R) at scale R of nucleus x by

B(z,R) := U m.(C(z))

ze[(n-1)R;nR[

- DRy

Figure 13: Box-tiling

In this definition, we chose [(n — 1) R;nR[ for the boxes’ heights. It is an arbitrary choice, one
could prefer to use |(n—1)R;nR] as these heights intervals. Moreover, to construct the horospherical
product of X and Y, we will use intervals of the form [...;...[for X and ]...;...] for Y.

We recall that the cells C(x) tile the horospheres X,,z. Furthermore there exists a unique vertical
geodesic ray leaving each point of X. Consequently we have a box tiling of X at scale R:

x=1] || BR) (49)

nez $€D<XnR)

The next lemma explains that any box contains and is contained in metric balls of similar scales.
Lemma 3.10. There exists a constant M (X)) such that, for all x € X andr > M there exist two boxes
B(%) and B(3r) verifying

r
B (5) c B(x,r) c B(3r)

Proof is illustrated in Figure [[4

Proof. Let C(x) be a subset of Xj,(,) containing D (x, Mp) and contained in D(x,2Mpy). Let us denote

by B (%) the box at scale § constructed from the cell C(x). For all " € B (%) let us denote by z’ :=
Var(h(z)) the point of V, at the height h(z), we have

dx(2',z) <dx (w',x") +dx (w",x) <=+2My<r, forr>4My,

N3
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Figure 14: Proof of Lemma 3.10]

which gives us that 2’ € B(x,r). To prove the second inclusion, let us denote by V. the unique (since X
is Busemann convex) vertical geodesic ray leaving x. Let xo € im(V},) such that h(xg) = h(x) + 2r and
C(zo) be a subset of X, containing D(xo, M) and contained in D(zo,2M ). Then we claim that
B(z,r) is included in the box of radius 3r constructed from the cell C(z¢). Let 2’ € B(x,r), we recall
thatd, (z',x) := dx (2',2) - Ah(2', z). By Lemmal[L5lwe have that d(V,,(h(z) +2r), Vo (h(z)+2r)) <
965 = M since r > dx(z',2) > 3d,(2,x) and since the distance between two vertical geodesics is
decreasing in the upward direction. Therefore V,/(h(z) + 2r) € C(xg). Furthermore Ah(zp,z") <
Ah(xg,x) + Ah(z,2") < 3r, hence 2’ € B(3r). O

3.3 Tiling a big box by small boxes

Let R > 0 and N € N, next result shows that a box at scale N R can be tiled with boxes at scale R.

Proposition 3.11. Let My be the constant of assumption (E2). Let R > 0 and N € N. Let BX be a box
at scale N R, and let us denote by h™ := h™ (BX) the lowest height of BX. Then there exists a box tiling at

scale R of BX. Otherwise stated forallk € {1,..., N} there exists D}, (BX) c Bl)z(ka such that:

1. Forallz € Dy, (BX), there exists a cell C(x) such that Dy, (z) < C(x) € Dsng, (2).

N
2. Wehave || |l BX(z,C(z),R) = BX.
k=1 zeDy (BY)

Proof. To tile the box BX we first tile by cells all of its level sets at height h~ + kR. Let k € {1,..., N},
and let Dy, (BX) be an 2M-maximal separating set of Inty, (B,)L(_JrkR). Then:

1. Forall 2,z € Dy, (BY) with  # 2’ we have Dy, () 0 Dagy (2') = @.

2. IntMO (BF)L{JrkR) c U D2M0 (1’)
xGDk(BX)

Furthermore Ny, (IntM0 (Bi)f*mR)) c Bi)z{+kR’ and for all x € Intyy, (B})l{+kR) we have Dy, (z) c
B, - Therefore

U DMo(x) c Bf)z(—JrkR c U D3M0(x) (50)
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For all x € Dy, (BX), we define
C(x):= {p e BX . pld(p,x) <d(p,z’) forall 2’ € Dy, (BX)} .

As discussed at the beginning of Section[3.2] these cells might intersect each other on their boundaries.
However, a point contained in different cells can be removed in all of them except one, making them
disjoint. The choice of cells on which we remove boundary points can be made thanks to an arbitrary
order on the finite set D}, (BX )

By the inclusions (50), for all z € Dy (B*) we have Dy, (2) c C(z) ¢ D3, () and
|_| C(z) = Bf)z(—JrkR'

Furthermore, since vertical geodesic rays are uniquely determined by their starting point (because X
is Busemann), a tiling with cells provides us with a box tiling:

Ll B*(z,C(x),R) = U BX.
xeDy (BX) ze[h~+(k-1)R;h~+kR][

Taking the union on k € {1,..., N} provides us with the conclusion. O

3.4 Box-tiling of X x Y

The boxes B of a horospherical product X x Y are constructed as the horospherical products of boxes
BX » BY . Therefore they induce a tiling of X Y. Such boxes are illustrated by Figure

Definition 3.12. (Box of X x Y at scale R)
Let X andY be two admissible spaces. A set B c X w'Y is called box at scale R of X 'Y if there exists
BX a box at scale R of X and BY a box at scale R of Y such that:

1. b~ (BX)=-h*(BY)
2 B:=BXxBY = {(x,y) e BX x BY |hx(x) = —hY(y)}

Let us point out that in the last definition, the box of Y is in fact defined by

B (yR)= U  m(Cy) (51)
ze]-nR;(1-n)R]
This choice on the boundaries of the height intervals allows a precise match for the height inside
the two boxes. Furthermore, one can see that given a box-tiling of X and a box-tiling of Y, the natural
subsequent tiling on X x Y provides the box tiling of X x Y by restriction.

Proposition 3.13. (Box-tiling of X » Y at scale R)
Let X andY be two admissible spaces. Let R be a positive number and let us consider the two following
box tilings of X and Y :

xX=1] | BX(x,R)

neZ zeD(X,R)

v=11 U B"(uR)

nez yED(YnR)

Then the boxes of X xY constructed from boxes at opposite height in X andY are a box tiling of X Y.
We have

XwY =] L] BX(z,R) » BY (y,R)
nez (x7y)€D(XnR)XID(Y'(1—n)R)
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BY

Figure 15: Box in X © Y’

Proof. Let us consider the box tilings of X and Y:

xX=1] | BX(z,R)

neZ oeD(X )

= U B"(R

nez yED(YnR)

We first show that the intersection of two distinct boxes is empty. Let ny,ns € R, z1 € D (X, R),
29 € D(Xn,Rr),y1 €D (Y(l_nl)R) and yp € D (X(l_nQ)R) such that (z1,y1) # (22,y2). Then we have
either 21 # =3 or 31 # yo. Let us consider the case x; # 29, then BX (21, R) # BX (29, R), and since
they are two tiles of the box tiling of X, we have BX (z1, R) n BX(x2, R) = @. Therefore

V(pf.p} ) € BY (w1, R) w BY (y1, R), ¥ (p3,p} ) € B (wa, R) w BY (o, R) we have py* #py’
Hence (p%,pY) # (3, py ), which gives us
(BX('ILR) o BY(yIaR)) n (BX('I25R) o BY(yQ,R)) =a.

The case when y; # y provide us with the same conclusion. Then we prove that the whole space
X »Y is covered by the horospherical product of boxes. Let p = (pX , py) € X x Y. There exists
n € Z such that (n - 1) R < h(p) < nR, hence there exist z € D(X,g) and y € D(Y(1_,)r) such that
p~ € BX(x,R) and p* € BY (y, R). Therefore p € BX (x, R) » BY (y, R). O

3.5 Measure of balls, boxes and neighbourhoods

The results of this sections focus on estimates on the measure y of balls and boxes.

Lemma 3.14. There exists M (x) such that for allr > M and all box B at scale r of X Y we have
#(B) = € (52)

Proof. Without loss of generality we can assume that i (B) = [0;7[. Let us denote by C* the cell of

37



BX and CY the cell of BY . Then

w(B) = / p-(B.)dz = / ,uf (Bf) uz (BZ) dz, since B, = Bf X sz
0 0

r

X / em(r=2) X (CX) "y (CY) dz, by assumption (E3) and definition of boxes,

0
r

X emr/e("_m)zdz, by Lemma [3.2]

0

e _ ont

= e
m-n

mr

However m > n, hence for r > ﬁ we have %emr > e"". Therefore

oI _ ont o g
m-n  2(m-n)
O
Combining Lemmas[3.10]and 3.14] we get the next corollary.
Corollary 3.15. There exists M (x) such that foranyr > M and anyp € X »Y we have
2" <, w(B(p,7)) 2w e3mr (53)

Therefore we have the following estimate between ball measures.

Corollary 3.16. There exists M (x) such that for anyro > r1 > M and forall p1,ps € X Y

exp (é|7"2 = rilm)u(B(p1,m1)) < p(B(pa2,72)) < exp (6[ra = r1|m)u(B(p1,71))
Corollary 3.17. There exists M (x) such that foranyre >11 > M and forall Ac X »Y
# Ny (A)) 0 7270 (N (4))
Furthermore, if there exists z € R such that A c X, we have
1 (N (A)) 2 pz (Nar(A) 0 X2)
In particular, forallpe (X nY),

p(B(p, M)) =u pz (Da(p))

Proof. Since X » Y is a proper metric space, by a covering lemma of [Hei01]], there exists a set Z c A
such that:

1. The balls B(p, 1) for p € Z are pairwise disjoint.

2. We have the following inclusions:

LI B(p,r1) € Ny (A) € U B(p,5r1)

peZ peZ
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Therefore N;,(A) ¢ U B(p,5r1 + (r2 —71)).
peZ

Moreover, if A ¢ X, for 1 = M we have

L| Da(p) c Nu(A)n X, ¢ | Dsnm(p),

peZ peZ

andforallpe Z, u,(B(p,5M)) 2w 1 2u p2(Dsps(p)). Hence

p(Nu(4)) 2 3 1(B(p,5M))

peZ

“m %MZ(D5M(p)) R oz (NM(A) n Xz)

A (k,c)-quasi-isometry @ : X Y — X' x Y’ "quasi"-preserve the measure .

Lemma 3.18. Forall (k, ¢)-quasi-isometry ® : XY — X'nY" and for all measurable subset U c X xY
we have

M(Nk(c+1)(U)) =k,c,m M(Nl(q)(U)))

Proof. Since X xY is a proper metric space, by a classical covering lemma of [Hei01]] there exists a set
Z c U such that:

1. The balls B(p,k(c+ 1)) for p € Z are pairwise disjoint.

2. We have the following inclusions:

LI B, k(e +1)) € Nogeany (V) € U B(p.5i(e 1))

Since ® is a (k, ¢)-quasi-isometry, ®(Z) verifies:
1. The balls B(q, 1) for g € ®(Z) are pairwise disjoint.

2. We have the following inclusions:

|| B(¢,1)cM(®U))c U B(q,5k*(c+1) +¢)

qe®(Z) qe®(Z)

Furthermore, for all p € Z we have
M(B(p’ 1)) n 1 ! M(B(q)(p), 1)) Xk,c,w’ M(B((I)(p), 5]{52(6 + 1) + C))a

hence M(Nk(c+1)(U)) Rk,c,m #Z ke, ,U'(Nl(CI)(U))) [

3.6 Set of vertical geodesics

Since X is a Gromov hyperbolic, Busemann space, for any x € X, there exists a unique vertical geodesic
ray starting from « in X, therefore, there is a one to one correspondence between portions of verti-
cal geodesic rays in a box B¥, and the points at the bottom of BX. A vertical geodesic segment of
BX is defined as the intersection of a vertical geodesic and BX. We recall that vertical geodesics are
parametrised by arclength by their height.

Let BX be a box at scale R of X. Let us denote by VB the set of vertical geodesic segments of
B. A geodesic segment v € VBX intersects only in one point 2 the bottom of B¥, and v is the only
vertical geodesic segment of VB intersecting x by the Busemann assumption on X.
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Definition 3.19. (Measure n on VBYX)
Let BX be a box at scale R of X . The measure n\)/(BX on VBX is defined on all measurable subset U c VBX

by
77\)/(3)( (U) = )‘i{(BX)( {’Y(hi(BX)) | Y€ U} ) (54)

In particular, we say that U is measurable if {W(h_(BX )) |veU } is measurable. Since the measure
A is almost constant along projections, the measure on the set of vertical geodesic segment is related to
the height of the boxes. Specifically we show that up to a multiplicative constant, the measure of a box
is equal to the measure of its set of vertical geodesic segments multiplied by its height, as for rectangles
in R?. In the sequel we might omit the index of the measure 7.

Property 3.20. Let BX be a box at scale R of X and let us denote h™ := h™ (BX) and h* := h* (BX). We
have for all z € [h™,h*|:

L X (VBY) xx MY (BX) xx em?”
2. XX(BX) xx RAX(BY) =x RpX(VBYX) xx Re™”

Proof. Let x € X be such that C(z) is the cell of BX. We know that Dy, (x) c C(x) ¢ Dapy, (), hence
by Lemma [3.2] we have

Hiney(C(2)) 2x 1 (55)
Then
n*(VBY) = N (B nh(h7)), by definition,
Xx )\f(Bf) Zx A (C(z)) xx e ik, (C(z)), by Property[33l
mh*

=X e )

which proves the first point. The second point follows from the fact that the measures ), are constant
by projections on height level sets, up to the multiplicative constant M (X).

- -
AX(BX)=fAf(Bth—l(z))dz:fAf(wZ(C(x)))dz
h~= h=

h+
Xx f)\hX+(C(x))dz, by Property[3.5,
e

Xx R)\ii(C(CU)) <x Re™
U

A vertical geodesic V = (VX,VY) c XY is a couple of vertical geodesics of X and Y. Therefore,

there is a bijection between the set of vertical geodesic segments V13 of a box B = BX x BY and
VBY xVBY.

Definition 3.21. Let B be a box at scale R of X «'Y. We define the measure 1y on VB as
nvn = n\)/(BX ® U\S;BY (56)

In the notation of measures on sets of vertical geodesic segments, we might omit the reference to
the corresponding sets. The measures 7y g, respectively n‘)/(BX, n‘);By, will simply be denoted by 7,
respectively 7%, n¥.

Property 3.22. For each box BB at scale R of X Y we have forall z1,z9 € [h™,h*[:
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1 n(VB) % ™ e 2, XX (BX)AY,,(BY.)

—z2 —z2

2. M(B) % R (VB) % RAX (BX)AY_(BY,))

—29

Proof. The first point follows from definition[3.21land Property applied on B~ and BY . The proof
of the second point is similar to the proof of Property[3.20]

fAX®>\Y (8X xBY,) dz—fAX (BX)AY,(BY, )z

A,x,f)\hf Bhf))\z/+(5’fh+)dz, by Property 3.5,
i

f n VBX VBY)dz, by definition of 7,

2. n(VB) | 1dz = Rn(VB)
/

Then applying twice Property[3.20] provides us with the result. O

Let B be a box at scale R. Let z € [h* (B);h* (B)[ and let U c B,. Then we denote V3(U) the set
of vertical geodesic segments of V B intersecting U, it is in bijection with

{(z,y) € By x BYg| (n2 (2),72.(y)) € U}

We need the following property stating that the measure of a given subfamily of vertical geodesics
can be computed on any level of our box.

Property 3.23. Let 3 be a box at scale R of X xY . Then forall z € [h’ (B); h* (B)[ and for all measurable
subset U, c B,

n(VB(Uz)) ~m )\Z(Uz)
Proof. Without loss of generality we can assume that [h’ (B ); h* (B )[ = [0 : R[. By definition we have
Y X
VB(U ) f f {(:L‘,y)EBXXBY ‘ 7TX(:L‘)7 —z(Z}))EU }(1’07y0)d)\7Rd)\0

:L'QGBO yoEBY

- [ 10 (5 o) 7 (o) AN

moGBg( yoEBY

= f / 1y, (Wf(ﬂ:o), y)d (71'}/2 * )\YR) d\y, with a pushforward of AY 5 by 7*_,

zoeBY \yeBY,

= / f 1y, (Wf(ﬂ:o), y)d)\g( d( o wAY r). by Fubini’s Theorem,
yeB}/Z ktoeB())(

= / [ 1y, (w, y)d (7‘(’5 * )\é() d (ﬂ'YZ * )\YR) ,  with a pushforward of \{’ by 7,
yeBY, \eeBX

Xu / / 1y, (:U,y)d)\fd)\i, by using Property [3.5] twice,

yeBY, zeBX

X )\Z(Uz).
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3.7 Projections of set of almost full measure

Let us denote by p* : X xY —» X ; (z,y) » zand by p¥ : X xY - X ; (x,y) ~ y the projections
on the two coordinates of X » Y. We also denote by slight abuse the projection on a set of vertical
geodesic segments p~ : VB » VBX ; (v¥ v¥) »vX and pX : VB - VBY ; (v¥,0Y) = vY. Given
a a subset U c BB, we might simply denote by UX, respectively UY , its projection on X, respectively
on Y, and similarly for subsets of V B.

In this section, we show that if a subset of a box has almost full measure, then most of the fibers
with respect to these projections also have almost full measure.

Let 0 < o < 1, let V; ¢ VB be a measurable subset. Let us denote for all v* € VBX

GY (UX) = {?}Y ceVBY | (UX,UY) € VO} = (p")™! (pX (?}X) N (VB 1))
GX = {?}X eVBY Y (GY (v¥)) 2 (1-a)y” (Vly)}

The set G~ is the set of vertical geodesics in VB whose fibers have almost full intersection with
VB~ V.

The following lemma asserts that almost all fibers have almost full intersection with VB \ V;.
Lemma 3.24. Let 0 < a < 1 and let Vi ¢ VB be a measurable subset such that n(V1) < an(V B), then
7 (6%) > (L= vayr (vBY)
Proof. By construction we have

U & ") =wvB-Wn)"

vX eV BX

To prove the Lemma we proceed by contradiction. Let us assume that 1 (GX ) < (1 - \/a)nx (VBX ),
then n™ (VBX \ GX) > Jan™ (VBYX). Therefore

(V) = [ 1 (0)dn(o)
VB

= / / 1y, (UX, UY) dn¥ (v¥)dnX (vX), by definition of 1,

VBX VBY

= / / Ly gy gy (vX) (?)Y) dn* (v¥)dn™ (v™), by definition of G¥ (UX) ,
VBX VBY

= [ (B NG () @) [ (VBN G () dn ¥ (oY)
VBX VBX\GX

Furthermore, when v* € VB¥ \ G¥ we have that n¥ (GY (’UX)) < (1 -a)n¥ (VBY), hence
nY (VBY NGY (UX)) > \/an¥ (VBY). Therefore

nv)z [ van (VBY)dn¥ (oY)
VBX\GX
>/an” (VB )n* (VBY \ GY)
>/an/an® (VBY) X (VBX) , by the contradiction assumption,
>an(VB), ,since VB is a product,

which contradicts n (V1) < an (VB). O
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In the previous Lemma we only used the fact that the set of vertical geodesic segments V' B was the
product of its projections endowed with a product measure 1. We will use it once one the product of
two measured spaces endowed with a product measure in the proof of Proposition 4.7

We recall that for any U ¢ X » Y we denote VB(U) := {v € VB | im(v) nU # @}. Similarly for
all v ¢ VB we denote V1 (U) :={v eV} | im(v) nU # @}.

The next Lemma is a local version of Lemma[3.24] Let V; ¢ VB. Let M > 0 be a constant, let a € B and
let us denote VD := VB (Dys(a)) and V1 D := Vi (Dys(a)). For all v = (v¥,0Y) € V, let us denote

by
EY (v*) ={u" e VDY [ (v*,0") e viD} = (") (p* (v¥) n (VDN W1 D))
FX={v* e VDX |9V (EY (vY)) > Van' (VD)}.

Lemma 3.25. Let 0 < a < 1. If (V1 D) < an(V D) then

X (F*) <an™ (VDY) (57)
Proof. Let us proceed by contradiction. We assume that
7 (FX) > Var® (VDY) (9

Then we have

77(‘/1D) = f f 1V1D(UX,UY)d77Yd77X
vXeVDX vYeV DY
= f f 1y (pxy (07 )dn" dn™
vXeV DX yYeV DY
= f 77Y (EY(UX)) an, by the definition of EY(UX),
vX eV DX
2 f 77Y (EY(UX))an, since FX ¢ VDX,
vX e X

>an® (VDY) /an” (VDY) > an(VD),
which contradicts assumption on V D. Hence 0~ (FX) < \/an™ (VDX). O

The following lemma asserts that for almost all points of the box, almost all vertical geodesics
passing through the disc Dy, (2) do not belong to V;.

Lemma 3.26. There exists a constant 0 < a(x) < 1 such that for all0 < a < a(») the following statement
holds. Let My be the constant involved in assumption (E2) and let B be a box at scale R. If there exists
Vi ¢ VB such that n (V1) < an(VB). Then

n(Vi(Dagy(2))) s 1
)\({xel’ﬂ 2 (VB(Da () >« })Sa A (B) (59)

Proof. Without loss of generality we may assume that h(B) = [0; R[. Let us denote

n (VB(DMO (m)))

U= (60)
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We proceed by contradiction, let us assume that A\(U) > ai)\(B). In this case there exists z € [0; R[

such that \,(U,) > a%)\z(Bz). Let U, c U, be a 2M), maximal separating set of U,. We have that
LI Dy, () is a disjoint union and that U, ¢ U Dapy, (2). Then we have

xelU. xelU.

Az( L DMo<w>) - 3 A (Dag(@) = A (Doagy () 2D

xeU!, xel!, xeU!, Az (D2 (7))
2w 2, Az (Darg(z)), by LemmaB2

zeU]

2 )\z( U DQMO(.%')) 2 )\Z(UZ)

zeU]

> a%)\z (B), by assumption on U,. (61)

However Vx € U] we have 1 (Vi (D, (2))) > ain (VB(Dasy(x))), therefore

(1 200) o, P00)
zeU! zeU;

Zi ai)\z( U DMO(:U)), by Lemma [3.23]

zeU!
> a%a%)\z (B) =+v/aX, (B), by inequality (6I)
<w Van(VB), by Lemma[323
Since (V1) > n (V1 ( U D, (ac))) and since \/a > M (x)a for a < #, it contradicts the assump-
zeU]
tions of the lemma. O

Let us point out that in this Lemma, we first showed that on a fixed level-set, most of its point were
surrounded by almost only of vertical geodesic not in V;. This remark will be relevant in the proof of
Proposition

The three next lemmas are estimates on the quantity of Y'-horospheres verifying specific properties.
They are used in section[£4] Let 5 be a box, x € B let U c B and let us denote by

Hy = {z}wB" ={(z,y) |y € B, h(y) = -h(x)} = (»™) ! (2),
a Y-horosphere of B. Let us denote by
EY(z)={yeB" | (x,y) e U} =p" (p* (&) nU®) = (H, nU)"
EX = {m e BX | Ay (BY (2)) > VaX" (H)') and h(z) > h™(BY) + g}
The set EX is in bijection with the "bad" Y -horospheres H above the middle of B, the ones which
have more than /a fraction of their measure \¥ in U*.

The following lemma asserts that almost all Y'-horospheres in the upper half of the box have almost
full measure.

Lemma 3.27. If A\(U) > (1 — a) A\(B) with 0 < a < 1, then we have

AE(EY) < Var* (BY)
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Figure 16: Large X-Horosphere in X « Y.

Proof. Without loss of generality we can assume that h(B) = [0; R[. We proceed by contradiction, let
us assume that A% (EX) > JarX (BX). Then we compute the measure of U*:

A(U°) = f)\X®)\Y Uc)dz—ff)\ ({yeYer | (2,y) € US})dAX (2)dz, by definition,

R
- [ [ (U )  (w)dz
0 BX
R
2ff)\zfz((HxﬁUc)Y)d)\f(:U)dz, since B ¢ BY,
0 EX
R
>\/a/ )\Y d)\X(ac) dz, by the definition of £,
0 EX

- Ja / [AY, (BY)\X (EX)]dz, by the definition of H,

> \/_\/_/ AY, (BY) A\ (BY)dz > aA(B), by assumption on E~,

which contradicts the assumption on U. O
For all U c B we denote Sh(U) and call shadow of U the set of points of B below U such that
Sh(U) :={p e B| 3V € VB containing p and intersecting U on a point p’ such that h(p") > h(p)}.
For S a subset of X, we shall call large Y -horosphere the subset Hg defined by

Hg:=SwY =(p*)(9).

Let My be the constant involved in assumption (E2). Let us denote by FX c BX the subset
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FX = {m eBY | A (Sh(HDMO(x)) n UC) > af (Sh(HDMO(m))) and h(z) > h™(BY) + g}

The set FX is in bijection with the "bad" Y -horospheres H that are above the middle of the box B.

By "bad" we mean the ones which have more than o fraction of the measure A of their shadow in U°.
In the following lemma, we show that the shadow of almost all the Y -horospheres in the upper half
of the box have almost full measure.

Lemma 3.28. There exists a constant 0 < () < 1 such that forall 0 < o < (=) the following statement
holds. If \(U') > (1 — ) \(B), then we have
N (FX) < aiN¥(BY)

Proof. Without loss of generality we can assume that 2(B) = [0; R[. We proceed by contradiction, let
us assume that A (FX) > aiX (BX). Therefore, there exists zq € [%, R[ such that

X pX Ly X (1pX
)‘zo(FZO) 2 Cwl)\ZO(BZO)'

Let Z be a 2Mjy-maximal separating subset of FZ)O( . Then we have

AU®) 2\ (Sh ( || HDMO(:I:)) N UC) = > A(Sh (HDl(m)) NU®), since this is a disjoint union,
reZ zeZ

204i % )\(Sh (HDMO(m)) ) S i % 20z (HDMO(m)), by definition of FZ)O( and Proposition[3.5]

However )\, (HDMO(:I:)) X (D (2))AY,, (BY,,) since Hpyy, () = Do () x BY, , hence

-z0°

AU) zaaizg %/\ (Dagy ()AL, (B,)

X4 20)‘sz ,ZO)Z)\ (Dany(z)), by LemmaB2,
reZ

%Zo)\,ZO (B,ZO ( U Dangy (:U)) > al 2AY, (B,ZO))\X (FX), by definition of Z,
xeZ

>a4a4zo)\ (B ))\X(BX), by assumption on F;O(,

-20

1
>\/_ >‘—zo (B_ZO))\X (BX) 5\/a)\(l3), since zq > g and by Property[3.22]

which contradicts the assumptions on U for a < W O

The following lemma asserts that the projection on a level-set of almost all the Y -horospheres have
almost full measure.

Lemma 3.29. If A(U) > (1 —«) \(B), then there exists a constant M (x) such that for any large Y -
horosphere HDMO(QC) withx € B\ Fx as in Lemmal[3.28 and for1 > Mp > M?ai > 0, there exists P a
level set of the height function in B, such that

c 1
Ah(P)(P N Sh(HDMO(a:)) nU ) <x 4 )‘h(P)(P N Sh(HDMO(x)))

Furthermore, P and H can be chosen such that pR < d..(P, H) < 2pR.

Proof. We proceed by contradiction, let us assume that such a plane P does not exist, then computing
the measure \ of Sh(HDMO(QC)) NU° 0Bl (my-20R;h(H)-pR) contradicts the fact that )‘(Sh(HDMO(m) )n

Ue) < at by Lemma[3.5]and since we integrate on a sufficiently large portion of [0, R] (p > M a%). O
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In the following lemma we show that almost all level-sets admit a point with large X -horospheres
and Y -horospheres.

Lemma 3.30. There exists a constant 0 < «(x) < 1 such that for all0 < a < a(») the following statement
holds. Let U c B be such that A\(U) > (1 — a)A(B). Then there exists U’ c U such that:

1L MU") > (1-af) A(B)

2. Forallz € h(U") there exists (xo z, yo,-) € U, such that forall (x1,y1) € U, we have (x1,yo..) € U,
and (o ,y1) € U..

Proof. We may assume without loss of generality that h(B) = [0, R[. Let us denote by
Hy = {2 [0,R[| X (U2) > (1-a%) \. (B.)}

Then we claim that Leb(Hy) > (1 ot ) R. To prove this claim we proceed by contradiction. Let us as-
sume that Leb(Hy) < (1 —ad ) R, then Leb([0, R[~NHy) > a1 R. Furthermore, for all z € [0, R[NHy
we have A, (U,) < (1 - ai) Az (B.), hence

A (BT > af), (B,) (62)

Therefore, by computing the measure of B\ U we have
ABU) = f A (BN U)dz > f A (BoU,)dz
z€[0,R[ ze([0,R[NHy)

> [ ai)\z (B.)dz, by inequality (62),
ze([0,R[NHy)

> on% A(B), Dby the contradiction assumption and Property 3.5

which contradicts the assumption on U for o small enough. Hence Leb(Hyr) > (1 - a%) R.
Let us denote for z € [0; B[

UY:={z e BX | (z,y) € U}
H={ze[0,R[|3yeBY, , XX (UY) > (1- 0% )XY (BY)}
In particular, for all y € BY we have UY c UZX , and by the definition of A

AU) = f /Af(Uy).

2€[0,R[ yeBY,

We claim that Leb(H) > (1 - a%) R. To prove this claim, we also proceed by contradiction. Let us

assume that Leb(H) < (1 —ai ) R, then Leb([0, R[\H) > a1 R. Furthermore for all z € [0, R[NH we
have that

vyeBY , A (UY) < (1—ai))\§ (Bf)

Therefore, by the definition of U, we have that Vy € BY,

A ({z e BY () £ U}) 2 0t XX (BY) (63)
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Hence, by computing the measure of B \ U we have

ANBT) = f fAf({er§|(x,y)¢U})dALdz

2¢[0,R[ yeBY,

> / f AX ({ze UX|(z,y) ¢ U})d)\idz

ze([0,R[H ) ¥<BY:
> / f a%)\f (Bf) d\Y.dz, by inequality &3),
ze([0,R[H ) ¥<BY
ot [ NL(BY) AN (BY)dz
=e([0.R[\H)
> on% Qi) (B) = az) (B), by the contradiction assumption and Property 3.5,
which contradicts the assumption A (B \ U) < a\ (B), for a < W Let us denote for all 2 € BX
U*={yeB”, | (z,y) eU}
H'={z¢[0,R[ |3z e BX , A, (U") 2 (1-a¥)AY, (BY,)}

1 1
We show similarly that Leb(H") > (1 L ) R, therefore Leb(H n H' n Hy) > (1 - 3043) R

For all z € H n H' there exists (2¢,z,%0,.) € B such that for all (x1,y;) € U, we have
A (U) > (1-at ) AF (BY) (64)
A (Um) > (1-a%) N, (BY) (65)
Let us define for all z € Hy n Hn H', U} := (U x UY%#). Then we have:
.U cU

2. X, (UL) =X, (U= xUY=)nU,) > (1 - 304%) M. (B) by inequalities (64), (65) and by the defi-
nition of Hy.

3. Forall (z1,y1) € U, we have (z1,y0,.) € U, and (z0 ,,y1) € U,
Let (z1,y1) € UL, then (x1,y0..) € U" hence (x0,y0,..) € U'. Furthermore we have that Leb(Hy n
HnH') > (1-3a1)R, hence Leb([0, R[N (Hy n H n H')) < 31 R. Therefore

ABAU) = [0 ((BNU).)dz

z€[0,R[

- / A (B, ~ (U5 x U¥2))dz
ze([0,R[N(HynHNH'))

< / (304% ) X\.(B.)dz, by construction of U]

ze([0,R[N(HynHNH'))

SXQ(X%)\(B), by the measure of [0, R[~(Hy n H n H') and by Property B.5

Hence A\(U') > (1 —at ) A(B), since at > 9M(X)oz% (o small enough in comparison to a constant
depending only on X). O

These points (z ., Yo .) will play a key role in the definition of the product map close to a given
quasi-isometry in Theorems[.5]and
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3.8 Divergence

Two distinct vertical geodesics in a d-hyperbolic and Busemann space diverge quickly from each other.
However this statement, based on Corollary 6.0.3, depends on the pair of geodesics. The next lemma
aims at making this more precise for X an admissible horo-pointed space. More specifically we are
going to look at a point x and at all the vertical geodesic passing by a point of the disc centred at z
of radius M (the (E2) constant) along the horosphere at height h(x), thatis V Dy, (x). Let V be a
geodesic containing x, we want to quantify the vertical geodesics in V Dy, (z) which start diverging
from the vertical geodesic Vjy between the heights h(z) — [ and h(x) + [. We shall denote this set by
Div(Vp):

Div(Vp) :={V € VDpy () | |hpiv(Vo, V) = h(z)| < 1}
Lemma 3.31. With the above notations we have
0™ (V Dagy (2)\Div (Vo)) <x € ™0™ (V Dy ()

Proof. We might, by slight abuse of notations, intersect a set of vertical geodesics segments £ c VB
with a subset F' c B, it means that we consider the intersection between F’ and the union of the images
of E. For example:

VDMO (:C) n Bh(:v) = DMO (:C)

Any vertical geodesic segment V' € V D)y, (x) did not start to diverge from the vertical geodesic Vj
at the height h(x), we have hpi,(V, V) < h(z). Therefore, all the vertical geodesic segments which
did not start to diverge at the height h(z) — [, denoted by V Dy, (z)\Div(Vp), are still My-close to

Wh(x)—l(x):
(V Dty (@)\Div(Vo) ) 0 Bayt © Dasy (7)1 () (66)
We use Lemma [[[8 with 2y = h(z) and z = h(x) — [, which gives

Dat-uto (Th(a)-1 () ) € Th(ay-1 (Dito () = VDisy () 0 Byt (67)

Therefore
1 (V Dagy ()\Div(Vp)) . )‘iz((m)—l(VDMo(w)\DiV(VO) N Bp(z)-1)

K(VDw(@) A (VD (@) 0 Boy)

Nyt (Dto (Th(ay1(2)))
Myt (VDarg (2) 1 Brygayr)
Nyt (Dto (Th(ay1(2)))
Myt (D2 (-1 () )

Moreover by the definition of A* and Lemma 3.2

, by Property[3.23]

, by inequality[66]

, by inequality[67

Ai((x),l (DMo (Wh(x)—l)) _ Mi((x),l (DMo (Wh(x)—l)) <y e (63)
Myt (Daiento (Thay—1 (2))) 130y (Doi-stg (Thiay-1 () )

Therefore

0™~ (V D, (2)\Div(V))
UX(VDMO (x))

¥ efml
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Heuristically, the previous lemma asserts that most of the vertical geodesics segments passing close
to a point x, start diverging from each other close to the height h(x).

We now provide an estimate on the exponential contraction of the measure p along the vertical
direction.

Lemma 3.32. There exists M (x) such that the following holds. Let hg € R, let U c (X xY)p, be a
measurable subset. Let A > M and let A c (X Y )p,-a be a measurable subset. Suppose also that all
vertical rays V intersecting U intersect A. Then

phg-a (A) 2 721y (U)
Proof. Since m; A (U) ¢ A we have
tihg-a (oA (U)) < fing-n (A)

Where 7 is defined in Notations [[.T3] We recall that for all z € X, UY = {y € Y | (2,y) € U}. By
definition

ro(U) = 1y ® 1%, (U) = [ 5, (U )il () (69)
Xhg

For all z € U let us denote U, := {(z,y) € U | y € U }, then
(U)" =0y ={yeY|(z,y) e U}

Furthermore U;/ c wfho [ﬂX?ho (UX )] hence

,ul_/ho (Umy) < ,ufho (tho [WX_hO (UZ)]) S e"A,uX_hO [WX_hO (ny)] , by assumption (E3),
which gives us,
,uhO(U) < €D f MX—ho [ﬂ'X_hO (Uf)] d,ui(o(x), by definition ofyi,,. (70)
UX

However we have
X Y X Y
ngho(Ug) = (Who—A(UJJ)) = (Who—A(U))W})L(O_A(m) (71)
M Y X
~{y e (7r-a )" | (mi-a(@),y) € iy a (0)}
Hence

n x Y
(V) 2 [ iy [ (7 a@) x| ami@). by @ and @,
UXx

.
=t [ K [(Rhea @)L dm « i @)

WhXO,A(UX)

n -m X Y .
%, eMBeTmA f MX*ho [(WhO,A(U))x,] d,ui(o,A(x'), by assumption (E3).
W})z(()—A(UX)
= e(nim)AMhO*A (ﬂ';:ofA(U))

Furthermore, as said at the beginning we have pi,,-a (71;’:07 A(0)) <€ ping-a (A), therefore

pho-a(A) z e (U).
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In the next Lemma we transfer a control on the measure p to a control on the measure 7.

Lemma 3.33. Let My be the constant involved in assumption (E2), B be a box and z € h(B). Let
A c (B), and let E c B such that h* (E) < h(A). Then, if there exists Q > 1 such that i (N, (E)) <
Q711 (N, (A)), we have that

1 (VN (B)) = Q' (VN (A))

Proof. Let Z c E be a 2Mj-maximal separating set, we have:
1. The balls B(p, My) for p € Z are pairwise disjoint.

2. We have the following inclusions:

|_Z|B(p,M0) c N (E) UZB(p,?)MO)

The radius 3M is required since we cover all N7, (E) and not only E. Furthermore, all balls and disks
of radius M, have comparable measure p by assumption (£2) and Corollary (3.17), therefore

1Nty (E)) 2w #Z 200 Y (B (p, Mo)) 2 Y, pin(p) (Do () (72)

peZ peZ

Moreover, for all v € V E, there exists p € Z such that v n D3y, (p) # @. Consequently we have
VN, (E) ¢ U VD3, (p), hence
pez

N (VN (E)) < Y 0 (VDary(p)) 2x Y, An(p) (D3ago(p)), by Property 323
peZ peZ

< %)\hX(p) (D6M0 (pX)) )\S_/h(p) (D6M0 (pY)) .
pe

Furthermore, disks of radius r are included in rectangles of width 27, hence

1 (VN (E)) < Y @) 5 (Dengy (p)) . by the definition of Ay (),
peZ

< eM(@)(m-n) > tn(p) (Deary(p)) . because h* (E) < h(A),
peZ

<, @01 (A (E)), by inequalities (72).
Using similar arguments we obtain
1 (VN (A)) 2 Anay (VN (A)) %o €O 1 (VA (A))
Combined with the assumption z1 (N, (E)) < Qt (Mg, (A)) we have
1 (VNato (4) i O Qu (N (B)) 2 Qn (VN (E))
O

Heuristically, if a set F is sufficiently small and below a set A, then the set of vertical geodesic
segments intersecting I will also be small.
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4 Proof of the geometric rigidity

The aim of this chapter is to present a proof of our key result. Let (X,Y) and (X', Y") be two horo-
pointed admissible couples, of parameter respectively (m,n) and (m',n"). Let us assume that m > n
and m' >n/.

Theorem 4.1. Let®: X xY — X'« Y’ be a (k,c) quasi-isometry, then there exist two quasi-isometries
X : X > X' and ®Y : Y - Y’ such that

dm(q>, (¥, oY) ) <o 1

Although this statement is similar to the statement in the case of Sol and Diestel-Leader, our broader
setting of admissible spaces requires additional key arguments, such as lemma[3.3] and therefore relies
heavily on the previous sections.

To make the exposition of the various statements in this chapter smoother, we made the following
abuse of notation. In a statement, when a parameter, say 6, needs to be sufficiently small, we will write
it by "For € <,, 1 we have ..." instead of "There exists a constant M (») such that if § < %, then ..".
From now until the end of this chapter we consider ® : X » Y — X’ n Y a (k, ¢)-quasi-isometry with
fixed constants £ > 1 and ¢ > 0.

4.1 Vertical geodesics with e-monotone image

In order to construct a product map, the key idea is to use the quadrilateral lemmas of Section 2.4l on
the image by the quasi-isometry ® of a quadrilateral in X x Y. To do so we need to locate which
vertical geodesic segments are sent close to vertical geodesic segments. Thanks to Proposition [2.6] it is
sufficient to look for vertical geodesic segments with an e-monotone image under ®, where 0 < e <1
is a parameter to be determined later (depending on x, k and c). We call good these vertical geodesic
segments.

Notation 4.2. We recall that we denote V' BB the set of vertical geodesic segments of the box B. Let us denote
by V9B the set of good vertical geodesic segments and VB the set of bad vertical geodesic segments, that
is

VIB := {*y eVB|®oryis a-monotone}

VB = {7 eVB|Poryis note-monotone} =VB\VIB

In the following lemma, we prove the existence of an appropriate scale on which almost all boxes
possess almost only good vertical geodesics. We shall denote by 7 := nyg, n~ := n\)/(BX andnY := 7758"'

Proposition 4.3. For 0 < 6 <,, 1, there exist two positive constants M (k,c,x,e) and M'(k,c,») such
that forallrg > M, N > MT and S > é‘% and boxes B at scale L := N°rq, there exist k € {1,...,S5}, a

box tiling | | B; = B at scale R = N¥orq and I, c I such that:
iel

1 A ( Bi) > (1-0)\(B) (Boxes indexed by I, cover almost all B)
1elg

i(VPB;
2. Viely, M
ni(VB;)

where 1; = nyB,.

< 0 (almost all vertical geodesic segments in IB; have c-monotone image)
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Proof. We recall from Lemma 2.9 the definition of d4(«) for a quasi-geodesic segment .
A = {a ([kN®ro, (k + 1)N®ro]) [k € {0,..., N°~* - 1} },
Then d5 () is the proportion of segments in Ag which are not e-monotone:

# {8 € A4S is not e-monotone}

O = 73
() o @
Using Proposition[2.91on every vertical geodesic segment in B we have that Va € VB
5 1
Z 63(01) ke - (74)
s=1 €
We now integrate the inequality (74) with respect to 1 over VB to get
1> 1 [ (ié(a))dn i 1 [ 0s(a)dn
~ ke T /v 5\ s = T s .
< n(VB)aeVB s=1 s=1 77(VB)aeVB
Consequently there exists kg € {1,...,.5} such that
1 1
—_— O (a)dN < o — =<u 93, by assumption on S. 75
TVE] S @dn Sese 3 y assump 75)

acVB

From now on we denote R := N*0rq. There are % layers of boxes at scale R in B. We average Jj, («)
along all o € VB:

1 1 R L
”(VB)M& Sy () :”(VB)ML’ 7 & da([88: s+ DAy
L
:ﬁ % kZan é Sro (([kR; (k +1)R]))dn (76)

Let us denote by By := Bn hY([kR; (k + 1) R[) the k-th layer of B. Since vertical geodesic segments
of X Y are couples of vertical geodesic segments, V' B[ is in bijection with VB[)]‘;] x VBE;] which is

itself in bijection with B?R x Bz/( k+1)R 3 explained in Section[3.6l Let us denote by f this bijection.
£ By > Big x By(lﬁl)R
- (aX(kR), of (—(k + R))
For all « € VB and for all k € {0, vy % - 1} we have &y, (a([kR; (k +1)R])) = 0 or 1, hence

Ok (a([kB; (k + 1)R])) = Ly, (a([kR; (k + 1)R]))

Therefore
[ G (alkRs (k + DR])dn

aeVB

_ / (o (@ (k + 1) R), oY (=kR) )dn™ dy”
(aX,aY)eVBX xVBY

- f Ly(vonyy) (Wli(R(x% WY(ml)R(y))d)\é(d)\’_/L, by definition X and 1",
(J:,y)el’j’g( XBYL

~ f lf(VbB[k])(C'?’a y’)d)‘kXRd)‘zf(kH)Ra by Property B.5l 77)

(ﬂvy')eBkXRXBzf(ku)R
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Let |l;c; B; be the box tiling at scale R as in Proposition B11] and for all & € {0,...,N — 1} let us
denote by Ij; ¢ I the indices of the boxes B; which tile B[). Then we have VB[;) = Llies, VB; and
VbB[k] = Lier, VB;. Therefore for all (z,v) € Bli(R x BY(kH)R

Ly(vesg) (:9) = L (Ui, VbBi)(x’y) = 2 Lpvesy (2.9)

ielk

Hence from inequality (77) we have

f Sro (a([ER; (K + 1)R])drp <. f 3 1oy (2,0) AN 4y
acVB (@)BEBY 1 iely
= Z f Lyvres (2, y)d)‘?Rd)‘y(kH)R
Zelk(mvy)eBgRXBE’(kﬂ)R
= Z / 1V”B¢(a)d"7i = Z ;i (VbBZ)
ieIkOJGVBi iEIk

In combination with inequality (Z6) we have

/ Ok (@)dn =

n(VB)CVGVB N

4 7', by Property[3.22]

ni(V’B;)
ni(VB;)

definition, I, satisfies the second part of our proposition, we are left with proving that it also satisfies

Let us denote by I, the set of indices ¢ of boxes 5; such that >0, and I, := I \ I;. By

the first part. To do so we assume by contradiction that A ( U Bi) > 0\ (B), then

iely
NB;) ni(VPB;
1 / Ok () dn =, Z ( )M, since Ij, c I,
V), . £ \(B) w(VE)
 A(5)
>0 HL, by the definition of I3,
A(B)

> 02, by the contradiction assumption,

which contradicts inequality (73) for 8 <, 1. Therefore )\( U BZ-) < @A (B), hence )\( U BZ-) > (1-
1€ly

’iGIb

0)\ (B). ‘ O

Let B be a box at scale R. Let us denote the upward and downward oriented vertical geodesic
segments by

VIB={V e VIB|h(®oV(0)) <h(®oV(R)))
VB = {V e VIB|h(®oV(0)) 2 h(®o V(R)))

We are now going to show that in a given box I3; with i € I,;, almost all vertical geodesic segments
share the same orientation.
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Lemma 4.4. For 0 < &2 ke 0 <kcw 1, and for R >, . % we have that if B is a box at scale R such

thatn (VbB) < 0n(VB), then one of the two following statements holds:
1. n(VBAVIB) > (1-3vV0)n(VB)
2 n(V'BnVIB) > (1-3V0)n(VB)

In the proof, we first characterise a set of vertical geodesic segment whose images share the same
orientation, then we show that this set has almost full measure.

Proof. Without loss of generality we can assume that h(B) = [0, R[. Let us denote by
G (v¥)={v" e VB | (v*,v") e VIB}
& = (0¥ VB [ (@Y (v¥)) 2 (1L- V) (V"))
By construction we have

U G (") =(vB)"

vXeVBX
Applying Lemma [3.24 with V; := VI(B) and « := 6 we get
X (GX) > (1-Vo)n* (VvBY) (78)

Let v¥ : [0, R] - X and v : [0, R] - X be two vertical geodesic segments of G, then
" (67 (o)) 2 (1- Vo)™ (VBY)
" (67 (v2)) 2 (1-Vo)n" (VBY)

Hence
n" (GY (v¥) nGY (v3)) > (1-2V80)n" (VBY) (79)
Let v}, v) e GY (vf() nGY (vgf) and let us denote by V; ; = (viX,v;/) with 7,5 = 1, 2. By definition

of vi and v}, the quasigeodesic segments ® (Vi;) are e-monotone.
two cases occur. As a first case let us assume that

dx (v (0),v3 (0)) > VAR
dy (v} (0),v3 (0)) > VOR

Let M be the constant involved in Proposition 213l For R > 4kc and € < 26251\4 we have that VAR >
10kEMeR + 2kc, hence we can apply Proposition[2.13]on V; ; and V5 o, which gives us that they share

the same orientation.

The second case, that is when either dx (vf (0),v5(0)) < VOR or dy (v} (0),v3 (0)) < VOR, is
treated thanks to an auxiliary geodesic segment. Hence without loss of generality we focus on the case
dx (vi(0),v5(0)) < VAR and consider a geodesic segment v5 € G verifying dx (v (0),v3(0)) >
VOR and dx (v5(0),v5(0)) > VOR. To prove its existence, we consider the measure of

GX VBx(D ﬂR(u{f (0)) uD ﬂR(vg( (0))) (80)
Let My be the constant of assumption (E£2). By Lemma [3.2] we have for all 7y > ro > M) and for all
[r1-ral

x € X that po(Dy, (z)) 2w €™ 2 po(Dy,(x)), therefore

Ao (D\/ER(vf((O))) smemﬂ};_R Ao (DR(vf((O))) < efmg)\o (DR(vf((O))) , since # <

(81)

]
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Furthermore, by Lemma [1.8] the bottom of B contains a disk of radius 2R — My, hence by Lemma (3.2]
we have 7™ (VBY) xx A (D2r(vi<(0))). Combined with inequality (8I) we have

R

(DL 0) 5 (15%).
The same formula holds for v instead of v;*. By inequality (Z8) we have that
1
7" (GY) > (1-Vo)* (VBY) > 51 (VBY),
hence there exists M (x) such that

™ (GY N Vix (D (v (0)) U D g (v5°(0)))) z(% —2Me’m%)77X (VvBY)
>0, forR> %ID(ZLM +1).

Therefore there exists v € GX such that

dx (v¥(0),v3 (0)) >VOR
dx (v3(0),v3 (0)) >VOR
Applying twice Lemma [2.13] first on V; 1 and V3 3, then on V5 5 and V3 3, we get that the <1>(V171) has

the same orientation as <I>(V373) which has the same orientation as <I>(V272). Therefore <I>(V171) and
<I>(V272) share the same orientation.

Let us fix v € BX and v} ¢ GY (vf( ) Then every image of a vertical geodesic segment V' €
U {UX } x (GY (vf’) nGY (v)) shares the same orientation as the image of (v, v} ). Further-
XX
hote
o U (@ @)ne (D))= [ (@ a6 () i
vXeGX VX eGX

> f (1 - 2\/5)77Y (VBY) dn®, by inequality (79),
vXeGX
=(1-2v0)n* (VBY)n™ (G¥)
2(1 - 2\/5)771/ (VBY) (1 - \/E)UX (VBX) , by inequality (78)
>(1-3V0)n(VB),

which proves the lemma. O

4.2 Factorisation of a quasi-isometry in small boxes

The Proposition[4.3lgives us two scales R and L such that all boxes at scale L can be tiled with boxes at
scale R. Moreover, almost all of them, that is the B; for ¢ € I, contained almost only vertical geodesic
segments with e-monotone image under ®.

Amap f: X mY — X' xY'is called a product map if there exist a two maps f~ and f¥ such
that one of the two following holds:

1. Wehave fX: X - X', f¥:Y > Y and Vp= (pX,p¥) e X Y, f(p) = (fX (pX),fY (py)).

2. Wehave fX\: X > Y, f¥:Y > X' and Vp = (pX,p¥) e X x Y, f(p) = (fY (pY),fX (pX)).
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In particular, when we denote by ( X f Y) a product map on a horospherical product, it implies that
when h(z) + h(y) = 0, we have h(f*(z)) + h(f¥(y)) = 0. Therefore a product map is height

respecting.

Theorem 4.5. For0 <60 <e <, 1,70 >, %5, N >, 1 and for S =, we have that for anyi € I, there

62’
exists a product map ®;, and U] c B; such that:

LU 2 (1-65) A (B)
2. Forall (w,y) € Ui,’ dlxl’ (Q(x7y)7él(x7y)) 5]6,0,»4 eR.

In particular we have Ah (fb(x, y), ®i(z, y)) <kem ER.

Since almost all the points in a good box are surrounded by almost only good vertical geodesic
segment (Lemma[3.26), we show that given two points sharing the same X coordinates, we can almost
always construct a quadrilateral verifying the hypotheses of Proposition

L let B be a box

Lemma 4.6. Let Mo be the constant of assumption (E2). For 0 < 0 <, 1 and for R »,, 3,

at scale R of X wY. Let us assume the existence of a subset U of B such that:
(a) MU) > (1-0)A\(B)
(b) Forallz e U,n(VE(Dap(2))) < VOn (Via(Dasy(2)))

Then we have:

1. Forallay,as € U such that af( = ag(, there exist by, by € B and four vertical geodesic segments y; ;
linking a; to bj such that ay, az, by and by form a coarse vertical quadrilateral with nodes of scale
D = OR, meaning that the configuration verifies the assumptions of Proposition[Z.11

2. Fori,j e {1,2}, ®(v; ;) has e-monotone image under ®.

By Lemma [3.26] the boxes B;, with i € I, verify the assumptions of this Lemma. Moreover, we
recall that a vertical quadrilateral satisfy the assumptions of Proposition 211}

Proof of LemmalZ.d Let M be the constant of assumption (E2). Let aj,as € U. For i € {1,2} let us
denote V D; := Vig (D, (a;)) and VO D; := Vi (D (a;)). For all v = (vX,0Y) € Vg and all i € {1,2}
let us denote by:

1. BY (vX)={Y eVDY | (v¥,0Y) e VPD;}
2. FX = {UX e VDX |9V (E)Y (v¥)) > GinY(VDZY)}
Thanks to Lemma[3.25] applied with V := VB, a:=v0anda = a;, we have that
n* (FX) <05 (VD) (2)
Let us take a; and as in U such that ay = a3, then VD;X = VD
Lo (VDIEN 0 EY)) 2 (1-260)0 " (VD)

2. Forall z € VDX\(Ff* U F5¥) and i € {1,2} we have n¥ (E} (v)) < HinY(VDiY).
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The sets V DX\ (F* u F5) enclose the vertical geodesics segments in BX passing close to ai* = a3

such that almost all the induced vertical geodesic segments around a; and as in B are good (ie. have
e-monotone images under the quasi-isometry ).
Since we have a sufficient proportion of good vertical geodesic segments, we will be able to find several
of them that intersect the same neighbourhood in two different points sufficiently far from each other. If
h(ay) < OR, the construction of the quadrilateral of Proposition ZIT with D = R is straightforward
since the four points a1, a9, b; and by would be R close, hence without loss of generality we may
assume that h(a;") > O R. Moreover, as we did before we can also suppose that h(B) = [0, R][.
We apply Lemma [[.8 with zy = h(a1) and z = h(a1) — OR to get the following inclusions:

Daor-nty (Thtar)-or (a1 ) ) © Tnary-or (Das (01°)) € Daprensy (Thiary-or (a1)) — (83)
We now suppose by contradiction that any couple of good vertical geodesic segments does not diverge
quickly. This means that they stay Mj-close until they attain a height lower than h (af( ) —0R. Therefore

Thian)-or (VDINEE U F)) € DY (Thgary-or (aT))

Thanks to the inclusions (83) we have VDsy Mo (Th(ar)-0 r(a)) ¢ VD, hence, combined with
Property [3.23| we obtain

7 (VDINE U F))  Nany-or (Pt (Tgar)-or (a1)))
X (VD) TR any-om (D20r (Than)-or (a1)))
$N6m<M°_29R), by Lemma [3.2]

which, for R large enough in comparison to %, contradicts the fact that X (V DX\(F{* u F5Y)) >

(1- 2074 )X (V D7), the first conclusion of the previously used Lemma Hence there exists a
couple of vertical geodesic segments VX and V5* of V DX\ (F}X U F5Y) diverging quickly from each
other. Furthermore we have n* (E} (v)) < HinY(VDZY ), hence there exists segments 1} and VY
such that (Vi¥, V") € V(Dar(ar)) and (V5*,V5") € V(D (a2)).

Let us define b* = VX (h(al) - %d (af(, ag()), so that b* and b3 are at the height where V;* and V;*
diverge. Then let us define b} = b} =V} (-h(a1) + 3d(af,a3)) and ;5 = (V;X,ij) to ensure
that the vertical geodesic segments of the quadrilateral v;; U y19 U 92 U 7721 have close endpoints.
Furthermore by construction, they diverge from each other and have e-monotone image under ®. [

In the next proofs, we will be using Proposition 2.6l on each of the four images ®(;;), which will
provide us with a new quadrilateral (¢ + 6) R close to ® (711 U 712 U Y22 U ¥21) on which the assump-
tions of Lemma[2.17] are verified.

Finally we deduce that on a good box, the quasi-isometry ® is close to a product map.

Proof of Theorem[4.3 Let i € I, and B; a good box (defined in Lemma[4.3). Then following Lemma [4.3]
we have 7;(V°B;) < n;(VB;). Therefore by Lemma 4l one of the two following statements hold:

1. n(V'BnV9IB) > (1-3V0)n(VB)
2. n(V!*BnV9B) > (1-3V0)n (VB)

Let us first assume that the dominant orientation is upward. Let us choose V; = VB~ (VTB nVIB ), the
vertical geodesics which have neither dominant orientation nor e-monotone image by ®. By Lemma
3.26] used with « := 62, we have that there exists U; c 3; such that:

1L MU > (1-VONB)
2. For p € U; we have n (Vi(Dag, (z))) >0 (VB(Dag (2))) V0.
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Let us apply Lemma B30 with U := U; and « := \/6, then there exists U’ c U; of almost full mea-
sure such that Vz € h(U"), 3(zo2,Y0,2) € B. such that V(z1,y1) € U., we have (x1,y0,.) € U’ and
(w0.2,71) € U'. Let a,ag € U’ such that a® = aff. By Lemma [£§ applied on ag and a, there ex-
ist b1, b2 € B; and four vertical geodesics V;; in V1B n V9B such that b; and by form a coarse vertical
quadrilateral 7" with ag and a, where V;; are the edges of T'. Proposition[2.€lgives a constant M (k, ¢, x)
and four vertical geodesic segments MeR-close to the four sides of ®(7"). Furthermore we assumed
that the dominant orientation is upward, hence the images of the four sides are all upward oriented.
Hence thanks to Proposition 211 we get

dX’ ((b(G’O)X’?q)(a)X,) 5]4:,0,»« eR
Then for all @ € U’ such that aX = aéf

dxr (®(a0)X, @(a)"") < eR (84)

We show similarly that for all @ € U’ such that a¥ = aOY we have

dy: (®(a0)"", ®(a)"") pcu R (85)

Let us define the product map ®; := (@ZX, @3/) : X wY - X' 'wY' Forall z e h(U"), let (x0,,Y0,2) €
U be the points involved in Lemma [3.30] and for all z € [0, R[\h(U’), let us fix an arbitrary point
(z0,2,Y0,2) € (B;).. We can therefore define for all z € X

(i)zX(x) = VcIA:((',@yO’Z)(h ° ‘I)(xo,z, yO,z))-
Then for all (z,y) € U’ the triangle inequality gives
dxr (& (), ®(2,9)") = dxr (Voo (o @ (0.2, 0.2)), @ (2, ) ")
SdX’ (VqA)X(';yo’z)(h °© Q(xovza yo,z))7 (I)(I', y07Z)X’) + dX’ (@(Qj’ yO,Z)X,7 (I)(I', y)X/) (86)

Furthermore, as the distance between two points of the same vertical geodesics is equal to their differ-
ence of height, we can write the following equality

dxt (Vo) (0 @(20.2,30.2)) ®(,90.2)") = A (@ (2, 50,2)", D(wo., 30.2) ")
We combine it with inequality (86), and then use the Lipschitz Property of h to get
dX’ (qA)lX(x)? (I)(x’ y)X,) < Ah ((I)(x, yO,z)X,a q)(x(],za yO,z)X’) + dX’ ((I)(x, yO,Z)X,’ (I)(x’ y)X,)

< dX’ (q)(x7 yO,Z)X,7 Q(xOVZ’a sz)X/) + dX’ ((I)(I', yO,Z)X/7 @(.%'7 y)X’)
<kew 26R, by inequality (84).

Similarly, ®) (y) is defined by

O (Y) = Vi (g ..o (0 @ (0.2, 90.2))-
and we show similarly that dy- (‘i>zy(y), O (z, y)Y’) <J,c,x €R. Furthermore for all (z,y) € U; we have
h (fi)ZX(x)) = —h(@f(y)), hence ®; = (&X,®Y) : X x Y - X’ n Y is a well defined product map.

Then we chose U/ := U’ to conclude the proof.
The downward orientation case is dealt in the same way by switching the definitions of <I>iX and <I>ZY. O
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4.3 Shadows and orientation

We use the fact that m > n to prove that ® is orientation preserving, hence the upward orientation is
dominant, on each good box at scale R.

Proposition 4.7. Assume that m > n. For R >, % the product map P, of Theorem is orientation
preserving for eachi € I ;.

We recall that given a box B, the shadow of a subset U c 3, we denote by Sh(U), the set of points
of B below U in the following sens:

Sh(U) :={p e B| 3V € VB containing p and intersecting U on a point p’ such that h(p") > h(p)}.

And we remind the reader that given a subset S c X, the large Y -horosphere given by S and denote
by Hs c X x Y, is the set

Hg:=5wnY
Let us denote B = B; for i € I,. Thanks to Theorem[4.5] there exist U = U; with A(U) > (1 - 9%). We

1
consider two parameters p; and ps with 1 >, pg >, p1 =« 616. The relations between them will be

specified later. Hence Lemma [3.28 applies with o = 9%, and it gives us a Y -horosphere H, such that
c 1
A(Sh(Hp,, (20)) 1U°) > 076X (Sh(Hp,, (20)) )

Then we apply twice Lemma [3.29 with o = 01, and p = pi for i € {1,2} to get two planes P; and P,
such that for i € {1,2}

1
)\h(PZ)(Pz n Sh(HDMO(JBO)) n UC) <n Q16 )‘h(PZ)(PZ n Sh(HDMO(:BO)))7

and such that p; R < Ah(P;, H,,) < 2p;R.

The next lemma will gives us the existence of two subsets below a Y -horosphere H, which are
sufficiently big (for the measure i in comparison to the horosphere) and sufficiently apart from each
other so that any path linking them must get close to H.

Lemma 4.8. Let M;(k,c,x) be a constant depending on k, c and the metric measured spaces X x Y. In
;lhe settings above, for R >, p%, there exist S1 and Sa, two subsets of Py N Bsuch that for j € {1,2} we
ave:

1. Vs1 €81, 59 € Sa, dx (57,55 ) > paRR.
1
2. )\h(Pg)(Sj N Uc) <y 032 Ah(Pz)(Sj)'
3. i (py) (S5) 2w exp (52 0o R) pup(pry (Nago (H)).
4. Any path ~y joining Sy and S of length [(~y) < M p2 R intersects Ng,, r(H ).

Proof. For j € {1,2}, let us denote by Q; := P; n Sh(HDMO(:vo))- We tile Q7* with the top of boxes as

in a box tiling. More precisely, let M be the constant involved in assumption (E2), and let Z c Qy
be an 2My-maximal separating set of Q7. Then there exists a set of disjoint cells {C(z) | 2 € Z} such
that:

1. Vx e Z, D(.%',Mo) c C(.%') c D(I‘,QM())

2. QiX = UerC(x)
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Figure 17: Configuration of Lemma 4.8

A BX
HX
mRII / 7\
p2R
""" S(a)X

Figure 18: Construction of S(z)% in Lemma 48]

61



Thanks to this tessellation, we tile Q1 with the large horosphere He ;) = C(x) x th(Pl) =C(x)x QY.
Furthermore for any two points z1, 23 € Z

Ah(Pl>(1Lf<:(am)) = Naeeny (C(@))A (B-Yh(p1>)
X Ai((Pl)(C(SQ)))‘S—/h(Pl) (th(Pl))’ by Lemma 3.2

= Ah(za)(chcQ))

Therefore A (Q1) % AY (QY)#Z. We tile Q2 by projections of the tessellation of @1, these projections
look like stripes on (2

Qs = |_L ﬂ,)f(PQ)(C(x)) x BYMPQ) (87)

Let us denote these stripes by S(x) := Wli((PQ)(C(x)) x BYh(Pg) for all x € Z. For all z1,29 € Z,
dx(x1,22) > Mo, hence by Lemma[L3V (s7*,s] ) € S(21) and V¥ (55, s ) € S(22) we have

dx (57,89 ) 2 2AR(Py, Py) = My = 2p2R - 2p1 R — Mo — M (88)
2(M0 + M)
P1 .

>2(p2-2p1)R, forR> (39)

Furthermore we have by construction that
h(PQ) h(PQ) : 1 M h(Pg) h(PQ) 2

Therefore Ay (p,)(S(Z1)) Xu Ap(py)(S(72)), and by the tessellation §7), Ap,(p,) (Q2) < )\&PQ)(Q%/)#Z.
By Lemma[3.29] used with « := Hi, we get

1
An(py) (Q2NU®) 24 036 Ay (py) (Q2) -

Moreover, for all z1, 72 € Z we have A\j,(p,)(S(71)) % Ap(p,)(S(72)) and the set of stripes S(z) for
reZ (ZIX) tile the set Q2. Therefore there exists Z' ¢ Z such that #2’ > (1 - Hé) #7 and such that

for all x € Z' we have Aj,(p,)(S(z) N U®) < 03 An(py)(S(2)).
We are now able to define S; and Ss. Let 21,2 € Z be distinct and, for j € {1,2}, let us denote by S
the following subset of S(x;)

S = Ty (C(27)) % Intns e (B (90)

By Lemma[3.3] applied with r = Mpy R, 29 = —~h"B and 21 = ~h(P,), we have ufu:z) (th(Pz)) 20
,UX(PQ) (IntMsz (th(pﬂ)), therefore

/’[’h(PQ)(S]) oy /’[/h(PQ)(S(x])) (91)

The first point of the Lemma holds by inequality (89), and the second point holds because we choose
1 and x5 in Z'.

Let us now prove the third point. Let g € Y the nucleus of the cell of B, we have BY, := 7Y (C(yo)).
Then by Lemma 1.8l applied with p = yg, 20 = h* and z = h(H) — p2 R we have

D2\h‘7h(P2)\fMo(ﬂ'yh(Pg)(yO)) c BYh(Pg) c D2\h——h(P2)\+Mo(Wyh(Pg)(yO))
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It follows that for x € Z
Tincery (@))% D111y s i)ty (Mo () (90)) € S(2)
c WF)L((PQ)(C(x)) X D%/(\h——h(H)I*szHMO (ﬂ-yh(Pg)(yO))

By Lemma[L.8] W})l((PQ)(C(x)) resembles a disk of radius 2|h(P;) — h(P2)| £ My = 2(p2 — p1) R + M.
Lemma[3.2] gives ,uhX(PQ) (WF)L((PQ)(C(x))) < ¢m(P2=PD)R  Again by Lemma 3.2 applied on

Y Y
D3 —1(t0)-pary st (T (W0))
we have

,Uh(Pg)(S(l“)) < e (p2=p1) R n(|h”=h(H)|-p2 R)

Similarly (2 resembles a product Da, .z, % BYM P2’ hence

Lin(py) (Q2) i emP2Hen (W =h{H)mp2 1)

Therefore we obtain an estimate of # 7

) (@2) ¢

i (S()) -
Applying Lemma 332 with A = Q2, U = Ny, (H) and A = py R gives
Ph(py) (Q2) zw exp ((m —n)paR)) pinrry (Nago (H)) -
In combination with inequalities (@) and (92)) we have for j € {1,2}
1Py (S5) = exp((m = n)peR = mpy R) 1y (Nago (H))
>4 eXp (m - npaR) sy (Nago (H)),
where the last inequality holds since (m —n)p2 —mp1 > #5" pa when p; < % p. Therefore the third

conclusion of this Lemma holds.

Let us prove the fourth conclusion. Let v be a path joining s1 € S and s € Sy such that [(y) < M pyR.

By inequality ®9), dx (s7, 55 ) > 2psR — 4p1 R. By Lemmal[L5 there exists a constant M’ () such that

the geodesic segment [sf(, 55(] contains a point s53 within 4p1 R — M'(8) < 5p1 R of HX = {z}, for

R> %. Therefore by Proposition [1.12
1) 2 200x (73,

However, every d-hyperbolic space with § < 1 is also 1-hyperbolic. Therefore we can assume without
loss of generality that > 1. Then we have

1(75) » 29x (7 sT) 5 9dx (VX HY) 51 R

Hence logy (M paR) > d (v, H™ ) - 5p1 R. Furthermore, there exists M'(k, ¢, ») such that for R > ]/‘f—zl
we have logy (M paR) < p1 R. In this case

d(v*,HY) <6pmR
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Therefore there exists ¢ € R such that Ah(vy(t), H) < 6p; R. Let us now look at 4* . Two cases arise,
we have either v (¢) € Sh (Bth(Pg)) oryY (t) ¢ Sh (th(&)).

In the first case, there exists y € H” such that 4 (¢) € Vj,. Furthermore Ah(v(t), H) < 6p1 R, hence
dy (vY(t),HY) = Ah(¥¥(t),HY) < 6p1 R and consequently dy (v*, H" ) < 6p1 R. Which proves
d (7, H) <6p1 R.

In the second case, when 7Y (t) ¢ th( p,) by our claim (@0) we have that the vertical geodesic ray

Vv (1) starting at ~Y (t) intersect Y_j(p,) in a point y such that dy (y, SY U SY) > MpyR. Therefore

MpaR21(7) 2 21(4%) 2 3 (dls1, () + d(x(1), 52))
2Mp2R
2

> > MpaR,

which is absurd, hence the second case when 7Y () ¢ th( P») does not occur. Therefore we always
have that v intersect the 6p; R-neighbourhood of H. U

Proof of Proposition[47 Let us be in the settings above. Let us assume by contradiction that d is ori-
entation reversing, which means that there exists ¥ : X - Y’ and ®* : Y — X' such that for all
(z,y) € B we have &(z,y) = (¥ (y), ¥ (2)).
For all p € X' x Y’ such that d,. (p, O(Hn U)) < p1 R there exists ¢ € H N U such that d,./ (p, <I>(q)) <
p1R. Therefore by the triangle inequality
dw (p, ®(q)) < dur (p, @(q)) + dyr (ff(q), <I>(q)) <kew P1R+eR, by Theoreom@3lsince g € U,
Zkem P1I, since € < py.

Hence there exists M (k, ¢, ) such that N, p(®(H nU)) ¢ Nasp, r(®(H nU)). We show similarly
that for j € {1,2}

Ny r(2(S; nU)) € Napy r(@(S; nU)). (93)
Let M'(x) be the constant involved in Corollary 317} Then

Iz (Nskle(‘I)(H))) <k,e,x Skorhim’ ), (Niere(®(H))), by Corollary 316,
Zke,m 68kp1le,u (NM1(H)), byLemmal3I8]
<SP 1y (N (H))
X0 egkam’,uh(H) (NMar(H)), by the second part of Lemma 317

< eSklem,,uh(H) (Numy(H)), by the first part of LemmaB.17.
Combined with 2. of Lemma[4.8] we have

—(m-n)t2 m’
1 (Natpy r(®(H))) <y e (MM T RSEoM 4 (S5)
< e_(m_")%ReSklem’uh(pQ) (S;jnU), thanksto 2. of Lemmal[4.8]

—(m-n)22 i mon
<o € TRy (NL(S; N U)),  since py < 16km' "%

Zu e_(m_")%R,u (M (S;nU)), by LemmaBI7
(men)22
< e M ER Y (Naprikese(S; 0 U))
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Hence using Lemma 318 on NV (S; nU)

1 (Nakprr(®(H))) <hcm € DR (N1 (8(S; 0 T)))

M
<e TR (N, R(D(S;n 1)), for R> o

< 6—(m,n)%RM (NMle(Ci)(Sj nU))), by inequality (@3)

<hoem e*(m*")%ReMlem'M (NM,(CiD(Sj N U))) , by Lemma[317,
—(m—n)£2 - ) m-n

ke € ( ) SQRM (NMI((I)(SJOU))), since p1 < 8Mm,P27

ko e_(m_")%R,uz}) (NM/(<§(S]» nU))), by the first part of LemmaBI7

where 7 := ®(P,). Since ® is orientation reversing, we can now apply LemmaB33]with A; = ®(S; n
U), E = Nikp, r(®(H)) and Q = e™ ™ F R e have that

n (VNMO ((i)(sj N U))) Zk,c,m e(m_")%Rﬁ (VNu, (B)).

Then, as pointed out below Lemma [3.26] we can apply it on a A; with V; = V E. Hence there exist
UAJ. c A; such that:

A (Ua,) 2 (1- RN (4)).
- For all p € U, most of the vertical geodesic in Dy, (p) do not intersect E.

By Property[3.23] we have
Ay (Mt (3(S5 0 1)) 2 e M EENL (72 (May (E))) -

Hence by the definition of ),
T m-n)£2 x
1z (Nao (2S5 0 1)) 2o €75 Rz (75 (Mg (E))) - (94)

Let us denote E’ := NMO(‘i)(Sj NU) N Uy,). Since $ is MeR-close to ® on U by Theorem 5] we
have (similarly as in inequality (@3)) that

Nowr (7 (E)) € Naspir (@71 (E'))

Therefore

A

1 (Nour (7 (E))) b e (Matpur (27 (E')))
<pen €PN (Niere (271 (E'))), by the first part of Lemma[3.17]
ke m SMprlim (J\f1 (E')) , by Lemmal[3.18]

Kpop MOV, (M, (E")), by the second part of LemmaBI7,

ef(mfn)%ReGMlem,ugo (Mo (2(S;nU))), by inequality 4,

e(m*")%RMh(PQ) (Nag, (S;nU)), since p; < %,

<k,c,x

I

<k,c,%

)&

<kcm e(mfn)%Ruh(PQ) (Nag, (S5)), since S; n U have almost full measure in S;.

Following the second conclusion of Lemma [4.8] there exists a constant M (x) such that A;p,)(S; N
U®) < MO Ay (S5).
We apply twice Lemma [3.24 for j = 1,2 with (V1,n) = (NMO (S]X) x N, (S]Y) nuh(P2)), Vo=Ucn
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NoRr (fi)_l (E')) and o := e(m_n)%R,U,h(P2)+M9é. Let us denote GY (pX) = {pY e V¥ | (pX,pY) € VO},
we have that

iy ({2 €V 120y (GY (07))}) 2 (1= e ) )y (V).

Since e (MM BR L Mom < % there exists s; € (S;NU)~® 1 (E') and 55 € (SonU) &1 (E') such

Y _ .Y
that s; =s;.

Let us denote by §; := <i>(sj) for j € {1,2}. By construction we have §; € A;, then V Dy, (s;) contains
almost only vertical geodesic segments which do not intersect F. Since §{(, = §§/, and by Lemma
we can find two vertical geodesics v1 € V Dy, (s1) and va € V Dy, (s2) which do not intersect
E = Ngip, r(®(H)), and such that v\ = v2". Since v} and v meet (up to an additive constant) at the
height -2 + %dy/((%//, 3Y"), there exist M (8) such that the concatenation of vy and vy is (1, M (8))-
quasigeodesic linking 57 to $s.

Let us denote by 7 := &~ (v; Uvy), then yis a (k, ¢+ M )-quasigeodesic. By Lemma 2.1 of [GS19], there
exists a 2k-Lipschitz, (k,4(M + c))-quasi-geodesic 4" in the 2(M + ¢)-neighbourhood of v, linking
®71(51) to ®71(82). Let us denote s} = ®1(4;) and s} = ®~1(32). Because +' is 2k-Lipschitz, and
since ®~! is a (k, ¢)-quasi-isometry we have

1(') < 2kdyr (31, 82) < k2du(s], sh) + ¢ (95)

Furthermore, 7' does not intersect the %(Wsle - 2¢) - c-neighbourhood of H since ®~! is a quasi-

isometry. Moreover 5; and s; are R close to each other, that is

du(s},85) = du(@7H(D(59)). 55)
< k:dwr(@(sj), P(s5)) <pemeR, sinces;el. (96)

Consequently by the triangle inequality we get

dN(S,17S§) < dN(S,1781) + dN(81782) + dN(827S,2)

<kem ER+dw(s1,52), since ‘ifl(sj) eU (97)
Furthermore s%/ = s%/, therefore by Corollary [L11] with M = 15C we obtain
dw(s1,82) <dx (s{(, sg() + M <2p3R+ M, by the first point of Lemma[£.8]

Combined with inequalities (93) and (97) we get

M
1Y) <hem 2k*(2pa R+ M +26R) + ¢ <p e p2R, for R> iy

P2

For j € {1,2}, let v; := [sj,s}], by inequality (96) we have I(7;) <jcw €R. Hence the path 7",
constructed as the concatenation of 71, 7’ and s, is a path linking s; € S; to sy € So, of length
1(7y) =k.em p2R since € < po. Furthermore, by construction, 7" does not intersect the 7p1 R — 3¢ —
2MeR > 6p1 R-neighbourhood of H. This contradicts the fourth point of Lemma [4.8] therefore ® is
orientation preserving. O

4.4 Factorisation of a quasi-isometry in big boxes

In Section[d.2] we proved that for all i € I, @5, is close to a quasi-isometry product P, = (Ci)ZX ) i)z/) on

a set of almost full measure U; c ;. In this section we prove that ® is close to ® on all boxes at scale
L on a set of almost full measure. This is a step-forward since this is true on all boxes at scale L and
not only a significant number of them.

66



Theorem 4.9. For 0 < 6 =i . . 1 there exists Lo(k,c,%,8) 0 such that for all L > L¢ and for all box B
at scale L, there exists M (k,c,»), U € B and a (k, M\/0L)-quasi-isometry product map $ = (@X, @)Y)
such that:

1. MU) > (1-60)X(B)
2. dyr ((I)\U,(i)\U) <. OL.
With®X : X - X' and®Y : Y - Y'.

Let B be a box at scale L, let i € I, and for all i € Ig let U; c B; be as in Theorem [45] where U; is
the subset of B; on which @ is close to a product map ®;. Let us denote by W c B the "good" set of 3

W= || U

iely

where "good" means the set on which @ is close to a product maps on boxes at scale R. We introduce
the application P which quantifies the portion of a geodesic segment which is not in W.

Definition 4.10. Lety : [0, L] - X w Y be a vertical geodesic segment. We denote the measure of points
inyn W€ by
P(v) :=Leb (v 1 (W) (98)

The value of P(7) is related to -y being e-monotone.

Lemma 4.11. For 0 < € <4 . Vo <kew 1, there exists M(x, k,c) such that for all vertical geodesic
segmentsy: [0,L] - X »Y we have

P(y) < VOL = ® o~ is M\/0-monotone.

Proof. Letty,ty € [0, L] such that h(®(y(t1))) = h(P(v(t2))) and such that ¢o > 1. Let us decompose
[t1,12] into segments of length \/AR. Without loss of generality we can assume that ty — t; > V/AL.

Let us denote N := lt\%gJ I := [ty + ivV/OR,ty + (i + 1)\V/OR] for any i € {0,...,N -1} and Iy :=

[t1 + (N - 1)V/OR, t3]. We have

N
(t1,t2] == | i
=0

Then foralli € {0,..., N} letus choose s; € I; such thaty(s;) € W if possible, and any s; € I; otherwise.
Let us denote by J the set of odd indexes in {0, ..., N'}, we split J into the following sets:

Jo:={jeJ|v(sj) and y(s;42) are both in the same box and in W'}
Ji:={jeJ|v(sj) and v(s;.1) are in different boxes}

Ji:={j € J|v(sj+1) and 7(s;+2) are in different boxes}
Jy={jeJ|I; cW}

Jy:={jeJ|Ijzoc W}

We claim that
J=Jou(JiuJiuJyuJj)

To prove it, one can see that two cases arise when an odd index j is not in Jy. The first case is when
7(s;) and (s; + 2) are not in the same box, which leads to the fact that either j € J; or j € J|. The
second case happens when 7(s;) or y(s;+2) are not in W, which leads to either /; c W¢or I;,5 c W*.
Therefore, we proved that an odd index is either in Jy or in J; U J] U Jy U J3.
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We have that P() < V0L, hence #.J; < % = % and similarly #.J} < %. Furthermore there are

less than % boxes intersecting +y, therefore #.J; < % < % and #J| < %, hence

L
#(J1uJiu U Jy) <4
to — 11 4£

2WOR R

We see that the "good" indexes are in majority compared to the "bad" indexes. We now use that fact to
prove that [ty — ¢1| is smaller than /6 L. Let us denote ¢(t) := h o ® o y(t) for all € [0, L]. We assume
that NV is odd, the case where N is even is treated identically. By assumption ¢(¢1) = q(t2) therefore

0=q(t2) —q(t1) = q(t2) —q(sn) + Z](Q(Sm) - q(si)) +q(s1) —q(t1)

=q(t2) —q(sn) + Y. (q(sis2) —q(si)) + Yo (q(siva) —q(si)) +q(s1) —q(t1) (99)

iEJO iEJ\JO

#Jo=#J - #(J1uJ{u U Jy) >

However we proved that #.Jj is much bigger than #(J \ Jy), and for any i € Jy, ¢(s;12) — q(s;) is a
positive number by the upward orientation of the quasi-isometry on W. Therefore we will show that
|t1 — t2| must be small for this equality to hold. First, we have to consider that Vi € {0,..., N}

l([i+1) < |Si - Si+2| < l([z) + l([i+1) + l([ﬁ_g)
:>\/§R < |Si - Si+2| < 3\/§R
=1q(si) — q(sis2)| <kem VOR

Hence for all i € J \ Jy we have q(si+2) — (i) Zk,c —v/0R. Furthermore for all i € .Jy, s; and $;.9
are in the same box and in W, therefore by Corollary[2.7] there exists M (k, ¢, x) such that

q(siv2) —q(si) > %|52 = Sipo| = MeR > \/ER; since V6 > 2Me.
Combined with equality (@9)
02 e VOR# TG~ VORH(Jy U [ U Jy U Jb) = [ta —t] - VOL
Hence [ta—t1| <1, .« V/OL, which proves that there exists M (k, ¢, ) such that  is M/f-monotone. [

Let M be the constant involved in Lemma [£11] let ' = 91_16 and let £’ := 2M+/0’. We now show
that almost all vertical geodesic segments of boxes at scale L have £’-monotone images under ®.

Let us denote by V9B c VB the set of vertical geodesic segments of VB whose image by ® are
¢’-monotone.

Lemma 4.12. For L >, ., % and for any box B at scale L we have that
n(VOB) 2 (1-0%)n (VB) (100)

Proof. Lemma[@Iltells us that P(y) > /AL for all y € V?B. Computing the measure A of ¢ we have

L L
A(WE) = / A (W) dz =, / 1 (Vs (W))dz, by Proposition 523l
0 0

L

L
waflvg(wg)(V)dn(W)dZ meflvg(wg)(W)dZdn(W), by Fubini Theorem. (101)
0 VB VB 0
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However we have .
0 ifzey (W)
1VB(W§)(7) = { 1 ifze ,.Yfl(Wc) (102)

Therefore 1y, (wey(7) = 1,1 (we)(2). With inequality (I0T) it gives us

L L
(W€ XN[/1771<W0)(z)dzd77(’y)2 [/1771(Wc)(z)dzd77(’y), since VPBc VB
VB 0

v 0
> [ Leb (57 W) an() = [ P()an(y) (103)
veB VbR

Let us assume by contradiction thatn (V9B) < (1-v/8")n (VB), hence we have 7 (VbB) >V0'n (VB).
Therefore by inequality (I03)

AWE) = (VPB)VO'L > Vo (VB)VO'L
< 0'\(B),

which contradicts the first conclusion of Theorem[4.9/for 6 <, .., 1. O

As in Section[4.2] we deduce that, in boxes which have almost only vertical geodesic segment with

2M~/6’-monotone image, ® is close to a product map. Let us denote &’ := 2MO7T6 and 0’ = 2M91_16,
then for 0 < 0’ < ... 1 we have that 0’ <&’ < /0.

Proof of Theorem[4.9 The proof is similar to Theorem[4.5] The Lemmal4.12lplays the role of the second
conclusion of Lemma[£3] with ¢ instead of . In a box at scale L, almost all vertical geodesic segment
have £’-monotone image by ®.

Then, because &’ Zk,c,x N{L , Lemma [4.4] provides us with a dominant orientation. In combination
with Lemma [3.26] we get Lemma[4.6] which provides us with the vertical quadrilateral.

Afterwards, we make use of them, as in the proof of Theorem[4.3] to construct the quasi-isometry
product ®. In a box at scale R, the upper-bound € R on the distance between ¢ and & is achieved since
#' < e, and in our box at scale L, it is achieved since 6’ < &'.

Finally, the exponents on 6 of Theorem [4.9] can be removed since we can fix , then do the proof
with a parameter 6 = 08, then replace 6 by 6°. O

This is a step forward since now, Theorem[4.9holds for all boxes at scale L, and not only a significant
proportion of boxes at scale R.

4.5 A quasi-isometry quasi-respects the height

Let p,q € X xY be such that h(p) = h(q). In this section we are aiming the following theorem, which
estimates the difference of height between the images of p and ¢ under ®.

Theorem 4.13. For0 < 0 <y, ., 1, there exists M (k,c,»,0) (here M depends also on §) such that for all
pandqin X wY with h(p) = h(q) we have

Ah(®(p), ®(q)) < 0dw(p,q) + M. (104)

By the previous section, we know that in a box of a sufficiently large scale, the quasi-isometry ® is
(on a set of almost full measure) close to a product map. We first show that this product map is coarsely
an homothety along the height function.

Let Lo be the constant of Theorem [4.9] let L. > L and let 5 be a box at scale L. Let us denote by
h* = sup{h(p)|p € B} and by h™ := inf{h(p)|p € B}. Let ® := (&*,Y): X x Y — X’ n Y be the
corresponding product map of Theorem [4.9]

69



Lemma 4.14. Let a € By+ and b € By~ be two points of I3, one on its top part and one on its bottom part.
Then we have both:

|AR(®(a), () = L] <p e 07 L
m

[AR(@(a), & (b)) - ZL| 40 03 L
n

Proof: Let U c B the set involved in Theorem[4.9] we recall that A(U) > (1 - 6)A(B) and that for all
p €U, dw(®(p),2(p)) <uk,c OL. Since the measure \ identically weights the level sets of B, by a

Markov inequality there exists z* € [h" — 03 L, h*]and z~ € [h™,h™ + G%L] such that
Ao (Usr) 2 (1-07)\oe (Bar)
A~ (U) 2 (1-02)A-(B:-).

By the definition of \,+ we have that %Mw(Bw) < pip+(Uz+) < g+ (B,+). Furthermore g+ (By+) X

enLe(m=m)Ih"=2"| since we went down by a height |h* — z*| in the box. Therefore:

1
Lm0 e (Nrere(Uar)) Zhen €7F.

Furthermore, B,+ resembles a rectangle of width 2|h* — 2| in X and 2(L — |h™ - 2*|) in Y, hence we
have:

1 1 1
Y Y L (m-n)02L L 2(m-n)02 L
MZ+(Nkc+c(Uz+)) Zhem € e(m=n) T Tk gL g2(m—n)
'u’z*(BZ*)

By Lemma[3.18] and since ® is close to ® on U, we deduce:

1 A
oL p2(m-n)02 L <k M; (N1(‘I>(U;i))) ko oL (105)

Let A > 0 be [A(®(U,+)) — h(®(U,-))|. For all p € U,+ there exists a vertical geodesic V}, of 6-
monotone image under ¢ passing close to p. Furthermore, dy (V;)Y(z_), U;i) < 203 L since BZ,
has a relatively small diameter. Therefore, all vertical geodesics starting at Ny (@Y(U;)) intersect

NMG%L (@Y(UZX )) Hence we have that

M (@Y(Uz)i)) c 7Th(ci>(UZ+))(J\[]\49%L ((iDY(UZ)i)) )

Therefore:

p M@ WD) <1 (T o (Mot (87 (U)))

<o € (N1 BV (UL)))

! ! l 14 ~
<kew € A MO2L Y (N1(<I>Y(U;C))), by Corollary 316,

1 1
‘A n'MOZL 0%
Sk € AenMOZLO2L  hecause B;ihas small ;1 measure,

1
! ! 3
_ AN (M41)02 L

Combined with inequality (I05) we obtain

1 1
_ 3 ! ! 3
enLeQ(m n)02 L <k o e Aen (M+1)6 L’

3Gy
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1
. . . U ! . .
which provides us with el ke € AMOZL \where M’ is a constant depending on k, ¢, x and «’.

Then there exists M"'(k,c,x,x") such that by taking the logarithm we get
nL<n'A+M"07L.

Similarly, we do the same proof on &1, on the box of height A containing @(Uz+ uU,~) which provides
us with

n'A<nL+M"03L.

1
Therefore |A - %L| <k,cx 02 L. To obtain the same results with the constants m and m’, we focus on
the sets Uz)f and Uz)f instead of U Z)i and U;. O

As a corollary we obtain a first quasi-isometry invariant for horospherical products.

m/

Proposition 4.15. If X x Y and X' w Y are quasi-isometric, then 7' = .

Proof. By Lemma [4.14] and by the triangle inequality we have that |77 — 5| < . . % for all L > L.
Therefore, % = % hence % = ZL—,’ O

Lemma 4.16. Let 0 < 0 <i .. 1. Letp = (p%,p¥),q = (¢%;¢") € X w Y such that d.(p,q) > L3 and
such that p¥ = q¥ (hence h(p) = h(q)). Then we have:

AR(®(p), ®(q)) <pen 07 L.

Proof. Let B be a box of scale L, such that p and g are contained in its bottom part. Let V;,X e VBX

be the vertical geodesic segment of X of length L starting at p. We apply Lemma [4.3]on VpX x B with

ro = Lo, L > L%, we obtain that there exists R > L, a box tilling B U B; of boxes at scale R and I, c I
1el

such that:

LA ( Bi) > (1-0)X(B) (Boxes indexed by I, cover almost all B)
jel,

1€ g
(VPB,
2. Viel, 1G]
ni(VB;)
e : : e X Y Y Y :
where 7; := nyp,. In this setting, we have that VB, := { (V5 VIOIVE e VB; } hence most vertical
geodesics in BZY are a good vertical geodesic of B; when coupled with a portion of V;,X .
Let us denote by J := {0,...,% — 1} and for all j € J let us denote by p]X = V;)X(jR), then
VX(R) = Ulp; ;i)
jed
Since the measure of the good boxes cover almost all 13, and because the measure A equally weights
the level sets, by a Markov inequality argument there exists J, ¢ J such that for all j € Jg, B[R, (j+1)R]
is almost entirely covered by boxes of I,. Therefore, again by Markov inequality argument, there exists

W, c VY B such that:

< 0 (almost all vertical geodesic segments in 53; have e-monotone image)

L n(Wy) 2 (1-02)n(VY B);
2. VVY e W, and Vj € J, we have VY ([-(j + 1)R;—jR]) € U VYBY.

i€l

Let V¥ € W, for all j € J let us denote by p; := (V;* (jR),V" (-jR)). By Lemma[14 for all j € J

we have

A~ ~ m 1
|AR(®(p)), P(pjs1)) - ERI <kew 02 R (106)
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For all j € J,, let us denote by B; the box at scale R containing [p;;p;+1]. By the choice of R, we have
that most vertical geodesic segments of B}/ have f-monotone image when coupled with [pJX ; p])il].
Furthermore B; contains almost only good vertical geodesic segments, therefore, there exists v €
V9B, such that ([pf(;pﬁl] ,vY) € VIB; and such that (’UX, [p}/;p}il]) € VIB;. Therefore there
exists a good coarse vertical quadrilateral containing p; and p;.1, hence d (®(p;), @(pj)) <kem OR.
Similarly we have d (®(p;+1), ‘i>(pj+1)) <k,c,x O R. Hence combined with inequality (106) we get

m 1
|AR(®(p;), ®(pjs1)) - | < 02 R

Therefore by the triangle inequality, there exists M (k, ¢, x) and M'(k, ¢, ) such that:

™

L
AR (o) @by 1) < 2 AME(;), B (pin))
< Z]: Ah(®(pj), ®(pj+1)) + JZJ Ah(®(p;), ®(pj+1))

<#J, (%Jﬂ MQ%R) +#(IN ) (kR +c)

L L
= (%RH\M%R) 07 (kR +0)

< LL+MO3L
m/
Similarly we have Ah(®(po), ®(pr_q) > 77 L - M'03L. By doing the same reasoning on ¢ we have
R
1 . .
that for all V¥ e W, |Ah(<I>(q0),<1>(q%71) — B L] <gem 02 L, where q; = (VX(jR),VY (-jR)).

Furthermore W), n W, is non empty for 03 Zk,e,x 1, then let VY e W, n W,. Without loss of generality
we can assume that ®(p) > ®(q), we have:

An(®(p), ®(q)) = h(2(p)) ~ h(®(po)) + h(®(po)) = M(®(pz_,)) + h(®(pL_,))
~h(@(ar )+ h(®(a_,) ~ (@) + h(2(a0)) - h(2(0))
=k,c,x dm(p,po) - %L + MQ%L + dm(pﬁfl’Q%fl) + %L + MH%L + dw(q,QO)

1
5k:,c,lxl dN(p7p0) + dl"‘(p%_pq%_l) + dN(q7QO) + 262L

However d.(p,po) < My since they share the same X coordinate and because the top part of B as a
diameter of at most My, similarly d.(q,qo) < My. By construction pz_ L= qz_ L furthermore the top
R R

part of BX as a diameter of at most Mo, hence dw(pL_,,qr_;) < M. Finally we obtain:
R R

AR(®(p), ®(q)) <pen 07 L.

Corollary 4.17. Any vertical geodesic ray V' of X wY satisfies, for allt1,t; e R
h(®oV(t1))=h(®oV(tz)) = [t1—ta|=pewml

Proof. Suppose V is a vertical geodesic segment parametrised by arclength. Suppose 0 < ¢; < t5 are such
that A(®(V (t1))) = h(®(V (t2))). We apply TheoremEI3lon &' with p = ®(V (t1)), ¢ = ®(V (2)),
where 0 is here fixed and depends only on k, ¢ and the metric measured space (X x Y, d, ). Then we
have

ARV (81),V (t2)) <o 03 |t1 — 1) (107)
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However Ah(V (t1),V (t2)) = [t1 — t2|, hence

(1 - 9%) ‘tl - t2| =k,c,m 1
Hence ‘tl - t2| <k,cw 1 since 02 < % O

This is stronger than being e-monotone since it true on all R.

4.6 Factorisation of a quasi-isometry on the whole space

Finally, we provide the proof of the Theorem[4.T] which states that ® is close to a product map $ on
the whole space X x Y.

Proof of Theorem[Z1l We first pick an arbitrary vertical geodesic V5¥ of X and an arbitrary vertical
geodesic V) of Y. Then we work with the two embedded copies X := X n V and Yy == V5¥ x Y of
XandY in X x Y. Let p € X Y, there exist a unique a € X and a unique b € Y such that p* = ¢
and p¥ = bY. We can construct a coarse vertical quadrilateral () containing p and @ as in Lemma [4.6]
Thanks to Corollary .17, we know that ®(Q) is in the M (k, ¢, x)-neighbourhood of a coarse vertical
quadrilateral Q" on which we use Proposition[2.11l This gives us

dx (®(0)Y, 0(@)Y) < 1 (108)
AR ()" 2(a)"") <h e 1 (109)
Similarly we have dy- (@(p)y’, @(b)yl) <ken 1. Let us denote
XX > X'
2o & (2, V) (<h(2))) "

By rewriting inequality (108)) we have
dxr (@(p)¥, 8% (p¥)) =dx (@(p)¥', 8% (a¥)) = d (<I><p>X’, ® (a*, v&”(—h(aX)))X')
=dxr (@), @ (a)") <pem 1
Similarly by denoting ®Y := ® (V5* (-h(y)). y)Y, forall y € Y, we have

dy ((p)", @Y (p)) <hem 1 (110)

The last problem is that given a point p, the heights of X (pX ) and ¥ (py) may differ. As in the

proof of Theorem[45] inequality (I09) guaranties that they are sufficiently close so that, which allows
us to chose @ and ®¥ such that for ® := (&~ dY) is a well defined product map on X x Y. Then we
have

dur (2(p), () <hem 1
AR(D(p), B(p)) ke 1

We now prove that ®X and X are quasi-isometries. Let x, 2" € X, then

dxr (8% (2), 8% (")) 2o dx/ (<I> (2. V¥ (~h(2))" @ (o', vOY(—h(m')))X')
<dw (@ (2, V) (=h(2))), @ (2/, V5 (-h(2"))))
<kdw ((2, Vg (=h(2))), (', Vi (=h(2")))) +¢
< kdx (z,2") + dy (Vy (=h(z)), V¥ (=h(z"))) + ¢+ M(k,¢,»), by Corollary L1l
<kdx(z,2")+ Ah(z,2") +c+ M < (k+1)dx(z,2") + c+ M.
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Similarly
dxr (@X(w)v @X(wl))
e s (@ (2.5 h@) ™0 (2 ri) )

> 20 (% (2. V5 (-h(@))) (2", V5 (@) = dy (@ (21 (b)) @ (2”1 (n) )

1 - .

> zdx (z,2") = c—dy (&Y (V§' (-h(z))),®" (Vi (=h(x)))) - 2M, by the triangle inequality,
1

> de (x,x') —c—-2M.

The proof that Y isa quasi-isometry is similar. O

5 Some solvable Lie groups as horospherical products

In this chapter, we provide a characterisation of the quasi-isometry group a the horospherical product
of two Heintze groups. See Theorem[5.13]for the precise description.

5.1 Admissibility of Heintze groups

In this section we show that a Heintze group satisfies the conditions required to apply our main rigidity

result[41]

Definition 5.1. (Heintze group)
A Heintze group is a solvable Lie group S = N x4 R where N is a connected, simply connected, nilpotent
Lie group, and A is a derivation of Lie(IN') whose eigenvalues all have positive real parts.

Heintze obtained in his work [[Hei74] that any negatively curved homogeneous manifold is isomet-
ric to a Heintze group.

Remark 5.2. A Heintze group admits a left-invariant metric with strictly negative sectional curvature,
see [Hei74] for further details. From now on we fix g a left-invariant metric on N x4 R with maximal
sectional curvature —1. Since N x 4 R is simply connected, it is a C AT (-1)-space.

From now on we fix the metric g such that S = N x4 R is a CAT(-1) space. Therefore S is a §-
hyperbolic, Busemann, proper, geodesically complete metric space. Moreover, we show that S satisfies
all three assumptions of Definition 3.1l The assumption (FE1) holds thanks to the decomposition S =
N x4 R. We have for all (n,z) € N xR, g(, ) = exp(-2A)(gn)n exp(-zA)" @ dz?, where gy is the
restriction of g to the Lie algebra of V. Let us denote by g, := exp(~2A4)gn exp(-2zA)* a left invariant
metric on IV, then let us denote by 1 := 11, the measure on S induced by g and by 1, := p4, the measure
on N induced by g,. Then for all measurable subset U c .S we have

() = [ 10 2)dug(n2) = [ [ 1000, 2)dpg, (n)a
S R N

- [ (U2,
R

where U, := {n € N|(n,z) € U}. Assumption (E2) holds with constant My = 1 since gy, . is
left-invariant, and assumption (E3) arises from the fact that det(g,) = exp(-2z R(tr(A)))det(g).
Therefore, any Heintze group is an admissible horo-pointed space. Let us denote S7 := Nj x4, R and
So = Ny x4, R, then

Sl NSQ = (N1 XNQ) XAR,
with A the matrix diag(A1, —Az). Similarly let us denote by Sj := Ny x4, R and 53 := Nj x4, R two
Heintze groups, with N{, N; being two simply connected Lie groups and A}, A} being two derivations.
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5.2 Precision on the components of the product map

We first refine Theorem [4.1] for Heintze groups.

Remark 5.3. For any vertical geodesics V' of (N1 x N3) x4 R there exist ny € Ny, ny € Ny and an
arclength parametrisation of V' such that V (t) = (n1,n2,t).

Let ® : (N1 x N2) xg R — (N x Nj) xR be a (k,c)-quasi-isometry. Let us assume that
R(tr(A1)) > R(tr(Az)) and that R(tr(A47)) > R(tr(A43)). By TheoremE I there exist 1 : 51 — 5]
and 9 : Sy — S} such that

du (@, (D1, P2)) <p e 1.

Lemma 5.4. Let i € {1,2}, then for any vertical geodesic V' € S;, there exists a vertical geodesic V' such
that

dug (D5(V), V') <pe 1

Proof. Since S; = N; x4, R is a Gromov hyperbolic space, there exists M (k, c, x) such that image of a
vertical geodesic by ®; is in a M -neighbourhood of a geodesic y of S;. By Corollary[4.17]+y is a vertical
geodesic, hence for V' := v we have dyg (®:(V), V") <pen 1. O

Let n € N; and let us denote by V;, the vertical geodesic V,, : R - S; ; ¢ = (n,t). By Lemma 5.4
there exists a vertical geodesic V,, such that

dHH((i)Z(Vn)aVTZ) =k,c,x 1 (111)

Furthermore V! is unique since it is an infinite geodesic of the Heintze group S;. We define a map
U, : N; > N/ as the following

ForallneN;, ¥;(n) =P (V,(0)), (112)
where P : N/ x4, R — N/ is the natural projection on ;.

The goal of this subsections is to prove the following theorem.

Theorem 5.5. There exists tg € R such that for the aforementioned ¥; we have

R(tr(A1))

oo (w0

idR + to)) Sk,c,w 1.

We can replace ?Eggﬁig; by ?Eggﬁzgg thanks to Proposition We first show ®; and ¥; are

related.

Lemma 5.6. Leti € {1,2}. There exists f; : R — R such that for all (n,t) € S;
dsi(‘i’z‘(mt), (\Iji(n)7fi(t))) <hem 1

Proof. Let f; : R - R;t > h(®;(en;,t)). Then by Theorem @Il we have that h(@)i(n,t)) = fi(t) for
all n € N;. Therefore by the definition of ¥; we have (V;(n), fi(t)) = V,(fi(t)). Hence

dg; (®i(n,1), (Wi(n), fi(1))) = dgs; ($i(n.1), Vi (fu(1))) (113)
However by inequality (111)), there exists s; € R such that

dg (®i(n, 1), V,/(51)) <hes 1 (114)
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Furthermore we know that
L2 dgt (@i(n,1), Vil (5)) = Ah(®i(n,t), Vii(se)) = | fi(t) - 54l (115)
Therefore
dgr (®i(n, 1), Vi (fi(t))) < dgr (®i(n, 1), Vis (1)) + dsr (Vir(s0), Vi (fs(t))) by the triangle inequality,
= dgr (®i(n,t), V(1)) + |fi(t) = 81| <k,e I, by inequalities (IT2) and (IT3).
Combined with equality it provides us with dg (‘i%(n, t), (¥;(n), fz(t))) <kem 1 O

Corollary 5.7. (Quasi-isometries quasi-preserve the horosphere volume)
Lett € R, r > 0 andn € N;. Then the map ®; = (V;, f;) quasi-preserves the volume of any disk
D := D,(n,t)

!

(D) R 11yt (N1 ($1(D)))

Proof. By Lemma there exists M (k,c, ) such that ®; is M-close to ®;. Therefore, there exists
k',c’ depending only on k, c and S1 x S such that ®; is a (k’, ¢’)-quasi-isometry.
We first exhibit Z a 2(k’c’ + 1)-maximal separating set of D. Then ®;(Z) verifies:

1. The disks D; (p) with p € ®;(Z) are pairwise disjoints.

2. U Di(p)c M (®i(D))c U  Doprprersiysers1(p)
ped;(Z) ped;(Z)

Furthermore by Lemma[3.2] we have V(n,t) € Z

Mtsz (Dk’c’ (7’1,, t)) th’w Iu,fl (Dzk’c,(n, t))

/‘?Z(t)(Dl(q%(”,t))) Rk,c,m M?Z(t)(DQk’(k’c’+1)+c’+1(q)i(nat)))
Therefore

/‘fi (D) Rk FL Rk em ,Uf: (N1 (‘iZ(D)))

Lemma 5.8. (Quasi-isometries quasi-translate the height)
Let f; : R = R be the function involved in Lemmal[5.8 Then forallt ¢ R

R(tr(A41))

mt = (fi(®) = fi(0))| <k 1

Proof. We recall that for all t € R, f;(t) := h (@i(eNi,t)). Letn e N;, r > 0,t € R, and let us denote
U c N; such that D, (n,0) = (U,0). Then we have

o (U, 0) = 2R3 (U ) (116)
However ®;(U,0) = (V;(U), £:(0)) and (U, t) = (T;(U), f:(t)), therefore
M?E(O) (Nl((i)z(U’O))) = :ui.l{(o) (Nl(\l’l(U)afz(O)))
- 629‘*(tr(A;))<fi<t)—fi(0>)MJSCZ(t) (M(W5(0), £i()))
= e2m(tr(A;))<fi<t)—fi(0>)MJ§Z(t) (M(D:(U,1))) (117)
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Furthermore by Lemma[5.7 we have

1 (U,0) St 115 ) (N2 (84(U0)))
MfZ(Uat) ~k,c,m ’u'?f(t) (Nl((i)z(U,t)))

In combination with equalities (116) and (117), it provides us with

i r(A; r(A; S; T
15 (U,0) = AN (U, ) iy 2T ADTE (N (DU 1))
2R (tr(A)t 29%(tr (A7) (i (0)-fi (1) M?E(O) (N (@:(U,0)))
S 629“(‘31"(A¢))tem‘(tl"(Ai))(fi(o)*fi(t))ugi (U,0)

2R (tr(A;))t ko eQm(“(A;))(fi(t)’fi(O)), which, composed with the logarithm, gives

[g)

‘fﬁ(tr(fh))
R(tr(47))

Hence we have ¢
us

t=(fi(t) = fi(0)] Zk.em 1. (118)

O

Corollary 5.9. There exists ty € R such that fori € {1,2} and forall (n,t) € N; xR

ds, (Ci)i(n,t), (\IJZ(TL), %t + to)) ke 1

Proof. The proof is a direct application of Lemmas 5.6l and 5.8 by taking ¢y := f;(0). O
In this corollary ¢y depends on ®.

Proof of Theorem Using Lemma5.9on N; and N» provides us with Theorem[5.5 O

5.3 Hamenstadt distance and product maps of bilipschitz maps.

As presented in section 5.3 of [CKDNOZ21]], the parabolic visual boundary of N; x R may be identified
with the Lie group V; endowed with the following A;-homogeneous Hamenstédt distance.

Definition 5.10. (Hamenstddt distance) For any n,m € N;, we define their Hamenstddt distance as
1.
dN,',A,’,H(na m) ‘= €exp _5 sEllrnoo (28 - dNZ'NAZ.]R((n7 _8)7 (m7 —S)))

We might omit A; and V; in the notation. We denote Bilip(N ) the group of bilipschitz maps of NV
for the Hamenstadt distance.

Bilip(V;) := {¥ : (N;,di) - (Nj,dg) | 3k > 1, U is a (k, 0)-quasi-isometry } .

This is indeed a distance when the left invariant metric g is normalized so that R x 4, N; isa CAT(-1)
space.

Two quasi-isometries ® and ®’ are said to be equivalent when they are at finite distance from each
other.

P~d = supde(®(x),P'(7)) < +o00

In this section we prove the following characterisation of the quasi-isometry group of S x Sy = (V] x
Ng) XA R.
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Theorem 5.11. Let N1 x4, R and Ny x4, R be two Heintze group, let O € QI((N1 x No) x4 R) and let
Wy, Wy be as in Theorem[5.3, we have the following isomorphism.

£ QI((N1 x Np) x4 R)/~ — Bilip(N ) x Bilip(No)
P (U, Us)

This distance is related to the height divergence of vertical geodesics in the following way.

Lemma 5.12. (Extended Backward Lemma) Let n,m € N;, let V : t — (n,t) and let W : t — (m,1t),
then

dH(TL, m) ~k,c,x €XD (hDiv(V’ W))
See Corollary [L.4] for the definition of hp;, (V, W).

Proof. By the Corollary[[4]there exists a height hp;, (V, W) € R such that V and W diverge from each
other at the height hp;, (V, W). Hence there exists M (k, ¢, x) such that for all s1 < s9 < hpiy (V, W)

d(V(s2),W(s2)) - M <ds,(V(s1),W(s1)) +2|s2 — 51| < ds, (V(s2), W(s2)) + M.
Therefore
exp (ds,(V (1), W (s1)) +2|s2 = 51]) Zk.cm exp (ds, (V (s2), W (s2))) , (119)

Let us denote hg := hpiy(V, W). Then we can compute de Hamenstadt distance dg(n,m)

dg(n,m) = exp (—% sliinx (23 -dsg, (V(—S)W(—s))))

1
Zk,c,n XD (—— lim (25 - dsi(V(hO), W(ho)) - (2ho + 25))) , by inequality (I19),

s—+00

Rk, €XP (—% SEIPOO ( - dsi(V(ho), W(ho)) - 2h0))
. (dsi(V(ho), W(ho)) ho) ) exp(dsi(V(ho), W (ho))

2 2
Zkcm €Xp (ho) by definition of hp;y, (V, W).

ot

We show that the aforementioned maps ¥; are bilipschitz.

Theorem 5.13. Let ¥, be the map of Theorem[23 Then U; is a bilipschitz homeomorphism either from
9“\(tr(A/l)) R(tr(A]))
(N;,dp) to (Ni', (dg) 7 A) ) or from (Ni, (dpp ) Crtan) ) to (N/,dp).

Proof. Letn,m € N; and let V : ¢t — (n,t) and W : ¢t — (m,t) be two vertical geodesics of N; x4, R.

Let us denote by \g := %. By the Lemma[5.12 we have
1

dr(n,m) 2k cx exp (hpiy (V,W))
Since ®; := (¥, \gidg + tg) is a (K, ¢')-quasi-isometry, we have:
L. ds, ((¥;(n), Aohpiv (V. W) +t0), (¥;(m), Aohpiv (V, W) + 1)) Xjem 1

2. Vs> hDiV(‘/a W), dsi((\lfi(n),)\os + t(]), (\I’i(m),)\os + to)) Zk,c,m 1
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Furthermore, for all n € N;, ®;(V,) = Vi, (n) hence ®,(V},) is a vertical geodesics of S!. Then there
exists M (k, ¢, ) such that

(Nohpiy(V, W) +t0) = M < hpiy (2;(V), 2:(W)) < (Aohpiy (V, W) + o) + M.
Consequently Lemma [5.12 provides us with

di (Ui(n), ¥i(m)) 2k cm exp (hpiv (Vi (n), Wy (my)) = exp (hpiv (2:(V), :(W)))
Xk,em €xp(to) exp (Aohpiv (V, W))
Zk.em €xp(to) (dir(n,m))*, by Lemma512

Where ¢, depends only on ®. Furthermore, if Ao < 1, (dg)*? is still a distance by concavity. Hence,
depending on the value of A, either ¥; : (N;,dp) — (N}, (dg)™) or U, : (Ny, (dpr)™) — (N/, dm)
is a bilipschitz map. O

We now focuses on self quasi-isometries of (N1 x No) x4 R.

Proof of Theorem 511k Let Wy, W5 be as in Theorem[5.5] and let f be the application

£ QI((Ny x Na) x4 R)/~ — Bilip(Ny ) x Bilip(V2)
P (U, Ty)

We first show that this application is well defined. Let @, ®’ € QI((N1 x No) x4 R) be such that & ~ &',
which means that d, (®, ') <j . 1.
By Theorems[5.5 and [5.13] there exist U;, ¥} € Bilip(JV;) such that:

L d(®, (¥, Vs,idR)) <pem 1
2. f(®) = (¥1,72)
3. d(®, (U], Uh,idR)) <pem 1
4. f(27) = (¥}, 15)
By the definition of ¥; and ¥} , for all n € N we have
Wi(n) =P (V,(0))
Vi(n) =P (V,(0))

Where V,) the unique vertical geodesic close to @Z(Vn) and V" the unique vertical geodesic close to
!(V,,). However ® ~ @', then ®;(V},) and ®(V;,) are M-close to each other for some M (k, ¢, ),

therefore dug(V,,,V,)') <k.cw 1. However these vertical geodesics are unique, then V,; = V,’. Conse-

quently, ¥;(n) = Wi(n), hence ¥; = U}, therefore f is well defined.

Let us now prove that f is injective. Let ® and @' be two quasi-isometries of (N7 x N ) x 4 R such that
f(®) = f(®"). Then by Theorem[5.5]and by the triangle inequality

dy (q), (I),) < dy (q), (\Ill, \Ifg,idR)) + dy ((\Ifl, \Ifz,idR), (I),) Zk,c,u,0, 1.
Hence ® ~ &', which proves that f is injective.

Let U; € Bilip(N;,dp ), our goal is to show that (V;,idg) is a quasi-isometry of (N; x4 R, ds,). Let
(n,tn), (m,t,,) € S;. By Lemma[.12lapplied on 7 and m, there exists a constant M (k, ¢, ») such that

In (dgr(n,m)) = M < hpiy (Va, Vin) <In(dgr(n,m)) + M. (120)
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Similarly, by Lemma .12 applied on ¥;(n) and ¥;(m)
In (dp (Wi(n), ¥i(m))) = M < hoiv (Vi (nys Vi my) < I (dir(i(n), ¥i(m))) + M. (121)

However by Theorem [513] U; € Bilip(N;,dp ) hence d(n,m) < dp(¥;(n), ¥;(m)). Therefore by
inequalities (120) and (121) we have

‘hDiv (Vn, Vm) — hpiv (V\III(n)’ V\Ih(m))‘ <1 (122)

Moreover by Lemma [L.3]we can characterise the distance between two points thanks to the height of
divergence of their associated vertical geodesics. Let us denote hg = hpiy (Vi, Vi, ). By inequality (122)
and by Lemma[L3] if hg > max(t,, t,, ) we have both:

s, (), G t00)) = (Fom = Rl + [t~ o) 25 1
s, (i), £0). (Wi (m). 1)) = (It — ol + [t~ hol)| <5 1
Consequently by the triangle inequality there exists M (J) such that
ds, ((ntn), (Mo t)) = M < dg, ((U5(n), tn), (Wi (1), tn) ) < ds, (), (M) + M

Similarly, if hy < max (¢, t,,) we have both:

s, ((n.t0). (. 110)) = (It~ ta])] 25 1
‘dSi((\pi(n)7tn)7 (Ti(m),tm)) - (|tm —tn|)| <1
Hence again
ds, ((ntn), (Mo tn)) = M < ds, ((U5(n), tn), (Wi (1), tn) ) < ds, (), (M) + M
Therefore (¥, idg) is a (1, M)-quasi-isometry of N; x R, hence (W1, U, idg) is also a (1, M )-quasi-

isometry, which provides us with (¥, ¥s,idg) = (¥1, V). Hence f is surjective, and finally bijec-
tive.

Let us now prove that f isamorphism. Let ®,®" € QI((N1xN2)x 4R). Furthermore, d,, (9, (¥}, ¥4, idg)) <
1,hence dy (P o @', ® o (¥, V), idg)) < 1since ¥ is a quasi-isometry. Moreover, dy (®, (¥, Uy,idg)) <
1, therefore by the triangle inequality

dy (@ 0 @, (U1, Vs, idg) o (U], Uh,idg)) < 1.
However
(U1, Wa,idg) o (W], Uh,idr) = (V1 0 W}, W0 Wh,idg),
which provides us with
dw (@ 0@, (V1 0 U], Uy0 W) idg)) < 1.
Consequently f(® o @) = (Uy o W), Uyo0 W). O

In this proof we showed that ® ~ (¥, U5, idR), therefore any quasi-isometry is in the equivalence
class of an (1, M )-quasi-isometry.
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5.4 Quasi-isometric classification and necessary conditions to being quasi-isometric

Thanks to Proposition [4.15] and Theorem [5.13] we are able to provide necessary conditions and quasi-
isometric classifications for families of solvable Lie groups of the form R xpj,g(4,,4,) (N1 x N»).

Let us recall two consequences implied by being quasi-isometric in the Lie group setting. For i €
{1,2}, let N;, N/ be two simply connected, nilpotent Lie groups and let A;, A} be two matrices whom
eigenvalues have positive real parts, acting by derivation on the corresponding Lie algebra. Let us
assume that R(tr(A;)) > R(tr(Az)) and R(tr(A7)) > R(tr(Ay)). R xpiag(a,,a,) (N1 x N2) and
R Xpiag(as,45) (N7 x N3) are quasi-isometric then:

R(tr(A1)) _ R(tr(47))

L R&(@)) = Rr(Ay))

(Proposition [4.19)

2. For i € {1,2}, there exists V; and N/ are bilipschitz. (Theorem[5.13)

Let us denote by
SN1,Ns = R Xpiag(a;,45) (N1 x Na).
Combining Lemma 4.1 of paper [PS17] and Theorem[5.13] we obtain the following statement.

Proposition 5.14. Let us assume that R(tr(A;)) > R(tr(Asz)) and R(tr(A})) > R(tr(A5)). If Sn, N,

and SNLN% are quasi-isometric, then we have that fori € {1,2}, A; and %flg share the same
1

characteristic polynomial.

A Carnot group N is a simply connected, nilpotent Lie group with a Lie algebra Lie(/N) which
admits a grading: there exists a family of subspaces V; with i € {1,...,7} for some r > 1 such that

Vie1 = [V1, V4] for i < r and such that
Lie(N) = @ V..
i=1

A Carnot group is equipped with a 1-parameter family of automorphisms called dilations on N and
defined for ¢ € R by d; := exp(tD), with D a Lie derivation on Lie(N) verifying that Dv = iv for
v e Viand i € {1,...,r}. Such a derivation is called a Carnot derivation. A Lie group S(Ni, N2)
is Carnot-Sol type if N1 and Ny are Carnot groups and if there respective derivations A; and Ay are
Carnot derivations. Combining Theorem[5.13]and Theorem 2 of [Pan89]], we get the following necessary
condition

Proposition 5.15. Let S(N1, N3) and S(N7, N3) be two Carnot-Sol type Lie groups and assume that
R(tr(A41)) > R(tr(Asz)) and that R(tr(A})) > R(tr(AS)). Then:

SNy,N, and Sny n; are quasi-isometric = Fori € {1,2}, N; and N} are isomorphic.

Furthermore, for a given Carnot derivation A on a Carnot group N, there exists a positive real
o > 0 such that R x4 N = S, where S, := R x,, N is the group defined by the action of R via the
dilation (dn¢)ier on N. Let N7 and N5 be two Carnot groups and for any two positive reals «, 8 > 0,
let G, 5 := Rxqo g (N1 x No) be the group defined by the action of R on N; x No,

R > Aut(N xN), tw (5at,5,5t).

Note that G, g3 = S, % Sg. Thanks to the quasi-isometry invariant of Proposition [4.15] we obtain the
quasi-isometry classification for Carnot-Sol type Lie groups.

Proposition 5.16. Let («, 3) and (o, 7) be two pairs of positive reals with o > 3 and o > T, then

a o
G p quasi-isometric to Gy < E == < Gg,p isomorphic to Gy 7
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Proof. It % = 2, then G5 and G, are isomorphic and thus in particular quasi-isometric (or even
bilipschitz) with respect to any left-invariant Riemannian metrics on the groups. Indeed, the map

GO@B - GUﬂ" (:C,y,t) = ('I’ya )‘t)
is an isomorphism. For (z;,9;,t;) € Go 5 fori € {1,2}, we have in G, »

(21,91, At1) - (22, Y2, At2) = (1 - Oprt, T2, Y1 - O—rrt, Y2, A(t1 + t2))
= (561 '5at1x2’y1 '5—&1!/2,)\(751 +t2))’

which is the image of (x1,y1,t1) - (%2, Y2, t2). Proposition 415 conclude the proof since the ratios of
traces of the respective derivations are % and Z. O

Otherwise stated, two non-unimodular Carnot-Sol type solvable Lie groups are quasi-isometric if
and only if they are isomorphic.
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A On the finitely generated groups quasiisometric to bifiliform by
cyclic groups

by GABRIEL PALLIER

In his thesis, Ferragut proves structural statement on quasiisometries between (and of) solvable Lie
groups and horospherical products, allowing some progress on their quasiisometry classification. The
goal of this appendix is to give one further application, this time towards quasiisometric rigidity, given
by combining Ferragut’s theorem[5.11land the litterature, namely the main result of Dymarz-Xie’s work
[DX16]], and the work by Xie on quasiconformal maps on filiform groups [Xie15]].

In the following Theorem, for n > 2 we let F;, denote the model filiform group of class n, and let 9,,
denote a Carnot derivation of its Lie algebra f,, (See Section[A1]for definitions). Combining Ferragut’s
theorem with the main theorem in [DX16]], we obtain the following.

Theorem A.1 (After Ferragut and Dymarz-Xie). Let n, m be positive integers such that 3 < n < m. Then,
no finitely generated group is quasiisometric to the group Gy m = (Fyy x Fi,)) x5, —5,.) R.

We call the groups G, », bifiliform by cyclic. Theorem[A.1lis one case of the first part of the con-
jectural statement [DPX22 1.2.2 (2)] and as such, a small step towards quasiisometric rigidity. If Fy
denotes the trivial group, then we can allow n = 0 as well (provided m > 3): a stronger statement ac-
tually holds [DX16, Theorem 5.8]. The full conclusion of quasiisometric rigidity, namely that a finitely
generated group quasiisometric to some G, ;,, for 3 < n < m is virtually a lattice in G, ,, is to be
expected, but seems currently out of reach; we provide a few comments on this in Section[A.2]
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A.1 Proof of Theorem[A.]] after Ferragut and Dymarz-Xie

The outline of the proof is the same as in [EFW12, Theorem 7.3] dealing with the group Sol(m,n).
We expand slightly the argument, while replacing Hinkkannen’s theorem by [DX16| Theorem 1.1] and
Eskin-Fisher-Whyte’s description of QI(Sol(m,n)) with Ferragut’s description of QI(Gy, ) when
m#n.

Letn > 2. The model filiform group Fj, is the simply connected nilpotent Lie group with Lie algebra
fn. The latter has basis (e1, ..., en+1) where [e,€;] = e;,1 for 2 < j < n. Let § be the Carnot derivation
such that de; = ey, dea = e and de; = (j — 1)e; for 3 < j < n + 1. We denote by Aff5(F},) the group of

maps F,, - F), of the form L, o exp(td) for some ¢ € R, where L, denotes the left translations by some
n(n+1)

g € F; Aff5(F,) is isomorphic to the Carnot-type Heintze group over F,. Note that tr(d) = 1+ —-5-".

For €1,€3 € {-1,1}, let h¢, ¢, be the automorphism of f,, defined by

{heLEz (el) =€1€1,

. '
heyer(€j) =€ “eze; 2<j<n+1

The h,, ., generate a Viergruppe V. We may as well consider this group as a group of automorphisms
of F,. Let us recall the following statement from [DX16| p.1132], which is not hard to check.

Lemma A.2. The sequence
1 — Affs(F,) - Sim(F,,) >V — 1.

is exact.
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Here Sim(F},) denotes the group of similarities (or metric homotheties) of the Carnot-Carathéodory
metric on F}, for which eq, es form an orthonormal basis of the horizontal distribution. The lemma
implies that this group is almost connected and that Affs(F},) is its unit component.

Let I' be a finitely generated group quasiisometric to

Gnm = (Fy x Fip) xR,

Then I' uniformly quasiacts on any model space of Gy, ,,, in particular on the horospherical product
metric in which the standard bases in f,, and f,, are orthonormal, orthonormal to each other, and to the
R direction (once a section has been fixed for the latter). Precisely, let f:I' - G, ,, be the quasiisometry,
and [ its coarse inverse; then for each v € I we have that

Ty=foLyof

is a quasiisometry of G, ,,,, where L.:I" — I is the left multiplication by ~.
Assume n # m and proceed towards a contradiction. By Ferragut’s theorem [B.11] applied to the
group Gy, , and its self-quasiisometries 77, we get a homomorphism

p:T > Bilip(F,) x Bilip(F,,)

which to 7 associates the boundary maps of 7', on the upper and lower boundaries. By Dymarz and
Xie’s theorem [DX16, Theorem 1.1], and Lemma[A2] recalled above, there is an index 16 subgroup I'/
of I and a homomorphism

p T = Affs(F,) x Aff5(F,,).

A priori, the boundary actions p and p’ are only quasisymmetrically conjugate; but in the case of filiform
groups, quasiconformal maps are bilipschitz, as shown by Xie [Xie15]. Extending the pair of bilipschitz
conjugating maps to the interior, we get a quasiisometry h of G, ,,, and the following diagram.

1‘\/

7,

I’ 7,
DN U
Gn,m - Gn,m

h

Fix a word distance d on I and let A > 1 and ¢ be such that f’ and its coarse inverse f are both (k, c)-
quasiisometries in the sense of Definition[2.1] It follows that the additive quasiisometry constant of Tﬁ'f
is at most kc + ¢ for all y € I'’, while the multiplicative constant is at most k2. The image of p’ cannot
lie anywhere in Aff5(F,,) x Aff5(F}y, ); p’ must reach a subgroup of pairs of boundary maps that extend
to quasiisometries with a uniform bound on additive quasiisometry constants. We claim that p’(T") is
contained in the subgroup

L={ge(F,xs, R)x (Fy, x5, R):3(z,y) € F, x Fp,, At e R, g = (x,t,y,-t)}

which is isomorphic to Gy, ;,, and whose action by quasiisometries on G, , is the left multiplication.
This is a consequence of the following Lemma.

Lemma A.3. Let Q be a group of self-quasiisometries of Gy, ;, with uniformly bounded multiplicative
and additive constants. Then there exists a quasi-character n : Q - R such that

Sup_ [P(@(x)) = h(x)| = n(P)| < +o0.

2€Grn,m,Pe
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Proof. To every ® in (), Ferragut associates two functions that are denoted f; and f and defined in the
proof of Lemma [5.6] When the quasiisometry constants of ® are bounded, the difference between f;
and f> is bounded, and Ferragut proves that the quasiisometry @ is at bounded distance, say K, from
a quasiisometry which moves the height by some t: this is the conclusion of Corollary[5.9] where the
quotients of the real parts of the traces of Ay and A} is 1 in our case. The latter ¢y can be defined as
f1(0) or f2(0) (which differ by a bounded amount). Now it is a consequence of the bound expressed
in Corollary 5.9 that K is bounded by some constant only depending on the quasiisometry constants
k and c of ®. So we can define n(®) := t(, where t; is as in the statement of Corollary 5.9. O

Consider the map 7 from (F,, x5, R)x (F;, x5, R) to RxR defined by 7 (z,t,y, s) = (¢,s). Applying
Lemmal[A3to Q = {7 } 1 we find that the image of m o p must lie at a finite distance from the line
{(t,~t) : t € R}. Since 7 o p is a group homomorphism, the image of 7 o p must be contained in this
line, so that p’(I") is contained in L.

We need to prove that the image of p’ is a lattice in G, ,,,, and that its kernel is finite. This is done
exactly following the lines of [EFW12]]: we have to check that the homomorphism p’ is proper (which
implies that the kernel is finite and the image is discrete), and co-compact (which will achieve showing
that p'(T") is a lattice). To see that p’ is proper, observe that it is by definition the f’-conjugate of the
left action of I' on itself by left-translations, which is proper; and since f is a quasiisometry, the same
property follows for p’. Similarly, the left translation action of I on itself is co-compact; the same
follows for p’, since f has co-bounded image.

Finally, note that G, ;,, is unimodular (and hence, can contain a lattice) if and only if n = m. Since
we proved that p’(T') is such a lattice, we conclude that n # m was not possible.

A.2 Final comments

Theorem is a quasiisometric rigidity statement expressed in a negative form. We would like to
emphasize that obtaining the traditional form of quasiisometric rigidity for the class of groups S (com-
pletely solvable, and not Gromov-hyperbolic) encompassing Sol(m,n) and G, ,,, may be described as
a two-step process, whose completion need not be chronological:

1. First, show that the non-unimodular groups in S are not quasiisometric to any finitely generated
groups. This is what was done in [EFW12]], and the present appendix.

2. Then, show that any finitely generated group quasiisometric to a unimodular group in S, is
virtually a lattice there. Note that even the latter do not always have lattices (in general this can be
determined using Auslander’s criterion [Aus73| II1.6]). In the case of Sol this step is significantly
harder (compare [EFW13] to [EFW12]).

A similar two-step process occurs, though with a slightly different mechanism, when obtaining
quasiisometric rigidity for Gromov-hyperbolic completely solvable groups. There, what is expected can
be stated as follows: any finitely generated group quasiisometric to a negatively curved, isometrically
homogeneous Riemannian manifold X, should be virtually a uniform lattice in a rank one Lie group, of
which X is the associated symmetric space. The analogue of the second step was achieved in the 1980s
and early 1990s by contributions of Tukia, Pansu, Gabai, Casson-Jungres and Chow. The first step is
not complete as of now; it is usually reached through the pointed sphere conjecture, explicitely stated
by Cornulier [Cor18]], and has been an active stream of research in the last decade, led by Xie (of which
[Xie15] is a sample result), with an important contribution by Carrasco Piaggio [CP17] essentially
showing that X as above should belong to the class of Carnot-type homogeneous spaces of negative
curvature.

Finally, one may hope for quasiisometric rigidity statements in which the mystery group I is as-
sumed locally compact rather than finitely generated. In the negative curvature case, Cornulier proved
that the classical work of the authors cited above, plus [KL09], yield the desired description of com-
pactly generated locally compact groups quasiisometric to symmetric spaces [Cor18]]. Beyond symmet-
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ric spaces, the Dymarz-Xie theorem [DX16| Theorem 5.8] is currently a rare example of a QI rigidity
statement allowing this generality.
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