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Abstract

We prove that quasi-isometries of horospherical products of hyperbolic spaces are geometrically

rigid in the sense that they are uniformly close to product maps, this is a generalization of the result

obtained by Eskin, Fisher and Whyte in [EFW12]. Our work covers the case of solvable Lie groups

of the form R ⋉ (N1 ×N2), where N1 and N2 are nilpotent Lie groups, and where the action on

R contracts the metric on N1 while extending it on N2. We obtain new quasi-isometric invariants

and classifications for these spaces.
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Introduction

Let (X,dX) and (Y,dY ) be two Gromov hyperbolic spaces. Their horospherical product, denoted

byX ⋈ Y is constructed by combiningX and Y , and lies in the direct productX × Y . It has no longer

negative curvature, however its geometry is still very rigid (see Section 1.2 for the definition). This way

of combining two hyperbolic spaces appeared to unify the construction ofmetric spaces such as Diestel-

Leader graphs, treebolic spaces and Sol geometries, which are the horospherical products constructed

out of a regular infinite tree or the hyperbolic plane H2.

Quasi-isometric classification and existing rigidity results

In [Gro93], a mainstay of geometric group theory, Gromov points out the importance of quasi-isometric

invariants in groups. The quasi-isometric classification of groups, or metric spaces, has since been a

wide and prolific research domain (see [Kap14] for a nice survey on this topic). For the family of solvable

groups, there is still a lot of open cases.

The first result was obtained in [FM98] where Farb and Mosher provided a quasi-isometric clas-

sification of solvable Baumslag-Solitar groups BS(1, n). Then Eskin, Fisher and Whyte obtained the

quasi-isometric classification of lamplighter groups and Sol geometries in [EFW12] and [EFW13]. In

both the works [FM98] and [EFW12], the horospherical product construction of their respective groups

is crucial in their proofs.

The paper [EFW12] also permitted to answer a question ask by Woess in [SW90] about the exis-

tence of vertex-transitive graphs not quasi-isometric to any Cayley graph. Eskin, Fisher and Whyte

showed that whenm and n are coprime integers, the Diestel-Leader graphs Tm ⋈ Tn are such graphs.

Throughout [Pen11I], [Pen11II] and [Dym09], using similar methods as in [EFW12] and [EFW13], Peng

and Dymarz generalized the description of the quasi-isometries for Lie groups of the form R ⋉Rp. In

[Pen11I] and [Pen11II], Peng proved that a subgroup of finite index of the quasi-isometry group of Lie

groups of the form R
m ⋉Rn is a product of groups of bilipschitz maps.

Statement of results

The main goal of our work is to generalize the methods and techniques developed by Eskin, Fisher and

Whyte to a wider set of horospherical products X ⋈ Y . In order to do that, the spaces X and Y are

endowed with appropriate measures (see Definition 3.1). Once endowed with suitable measures,X and

Y are called horopointed admissible spaces.

To be more precise letX (respectivelyX ′, Y , Y ′) be a horopointed admissible space with exponential

growth parameterm (respectively m′, n, n′). When X is a regular tree, the parameterm is related to

the degree ofX . WhenX is a negatively curved Lie group R⋉AN , the parameterm isR(tr(A)), the
real part of the trace of A.
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Let Φ ∶ X ⋈ Y → X ′ ⋈ Y ′ be a quasi-isometry. The map Φ is called a product map if and only if

there exist two maps ΦX and ΦY such that for all (x, y) ∈ X ⋈ Y we have either:

Φ(x, y) = (ΦX(x),ΦY (y)) or Φ(x, y) = (ΦY (y),ΦX(x)) .

Our main theorem states that, when m > n and m′ > n′, any quasi-isometry Φ ∶ X ⋈ Y → X ′ ⋈ Y ′ is
close to a product map.

Theorem A (Geometric rigidity).

Let X , X ′, Y and Y ′ be horo-pointed admissible measured metric spaces with m > n and m′ > n′ and

let Φ ∶ X ⋈ Y → X ′ ⋈ Y ′ be a quasi-isometry. Then there exist two quasi-isometries ΦX ∶ X → X ′ and

ΦY ∶ Y → Y ′ such that:

d⋈ (Φ, (ΦX ,ΦY )) < +∞.

This is a generalization of Theorems 2.1 and 2.3 of [EFW12]. While completing the proof of this

result, we obtained a first quasi-isometry invariant in horospherical products.

Theorem B. When m > n, the parameter m
n
is a quasi-isometry invariant.

Let R ⋉A1
N1 and R⋉A2

N2 be two simply connected, negatively curved, solvable Lie groups (also

called Heintze groups). In Chapter 5 we show that this couple of Heintze groups is admissible, and that

the conditionm > n is equivalent toR(tr(A1)) >R(tr(A2)). We obtain a necessary condition for the

existence of a quasi-isometry on solvable Lie groups. The horospherical product of these two Heintze

groups is isomorphic to

G ∶= R ⋉Diag(A1,−A2) (N1 ×N2),

defined by the diagonal action of R, t ↦ (exp(tA1), exp(−tA2)) on N1 ×N2.

We say thatG is Carnot-Sol type ifN1 andN2 are Carnot groups and if A1 and A2 are multiples of

Carnot derivations of N1 and N2 respectively. In the literature (see [Pan89] for example), Carnot type

stands for Lie groups withN2 = {1}. Here we extend the denominations to non-hyperbolic Lie groups.

Using the previous quasi-isometry invariants we obtain the following quasi-isometry classification.

Theorem C. Let G = R ⋉Diag(A1,−A2) (N1 ×N2) and G′ = R ⋉Diag(A′
1
,−A′

2
) (N ′1 ×N

′
2) be Carnot-Sol

type, non-unimodular Lie groups, then

G and G′ are quasi-isometric ⇔ G and G′ are isomorphic. (1)

The case whereN2 = {1} is treated in Corollary 12.4 of [Pan89].

Recall that a group G is calledmetabelian if [G,G] is abelian (when bothN1 and N2 are euclidean

spaces). In this case, a similar quasi-isometry classification is deduced from the work of Peng [Pen11I]

and [Pen11II]. Both the quasi-isometry classification for the metabelian groups and for Carnot-Sol type

groups are special cases of the conjecture 19.113 of [Cor18] that we recall.

Conjecture 0.1. Let S and S′ be completely solvable Lie groups. Then S and S′ are quasi-isometric if

and only if they are isomorphic.

Classifying completely solvable Lie groups up to quasi-isometry would yield the quasi-isometry

classification of all connected Lie groups, see [Cor12].

For i ∈ {1,2}, let Ni and N ′i be two simply connected, nilpotent groups and let Ai ∈ Lie(Ni) and
A′i ∈ Lie(N ′i ) be derivations. LetG ∶= R⋉Diag(A1,−A2) (N1 ×N2) andG′ ∶= R⋉Diag(A′

1
,−A′

2
) (N ′1 ×N ′2).

In this general setting of horospherical products of Heintze groups we have the following necessary

conditions for being quasi-isometric.

Proposition D. Let us assume that R(tr(A1)) > R(tr(A2)) and R(tr(A′1)) > R(tr(A′2)). If G and

G′ are quasi-isometric, then we have that for i ∈ {1,2}
3



1. Ni and N
′
i are bilipschitz;

2. Ai and
R(tr(A1))
R(tr(A′

1
))A

′
i share the same characteristic polynomial.

With the same setting, using the geometric rigidity on self quasi-isometries of this family of solvable

Lie groups, we provide a characterisation of their quasi-isometry group.

Recall that for F a metric space, QI(F )/∼ is the group of self quasi-isometries of F , up to finite

distance. (This equivalence relation is required since a quasi-isometry only has a coarse inverse.) Recall

also that Bilip(F ) stands for the group of self bi-Lipschitz maps of F . Then we have:

Theorem E. If R(tr(A1)) ≠R(tr(A2)):
QI (R ⋉Diag(A1,−A2) (N1 ×N2)) /∼ = Bilip (N1) ×Bilip (N2) (2)

Where we choose the horospherical product metric on R⋉Diag(A1,−A2) (N1 ×N2). In the course of

this proof we also obtain that any self quasi-isometry ofR⋉Diag(A1,−A2) (N1×N2) is a rough isometry.

Le Donne, Pallier and Xie proved in [DPX22] that when you change the left-invariant Riemannian

metric of one of these solvable Lie groups, the identity map is a rough similarity. Hence self quasi-

isometries are rough isometries with respect to any left-invariant distances.

Let Fn and Fm be two filiform groups of class respectively n andm. Let δn and δm denote a Carnot

derivation of their respective Lie algebra (See Section A.1 for definitions). Using Theorem E and closely

related results of Section 5, Pallier proves in the appendix an analogue of Theorem 1.2 of [EFW12].

Theorem F (See the appendix). Let n,m be positive integers such that 3 ⩽ n < m. Then, no finitely

generated group is quasiisometric to the group Gn,m = (Fn ×Fm) ⋊(δn,−δm) R.
Outline of the proof

Let X and Y be two Gromov hyperbolic spaces, and let βX ∶ X → R and βY ∶ Y → R be two Buse-

mann functions. We call height functions hX and hY the opposite of the Busemann functions. The

horospherical product ofX and Y , denoted byX ⋈Y , is defined as the set of points inX ×Y such that

the two Busemann functions (or the height functions) add up to zero.

X ⋈ Y ∶= {(x, y) ∈ X × Y / βX(x) + βY (y) = 0}.
To a Busemann function is associated a unique point on the boundary, we call vertical any geodesic ray

in the equivalence class of that point on the boundary.

In order to generalize the proof of Eskin, Fisher and Whyte developed in [EFW12] and [EFW13], the

horospherical products have to be equipped with appropriate measures presented in Definition 3.1.

Briefly speaking, for the measured space (X,µX), the measure µX must verify three assumptions.

Assumption (E1) allows us to disintegrate µX on its horospheres, assumption (E2) provides us with
a bounded geometry on horospheres and (E3) ensures an exponential contraction (of exponentm) of

the horospheres’ measures in the upward vertical direction.

Let X (respectively X ′, Y , Y ′) be a horopointed admissible space with exponential growth param-

eterm (respectivelym′, n, n′).

Most of this paper focuses on proving Theorem A. To do so we will use three major tools:

● The coarse vertical quadrilaterals, which are realised by four points (the vertices) whose neigh-

bourhoods are linked by vertical geodesics (the edges). In Lemma 2.11, we show that in coarse

vertical quadrilaterals are rigid: two of the four points almost share the same X-coordinate and

the two other almost share the same Y -coordinate.
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● Box Tilings of different scales for X ⋈ Y , suitable for the vertical flow. The boxes correspond to

euclidean rectangular cuboid in the Sol geometry.

● The coarse differentiation: given a quasi-isometry Φ ∶ X ⋈ Y → X ′ ⋈ Y ′, there exists a suitable
scale R for the box tilling of X ⋈ Y . Suitable here means that the image by Φ of most vertical

geodesic segments of length R are close to a vertical geodesic segment.

With these tools, the proof can be summarized as follows. Let Φ ∶ X ⋈ Y → X ′ ⋈ Y ′ be a quasi-

isometry.

Step 1 By the coarse differentiation, there exists a scale R such that in the box tilling at scale R of

X ⋈Y , the quasi-isometry Φmostly preserve the vertical direction on most of the boxes at scale

R. It means that on most of the boxes, most vertical geodesic segments are sent close to a vertical

geodesic segment by Φ.

Step 2 Then in most of the boxes at scaleR, most of the vertical quadrilateral are sent close to vertical

quadrilateral by Φ. Therefore, by the rigidity property of these configurations, on most of the

boxes B the quasi-isometry Φ is close to as product map Φ̂∣B = (Φ̂X , Φ̂Y ) or (Φ̂Y , Φ̂X).
Step 3 Ifm > n andm′ > n′ then all product maps have the form Φ̂B = (ΦX ,ΦY ). Therefore by gluing

them together, we show that there exists L >> R such that on all boxes at scale L, Φ is close to

a product map Φ̂ = (ΦX ,ΦY ).
Step 4 We show that Φ quasi-respect the height, then we use this last result on Φ−1 to show that Φ

send all vertical geodesics close to vertical geodesics. Therefore all vertical quadrilateral config-

urations are preserved by Φ, hence Φ itself is close to a product map on allX ⋈ Y .

A major technical issue in this proof is to manage the notion of "almost all" vertical geodesic seg-

ments having a certain property. The disintegrable measure µ of assumption (E1) is not suited for this
role since it concentrates the measure of a box on its bottom part. Therefore we introduce another dis-

integrable measure λ, constructed from µ, which (almost) equally weights the level-sets of the height

function h in boxes.

Such a measure λX on X , together with a similar measure λY on Y , allows us to define a suitable

measure (later denoted by η) on the family of vertical geodesics contained in a box B ⊂X ⋈ Y .

The geometric rigidity has useful consequences when we understand the boundaries of X and Y . In

this case, Theorem A leads to a description of the quasi-isometry-group of X ⋈ Y . In the last section

of this paper, we detail such a description for the horospherical product of two Heintze groups.

Organization of the paper

This work, about the geometric rigidity of quasi-isometries between two horospherical products, is

organized as followed.

● In Section 2 we display the coarse differentiation in our context, and we discuss particular quadri-

lateral configurations of X ⋈ Y .

● Section 3 focuses on developing all the measure theoretical tools required to achieve the rigidity

results.

● Then, in Section 4, we follow the structure of the proof proposed by Eskin, Fisher and Whyte in

[EFW12], invoking technical tools of previous chapters when required.

● In the last section we present an application of our theorem by providing new quasi-isometric

classifications for some families of solvable Lie groups. We also provide a description of the

quasi-isometry group of a wider family of solvable Lie groups.
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● In the appendix, Pallier proves that a family of solvable Lie groups are not quasi-isometric to any

finitely generated groups.
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1 Context

1.1 Gromov hyperbolic, Busemann spaces

Let δ > 0, and let (X,dX) and (Y,dY ) be two δ-hyperbolic spaces (See [GH90] or chap.III H. p.399

of [BH99] for more details on Gromov hyperbolic spaces). We present here the context in which we

will construct our horospherical product. We require that X and Y are both proper, geodesically

complete, Busemann spaces.

• A metric space is called proper if all closed metric balls are compact.

• A geodesic line, respectively ray, segment, of X is the isometric image of a Euclidean line,

respectively half Euclidean line, interval, inX . We denote by [x1, x2] a geodesic segment linking

x1 ∈X to x2 ∈X .

• A metric spaceX is called geodesically complete if all geodesics are infinitely extendable.

• Ametric space is calledBusemann if the distance between any couple of geodesic parametrizedby

arclength is a convex function. (See Chap.8 and Chap.12 of [Pap04] for more details on Busemann

spaces.)

An important property of Gromov hyperbolic spaces is that they admit a nice compactification thanks

to their Gromov boundary. We call two geodesic rays of X equivalent if their images are at finite

Hausdorff distance. Let w ∈ H be a base point. We define ∂wX , the Gromov boundary of X , as the

set of families of equivalent rays starting from w. The boundary ∂wX does not depend on the base

point w, hence we will simply denote it by ∂X . Both ∂X andX ∪ ∂X , are compact endowed with the

Hausdorff topology. In this context, both the visual boundary and the Gromov boundary coincide.

Let us fix a point a ∈ ∂X on the boundary. We call vertical geodesic ray, respectively vertical

geodesic line, any geodesic ray in the equivalence class a, respectively with one of its rays in a. The

study of these specific geodesic rays is central in this work.

The Busemann assumption removes some technical difficulties in a significant number of proofs in this

work. If X is a Busemann space in addition to being Gromov hyperbolic, for all x ∈ X there exists

a unique vertical geodesic ray, denoted by Vx, starting at X . In fact the distance between two verti-

cal geodesics starting at x is a convex and bounded function, hence decreasing and therefore constant

equal to 0.

The construction of the horospherical product of two Gromov hyperbolic space X and Y requires the

so called Busemann functions. Their definition is simplified by the Busemann assumption. Let us

consider ∂X , the Gromov boundary of X (which, in this setting, is the same as the visual boundary).

Both the boundary ∂X andX ∪∂X , endowed with the natural Hausdorff topology, are compact. Then,

given a ∈ ∂X a point on the boundary, and w ∈ X a base point, we define a Busemann function β(a,w)
with respect to a and w. Let Vw be the unique vertical geodesic ray starting from w.

∀ x ∈ X, β(a,w)(x) ∶= lim sup
t→+∞

(d(x,Vw(t)) − t) .

In all our results,X and Y will be proper, geodesically complete, Gromov hyperbolic, Busemann spaces,

with some additional assumption from time to time.

1.2 Horospherical products

Let aX ∈ ∂X,aY ∈ ∂Y be points on the boundaries and let wX ∈ X,wY ∈ Y be base points. Let

us denote by hX ∶= −β(aX ,wX) and hY ∶= −β(aY ,wY ) the two corresponding height functions. The

horospherical product of X and Y , relatively to (aX ,wX) and (aY ,wY ) , denoted by X ⋈ Y is

defined by:

X ⋈ Y ∶= {(x, y) ∈X × Y ∣ hX(x) + hY (y) = 0}
7
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Figure 1: Horospherical productX ⋈ Y .

The setX ⋈Y , can be seen as a diagonal inX ×Y . It is constructed by gluingX with an upside down

copy of Y along their respective horospheres. This construction, illustrated in Figure 1, can also be

seen as the union of the direct products between opposite horospheres in X and Y

X ⋈ Y = ⊔
z∈R

Xz × Y−z.

From now on, with a slight abuse, we omit the reference to the base points and points on the

boundaries in the construction of the horospherical product.

To study the geometry of a horospherical product X ⋈ Y , we make additional assumptions on X

and Y . We require them to be Gromov hyperbolic, Busemann, geodesically complete and proper metric

spaces.

1. X is geodesically complete if and only if all geodesic segments ofX can be extended into a geodesic

bi-infinite line.

2. X is proper if and only if all closed metric balls of X are compact.

IfX and Y satisfy these two additional conditions, the horospherical productX ⋈ Y is connected (see

Property 3.11 of [Fer20]).

Example 1.1. Let X be a Gromov hyperbolic, Busemann, geodesically complete and proper metric space.

Then X ⋈R is isometric toX . In particular, if V Y is a vertical geodesic line of Y ,X ⋈ V Y is an isometric

embedding ofX in X ⋈ Y .

The three (non-trivial) first examples of horospherical products appeared independently in the lit-

erature. They correspond to the case whereX and Y are either a regular infinite tree Tm of degreem

or the hyperbolic plane H2.

1. Tm ⋈ Tn is the Diestel-Leader graph DL(m,n). When m = n, this horospherical product is a

Cayley graph of the lamplighter group Z ≀Zm. See Figure 2 for a subset of T3 ⋈ T3.

2. H2,m ⋈ H2,n is the Lie group R ⋉(m,n) R
2 = Sol(m,n), one of the eight Thurston geometries.

By H
2,m we mean the manifold R

2 endowed with the infinitesimal Riemannian metric ds2 =
e−2mzdx2 + dz2. The action associated to the aforementioned semi-direct product is described

by (z, (x, y)) ↦ (emzx, e−nzy).

8



Figure 2: Small neighbourhood in T3 ⋈ T3.

3. Tm ⋈H2 is a Cayley 2-complex of the Baumslag-Solitar group BS(1,m).
The awareness of them being identically constructed from Gromov hyperbolic spaces came later, a

survey on these three examples is provided by Wolfgang Woess in [Woe13].

An other approach, is to consider the hyperbolic plane H2,m as the affine Lie group R ⋉m R with

action by multiplication (z,x) ↦ emzx, and the Sol geometry Sol(m,n) as the Lie group R ⋉(m,n) R
2.

In this context we have that (R ⋉m R) ⋈ (R ⋉n R) = R ⋉(m,n) R
2. The natural next step, is to consider

which Lie group can be taken as a component in a horospherical product.

A Heintze group is a Lie group of the form R ⋉A N with N a nilpotent Lie group, and where all

eigenvalues of A have positive real part. Heintze proved in [Hei74] that any simply connected, nega-

tively curved solvable Lie group is isomorphic to a Heintze group.

Moreover, a Busemann metric space is simply connected, hence any Gromov hyperbolic, Busemann

Lie group is isomorphic to a Heintze group. Consequently, Heintze groups are natural candidates for

the two components from which a horospherical product is constructed. Let R ⋉A1
N1 and R ⋉A2

N2

be two Heintze groups, we have

(R ⋉A1
N1) ⋈ (R ⋉A1

N1) = R ⋉Diag(A1,−A2) (N1 ×N2),
where Diag(A1,−A2) is the block diagonal matrix containing A1 and −A2 on its diagonal.

In his paper [Xie14], Xie classifies the subfamily of all negatively curved Lie groups R ⋉ R
n up to

quasi-isometry. In Chapter 5, we provide a description of the quasi-isometry group of the horospheri-

cal product of two Heintze groups, namely the solvable Lie groups R ⋉Diag(A1,−A2) (N1 ×N2).
1.3 Settings

In this chapter we recall some material about horospherical products.

In order to lighten the notations, we will not fully describe the multiplicative and additive constants

involved in inequalities. We will use the following notations instead.

Notation 1.2. Let A,B ∈ R and e a parameter (set, real numbers, ...). Let us denote:

1. A ⪯e B if and only if there exists a constant M(e) depending only on e such that A ≤M(e)B
2. A ≍e B if and only if B ⪯e A ⪯e B

If the constantM is a specific integer such as 2, we will simply denoteA ⪯ B, and similarlyA ⪰ B,

A ≍ B. The notation ⪯e might also appear for parameters in several results of this paper. In this context

it means that there exists a constant depending only on e such that the implied result holds.

9
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Figure 3: Figure of Lemma 1.4.

A metric space is called geodesically complete if all its geodesic segments can be extended into

geodesic lines, therefore when the space is also Gromov hyperbolic and Busemann space, with respects

to a ∈ ∂X , any point is included in a vertical geodesic line (not necessarily unique).

We recall Lemma 4.7 of [Fer20].

Lemma 1.3.

Let X be a proper, δ-hyperbolic, Busemann space. Let V1 and V2 be two vertical geodesics of H . Let

t1, t2 ∈ R and let us denote D ∶= 1
2
dr(V1(t1), V2(t2)). Then for all t ∈ [0,D]

∣dr(V1(t1 +D − t), V2(t2 +D − t)) − 2t∣ ≤ 288δ (3)

Corollary 1.4. Let V1, V2 be two vertical geodesics of X . Then there exists a height hdiv(V1, V2) ∈ R
from which V1 and V2 diverge from each other:

1. ∀t ≥ hdiv(V1, V2), d(V1(t), V2(t)) ⪯δ 1
2. ∀t ≤ hdiv(V1, V2), ∣d(V1(t), V2(t)) − 2t∣ ⪯δ 1
This corollary is illustrated in Figure 3. We also have a more quantitative version.

Lemma 1.5 (Lemma 4.3 of [Fer20]). Let H be a δ-hyperbolic and Busemann metric space, let x and

y be two elements of H such that h(x) ≤ h(y), and let α be a geodesic linking x to y. Let us denote

z = α (∆h(x, y) + 1
2
dr(x, y)), x1 ∶= Vx (h(y) + 1

2
dr(x, y)) the point of Vx at height h(y) + 1

2
dr(x, y)

and y1 ∶= Vy (h(y) + 1
2
dr(x, y)) the point of Vy at the same height h(y) + 1

2
dr(x, y). Then we have:

1. h+(α) ≥ h(y) + 1
2
dr(x, y) − 96δ

2. d (z,x1) ≤ 144δ
3. d (z, y1) ≤ 144δ
4. d (x1, y1) ≤ 288δ.
We list here some notations we will use in later sections.
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Notation 1.6. Let X be a proper, geodesically complete, δ-hyperbolic, Busemann space.

1. Let us denote the r-neighbourhood of U for all U ⊂X and for all r ≥ 0 by

Nr(U) ∶= {x ∈ X ∣ d(x,U) ≤ r} (4)

2. For all x ∈ X let us denote by Vx the unique vertical geodesic ray such that Vx(0) = x.
3. For a subset A ⊂X , let us denote

h−(A) ∶= inf
x∈A
(h(x)) ; h+(A) ∶= sup

x∈A
(h(x)). (5)

4. For a subset A ⊂X and a height z ∈ R, we denote the slice ofA at the height z byAz ∶= A∩h−1(z).
Therefore the horospheres ofX are denoted by Xz for z ∈ R.

5. Given a point p ∈ X and a radius r ∈ R+, let us denote the ball of radius r included in the horosphere
Xh(p) by Dr(p) ∶= {x ∈ X ∣ h(x) = h(p) and d(x, p) ≤ r} = B(p, r) ∩Xh(p).

6. ∀z ∈ R, ∀U ⊂Xz , ∀r > 0, the r-interior of U in Xz is defined by

Intr(U) ∶= {p ∈ U ∣ d(p, q) ≥ r, ∀q ∈ Xz ∖U}.
Vertical geodesics ofX can be understood as being normal to horospheres of X .

Definition 1.7 (Projection on horospheres).

LetX Gromov hyperbolic, Busemann, proper, geodesically complete metric space. Then for all A ⊂X and

all z ≤ h−(A)
πz(A) ∶= {x ∈Xz ∣Vx ∩A ≠ ∅} (6)

The definition of this projection along the vertical flow is illustrated in Figure 4. The following

Lemma shows that the projection of a disk on a horosphere is almost a disk, It will be used in further

Sections.

Lemma 1.8. Let X be a Gromov hyperbolic, Busemann, proper, geodesically complete metric space. Let

z0 ∈ R and p ∈ Xz0 . Then forM ≥ 288δ we have that for all z ≤ z0 and for all pz ∈ πz({p})
D2(z0−z)−M(pz) ⊂ πz(DM(p)) ⊂D2(z0−z)+M(pz).

11
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Figure 5: Proof of Lemma 1.8

Proof. This Lemma is a corollary of Lemma 1.3 and is illustrated in Figure 5. Let M = 288δ be the

constant involved in Lemma 1.3.

Let us prove the first inclusion. Let x ∈ D2(z0−z)−M(pz), then d(x, pz) ≤ 2(z0 − z) −M . Let us denote

Vx a vertical geodesic containing x and Vp a vertical geodesic containing p and pz . We apply Lemma

1.3 with t1 = t2 = z, V1 = Vx and V2 = Vp, then D = d(x,pz)
2

. Moreover

z +D = z + d(x, pz)
2

≤ z + (z0 − z) − M

2
≤ z0.

Therefore, by the Busemann convexity ofX , the distance between vertical geodesic ray is convex and

bounded, hence decreasing. Therefore

d(Vx(z0), p) = d(Vx(z0), Vp(z0)) ≤ d(Vx(z +D), Vp(z +D))
≤M , by Lemma 1.3 used with t = 0,

which means that x ∈ πz(DM (p)).
Let us now prove the second inclusion, which is

πz(DM (p)) ⊂D2(z0−z)+M(pz). (7)

Let x ∈ πz(DM (p)), then d(Vx(z0), Vp(z0)) ≤M . Therefore by the triangle inequality

d(x, pz) = d(Vx(z), Vp(z)) ≤ d(Vx(z), Vx(z0)) + d(Vx(z0), Vp(z0)) + d(Vp(z0), Vp(z))
≤ (z0 − z) +M + (z0 − z) = 2(z0 − z) +M

Hence x ∈ D2(z0−z)+M (pz).
Notations 1.6 can be extended to horospherical products.

Notation 1.9. Let X and Y be two proper, hyperbolic, geodesically complete, Busemann spaces. Then:

12



1. We denote the r-neighbourhood of U , for all U ⊂X ⋈ Y and for all r ≥ 0, by
Nr(U) ∶= {p ∈X ⋈ Y ∣ d⋈(p,U) ≤ r}. (8)

2. The difference of height between two points a, b ∈ X⋈Y is still denoted by∆h(a, b) ∶= ∣h(a)−h(b)∣.
3. We still denote, for all z ∈ R and A ⊂X ⋈ Y , by Az ∶= A ∩ h−1(z) the "slice" of A at the height z.

4. We still denote, for all r ≥ 0 and p ∈X ⋈ Y , by

Dr(p) ∶= {x ∈ X ∣ h(p) = h(x) and d⋈(p,x) ≤ r} = B(p, r) ∩ (X ⋈ Y )h(p)
the ball of radius r in the height level set containing p.

We recall other useful results of [Fer20] we will use later. First the fact that the height function is

Lipschitz.

Lemma 1.10 (Lemma 3.6 of [Fer20]). Let N be an admissible norm, and let d⋈ the distance on X ⋈ Y
induced by N . Then the height function is 1-Lipschitz with respect to the distance d⋈, i.e.,

∀p, q ∈X ⋈ Y, d⋈(p, q) ≥∆h(p, q). (9)

Here is a description of the distance in Horospherical products

Theorem 1.11 (Corollary 4.13 of [Fer20]). For all p, q ∈ X ⋈ Y
∣d⋈(p, q) (dX (pX , qX) + dX (pX , qX) −∆h(p, q))∣ ⪯⋈ 1

Here is one central result of [BH99], let us denote by l(c) the length of a path c.

Proposition 1.12 (Proposition 1.6 p400 of [BH99]). Let X be a δ-hyperbolic geodesic space. Let c be a

continuous path in X. If [p, q] is a geodesic segment connecting the endpoints of c, then for every x ∈ [p, q]:
d(x, im(c)) ≤ δ∣ log2 l(c)∣ + 1.

We also provide two more definitions that will be used in future sections. First a projection on

level-sets of the height function.

Definition 1.13. Let z0, z ∈ R and let U ⊂ (X ⋈ Y )z0 . Then we define the projection of U on (X ⋈ Y )z
by

π⋈z (U) ∶= {p ∈ (X ⋈ Y )z ∣ ∃V a vertical geodesic such that p ∈ V and V ∩U ≠ ∅}
Then we defineX-horospheres and Y -horospheres as horospheres of hyperbolic spaces embedded

inX ⋈ Y , illustrated in Figure 6.

Definition 1.14. The set H ⊂X ⋈ Y is called

1. an X-horosphere if there exists y ∈ Y such that H =X ⋈ {y} =X−h(y) × {y}
2. a Y -horosphere if there exists x ∈ X such that H = {x} ⋈ Y = {x} × Y−h(x)
From now on, we will work in a horospherical productX ⋈Y of two proper, geodesically complete,

δ-hyperbolic and Busemann spaces.
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Figure 6: X-Horosphere in X ⋈ Y .

2 Metric aspects and metric tools in horospherical products

Through out this section we fix two constants k ≥ 1 and c ≥ 0. We recall the notions of quasi-isometry

and quasi-geodesic.

Definition 2.1. ((k, c)-quasi-isometry)

Let (E,dE) and (F,dF ) be two metric spaces. A map Φ ∶ E → F is called a (k, c)-quasi-isometry if and

only if:

1. For all x,x′ ∈ E, k−1dE(x,x′) − c ≤ dF (Φ(x),Φ(x′)) ≤ kdE(x,x′) + c.
2. For all y ∈ F , there exists x ∈ E such that d(Φ(x), y) ≤ c.

A map verifying 1. is called a quasi-isometric embedding of E.

Definition 2.2. ((k, c)-quasigeodesic)
Let E be a metric space. A (k, c)-quasigeodesic segment, respectively ray, line, of E is a (k, c)-quasi-
isometric embedding of a segment, respectively [0;+∞), R, into E.

In Lemma 2.1 of [GS19], Gouëzel and Shchur prove that any (k, c)-quasigeodesic segment is in-

cluded in the 2c-neighbourhood of a continuous (k,4c)-quasigeodesic segment sharing the same end-

points. Therefore, without loss of generality, we may consider that all quasi-geodesic segments are

continuous.

This section gathers several geometric results on horospherical products, including the generali-

sation in our context of Lemmas 4.6, 3.1 and the coarse differentiation previously obtained by Eskin,

Fisher and Whyte in [EFW12]. Proposition 2.6, Corollary 2.7 and Proposition 2.11 of this section will

be especially useful in the following proofs.

At first, a reader who is more interested in the rigidity result on horospherical product can take

these propositions for granted and jump to the next sections.

When A ≍e B, and e = (X ⋈Y,d) is a horospherical product, we shall writeA ≍⋈ B as a short-cut,

and similarly ⪯⋈, ⪰⋈ and M(⋈) for a constant depending only on the metric horospherical product(X ⋈ Y,d⋈).
2.1 ε-monotonicity

We introduce ε-monotone quasigeodesics. They happen to be close to vertical geodesics.

Definition 2.3. (ε-monotone quasigeodesic)

Let ε ≥ 0 and let α ∶ [0,R] →X ⋈Y be a quasigeodesic segment. Then α is called ε-monotone if and only

if

∀t1, t2 ∈ [0,R], (h(α(t1)) = h(α(t2)))⇒ (∣t1 − t2∣ ≤ εR) (10)
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Figure 7: Proof of Theorem 2.4.

Since α is assumed to be continuous, a 0-monotone quasigeodesic has monotone height, h ○ α is

either nondecreasing or nonincreasing. We first show that inX ⋈Y , the projections onX and Y of an

ε-monotone quasigeodesic are also quasigeodesics.

Theorem 2.4. Let ε > 0, R > 1
ε
, and α = (αX , αY ) ∶ [0,R] → X ⋈ Y be an ε-monotone (k, c)-

quasigeodesic segment. Then there exists a constant M(⋈, k, c) (depending only on ⋈, k and c) such that

αX and αY are (4k,MεR)-quasigeodesics.
A portion of the proof of Theorem 2.4 is illustrated in figure 7.

Proof. We know that∀p1 = (pX1 , pY1 ), p2 = (pX2 , pY2 ) ∈ X⋈Y we have (this is the admissible assumption

we made on the norm underneath the distance d⋈)

d⋈(p1, p2) ≥ dX (pX1 , pX2 ) + dY (pY1 , pY2 )
2

(11)

Therefore we have that αX satisfies the upper-bound assumption of quasigeodesics

∀s1, s2 ∈ [0,R], dX (αX(s1), αX(s2)) ≤ 2d⋈(α(s1), α(s2)) ≤ 2k∣s1 − s2∣ + 2c
We want to find an appropriate c′ ≥ c such that αX satisfies the lower-bound condition of a (4k, c′)-
quasigeodesic. Let c′ ≥ c and let us assume that αX does not satisfy the lower-bound condition of a(4k, c′)-quasigeodesic, we will show that this provides us with an upper-bound on c′. Indeed, consider

s1, s2 ∈ [0,R] such that

0 ≤ dX (αX(s1), αX(s2)) ≤ 1

4k
∣s1 − s2∣ − c′ (12)

therefore by the Lipschitz property of h

∆h(αX(s1), αX(s2)) ≤ dX (αX(s1), αX(s2)) ≤ 1

4k
∣s1 − s2∣ − c′.

≤
1

4
d⋈(α(s1), α(s2)) + c

4
− c′, since α is a (k, c)- quasigeodesic. (13)
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Theorem 1.11 gives us the existence a constant M(⋈) depending only on X , Y and the underlying

norm of d⋈ such that

dY (αY (s1), αY (s2)) (14)

≥d⋈(α(s1), α(s2)) − dX (αX(s1), αX(s2)) −∆h(α(s1), α(s2)) −M
≥d⋈(α(s1), α(s2)) − 2dX (αX(s1), αX(s2)) −M, by Lemma 1.10,

≥d⋈(α(s1), α(s2)) − 1

2k
∣s1 − s2∣ + 2c′ −M, by assumption (12),

≥d⋈(α(s1), α(s2)) − 1

2
d⋈(α(s1), α(s2)) − c

2k
+ 2c′ −M, since α is a (k, c)-quasigeodesic,

≥
1

2
d⋈(α(s1), α(s2)) − c

2
+ 2c′ −M, since k ≥ 1. (15)

Without loss of generality, we may assume that max (h(αY (s1)) , h(αY (s2)) ) = h(αY (s2)). Ap-
plying Lemma 1.5 on the geodesic [αY (s1), αY (s2)] of Y gives us

h+ ([αY (s1), αY (s2)]) ≥ h(αY (s2)) + 1

2
(dY (αY (s1), αY (s2)) −∆h(αY (s1), αY (s2)) ) −M(⋈)

However αY is a continuous path between αY (s1) and αY (s1), then by Proposition 1.12, there exists

s0 ∈ [s1, s2] such that

h(αY (s0)) ≥h(αY (s2)) + 1

2
(dY (αY (s1), αY (s2)) −∆h(αY (s1), αY (s2)) )

− δ log2 (dY (αY (s1), αY (s2)) ) −M(⋈)
Therefore by inequalities (13) and (15)

h(αY (s0)) ≥h(αY (s2)) + 1

4
d⋈ (α(s1), α(s2)) − 1

8
d⋈ (α(s1), α(s2)) − c

4
+ c′ −

c

8
+
1

2
c′

− δ log2 (dY (αY (s1), αY (s2)) ) − M(⋈)
2

≥h(αY (s2)) + 1

8
d⋈ (α(s1), α(s2)) − δ log2 (dY (αY (s1), αY (s2)) ) + 3

2
c′ −M(⋈, c)

However 2d⋈ ≥ dX + dY ≥ dY , hence

h(αY (s0)) ≥ h(αY (s2)) + 1

8
d⋈ (α(s1), α(s2)) − δ log2 (d⋈ (α(s1), α(s2)) ) + 3

2
c′ −M(⋈, c) (16)

Furthermore, there exists r0 ∈ R depending only on δ such that ∀r ≥ r0, 1
8
r − δ log2(r) > 1

10
r holds.

Therefore, one of the two following statements holds:

(a) d⋈ (α(s1), α(s2)) < r0
(b) 1

8
d⋈ (α(s1), α(s2)) − δ log2 (d⋈ (α(s1), α(s2))) ≥ 1

10
d⋈ (α(s1), α(s2))

We will deal with the first case (a) at the end of the proof. Let us assume that d⋈ (α(s1), α(s2)) ≥ r0
hence (b), then by inequality (16)

h(αY (s0)) ≥ h(αY (s2)) + 1

10
d⋈ (α(s1), α(s2)) + 3

2
c′ −M(⋈, c) (17)

Then either d⋈(α(s1), α(s2)) ≤ M(⋈, c) (up to multiplying by 10 the constant M ), or h(αY (s0)) ≥
h(αY (s2)). In the case d⋈(α(s1), α(s2)) ≤M(⋈, c), then ∣s1 − s2∣ ⪯k,c,⋈ 1 since α is a quasigeodesic,

and therefore c′ ⪯k,c,⋈ 1 following assumption (12), hence αX is a quasigeodesic segment. In the other
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case we have h(αY (s0)) ≥ h(αY (s2)), therefore there exists s′1 ∈ [s1, s0] such that h(αY (s′1)) =
h(αY (s2)), since α is continuous. Hence

d⋈(α(s′1), α(s2)) ≥1k ∣s′1 − s2∣ − c ≥
1

k
(∣s′1 − s0∣ + ∣s0 − s2∣) −M(c), since α is a quasigeodesic,

≥ 1

k2
(d⋈(α(s′1), α(s0)) + d⋈(α(s0), α(s2))) −M(k, c), since α is a quasigeodesic,

≥ 1

k2
(∆h(α(s′1), α(s0)) +∆h(α(s0), α(s2))) −M(k, c), by Lemma 1.10,

≥ 2

k2
∆h(α(s0), α(s2)) −M(k, c), since h(α(s′1)) = h(α(s2)),

≥ 1

5k2
d⋈ (α(s1), α(s2)) + 3

k2
c′ −M(k, c,⋈), by (17). (18)

Moreover assumption (12) implies ∣s1 − s2∣ ≥ 4kc′. Then
d⋈(α(s1), α(s2)) ≥ 1

k
∣s1 − s2∣ − c ≥ 4c′ − c

Combined with inequality (18) it gives us

d⋈(α(s′1), α(s2)) ≥ 19

5k2
c′ −M(k, c,⋈)

Since α is ε-monotone and because h(αY (s′1)) = h(αY (s2)), we have
εR ≥d⋈(α(s′1), α(s2)) ≥ 19

5k2
c′ −M(k, c,⋈)

Hence

c′ ≤M(k)εR +M(k, c,⋈)
We proved that if αX does not verify the lower bound inequality of being a (4k, c′)-quasigeodesic
then c′ ≤ M(k)εR +M(k, c,⋈). Furthermore εR ≥ 1, then there exists M(k, c,⋈) such that αX is a(4k,MεR)-quasigeodesic. Similarly we show that αY is a (4k,MεR)-quasigeodesic segment of Y .

For case (a), let us assume that each couple of times (s1, s2) ∈ [0,R]2 that contradicts the lower-bound
hypothesis of a (4k,MεR)-quasigeodesic verifies that d⋈(α(s1), α(s2)) < r0. Then α is a (4k, r0)-
quasigeodesic, with r0 depending only on δ. Therefore α is in both cases a (4k,MεR)-quasigeodesic,
withM depending only on k, c and X ⋈ Y .

In the sequel we denote by dHff the Hausdorff distance induced by d⋈. In the the proof of Lemma

2.6 we use a quantitative version of the quasigeodesic rigidity in a Gromov hyperbolic space, provided

by the main theorem of [GS19].

Theorem 2.5. ([GS19])

Consider a (k,C)-quasigeodesic segment α in a δ-hyperbolic spaceX , and γ a geodesic segment between

its endpoints. Then the Hausdorff distance dHff(α,γ) between α and γ satisfies

dHff(α,γ) ≤ 92k2(C + δ)
This quantitative version allows us to have a linear control with respect to C on the Hausdorff

distance, which is mandatory in our cases since C ≍ εR. Combining this rigidity with the fact that pro-

jections αX and αY are also ε-monotone provides us with the existence of vertical geodesic segments

close to α.
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Proposition 2.6. Let ε > 0, R > 1
ε
, and α ∶ [0,R] → X ⋈ Y be an ε-monotone (k, c)-quasigeodesic

segment. Then there exists a vertical geodesic segment V ∶ [0,R] →X ⋈ Y such that

dHff(im(α), im(V )) ⪯k,c,δ εR (19)

Figure 8 is an illustration of the proof.

Proof. By Theorem 2.4, αX is a (4k,MεR)-quasi-geodesic inX which is δ-hyperbolic, hence by The-

orem 2.5 there exists a geodesic γX with the same endpoints as αX such that

dHff(im (αX) , im (γX) ) ⪯k,c,δ εR.

Let us denote x1 ∶= αX(0) and x2 ∶= αX(R). The quasigeodesic αX is also ε-monotone. Furthermore

Proposition 2.2 page 19 of [CDP90] gives us that γX , which links x1 to x2, is included in the 24δ-

neighbourhood of two vertical geodesic rays V1 and V2 such that V1(0) = x1 and V2(0) = x2. Let us
denote τ ∶= h+ (γX), and let us recall that ∀t1, t2 ∈ R+ and for i ∈ {1,2} we have∆h (Vi(t1), Vi(t2)) =∣t1 − t2∣. Let us also denote by slight abuse γX ∶= im (γX), αX ∶= im (αX), V1 ∶= im (V1∣[0,τ−h(x1)])
and V2 ∶= im (V2∣[0,τ−h(x2)]). Since τ = h+ (γX) = h+ (V1) = h+ (V2) we have

dHff(γX , V1 ∪ V2) ⪯δ 1.
Hence by the triangle inequality

dHff(αX , V1 ∪ V2) ⪯k,c,δ εR. (20)

Without loss of generality we can assume that h(x1) ≤ h(x2). Furthermore γX is continuous, therefore

there exists a point of γX close to both vertical geodesics (less than 24δ apart). Furthermore X is

Busemann convex, hence the distance between the two vertical geodesics is decreasing. Therefore

dX(V1(τ−h(x1)), V2(τ−h(x2))) ⪯δ 1. We will use the ε-monotonicity of αX to prove that τ ≈ h(x2).
Let us denote by x′1 a point of α

X such that h(x′1) = h(x2) and such that dX(x′1,V1) ⪯k,c,δ εR. Since
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αX is ε-monotone and a (4k,MεR)-quasigeodesic we have that dX(x′1, x2) ⪯k,c εR, hence using the

triangle inequality we have

dX(V1(h(x2) − h(x1)), x2) ≤ dX(V1(h(x2) − h(x1)), x′1) + dX(x′1, x2)
⪯k,c,δ εR (21)

Let g1 ∈ im (γX) be the closest point to x1 at height h(x2). Then we have:

1. dX(g1, V1(h(x2) − h(x1))) ⪯δ 1
2. dX(g1, x2) ≥ 2(h+ (γX) − h(x2))

We recall that τ = h+ (γX), then dX(g1, x2) ≥ 2τ − 2h(x2) ≥ 0, hence
∣τ − h(x2)∣ ≤ 1

2
dX(g1, x2) ≤ 1

2
dX(g1, V1(h(x2) − h(x1))) + 1

2
dX(V1(h(x2) − h(x1)), x2)

⪯k,c,δ εR, by definition of g1 and inequality (21).
HenceV2∣[0,τ−h(x2)] is a vertical geodesic segment of length ⪯k,c,δ εR. Furthermore, dX(V1(τ−h(x1)), V2(τ−
h(x2))) ≤δ . Therefore by the triangle inequality, any point of V2∣[0,τ−h(x2)] is (up to a multiplicative

constant) εR-close to V1(τ − h(x1)). Therefore dHff(V1 ∪ V2, V1) ⪯k,c,δ εR. Therefore, by the triangle

inequality we can improve inequality (20) as follows

dHff(αX , V1) ≤ dHff(αX , V1 ∪ V2) + dHff(V1 ∪ V2, V1)
⪯k,c,δ εR, by inequality (20).

We deduce similarly that αY is included the MεR-neighbourhood of a vertical geodesic segment V ′2 .

Therefore, α is included in theMεR-neighbourhood of the vertical geodesic segment (V1, V
′
2).

As a corollary, we show that the height function along an ε-monotone quasigeodesic is a quasi-

isometry embedding of a segment into R.

Corollary 2.7. Let α ∶ [0,R] ↦X ⋈Y be an ε-monotone (k, c)-quasigeodesic segment. Then there exists

a constant M(k, c, δ) such that the height function verifies ∀t1, t2 ∈ [0,R]
1

k
∣t1 − t2∣ −MεR ≤∆h(α(t1), α(t2)) ≤ k∣t1 − t2∣ +MεR (22)

Proof. Let t1, t2 ∈ [0,R]. The quasigeodesic upper-bound inequality is straightforward since h is 1-

Lipschitz and α is a (k, c)-quasigeodesic.
∆h(α(t1), α(t2)) ≤ d⋈(α(t1), α(t2)) ≤ k∣t1 − t2∣ + c.

To achieve the lower-bound inequality we use Proposition 2.6, hence there exists a vertical geodesic

segment V ∶ [0,R] → X ⋈ Y and a constant M(k, c, δ) such that

dHff(im(α), im(V )) ≤MεR. (23)

For i ∈ {1,2}, let si ∈ [0,R] be such that d⋈(α(ti), V (si)) ≤MεR. Then by the triangle inequality

∆h(α(t1), α(t2)) ≥∆h(V (s1), V (s2)) − 2MεR

= ∣s1 − s2∣ − 2MεR, since V is vertical.
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8k

h

Figure 9: Subdivision of a quasi-geodesic.

However we can achieve the lower-bound inequality on ∣s1 − s2∣
∣s1 − s2∣ = d⋈((V (s1), V (s2)) ≥ d⋈(α(t1), α(t2)) − 2MεR, by the triangle inequality,

≥ 1

k
∣t1 − t2∣ − c − 2MεR, since α is a quasigeodesic.

Which provides us with

∆h(α(t1), α(t2)) ≥ ∣s1 − s2∣ − 2MεR ≥ 1

k
∣t1 − t2∣ − 5MεR.

2.2 Coarse differentiation of a quasigeodesic segment

The coarse differentiation of a quasigeodesic α consists in finding a scale r > 0 such that a subdivision

by pieces of length r of α contains almost only ε-monotone components (which are therefore close to

vertical geodesic segments).

Proposition 2.9 provides us with the existence of such an appropriate scale .

Lemma 2.8. Let k ≥ 1, c ≥ 0 and ε > 0. There exists M(k, c,⋈, ε) such that for all r ≥M , N ≥M and

for all non ε-monotone, (k, c)-quasigeodesic segment α ∶ [0, r] →X ⋈ Y we have

N−1

∑
j=0

∆h(α(jr
N
) , α((j + 1)r

N
)) −∆h(α(0), α(r)) ⪰k,c⋈ εr (24)

Proof. Since α is non ε-monotone, there exist t1, t3 ∈ [0, r] such that

h(α(t1)) = h(α(t3)) and ∣t1 − t3∣ > εr (25)

We can assume without loss of generality that h(α(0)) ≤ h(α(t1)) ≤ h(α(r)) with t1 < t3. Since α

is a (k, c)-quasigeodesic we have d⋈(α(t1), α(t3)) ≥ εr

k
− c. By Corollary 1.11 of the first part of this

manuscript, there exists M(⋈) such that d⋈ ≤ dX + dY +M . Then at least one of the two following

inequalities holds:
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1. dX (αX(t1), αX(t3)) ⪰⋈ ε
2k
r −M(⋈, c)

2. dY (αY (t1), αY (t3)) ⪰⋈ ε
2k
r −M(⋈, c)

Let us assume that the first inequality is true. By Lemma 1.5 applied to the geodesic segment [αX(t1), αX(t3)]
we have

h+ ([αX(t1), αX(t3)]) ≥dX (αX(t1), αX(t3)) −∆h(αX(t1), αX(t3)) − 96δ
=dX (αX(t1), αX(t3)) − 96δ

Hence by Proposition 1.12 and the assumed inequality, there exists t2 ∈ [t1, t3] such that

∆h(α(t1), α(t2)) ⪰⋈ εr

k
− δ log2 (d⋈(α(t1), α(t3))) −M(⋈, c)

⪰⋈ εr

k
− δ log2(r) −M(⋈, c)

Similarly, assuming the second inequality provides uswith the same lower-bound on∆h(α(t1), α(t2)).
Furthermore there existsM(ε,⋈, c) such that for r ≥M we have 1

2
εr ≥ δ log2(r) +M(⋈, c), hence

∆h(α(t1), α(t2)) ⪰⋈ εr

2k
(26)

Furthermore ∀i ∈ {1,2,3} there exists ni ∈ {0, ...,N − 1} such that

nir

N
≤ ti ≤

(ni + 1)r
N

.

Computing the sum of the successive differences of heights provides us with

N−1

∑
j=0

∆h(α(jr
N
) , α((j + 1)r

N
))

≥∆h(α (0) , α(n1r

N
)) +∆h(α(n1r

N
) , α(n2r

N
)) +∆h(α(n2r

N
) , α(n3r

N
))

+∆h(α(n3r

N
) , α (r))

≥∆h (α (0) , α (t1)) +∆h (α (t1) , α (t2)) +∆h (α (t2) , α (t3)) +∆h (α (t3) , α (r))
− 6(kr

N
+ c) , because h is Lipschitz, α is a quasigeodesic and by the triangle inequality,

≥∆h(α(0), α(r)) + 2∆h(α(t1), α(t2)) − 6(kr
N
+ c) , since h(α(t1)) = h(α(t3)).

Using inequality (26) we have

N−1

∑
j=0

∆h(α(jr
N
) , α((j + 1)r

N
)) −∆h(α(0), α(r)) ⪰⋈ εr

2k
−
6kr

N
− 6c

⪰k,c,⋈ εr, since we assumed N ≥M(k, c,⋈, ε).

The next lemma asserts that, at some scale, most segments of a quasigeodesic are ε-monotone.

Proposition 2.9. Let k ≥ 1, c ≥ 0, ε > 0 and let S be an integer. There exists M(k, c,⋈, ε) such that

for r0 ≥ M and N ≥ M the following occurs. let us denote by L = NSr0. Let α ∶ [0,L] → X ⋈ Y be a
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(k, c)-quasigeodesic segment. For all s ∈ {0, ..., S} we cut α into segments of length N sr0, and we denote

by As the set of these segment, that is

As ∶= {α ([kN sr0, (k + 1)N sr0]) ∣k ∈ {0, ...,NS−s − 1}} ,
and let δs(α) be the proportion of segments in As which are not ε-monotone

δs(α) ∶= #{β ∈ As∣β is not ε-monotone}
#As

. (27)

Then
S

∑
s=1

δs(α) ⪯k,c,⋈ 1

ε
(28)

Proof. The idea is to cut α intoN segments of equal length, then to apply Lemma 2.8 to the elements of

this decomposition which are not ε-monotone. Afterwards we decompose every piece of this decom-

position into N segments of equal length to which we apply Lemma 2.8 if they are not ε-monotone.

The result follows by doing this sub-decomposition S times in a row. To begin with, we need to deal

with α being ε-monotone or not. Hence δS(α) = 0 or 1 and in either case thanks to Lemma 2.8 we have

N−1

∑
j=0

∆h(α (jNS−1r0) , α ((j + 1)NS−1r0) ) ⪰k,c,⋈ ∆h(α(0), α(L)) + δS(α)εL. (29)

Then for all j ∈ {0, ...,N − 1} such that α([jNS−1r0, (j + 1)NS−1r0]) is not ε-monotone

N−1

∑
k=0

∆h(α (kNS−2r0 + jNS−1r0) , α ((k + 1)NS−2r0 + jNS−1r0) )
⪰k,c,⋈∆h(α(jNS−1r0), α((j + 1)NS−1r0)) + εL

N
,

which happensNδS−1(α) times. Therefore we have that

N2−1

∑
i=0

∆h(α (iNS−2r0) , α ((i + 1)NS−2r0) ) ⪰k,c,⋈∆h(α(0), α(r)) + δS(α)εL +NδS−1(α)εL
N

⪰k,c,⋈∆h(α(0), α(r)) + (δS(α) + δS−1(α))εL.
By doing this another S − 2 times we obtain

NS−1

∑
i=0

∆h(α (ir0) , α ((i + 1)r0) ) ⪰k,c,⋈∆h(α(0), α(r)) + εL S

∑
s=1

δs(α).
Furthermore we have the following estimate using the Lipschitz property of h

NS−1

∑
i=0

∆h(α (ir0) , α ((i + 1)r0) ) ≤ NS−1

∑
i=0

d⋈(α (ir0) , α ((i + 1)r0) )
≤ NS(kr0 + c) ≤ 2kL, with r0 ≥

c

k
.

Hence
S

∑
s=1

δs(α) ⪯k,c,⋈ 1

εL
2kL ⪯k,c,⋈

1

ε
. (30)
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2.3 Height respecting tetrahedric quadrilaterals

In this subsection we show that a coarse tetrahedric quadrilateral whose sides are vertical geodesics,

has two vertices on the sameX-horosphere, and the other two on the same Y -horosphere (see 1.14 for

the definition of such horospheres). We call such a configuration a vertical quadrilateral.

Definition 2.10. (Orientation) We define the orientation function on the paths of X ⋈ Y as follows. For

all T > 0 and γ ∶ [0, T ] →X ⋈ Y we have

orientation(γ) = { ↑ if h(γ(0)) < h(γ(T )), upward

↓ if h(γ(0)) > h(γ(T )), downward
(31)

Proposition 2.11. (Vertical quadrilateral lemma)

Let a1, a2, b1, b2 ∈ X ⋈ Y . Let D > 1 and for i, j ∈ {1,2}, let Vij ∶ [0, lij] → X ⋈ Y be vertical geodesic

segments linking the D-neighbourhood of ai to the D-neighbourhood of bj , and diverging quickly from

each other. More specifically, we assume for all i, j ∈ {1,2}:
(a) d(Vij(0), ai) ≤D
(b) d(Vij(lij), bj) ≤D
(c) d(Vi1(t), im(Vi2)) ≥ t

10
−D, ∀t ∈ [0, li1]

(d) d(V1j(l1j − t), im(V2j)) ≥ t

10
−D, ∀t ∈ [0, l1j]

If for all i, j ∈ {1,2}, lij > 2D and the vertical geodesic segments Vij share the same orientation, then

there exists a constant M(⋈) such that one of the two following statements holds:

1. The four vertical geodesics Vij are upward oriented and a2 is in the (MD)-neighbourhood of theX-

horosphere containing a1, and b2 is in the (MD)-neighbourhood of the Y -horosphere containing b1.

Otherwise stated, we have dY (aY1 , aY2 ) ≤MD and dX (bX1 , bX2 ) ≤MD.

2. The four vertical geodesics Vij are downward oriented and a2 is in the (MD)-neighbourhood of the
Y -horosphere containing a1, and b2 is in the (MD)-neighbourhood of the X-horosphere contain-

ing b1. Otherwise stated, we have dX (aX1 , aX2 ) ≤MD and dY (bY1 , bY2 ) ≤MD.

Proposition 2.11 is illustrated in Figure 10.

Proof.

For all i, j ∈ {1,2} let us denote by
ai = (aXi , aYi ) ; bj = (bXj , bYj ) ; Vij = (V X

ij , V
Y
ij ) . (32)

The hypothesis (a) gives us
d(Vi1(0), Vi2(0)) ≤ d(Vi1(0), ai) + d(ai, Vi2(0)) ≤ 2D (33)

By hypothesis (b)
d(V1j(l1j), V2j(l2j)) ≤ 2D

Without loss of generality we can assume that for all i, j ∈ {1,2} orientation(Vij) =↑, which means

that h(ai) ≤ h(bj). Then ∀i, j ∈ {1,2} and t ∈ [0, li1] we have h(Vij(t)) = t + h(Vij(0)), hence
h(V X

ij (t)) = t + h(Vij(0))
h(V Y

ij (t)) = −t − h(Vij(0))
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≥
t
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1

h

Y − horosphere

X − horosphere

Figure 10: A coarse vertical quadrilateral of Proposition 2.11.

SinceX and Y are Busemann convex spaces, ∀i, j ∈ {1,2}
t↦ dY (V Y

i1 (t), V Y
i2 (t)) is convex on [0,min(li1, li2)].

t↦ dX (V X
1j (l1j − t), V X

2j (l2j − t)) is convex on [0,min(l1j , l2j)].
These two applications are also bounded by 2D on the end-points of the intervals, hence on all the

intervals. Therefore

∀t ∈ [0,min(li1, li2)], dY (V Y
i1 (t), V Y

i2 (t)) ≤ 2D (34)

∀t ∈ [0,min(l1j , l2j)], dX (V X
1j (l1j − t), V X

2j (l2j − t)) ≤ 2D
We can assume without loss of generality that l11 ≤ l21 and that l12 ≤ l22. Then

dX (V X
11 (0), V X

21 (l21 − l11)) ≤ 2D (35)

dX (V X
12 (0), V X

22 (l22 − l12)) ≤ 2D (36)

Let us denote ∆l1 = l21 − l11 and ∆l2 = l22 − l12, our goal is to show that these two real numbers are

sufficiently close. We have ∀i, j ∈ {1,2}
∆h(ai, bj) − 2D ≤ lij ≤∆h(ai, bj) + 2D

By subtracting these inequalities we get

−h(a2) + h(a1) − 4D ≤ l21 − l11 ≤ −h(a2) + h(a1) + 4D
−h(a2) + h(a1) − 4D ≤ l22 − l12 ≤ −h(a2) + h(a1) + 4D

Then ∣∆l1 −∆l2∣ ≤ 8D. However

dX (V X
21 (∆l1), V X

22 (∆l1)) ≤dX (V X
21 (∆l1), V X

11 (0)) + dX (V X
11 (0), V X

12 (0))
+ dX (V X

12 (0), V X
22 (∆l2)) + dX (V X

22 (∆l2), V X
22 (∆l1)) .
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By the inequalities (35) and (36) we obtain

dX (V X
21 (∆l1), V X

22 (∆l1)) ≤2D + dX (V X
11 (0), V X

12 (0)) + 2D + ∣∆l1 −∆l2∣
≤4D + 2D + 8D ≤ 14D. (37)

By using assumption (c) and the characterisation of the distance on horospherical products we have

−D +
∆l1

10
≤d⋈ (V21(∆l1), V22(∆l1))
≤dX (V X

21 (∆l1), V X
22 (∆l1)) + dY (V Y

21(∆l1), V Y
22(∆l1))

−∆h (V21(∆l1), V22(∆l1)) +M(⋈), by Corollary 1.11,

≤dX (V X
21 (∆l1), V X

22 (∆l1)) + 2D +M, by inequality (34)

≤16D +M, by inequality (37),

which provides us with∆l1 ≤ 10(16D +M +D) = 170D + 10M . We have

dX (aX1 , aX2 ) ≤ dX (aX1 , V X
11 (0)) + dX (V X

11 (0), V X
21 (0)) + dX (V X

21 (0), aX2 )
≤ dX (V X

11 (0), V X
21 (∆l1)) + dX (V X

21 (∆l1), V X
21 (0)) + 2D

≤ 2D + 170D + 10M + 2D ≤ 174D + 10M , by inequality (35).

From this inequality we deduce that ∣h(a1) − h(a2)∣ ≤ 174D + 10M ⪯⋈ D. Similarly we deduce the

following inequalities.

dY (bY1 , bY2 ) ⪯⋈ D,

∣h(b1) − h(b2)∣ ⪯⋈ D.

Four points which satisfies the assumption of Proposition 2.11 are called a coarse vertical quadri-

lateral with nodes of scaleD.

2.4 Orientation and tetrahedric quadrilaterals

From now on we fix a (k, c)-quasi-isometry Φ ∶ X ⋈Y → X ⋈Y . The second tetrahedric configuration

consists of two points on an X-horosphere and pairwise linked to two points on a Y -horosphere by

four vertical geodesic segments.

The following proposition 2.13 states that if two points on an X-horosphere are sufficiently far from

each other, if two points on an Y -horosphere are sufficiently far from each other and if the vertical

geodesic segments have ε-monotone images under a (k, c)-quasi-isometry Φ, then all the images of

the vertical geodesic segments by Φ share the same orientation.

We first show that their exists a constant M(k, c,⋈) such that the concatenation of two consecutive

ε-monotone quasigeodesic segments sharing the same orientation is an Mε-monotone quasigeodesic

segment. This result will only be used in the proof of Proposition 2.13.

Lemma 2.12. Let k > 1, c > 0,D > 0, ε > 0, T ≥ D+2c
3ε

and let γ ∶ [0, T ] ↦X⋈Y and γ′ ∶ [0, T ] ↦X⋈Y
be two ε-monotone, (k, c)-quasigeodesic segments such that:

1. orientation(γ) = orientation(γ′)
2. d⋈(γ(T ), γ′(0)) ≤D
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Let γ̃ ∶ [0,2T ] → X ⋈ Y be the concatenation of γ and γ′

γ̃(t) = { γ(t) if t ∈ [0, T ]
γ′(t − T ) if t ∈]T,2T ] (38)

Then there exists M(k, c,⋈) such that γ̃ is an Mε-monotone, (k,MεT )-quasigeodesic segment.

Proof. We can assume without loss of generality that γ and γ′ are upward oriented, we first show that

there existsM(k, c, δ) such that γ̃ isMε-monotone. Let t1, t2 ∈ [0,2T ] such that h(γ̃(t1)) = h(γ̃(t2)).
If both t1 and t2 are in [0, T ] or both are in ]T,2T ], there is nothing to do since γ and γ′ are ε-monotone.

Then we can assume without loss of generality that t1 ∈ [0, T ] and t2 ∈]T,2T ]. Since γ is upward

oriented we have h(γ(0)) < h(γ(T )), therefore, because γ is ε-monotone and continuous, we have

h(γ(t1)) ≤ h(γ(T )) + εT, (39)

otherwise, by continuity there exists t′1 in [0, t1] such that h(γ(t′1)) = h(γ(T )) contradicting the ε-

monotonicity. Two cases arise:

(a) ∆h(γ′(t2 − T ), γ′(0)) ≤ εT
(b) ∆h(γ′(t2 − T ), γ′(0)) > εT

Let us consider the first case (a). We know that h(γ(t1)) = h(γ̃(t1)) = h(γ̃(t2)) = h(γ′(t2 − T )) and
that∆h(γ(T ), γ′(0)) ≤D, then by the triangle inequality we have

∆h(γ(t1), γ(T )) =∆h(γ′(t2 − T ), γ(T )) ≤∆h(γ′(t2 − T ), γ′(0)) +∆h(γ′(0), γ(T )) ≤ εT +D
According to Corollary 2.7, h is a (k,MεT )-quasi-isometry along ε-monotone quasigeodesics. Hence

∣t1 − T ∣ ≤ k∆h(γ(t1), γ(T )) +MεT ≤ (k +M)εT + kD ≤ (2k +M)εT, quadby assumption on T,

∣t2 − T ∣ ≤ k∆h(γ′(t2 − T ), γ′(0)) +MεT ≤ (k +M)εT
Therefore by the triangle inequality we obtain ∣t1 − t2∣ ≤ (32k +M)ε(2T ).
We consider now the second case (b). By Corollary 2.7, h is a (k,MεT )-quasi-isometry, therefore

∆h(γ′(t2 − T ), γ′(0)) ≥ 1

k
∣t2 − T ∣ −MεT

Furthermore, γ′ is upward oriented, hence we have that h(γ′(0)) < h(γ′(t2 − T )), otherwise, as for
γ,by continuity one can construct t′2 ∈ [t2, T + T ′] contradicting the ε-monotonicity of γ′. Hence we

have

h(γ′(t2 − T )) ≥ h(γ′(0)) + 1

k
∣t2 − T ∣ −MεT

In combination with inequality (39) it provides us with

h(γ(t1)) ≤ h(γ(T )) + εT ≤ h(γ′(0)) +D + εT
≤ h(γ′(t2 − T )) − 1

k
∣t2 − T ∣ +D + (1 +M)εT

However h(γ(t1)) = h(γ′(t2−T )) by definition of t1 and t2, therefore 0 ≤ − 1
k
∣t2−T ∣+D+(1+M)εT ,

which gives

∣t2 − T ∣ ≤ (1 +M)kεT + kD ≤ 3MkεT. (40)

Hence

∆h(γ′(t2 − T ), γ′(0)) ≤ d⋈(γ′(t2 − T ), γ′(0)) ≤ k∣t2 − T ∣ + c ≤ (3Mk2 + 1)εT
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Since h(γ′(t2 − T )) = h(γ(t1)), thanks to the triangle inequality we obtain
∆h(γ(t1), γ(T )) ≤∆h(γ(t1), γ′(0)) +∆h(γ′(0), γ(T ))

≤ (3Mk2 + 1)εT +D ≤ (3Mk2 + 2)εT (41)

Both inequalities (40) and (41) in combinationwith the fact that h is a (k,MεT )-quasigeodesic segment

provide us with

∣t1 − t2∣ = ∣t1 − T ∣ + ∣T − t2∣ ≤ k(3Mk2 + 2)εT +MεT + 3MkεT

≤ 9k3MεT ≤
9k3M

2
ε(2T ) , since k ≥ 1, M ≥ 1.

In the view of cases (a) and (b) we conclude that γ̃ is 9k3M
2

ε-monotone.

To prove that γ̃ is a (k,3MεT )-quasigeodesic segment, we must check the upper-bound and lower

bound required. Let t1, t2 ∈ [0,2T ], as for the ε-monotonicity property, since γ and γ′ are (k, c)-
quasigeodesics, we can assume that t1 ∈ [0, T ] and t2 ∈]T,2T ]. By the triangle inequality, the upper-

bound is straightforward.

d⋈(γ̃(t1), γ̃(t2)) = d⋈(γ(t1), γ′(t2 − T ))
≤ d⋈(γ(t1), γ(T )) + d⋈(γ(T ), γ′(0)) + d⋈(γ′(0), γ′(t2 − T ))
≤ k(T − t1) + c +D + k(t2 − T ) + c = k∣t2 − t1∣ + 2c +D
≤ k∣t2 − t1∣ + 3εT , by the assumed lower bound on T.

Last inequality holds because γ and γ′ are (k, c)-quasigeodesics. To prove the lower-bound we will

proceed similarly as for the ε-monotonicity. We have

d⋈(γ̃(t1), γ̃(t2)) = d⋈(γ(t1), γ′(t2 − T ))
≥∆h(γ(t1), γ′(t2 − T )), since h is Lipschitz.

Similarly to inequality (39) we have

h(γ′(t2 − T )) ≥ h(γ′(0)) − εT. (42)

Therefore

∆h(γ(t1), γ′(t2 − T )) ≥ h(γ′(t2 − T )) − h(γ(t1))
=(h(γ′(t2 − T )) + εT ) − h(γ′(0)) + h(γ′(0)) − h(γ(T )) + h(γ(T )) − (h(γ(t1)) − εT ) − 2εT
= ∣(h(γ′(t2 − T )) + εT ) − h(γ′(0))∣ + ∣h(γ(T )) − (h(γ(t1)) − εT )∣
+ h(γ′(0)) − h(γ(T )) − 2εT , by inequalities (39) and (42),

≥ ∣h(γ′(t2 − T )) − h(γ′(0))∣ + ∣h(γ(T )) − h(γ(t1))∣ −D − 4εT , by the triangle inequality,

≥1
k
∣t2 − T ∣ −MεT +

1

k
∣T − t1∣ −MεT −D − 4εT, because h is a (k,MεT )-quasigeodesic.

Hence

d⋈(γ̃(t1), γ̃(t2)) ≥∆h(γ(t1), γ′(t2 − T ))
≥ 1

k
(t2 − t1) −D − (2M + 4)εT ≥ 1

k
(t2 − t1) − 7MεT.

Which is the lower-bound we expected and proves that γ̃ is a (k,7MεT )-quasigeodesic.
Proposition 2.13. Let h ∈ R and let k ≥ 1, c ≥ 0 and ε > 0. Let Φ ∶ X ⋈ Y → X ′ ⋈ Y ′ be a (k, c)-
quasi-isometry. Let D > 1 and R > k2D+c

ε
. For i, j ∈ {1,2} let ai, bj be four points of X ⋈ Y verifying

d(a1, a2) > 10kMεR+2kc and d(b1, b2) ≥ 10kMεR+2kc, whereM is the constant involved in Lemma

2.12, and let Vi,j ∶ [0,R] → X ⋈ Y be four vertical geodesic segments linking the D-neighbourhood of ai
to theD-neighbourhood of bj , such that:
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Φ(a2)
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Φ(V2,2) Φ(V1,1)

Φ(V2,1)

Φ(V1,2)

Figure 11: Case (a) in proof of Proposition 2.13.

● h(V11(0)) = h(V22(0)) = h(a1) = h(a2) = h
● h(V11(R)) = h(V22(R)) = h(b1) = h(b2) = h +R
● h(V12(0)) = h(V21(0)) = h +R
● h(V12(R)) = h(V21(R)) = h
● Φ ○ Vi,j is ε-monotone

Then the following statement holds:

orientation(Φ ○ V11) = orientation(Φ ○ V22)
Proof. Up to the additive constantD, one can consider V1,1 ∪V2,1 ∪V2,2 ∪V1,2 as a coarse quadrilateral

composed with ai and bj as its vertices, and with Vi,j as its edges. To make the proof easier to follow,

we shall use a vector of arrows to describe the orientations of the edges of the quadrilateral in play as

follows:

orientation(V1,1, V2,1, V2,2, V1,2) = (↑, ↓, ↑, ↓)
Similarly, we consider orientations of the image of V1,1 ∪ V2,1 ∪ V2,2 ∪ V1,2 by Φ as the successive ori-

entations of the paths Φ ○ Vi,j . We will proceed by contradiction to prove the lemma. Let us assume

that orientation(Φ ○ V1,1) ≠ orientation(Φ ○ V2,2). We can assume without loss of generality that

orientation(Φ(V1,1)) =↑, therefore orientation(Φ(V2,2)) =↓. Hence there are four possible orienta-

tions for Φ(V1,1 ∪ V2,1 ∪ V2,2 ∪ V1,2):
(a) (↑, ↑, ↓, ↑) (b) (↑, ↑, ↓, ↓) (c) (↑, ↓, ↓, ↑) (d) (↑, ↓, ↓, ↓)
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Let us consider the case (a) (illustrated in Figure 11), we have orientation(Φ(V2,1)) =↑ and
orientation(Φ(V1,2)) =↑. Hence we have

orientation(Φ(V1,2)) = orientation(Φ(V1,1)) = orientation(Φ(V2,1))
Furthermore Φ is a (k, c)-quasi-isometry and both V1,2(R) and V1,1(0) are close to a1, hence

d⋈′(Φ(V1,2(R)),Φ(V1,1(0))) ≤ k2D + c
Similarly we have

d⋈′(Φ(V1,1(R)),Φ(V2,1(0))) ≤ k2D + c
Then by Lemma 2.12, there exists M(k, c,⋈) such that the concatenation of Φ(V1,2), Φ(V1,1) and
Φ(V2,1) is an Mε-monotone (k,MεT )-quasigeodesic. Therefore by Proposition 2.6, there exists a

constantM(k, c,⋈) and a vertical geodesic segment Ṽ such that

dHff(Ṽ ,Φ(V1,2) ∪Φ(V1,1) ∪Φ(V2,1)) ≤MεR (43)

Furthermore, applying Proposition 2.6 on Φ(V2,2) provides us with the existence of a vertical geodesic

segment Ṽ ′ such that

dHff(Ṽ ′,Φ(V2,2)) ≤MεR. (44)

Moreover d⋈(V2,2(0), V2,1(R)) ≤ 2D (the two points are close to a2) and d⋈(V2,2(R), V1,2(0)) ≤
2D (the two points are close to b2), therefore Ṽ and Ṽ ′ are two vertical geodesics with endpoints(k2D+c)+2MεR close to Φ(a2) and Φ(b2). Thereby, these two vertical geodesic segments stay close

to each other, we have

dHff(Ṽ , Ṽ ′) ≤ (k2D + c) + 2MεR ≤ 3Mε, by assumption on R.

Then, we show by the triangle inequality that Φ(a1) is close to Φ(V2,2).
d⋈′(Φ(a1),Φ(V2,2)) ≤ d⋈′(Φ(a1), Ṽ ) + dHff(Ṽ , Ṽ ′) + dHff(Ṽ ′,Φ(V2,2)) ≤ 5MεR (45)

However, the assumption d(a1, a2) > 10kMεR + 2kc gives us that a1 is sufficiently far from V2,2

∀t ∈ [0,R], d⋈(a1, V2,2(t)) ≥∆h(a1, V2,2(t)) = t
and, d⋈(a1, V2,2(t)) ≥ d⋈(a1, a2) − d⋈(a2, V2,2(t)) > 10kMεR + 2kc − t.

Therefore

∀t ∈ [0,R], d⋈′(Φ(a1),Φ(V2,2(t))) ≥ k−1d⋈(a1, V2,2(t)) − c
> t + 10kMεR + 2kc − t

2k
− c = 5MεR,

Which contradicts inequality (45). Thereby, in case (a), Φ○V1,1 andΦ○V2,2 share the same orientation.

The other three cases (b), (c) and (d) are treated similarly. We first show thatΦ(V1,1∪V2,1∪V2,2∪V1,2)
is in the MεR-neighbourhood of two vertical geodesic segments which, depending on the case, have

endpoints

(b) close to Φ(a1) and Φ(a2).
(c) close to Φ(b1) and Φ(b2).
(d) close to Φ(a1) and Φ(b1).

Which, depending on the case, contradicts the fact that:

(b) d⋈(b1, V2,2(t)) > 5MεR.

(c) d⋈(a1, V2,2(t)) > 5MεR.

(d) d⋈(b2, V1,1(t)) > 5MεR.
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3 Measure and Box-tiling

3.1 Appropriate measure and horopointed admissible space

In the setting of horospherical product, an important characteristics is that they are union of products

of horospheres.

As such, if one wants to endow them with a measure, it makes sense that the measure should

disintegrate along these horospherical product, and should be related somehow to the measures and

the geometries of the initial spaces and its horospheres.

The properties we present are satisfied when our initial space are Riemannian manifolds for in-

stance, or graphs of bounded geometry. We will also see in Section 5 that Heintze group are another

set of spaces which satisfies them, making our requirements sound.

Definition 3.1. (Admissible horopointed measured metric spaces.)

Let (X,d) be a δ-hyperbolic, Busemann, proper, geodesically complete, metric space, and let a ∈ ∂X be a

point on the Gromov boundary ofX . A Borel measure µX onX will be said (X,a) horo-admissible if and

only if (E1), (E2) and (E3) are satisfied.
(E1) (There exists a direction a ∈ ∂X such that) µX is disintegrable along the height function ha, that is

For all z ∈ R, there exists a Borel measure µX
z onXz = h−1(z) such that for any measurable set A ⊂X

µX(A) = ∫
z∈R

µX
z (Az)dz

(E2) Controllable geometry for the measures µX
z on horospheres, there exists M0 ≥ 288δ such that

∀x1, x2 ∈X, we have µX
h(x1) (DM0

(x1)) ≍X µX
h(x2) (DM0

(x2))
(E3) There exists m > 0 such that for all z0 ∈ R, and for all measurable set U ⊂Xz0

∀z ≤ z0, em(z0−z)µX
z0
(U) ≍X µX

z (πz(U))
The space (X,a, d,µX) will be called a horo-pointed admissible metric measured space, or just admissible.

The assumption (E2), in combination with Lemma 1.8, provides us with a uniform control on the

measure of disks of any radius.

Lemma 3.2. Let r ≥M0. Then for all x ∈ X we have

µh(x) (Dr(x)) ≍X em
r
2

Proof. The proof is illustrated in Figure 12. Let Vx be a vertical geodesic line containing x and let

M0 ≥ 288δ be the constant involved assumption (E2). Let us denote x1 the point of Vx at the height

h(x)+ r+M0

2
and let x2 be the point of Vx at the height h(x)+ r−M0

2
. Applying Lemma 1.8 with p = x1,

z0 = h(x) + r+M0

2
and z = h(x) provides us with

Dr(x) =D2(z0−z)−M0
(x) ⊂ πh(x) (DM0

(x1)) .
Similarly, applying Lemma 1.8with p = x2, z0 = h(x)+ r−M0

2
and z = h(x) provides uswithπh(x) (DM0

(x2)) ⊂
Dr(x). Furthermore by assumption (E3) then assumption (E2) we have

µX
h(x) (πh(x) (DM0

(x1))) ≍X em(
r+M0

2
)µX

h(x1)(DM0
(x1)) ≍X em

r
2 ,

since M0 depends only on X . Similarly we have µX
h(x) (πh(x) (DM0

(x2))) ≍X em
r
2 , therefore by the

two previously obtained inclusions we have µh(x) (Dr(x)) ≍X em
r
2 .
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Figure 12: Proof of Lemma 3.2.

Heuristically, the next lemma asserts that the measure of the boundary of a disk is small in com-

parison to the measure of the disk.

Lemma 3.3. Let M0 be the constant involved in assumption (E2) and let M be the constant involved in

Corollary 1.4. Let z0 ∈ R, x0 ∈ Xz0 and C ⊂Xz0 be a set containingDM0
(x0) and contained inD2M0

(x0).
Then for all z1 ≤ z0, and for all r ≤ 2∣z1 − z0∣ − 2M0 −M we have

µX
z1
(Intr (πX

z1
(C))) ≍⋈ µX

z1
(πX

z1
(C)) .

This Lemma might seems to contradict Lemma 3.2, however the r-interior of a disk of radius R is

very different from a disk of radius R − r on horospheres, for R sufficiently greater than r.

Proof. Let us denote J ∶= Intr (πX
z1
(C)). By definition we have

πX
z1
(C) ∖ J ∶= {x ∈ πX

z1
(C)∣dX (x,πX

z1
(C)c) < r} (46)

At the height z1 + r
2
, let x1 ∈ πX

z1+
r
2

(C) ∖ πX
z1+

r
2

(J), then, at the height z1, there exists x′1 ∈ πX
z1
(C) ∖ J

such that x1 ∈ Vx′
1
. Furthermore by the characterisation (46), there exists x′2 ∈ πX

z1
(C)c such that

d(x′1, x′2) ≤ r. Then by Lemma 1.4, there existsM(δ) such that

dX (Vx′
2
(z1 + r

2
) , Vx′

1
(z1 + r

2
)) = dX (Vx′

2
(z1 + r

2
) , x1) ≤M, (47)

With Vx′
2
(z1 + r

2
) ∈ πX

z1+
r
2

(C)c. Therefore by the triangle inequality and Lemma 1.8

d(x1, πX
z1+

r
2

(x0)) ≥ −d(x1, Vx′
2
(z1 + r

2
)) + d(Vx′

2
(z1 + r

2
) , πX

z1+
r
2

(x0))
≥ 2∣z0 − z1∣ − r −M0 −M

Since last inequality holds for all x1 ∈ πX
z1+

r
2

(C) ∖ πX
z1+

r
2

(J), we have
D2∣z0−z1∣−r−M0−M(πX

z1+
r
2

(x0)) ⊂ πX
z1+

r
2

(J)
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Therefore by Lemma 1.8

D2∣z0−z1∣−M0−M (πX
z1
(x0)) ⊂ J

Moreover, J ⊂ πX
z1
(C) ⊂D2∣z0−z1∣+M0

(πX
z1
(x0)), hence by Lemma 3.2

µX
z1
(J) ≍X e∣z0−z1∣m ≍X µX

z1
(πX

z1
(C))

In order to achieve a rigidity result on horospherical products, we will need another measure λX

in the same measure class as µX .

Definition 3.4. (measure λX ofX)

LetX be an admissible horopointed space. The measure λX onX is defined from a set of weighted measure

λX
z on the level set Xz :

1. ∀z ∈ R, λX
z ∶= emzµX

z

2. For all measurable set A ⊂X , λX(A) ∶= ∫
z∈R

λX
z (Az)dz,

where m is the constant involved in (E3).
For the Log model of the hyperbolic plane, this measure λX turns out to be the Lebesgue measure

on R
2, and the measure µX is the Riemannian area. Up to a multiplicative constant, the measure λX is

constant along the projections. By assumption (E3), the following property is immediate:

Property 3.5. For all measurable set U ⊂X we have

∀z1, z2 ≤ h−(U), λX
z1
(πz1(U)) ≍X λX

z2
(πz2(U)) (48)

Otherwise stated we have the following relation between two push-forwards of the measure on horospheres

πz2 ∗ λ
X
z2
≍X πz1 ∗ λ

X
z1
.

Following the fact that height level sets of X ⋈ Y are direct products of horospheres, we define

disintegrable measures on the horospherical products from the disintegrable measures on X and Y .

We recall that ∀z ∈ R

(X ⋈ Y )z =Xz × Y−z

Definition 3.6. (Measure µ onX ⋈ Y )

Let (X,µX) and (Y,µY ) be two admissible spaces. Then for all measurable set U ⊂X ⋈Y , we define the

measure µ on X ⋈ Y by

µX⋈Y (U) ∶= ∫
R

µX
z ⊗ µY

−z(Uz)dz.

For all measurable set U ⊂X ⋈ Y we have

µX⋈Y (U) = ∫
R

⎛⎜⎝ ∫y∈Y−z
µX
z (Uy

z )dµY
−z

⎞⎟⎠dz,

where U
y
z ∶= {x ∈ X ∣ (x, y) ∈ Uz}. (This measure might be not well defined).

Remark 3.7. A couple (X,Y ) of horo-pointed admissible spaces is called admissible if the measure µX⋈Y

of Definition 3.6 is well defined.
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From now on we fix four horo-pointed metric spaces X , X ′, Y and Y ′, with m > 0 (respectively

m′, n, n′) the constant of assumption (E3) for X (respectivelyX ′, Y , Y ′). We will assume in Section

4.3 and afterwards that (X,Y ) and (X ′, Y ′) are two admissible couples withm > n andm′ > n′.
We define similarly a measure λX⋈Y on X ⋈ Y .

Definition 3.8. (Measure λ onX ⋈ Y )

Let (X,µX) and (Y,µY ) be two admissible spaces. Then for all measurable subset U ⊂X ⋈ Y

λX⋈Y (U) ∶= ∫
R

λX
z ⊗ λY

−z(Uz)dz = ∫
R

e(m−n)zµX
z ⊗ µY

−z(Uz)dz

For all measurable subset U ⊂X ⋈ Y we have

λX⋈Y (U) = ∫
R

⎛⎜⎝ ∫y∈Y−z
λX
z (Uy

z )dλY
−z

⎞⎟⎠dz.

From now on, we will simply denote by µ the measure µX⋈Y and by λ the measure λX⋈Y .

3.2 Box-tiling of X

In this subsection we tile a proper, geodesically complete, Gromov hyperbolic and Busemann space X

with pieces called boxes.

Definition 3.9. (Box at scale R)

Let X be admissible horo-pointed space. Let M0 be the constant of (E2), let R > 0, let x be a point

of X and let C(x) be a subset of Xh(x) containing DM0
(x) and contained in D2M0

(x). Then, the boxB(x,C(x),R) is defined by

B(x,C(x),R) ∶= ⋃
z∈[h(x)−R,h(x)[

πz (C(x))
We will often omit the parameter C(x) in the notation of a box. Later we depict an appropriate

choice for these spaces C(x). The idea of the tiling is first to distinguish layers of thickness R, then to

decompose each of these layers into disjoint boxes using a tiling of disjoint cells C(x) as the top of these
boxes. In the Log model of the hyperbolic plane, when the cell C(x) is a segment of an horosphere, the

associated box is a rectangle of R2. In [EFW12], Eskin, Fisher and Whyte tile the hyperbolic plane with

translates of such a rectangle. However the space we consider might not be homogeneous, therefore we

will tile Gromov hyperbolic spaces with boxes which are generically not the translate of one another.

We recall thatNr refers to the r-neighbourhood of a subspace.

A subset of a metric space X is k-separated if and only any two of its elements are at least at distance

k. A maximal such set for the inclusion is calledmaximal separating set. We shall denote byD(X) such
a set.

One easily sees that a maximal separated set is then k covering. That is the union of the metric ball

of radius k centred at the points of D(X) cover the whole space.

To construct a box tiling of X we first fix a scale R > 0. Let M0 be the constant involved in

assumption (E2), then we chose a 2M0-maximal separating set D(XnR) of the horospheres XnR,

with n ∈ Z. Such maximal separating sets exist since X is proper and so are XnR. Let us call nuclei

the points in these maximal separating sets. For every nucleus x ∈ D(XnR), we fix a cell C(x) such
that DM0

(x) ⊂ C(x) ⊂ D2M0
(x). Therefore, given two different nuclei x,x′ ∈ D(XnR), we have

DM0
(x) ∩DM0

(x′) = ∅. We choose these cells such that they are µnR measurable and such that they

tile their respective horospheres:

∀n ∈ Z, ⊔
x∈D(XnR)

C(x) =XnR.
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As an example, one can take Voronoi cells:

VC(x) ∶= {p ∈ XnR∣d(p,x) ≤ d(p,x′), for all x′ ∈ D(XnR)}
These cells might not be disjoint, but a point p ∈ XnR is contained in a finite number of Voronoi cells

since X is proper. Therefore, by choosing (for example thanks to an arbitrary order on D(XnR)) a
unique cell containing p, and removing p from the others, there exists a tilingXnR by cells C(x).
Now, for all n ∈ Z and for all x ∈ D(XnR) we define the box B(x,R) at scale R of nucleus x by

B(x,R) ∶= ⋃
z∈[(n−1)R;nR[

πz(C(x))

B(x,R) R

h

x
nR

(n− 1)R

Figure 13: Box-tiling

In this definition, we chose [(n − 1)R;nR[ for the boxes’ heights. It is an arbitrary choice, one

could prefer to use ](n−1)R;nR] as these heights intervals. Moreover, to construct the horospherical

product of X and Y , we will use intervals of the form [. . . ; . . . [ forX and ] . . . ; . . .] for Y .

We recall that the cells C(x) tile the horospheres XnR. Furthermore there exists a unique vertical

geodesic ray leaving each point of X . Consequently we have a box tiling of X at scale R:

X = ⊔
n∈Z

⊔
x∈D(XnR)

B(x,R) (49)

The next lemma explains that any box contains and is contained in metric balls of similar scales.

Lemma 3.10. There exists a constant M(X) such that, for all x ∈ X and r > M there exist two boxesB ( r
2
) and B(3r) verifying

B (r
2
) ⊂ B(x, r) ⊂ B(3r)

Proof is illustrated in Figure 14.

Proof. Let C(x) be a subset ofXh(x) containingD(x,M0) and contained inD(x,2M0). Let us denote
by B ( r

2
) the box at scale r

2
constructed from the cell C(x). For all x′ ∈ B ( r

2
) let us denote by x′′ ∶=

Vx′(h(x)) the point of Vx′ at the height h(x), we have
dX(x′, x) ≤ dX (x′, x′′) + dX (x′′, x) ≤ r

2
+ 2M0 ≤ r, for r ≥ 4M0,
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Figure 14: Proof of Lemma 3.10

which gives us that x′ ∈ B(x, r). To prove the second inclusion, let us denote by Vx the unique (sinceX

is Busemann convex) vertical geodesic ray leaving x. Let x0 ∈ im(Vx) such that h(x0) = h(x)+ 2r andC(x0) be a subset of Xh(x0) containing D(x0,M) and contained in D(x0,2M). Then we claim that

B(x, r) is included in the box of radius 3r constructed from the cell C(x0). Let x′ ∈ B(x, r), we recall
that dr(x′, x) ∶= dX(x′, x)−∆h(x′, x). By Lemma 1.5 we have that d(Vx(h(x)+2r), Vx′(h(x)+2r)) ≤
96δ = M since r ≥ dX(x′, x) ≥ 1

2
dr(x′, x) and since the distance between two vertical geodesics is

decreasing in the upward direction. Therefore Vx′(h(x) + 2r) ∈ C(x0). Furthermore ∆h(x0, x′) ≤
∆h(x0, x) +∆h(x,x′) ≤ 3r, hence x′ ∈ B(3r).
3.3 Tiling a big box by small boxes

Let R > 0 and N ∈ N, next result shows that a box at scale NR can be tiled with boxes at scale R.

Proposition 3.11. Let M0 be the constant of assumption (E2). Let R > 0 and N ∈ N. Let BX be a box

at scaleNR, and let us denote by h− ∶= h− (BX) the lowest height of BX . Then there exists a box tiling at

scale R of BX . Otherwise stated for all k ∈ {1, . . . ,N} there exists Dk (BX) ⊂ BXh−+kR such that:

1. For all x ∈ Dk (BX), there exists a cell C(x) such that DM0
(x) ⊂ C(x) ⊂D3M0

(x).
2. We have

N⊔
k=1

⊔
x∈Dk(BX)

BX(x,C(x),R) = BX .

Proof. To tile the box BX we first tile by cells all of its level sets at height h− + kR. Let k ∈ {1, . . . ,N},
and let Dk (BX) be an 2M0-maximal separating set of IntM0

(BXh−+kR). Then:
1. For all x,x′ ∈ Dk (BX) with x ≠ x′ we haveDM0

(x) ∩DM0
(x′) = ∅.

2. IntM0
(BXh−+kR) ⊂ ⋃

x∈Dk(BX)
D2M0

(x)
Furthermore NM0

(IntM0
(BXh−+kR)) ⊂ BXh−+kR, and for all x ∈ IntM0

(BXh−+kR) we have DM0
(x) ⊂

BXh−+kR. Therefore
⊔

x∈Dk(BX)
DM0

(x) ⊂ BXh−+kR ⊂ ⋃
x∈Dk(BX)

D3M0
(x) (50)
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For all x ∈ Dk (BX), we define
C(x) ∶= {p ∈ BXh−+kR ∣ d(p,x) ≤ d(p,x′) for all x′ ∈ Dk (BX)} .

As discussed at the beginning of Section 3.2, these cells might intersect each other on their boundaries.

However, a point contained in different cells can be removed in all of them except one, making them

disjoint. The choice of cells on which we remove boundary points can be made thanks to an arbitrary

order on the finite set Dk (BX).
By the inclusions (50), for all x ∈ Dk (BX) we haveDM0

(x) ⊂ C(x) ⊂D3M0
(x) and

⊔
x∈Dk(BX)

C(x) = BXh−+kR.
Furthermore, since vertical geodesic rays are uniquely determined by their starting point (because X

is Busemann), a tiling with cells provides us with a box tiling:

⊔
x∈Dk(BX)

BX(x,C(x),R) = ⋃
z∈[h−+(k−1)R;h−+kR[

BXz .

Taking the union on k ∈ {1, . . . ,N} provides us with the conclusion.

3.4 Box-tiling of X ⋈ Y

The boxes B of a horospherical product X ⋈ Y are constructed as the horospherical products of boxesBX ⋈ BY . Therefore they induce a tiling of X ⋈ Y . Such boxes are illustrated by Figure 15.

Definition 3.12. (Box ofX ⋈ Y at scale R)

Let X and Y be two admissible spaces. A set B ⊂ X ⋈ Y is called box at scale R of X ⋈ Y if there existsBX a box at scale R ofX and BY a box at scale R of Y such that:

1. h− (BX) = −h+ (BY )
2. B ∶= BX ⋈BY = {(x, y) ∈ BX ×BY ∣hX(x) = −hY (y)}
Let us point out that in the last definition, the box of Y is in fact defined by

BY (y,R) ∶= ⋃
z∈]−nR;(1−n)R]

πz(C(y)). (51)

This choice on the boundaries of the height intervals allows a precise match for the height inside

the two boxes. Furthermore, one can see that given a box-tiling ofX and a box-tiling of Y , the natural

subsequent tiling onX × Y provides the box tiling of X ⋈ Y by restriction.

Proposition 3.13. (Box-tiling ofX ⋈ Y at scale R)

Let X and Y be two admissible spaces. Let R be a positive number and let us consider the two following

box tilings ofX and Y :

X = ⊔
n∈Z

⊔
x∈D(XnR)

BX(x,R)
Y = ⊔

n∈Z

⊔
y∈D(YnR)

BY (y,R)
Then the boxes ofX ⋈ Y constructed from boxes at opposite height inX and Y are a box tiling ofX ⋈ Y .

We have

X ⋈ Y = ⊔
n∈Z

⊔
(x,y)∈D(XnR)×D(Y(1−n)R)

BX(x,R) ⋈BY (y,R)
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BY

BX

B

Figure 15: Box inX ⋈ Y

Proof. Let us consider the box tilings of X and Y :

X = ⊔
n∈Z

⊔
x∈D(XnR)

BX(x,R)
Y = ⊔

n∈Z

⊔
y∈D(YnR)

BY (y,R)
We first show that the intersection of two distinct boxes is empty. Let n1, n2 ∈ R, x1 ∈ D(Xn1R),
x2 ∈ D(Xn2R), y1 ∈ D(Y(1−n1)R) and y2 ∈ D(X(1−n2)R) such that (x1, y1) ≠ (x2, y2). Then we have

either x1 ≠ x2 or y1 ≠ y2. Let us consider the case x1 ≠ x2, then BX(x1,R) ≠ BX(x2,R), and since

they are two tiles of the box tiling ofX , we have BX(x1,R) ∩BX(x2,R) = ∅. Therefore
∀(pX1 , pY1 ) ∈ BX(x1,R) ⋈ BY (y1,R), ∀(pX2 , pY2 ) ∈ BX(x2,R) ⋈BY (y2,R) we have pX1 ≠ pX2

Hence (pX1 , pY1 ) ≠ (pX2 , pY2 ), which gives us

(BX(x1,R) ⋈ BY (y1,R)) ∩ (BX(x2,R) ⋈ BY (y2,R)) = ∅.
The case when y1 ≠ y2 provide us with the same conclusion. Then we prove that the whole space

X ⋈ Y is covered by the horospherical product of boxes. Let p = (pX , pY ) ∈ X ⋈ Y . There exists

n ∈ Z such that (n − 1)R ≤ h(p) < nR, hence there exist x ∈ D(XnR) and y ∈ D(Y(1−n)R) such that

pX ∈ BX(x,R) and pY ∈ BY (y,R). Therefore p ∈ BX(x,R) ⋈ BY (y,R).
3.5 Measure of balls, boxes and neighbourhoods

The results of this sections focus on estimates on the measure µ of balls and boxes.

Lemma 3.14. There exists M(⋈) such that for all r ≥M and all box B at scale r ofX ⋈ Y we have

µ(B) ≍⋈ emr (52)

Proof. Without loss of generality we can assume that h (B) = [0; r[. Let us denote by CX the cell of
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BX and CY the cell of BY . Then
µ(B) =

r

∫
0

µz(Bz)dz =
r

∫
0

µX
z (BXz )µY

z (BYz )dz, since Bz = BXz × BY−z

≍⋈
r

∫
0

em(r−z)µX
r (CX) enzµY

0 (CY )dz, by assumption (E3) and definition of boxes,

≍⋈ emr

r

∫
0

e(n−m)zdz, by Lemma 3.2,

= emr − enr

m − n
⪯⋈ emr

However m > n, hence for r ≥ 1
m−n we have 1

2
emr ≥ enr . Therefore

emr − enr

m − n
≥ emr

2(m − n) ⪰⋈ emr

Combining Lemmas 3.10 and 3.14 we get the next corollary.

Corollary 3.15. There exists M(⋈) such that for any r ≥M and any p ∈ X ⋈ Y we have

e
m
2
r ⪯⋈ µ(B(p, r)) ⪯⋈ e3mr (53)

Therefore we have the following estimate between ball measures.

Corollary 3.16. There exists M(⋈) such that for any r2 > r1 ≥M and for all p1, p2 ∈ X ⋈ Y

exp (1
6
∣r2 − r1∣m)µ(B(p1, r1)) ≤ µ(B(p2, r2)) ≤ exp (6∣r2 − r1∣m)µ(B(p1, r1))

Corollary 3.17. There exists M(⋈) such that for any r2 > r1 ≥M and for all A ⊂X ⋈ Y

µ (Nr2(A)) ⪯⋈ e6∣r2−r1∣mµ (Nr1(A))
Furthermore, if there exists z ∈ R such that A ⊂Xz we have

µ (NM(A)) ≍⋈ µz (NM(A) ∩Xz)
In particular, for all p ∈ (X ⋈ Y )z

µ (B(p,M)) ≍⋈ µz (DM(p))
Proof. Since X ⋈ Y is a proper metric space, by a covering lemma of [Hei01], there exists a set Z ⊂ A
such that:

1. The balls B(p, r1) for p ∈ Z are pairwise disjoint.

2. We have the following inclusions:

⊔
p∈Z

B(p, r1) ⊂Nr1(A) ⊂ ⋃
p∈Z

B(p,5r1)
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Therefore Nr2(A) ⊂ ⋃
p∈Z

B(p,5r1 + (r2 − r1)).
Moreover, if A ⊂Xz , for r1 =M we have

⊔
p∈Z

DM(p) ⊂NM(A) ∩Xz ⊂ ⋃
p∈Z

D5M(p),
and for all p ∈ Z , µz(B(p,5M)) ≍⋈ 1 ≍⋈ µz(D5M (p)). Hence

µ (NM(A)) ≍⋈ ∑
p∈Z

µ(B(p,5M))
≍⋈ ∑

p∈Z

µz(D5M(p)) ≍⋈ µz (NM(A) ∩Xz)

A (k, c)-quasi-isometry Φ ∶X ⋈ Y →X ′ ⋈ Y ′ "quasi"-preserve the measure µ.

Lemma 3.18. For all (k, c)-quasi-isometry Φ ∶ X⋈Y →X ′⋈Y ′ and for all measurable subset U ⊂X⋈Y
we have

µ(Nk(c+1)(U)) ≍k,c,⋈ µ(N1(Φ(U)))
Proof. SinceX ⋈Y is a proper metric space, by a classical covering lemma of [Hei01] there exists a set

Z ⊂ U such that:

1. The balls B(p, k(c + 1)) for p ∈ Z are pairwise disjoint.

2. We have the following inclusions:

⊔
p∈Z

B(p, k(c + 1)) ⊂Nk(c+1)(U) ⊂ ⋃
p∈Z

B(p,5k(c + 1))

Since Φ is a (k, c)-quasi-isometry, Φ(Z) verifies:
1. The balls B(q,1) for q ∈ Φ(Z) are pairwise disjoint.
2. We have the following inclusions:

⊔
q∈Φ(Z)

B(q,1) ⊂N1 (Φ(U)) ⊂ ⋃
q∈Φ(Z)

B(q,5k2(c + 1) + c)

Furthermore, for all p ∈ Z we have

µ(B(p,1)) ≍⋈ 1 ≍⋈′ µ(B(Φ(p),1)) ≍k,c,⋈′ µ(B(Φ(p),5k2(c + 1) + c)),
hence µ(Nk(c+1)(U)) ≍k,c,⋈ #Z ≍k,c,⋈′ µ(N1(Φ(U))).
3.6 Set of vertical geodesics

SinceX is a Gromov hyperbolic, Busemann space, for any x ∈ X , there exists a unique vertical geodesic

ray starting from x in X , therefore, there is a one to one correspondence between portions of verti-

cal geodesic rays in a box BX , and the points at the bottom of BX . A vertical geodesic segment ofBX is defined as the intersection of a vertical geodesic and BX . We recall that vertical geodesics are

parametrised by arclength by their height.

Let BX be a box at scale R of X . Let us denote by V BX the set of vertical geodesic segments ofB. A geodesic segment v ∈ V BX intersects only in one point x the bottom of BX , and v is the only

vertical geodesic segment of V BX intersecting x by the Busemann assumption on X .
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Definition 3.19. (Measure η on V BX )

LetBX be a box at scaleR ofX . The measure ηX
V BX on V BX is defined on all measurable subset U ⊂ V BX

by

ηXV BX(U) = λX
h−(BX)({γ(h−(BX)) ∣ γ ∈ U} ) (54)

In particular, we say thatU is measurable if {γ(h−(BX)) ∣ γ ∈ U} is measurable. Since the measure

λ is almost constant along projections, the measure on the set of vertical geodesic segment is related to

the height of the boxes. Specifically we show that up to a multiplicative constant, the measure of a box

is equal to the measure of its set of vertical geodesic segments multiplied by its height, as for rectangles

in R
2. In the sequel we might omit the index of the measure ηX .

Property 3.20. Let BX be a box at scale R ofX and let us denote h− ∶= h−(BX) and h+ ∶= h+(BX). We

have for all z ∈ [h−, h+[:
1. ηX(V BX) ≍X λX

z (BXz ) ≍X emh+

2. λX(BX) ≍X RλX
z (BXz ) ≍X RηX(V BX) ≍X Remh+

Proof. Let x ∈ X be such that C(x) is the cell of BX . We know thatDM0
(x) ⊂ C(x) ⊂D2M0

(x), hence
by Lemma 3.2 we have

µX
h(x)(C(x)) ≍X 1 (55)

Then

ηX(V BX) = λX
h−(BX ∩ h−1(h−)), by definition,

≍X λX
z (BXz ) ≍X λX

h+(C(x)) ≍X emh+µX
h+(C(x)), by Property 3.5

≍X emh+ ,

which proves the first point. The second point follows from the fact that the measures λz are constant

by projections on height level sets, up to the multiplicative constantM(X).

λX(BX) =
h+

∫
h−

λX
z (BX ∩ h−1(z))dz =

h+

∫
h−

λX
z (πz(C(x)))dz

≍X
h+

∫
h−

λX
h+(C(x))dz, by Property 3.5,

≍X RλX
h+(C(x)) ≍X Remh+

A vertical geodesic V = (V X , V Y ) ⊂X⋈Y is a couple of vertical geodesics ofX and Y . Therefore,

there is a bijection between the set of vertical geodesic segments V B of a box B ∶= BX ⋈ BY and

V BX × V BY .
Definition 3.21. Let B be a box at scale R ofX ⋈ Y . We define the measure ηV B on V B as

ηV B ∶= ηXV BX ⊗ ηYV BY (56)

In the notation of measures on sets of vertical geodesic segments, we might omit the reference to

the corresponding sets. The measures ηV B , respectively ηX
V BX , η

Y
V BY , will simply be denoted by η,

respectively ηX , ηY .

Property 3.22. For each box B at scale R ofX ⋈ Y we have for all z1, z2 ∈ [h−, h+[:
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1. η (V B) ≍⋈ emh+e−nh
− ≍⋈ λX

z1
(BXz1)λY

−z2(BY−z2)
2. λ(B) ≍⋈ Rη (V B) ≍⋈ RλX

z1
(BXz1)λY

−z2(BY−z2)
Proof. The first point follows from definition 3.21 and Property 3.20 applied on BX and BY . The proof
of the second point is similar to the proof of Property 3.20

λ(B) =
h+

∫
h−

λX
z ⊗ λY

−z(BXz ×BY−z)dz =
h+

∫
h−

λX
z (BXz )λY

−z(BY−z)dz

≍⋈
h+

∫
h−

λX
h−(BXh−)λY

−h+(BY−h+)dz, by Property 3.5,

≍⋈
h+

∫
h−

ηX(V BX)ηY (V BY )dz, by definition of η,

≍⋈ η (V B)
h+

∫
h−

1dz = Rη (V B)
Then applying twice Property 3.20 provides us with the result.

Let B be a box at scale R. Let z ∈ [h−(B);h+(B)[ and let U ⊂ Bz . Then we denote VB(U) the set
of vertical geodesic segments of V B intersecting U , it is in bijection with

{(x, y) ∈ BX0 ×BY−R∣ (πX
z (x), πY

−z(y)) ∈ U}
We need the following property stating that the measure of a given subfamily of vertical geodesics

can be computed on any level of our box.

Property 3.23. LetB be a box at scaleR ofX⋈Y . Then for all z ∈ [h−(B);h+(B)[ and for all measurable

subset Uz ⊂ Bz
η(VB(Uz)) ≍⋈ λz(Uz)

Proof. Without loss of generality we can assume that [h−(B);h+(B)[ = [0 ∶ R[. By definition we have

η(VB(Uz)) ∶= ∫
x0∈BX

0

∫
y0∈BY

−R

1{(x,y)∈BX
0
×BY
−R∣(πX

z (x),πX
−z(y))∈Uz}(x0, y0)dλY

−Rdλ
X
0

= ∫
x0∈BX

0

∫
y0∈BY

−R

1Uz(πX
z (x0), πY

−z(y0))dλY
−Rdλ

X
0

= ∫
x0∈BX

0

⎛⎜⎜⎝ ∫y∈BY
−z

1Uz(πX
z (x0), y)d (πY

−z ∗ λ
Y
−R)
⎞⎟⎟⎠ dλ

X
0 , with a pushforward of λY

−R by πY
−z,

= ∫
y∈BY

−z

⎛⎜⎜⎝ ∫x0∈BX
0

1Uz(πX
z (x0), y)dλX

0

⎞⎟⎟⎠
d (πY

−z ∗ λ
Y
−R) , by Fubini’s Theorem,

= ∫
y∈BY

−z

⎛⎜⎜⎝ ∫x∈BX
z

1Uz (x, y)d (πY
z ∗ λ

X
0 )
⎞⎟⎟⎠
d (πY

−z ∗ λ
Y
−R) , with a pushforward of λX

0 by πX
z ,

≍⋈ ∫
y∈BY

−z

∫
x∈BX

z

1Uz (x, y)dλX
z dλY

−z , by using Property 3.5 twice,

≍⋈ λz(Uz).
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3.7 Projections of set of almost full measure

Let us denote by pX ∶ X ⋈ Y → X ; (x, y) ↦ x and by pY ∶ X ⋈ Y → X ; (x, y) ↦ y the projections

on the two coordinates of X ⋈ Y . We also denote by slight abuse the projection on a set of vertical

geodesic segments pX ∶ V B → V BX ; (vX , vY ) ↦ vX and pX ∶ V B → V BY ; (vX , vY ) ↦ vY . Given

a a subset U ⊂ B, we might simply denote by UX , respectively UY , its projection on X , respectively

on Y , and similarly for subsets of V B.
In this section, we show that if a subset of a box has almost full measure, then most of the fibers

with respect to these projections also have almost full measure.

Let 0 < α ≤ 1, let V1 ⊂ V B be a measurable subset. Let us denote for all vX ∈ V BX
GY (vX) ∶={vY ∈ V BY ∣ (vX , vY ) ∈ V0} = (pY )−1 (pX (vX) ∩ (V B ∖ V1))

GX ∶={vX ∈ V BX ∣ ηY (GY (vX)) ≥ (1 −√α)ηY (V Y
1 )}

The set GX is the set of vertical geodesics in V BX whose fibers have almost full intersection with

V B ∖ V1.

The following lemma asserts that almost all fibers have almost full intersection with V B ∖ V1.

Lemma 3.24. Let 0 < α ≤ 1 and let V1 ⊂ V B be a measurable subset such that η(V1) ≤ αη(V B), then
ηX (GX) ≥ (1 −√α)ηX (V BX)

Proof. By construction we have

⋃
vX∈V BX

GY (vX) = (V B ∖ V1)Y

To prove the Lemmawe proceed by contradiction. Let us assume that ηX (GX) < (1−√α)ηX (V BX),
then ηX (V BX ∖GX) >√αηX (V BX). Therefore

η (V1) =∫
V B

1V1
(v)dη(v)

= ∫
V BX

∫
V BY

1V1
(vX , vY )dηY (vY )dηX(vX), by definition of η,

= ∫
V BX

∫
V BY

1V BY ∖GY (vX) (vY )dηY (vY )dηX(vX), by definition of GY (vX) ,
= ∫
V BX

ηY (V BY ∖GY (vX))dηX(vX) ≥ ∫
V BX∖GX

ηY (V BY ∖GY (vX))dηX(vX)

Furthermore, when vX ∈ V BX ∖ GX we have that ηY (GY (vX)) < (1 − √α)ηY (V BY ), hence
ηY (V BY ∖GY (vX)) ≥√αηY (V BY ). Therefore

η (V1) ≥ ∫
V BX∖GX

√
αηY (V BY )dηX(vX)

≥√αηY (V BY ) ηX (V BX ∖GX)
≥√α√αηY (V BY )ηX (V BX) , by the contradiction assumption,

> αη(V B), , since V B is a product,

which contradicts η (V1) ≤ αη (V B).
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In the previous Lemma we only used the fact that the set of vertical geodesic segments V B was the

product of its projections endowed with a product measure η. We will use it once one the product of

two measured spaces endowed with a product measure in the proof of Proposition 4.7.

We recall that for any U ⊂ X ⋈ Y we denote V B(U) ∶= {v ∈ V B ∣ im(v) ∩ U ≠ ∅}. Similarly for

all V1 ⊂ V B we denote V1(U) ∶= {v ∈ V1 ∣ im(v) ∩U ≠ ∅}.
The next Lemma is a local version of Lemma 3.24. Let V1 ⊂ V B. LetM > 0 be a constant, let a ∈ B and

let us denote V D ∶= V B (DM (a)) and V1D ∶= V1 (DM(a)). For all v = (vX , vY ) ∈ VB , let us denote
by

EY (vX) ∶={vY ∈ V DY ∣ (vX , vY ) ∈ V1D} = (pY )−1 (pX (vX) ∩ (V D ∖ V1D))
FX ∶={vX ∈ V DX ∣ ηY (EY (vX)) ≥√αηY (V DY )} .

Lemma 3.25. Let 0 < α ≤ 1. If η(V1D) ≤ αη(V D) then
ηX (FX) ≤√αηX (V DX) (57)

Proof. Let us proceed by contradiction. We assume that

ηX (FX
i ) >√αηX (V DX

i ) (58)

Then we have

η (V1D) = ∫
vX∈V DX

∫
vY ∈V DY

1V1D(vX , vY )dηY dηX

= ∫
vX∈V DX

∫
vY ∈V DY

1EY (vX)(vY )dηY dηX

= ∫
vX∈V DX

ηY (EY (vX))dηX , by the definition of EY (vX),
≥ ∫
vX∈FX

ηY (EY (vX))dηX , since FX ⊂ V DX ,

>√αηX (V DX)√αηY (V DY ) > αη(V D),
which contradicts assumption on V D. Hence ηX(FX) ≤√αηX(V DX).

The following lemma asserts that for almost all points of the box, almost all vertical geodesics

passing through the disc DM0
(x) do not belong to V1.

Lemma 3.26. There exists a constant 0 < α(⋈) ≤ 1 such that for all 0 < α ≤ α(⋈) the following statement

holds. Let M0 be the constant involved in assumption (E2) and let B be a box at scale R. If there exists

V1 ⊂ V B such that η (V1) ≤ αη (V B). Then
λ
⎛
⎝
⎧⎪⎪⎨⎪⎪⎩x ∈ B ∣

η (V1(DM0
(x)))

η (V B(DM0
(x))) > α

1

4

⎫⎪⎪⎬⎪⎪⎭
⎞
⎠ ≤ α

1

4λ (B) (59)

Proof. Without loss of generality we may assume that h(B) = [0;R[. Let us denote
U =
⎧⎪⎪⎨⎪⎪⎩x ∈ B ∣

η (V1(DM0
(x)))

η (V B(DM0
(x))) > α

1

4

⎫⎪⎪⎬⎪⎪⎭ (60)
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We proceed by contradiction, let us assume that λ(U) > α 1

4λ(B). In this case there exists z ∈ [0;R[
such that λz(Uz) > α

1

4λz(Bz). Let U ′z ⊂ Uz be a 2M0 maximal separating set of Uz . We have that

⊔
x∈U ′z

DM0
(x) is a disjoint union and that Uz ⊂ ⋃

x∈U ′z
D2M0

(x). Then we have

λz

⎛
⎝ ⊔x∈U ′z DM0

(x)⎞⎠ = ∑x∈U ′z λz (DM0
(x)) = ∑

x∈U ′z

λz (D2M0
(x)) λz (DM0

(x))
λz (D2M0

(x))
≍⋈ ∑

x∈U ′z

λz (D2M0
(x)) , by Lemma 3.2,

≥ λz

⎛
⎝ ⋃x∈U ′z D2M0

(x)⎞⎠ ≥ λz (Uz)
⪰⋈ α 1

4λz (B) , by assumption on Uz. (61)

However ∀x ∈ U ′z we have η (V1(DM0
(x))) > α 1

4 η (V B(DM0
(x))), therefore

η
⎛
⎝V1

⎛
⎝ ⋃x∈U ′z DM0

(x)⎞⎠
⎞
⎠ > α

1

4 η
⎛
⎝V B

⎛
⎝ ⋃x∈U ′z DM0

(x)⎞⎠
⎞
⎠

≍⋈ α 1

4λz

⎛
⎝ ⋃x∈U ′z DM0

(x)⎞⎠ , by Lemma 3.23

≥ α 1

4α
1

4λz (B) =√αλz (B) , by inequality (61)

≍⋈ √αη (V B) , by Lemma 3.23

Since η (V1) ≥ η (V1 ( ⋃
x∈U ′z

DM0
(x))) and since

√
α >M(⋈)α for α < 1

M2 , it contradicts the assump-

tions of the lemma.

Let us point out that in this Lemma, we first showed that on a fixed level-set, most of its point were

surrounded by almost only of vertical geodesic not in V1. This remark will be relevant in the proof of

Proposition 4.7.

The three next lemmas are estimates on the quantity of Y -horospheres verifying specific properties.

They are used in section 4.4. Let B be a box, x ∈ B let U ⊂ B and let us denote by

Hx ∶= {x} ⋈ BY = {(x, y) ∣ y ∈ BY , h(y) = −h(x)} = (pX)−1(x),
a Y -horosphere of B. Let us denote by

EY (x) ∶={y ∈ BY ∣ (x, y) ∈ U c} = pY (pX−1(x) ∩U c) = (Hx ∩U c)Y
EX ∶={x ∈ BX ∣ λY

−h(x) (EY (x)) >√αλY (HY
x ) and h(x) ≥ h−(BX) + R

2
}

The set EX is in bijection with the "bad" Y -horospheresH above the middle of B, the ones which
have more than

√
α fraction of their measure λY in U c.

The following lemma asserts that almost all Y -horospheres in the upper half of the box have almost

full measure.

Lemma 3.27. If λ(U) ≥ (1 −α)λ(B) with 0 < α < 1, then we have

λX(EX) <√αλX(BX)
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Figure 16: LargeX-Horosphere in X ⋈ Y .

Proof. Without loss of generality we can assume that h(B) = [0;R[. We proceed by contradiction, let

us assume that λX (EX) ≥√αλX (BX). Then we compute the measure of U c:

λ (U c) =
R

∫
0

λX
z ⊗ λY

−z (U c
z)dz =

R

∫
0

∫
BX
z

λY
−z({y ∈ Y−z ∣ (x, y) ∈ U c

z})dλX
z (x)dz, by definition,

=
R

∫
0

∫
BX
z

λY
−z ((Hx ∩U c)Y )dλX

z (x)dz

≥
R

∫
0

∫
EX

z

λY
−z ((Hx ∩U c)Y )dλX

z (x)dz, since EX
z ⊂ BXz ,

>√α
R

∫
0

⎡⎢⎢⎢⎢⎢⎣
∫
EX

z

λY
−z (HY

x )dλX
z (x)

⎤⎥⎥⎥⎥⎥⎦
dz, by the definition of EX ,

=√α
R

∫
0

[λY
−z (BY−z)λX

z (EX
z )]dz, by the definition ofHx

≥√α√α
R

∫
0

λY
−z (BY−z)λX

z (BXz )dz ≥ αλ(B), by assumption on EX ,

which contradicts the assumption on U .

For all U ⊂ B we denote Sh(U) and call shadow of U the set of points of B below U such that

Sh(U) ∶= {p ∈ B ∣ ∃V ∈ V B containing p and intersecting U on a point p′ such that h(p′) ≥ h(p)}.
For S a subset of X, we shall call large Y -horosphere the subset HS defined by

HS ∶= S ⋈ Y = (pX)−1(S).
LetM0 be the constant involved in assumption (E2). Let us denote by FX ⊂ BX the subset
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FX ∶= {x ∈ BX ∣ λ(Sh(HDM0
(x)) ∩U c) > α 1

4λ(Sh(HDM0
(x))) and h(x) ≥ h−(BX) + R

2
}

The set FX is in bijection with the "bad" Y -horospheresH that are above the middle of the box B.
By "bad" we mean the ones which have more than α

1

4 fraction of the measure λ of their shadow in U c.

In the following lemma, we show that the shadow of almost all the Y -horospheres in the upper half

of the box have almost full measure.

Lemma 3.28. There exists a constant 0 < α(⋈) ≤ 1 such that for all 0 < α ≤ α(⋈) the following statement

holds. If λ(U) ≥ (1 − α)λ(B), then we have

λX(FX) < α 1

4λX(BX)
Proof. Without loss of generality we can assume that h(B) = [0;R[. We proceed by contradiction, let

us assume that λX(FX) ≥ α 1

4λX(BX). Therefore, there exists z0 ∈ [R2 ,R[ such that

λX
z0
(FX

z0
) ≥ α 1

4λX
z0
(BXz0).

Let Z be a 2M0-maximal separating subset of FX
z0
. Then we have

λ(U c) ≥λ(Sh(⊔
x∈Z

HDM0
(x)) ∩U c) = ∑

x∈Z

λ(Sh(HD1(x)) ∩U c), since this is a disjoint union,

≥α 1

4 ∑
x∈Z

λ(Sh(HDM0
(x)) ) ≍⋈ α 1

4 ∑
x∈Z

z0λz0(HDM0
(x)), by definition of FX

z0
and Proposition 3.5,

However λz0(HDM0
(x)) = λX

z0
(DM0

(x))λY
−z0(BY−z0) since HDM0

(x) =DM0
(x) × BY−z0 , hence

λ(U c) ⪰⋈α 1

4 z0 ∑
x∈Z

λX
z0
(DM0

(x))λY
−z0(BY−z0)

≍⋈α 1

4 z0λ
Y
−z0(BY−z0)∑

x∈Z

λX
z0
(D2M0

(x)), by Lemma 3.2,

≥α 1

4 z0λ
Y
−z0(BY−z0)λX

z0
(⋃
x∈Z

D2M0
(x)) ≥ α 1

4 z0λ
Y
−z0(BY−z0)λX

z0
(FX

z0
), by definition of Z,

≥α 1

4α
1

4 z0λ
Y
−z0(BY−z0)λX

z0
(BXz0), by assumption on FX

z0
,

≥√αR
2
λY
−z0(BY−z0)λX

z0
(BXz0) ≍⋈ 1

2

√
αλ(B), since z0 ≥ R

2
and by Property 3.22,

which contradicts the assumptions on U for α < 1
M(⋈)2 .

The following lemma asserts that the projection on a level-set of almost all the Y -horospheres have

almost full measure.

Lemma 3.29. If λ(U) ≥ (1 −α)λ(B), then there exists a constant M(⋈) such that for any large Y -

horosphere HDM0
(x) with x ∈ B ∖ FX as in Lemma 3.28, and for 1 ≥Mρ ≥M2α

1

4 > 0, there exists P a

level set of the height function in B, such that

λh(P )(P ∩ Sh(HDM0
(x)) ∩U c) ⪯⋈ α 1

4λh(P )(P ∩ Sh(HDM0
(x)))

Furthermore, P and H can be chosen such that ρR < d⋈(P,H) < 2ρR.

Proof. We proceed by contradiction, let us assume that such a plane P does not exist, then computing

the measure λ of Sh(HDM0
(x))∩U c ∩B[h(H)−2ρR;h(H)−ρR] contradicts the fact that λ(Sh(HDM0

(x))∩
U c) ≤ α 1

4 by Lemma 3.5 and since we integrate on a sufficiently large portion of [0,R] (ρ ≥Mα
1

4 ).
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In the following lemma we show that almost all level-sets admit a point with largeX-horospheres

and Y -horospheres.

Lemma 3.30. There exists a constant 0 < α(⋈) ≤ 1 such that for all 0 < α ≤ α(⋈) the following statement

holds. Let U ⊂ B be such that λ(U) ≥ (1 −α)λ(B). Then there exists U ′ ⊂ U such that:

1. λ(U ′) ≥ (1 − α 1

4 )λ(B)
2. For all z ∈ h(U ′) there exists (x0,z, y0,z) ∈ U ′z such that for all (x1, y1) ∈ U ′z , we have (x1, y0,z) ∈ U ′z

and (x0,z, y1) ∈ U ′z .
Proof. We may assume without loss of generality that h(B) = [0,R[. Let us denote by

HU ∶= {z ∈ [0,R[ ∣ λz (Uz) ≥ (1 −α 1

4 )λz (Bz)}
Thenwe claim thatLeb(HU) ≥ (1 − α 1

4 )R. To prove this claimwe proceed by contradiction. Let us as-

sume that Leb(HU) < (1 − α 1

4 )R, then Leb([0,R[∖HU ) ≥ α 1

4R. Furthermore, for all z ∈ [0,R[∖HU

we have λz (Uz) < (1 −α 1

4 )λz (Bz), hence
λz (Bz ∖Uz) ≥ α 1

4λz (Bz) (62)

Therefore, by computing the measure of B ∖U we have

λ (B ∖U) = ∫
z∈[0,R[

λz (Bz ∖Uz)dz ≥ ∫
z∈([0,R[∖HU)

λz (Bz ∖Uz)dz

≥ ∫
z∈([0,R[∖HU )

α
1

4λz (Bz)dz, by inequality (62),

⪰Xα
1

2λ(B), by the contradiction assumption and Property 3.5,

which contradicts the assumption on U for α small enough. Hence Leb(HU) ≥ (1 −α 1

4 )R.

Let us denote for z ∈ [0;R[
Uy ∶= {x ∈ BXz ∣ (x, y) ∈ U}
H ∶= {z ∈ [0,R[ ∣ ∃y ∈ BY−z , λX

z (Uy) ≥ (1 − α 1

4 )λX
z (BXz )}

In particular, for all y ∈ BY−z we have Uy ⊂ UX
z , and by the definition of λ

λ(U) = ∫
z∈[0,R[

∫
y∈BY

−z

λX
z (Uy).

We claim that Leb(H) ≥ (1 −α 1

4 )R. To prove this claim, we also proceed by contradiction. Let us

assume that Leb(H) < (1 − α 1

4 )R, then Leb([0,R[∖H) ≥ α 1

4R. Furthermore for all z ∈ [0,R[∖H we

have that

∀y ∈ BY−z , λX
z (Uy) < (1 − α 1

4 )λX
z (BXz )

Therefore, by the definition of Uy we have that ∀y ∈ BY−z
λX
z ({x ∈ BXz ∣(x, y) ∉ U}) ≥ α 1

4λX
z (BXz ) (63)
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Hence, by computing the measure of B ∖U we have

λ (B ∖U) = ∫
z∈[0,R[

∫
y∈BY

−z

λX
z ({x ∈ UX

z ∣(x, y) ∉ U})dλY
−zdz

≥ ∫
z∈([0,R[∖H)

∫
y∈BY

−z

λX
z ({x ∈ UX

z ∣(x, y) ∉ U})dλY
−zdz

≥ ∫
z∈([0,R[∖H)

∫
y∈BY

−z

α
1

4λX
z (BXz )dλY

−zdz, by inequality (63),

=α 1

4 ∫
z∈([0,R[∖H)

λY
−z (BY−z)λX

z (BXz )dz

⪰Xα
1

4α
1

4λ (B) = α 1

2λ (B) , by the contradiction assumption and Property 3.5,

which contradicts the assumption λ (B ∖U) < αλ (B), for α < 1
M(⋈)2 . Let us denote for all x ∈ BXz

Ux ∶= {y ∈ BY−z ∣ (x, y) ∈ U}
H ′ ∶= {z ∈ [0,R[ ∣ ∃x ∈ BXz , λY

−z (Ux) ≥ (1 −α 1

4 )λY
−z (BY−z)}

We show similarly that Leb(H ′) ≥ (1 − α 1

4 )R, therefore Leb(H ∩H ′ ∩HU) ≥ (1 − 3α 1

4 )R
For all z ∈H ∩H ′ there exists (x0,z, y0,z) ∈ Bz such that for all (x1, y1) ∈ Uz we have

λX
z (Uy0) ≥ (1 − α 1

4 )λX
z (BXz ) (64)

λY
−z (Ux0) ≥ (1 − α 1

4 )λY
−z (BY−z) (65)

Let us define for all z ∈HU ∩H ∩H ′, U ′z ∶= (Ux0,z ×Uy0,z). Then we have:

1. U ′ ⊂ U
2. λz(U ′z) = λz ((Ux0,z ×Uy0,z) ∩Uz) ≥ (1 − 3α 1

4 )λz(B) by inequalities (64), (65) and by the defi-

nition of HU .

3. For all (x1, y1) ∈ U ′z we have (x1, y0,z) ∈ U ′z and (x0,z, y1) ∈ U ′z
Let (x1, y1) ∈ U ′z , then (x1, y0,z) ∈ U ′ hence (x0,z, y0,z) ∈ U ′. Furthermore we have that Leb(HU ∩
H ∩H ′) ≥ (1 − 3α 1

4 )R, hence Leb([0,R[∖(HU ∩H ∩H ′)) ≤ 3α 1

4R. Therefore

λ (B ∖U ′) = ∫
z∈[0,R[

λz ((B ∖U ′)z)dz

= ∫
z∈([0,R[∖(HU∩H∩H′))

λz (Bz ∖ (Ux0,z ×Uy0,z))dz

≤ ∫
z∈([0,R[∖(HU∩H∩H′))

(3α 1

4 )λz(Bz)dz, by construction of U ′z

⪯X9α
1

2λ(B), by the measure of [0,R[∖(HU ∩H ∩H ′) and by Property 3.5.

Hence λ(U ′) ≥ (1 − α 1

4 )λ(B), since α 1

4 > 9M(X)α 1

2 (α small enough in comparison to a constant

depending only onX).

These points (x0,z, y0,z) will play a key role in the definition of the product map close to a given

quasi-isometry in Theorems 4.5 and 4.5.
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3.8 Divergence

Two distinct vertical geodesics in a δ-hyperbolic and Busemann space diverge quickly from each other.

However this statement, based on Corollary 6.0.3, depends on the pair of geodesics. The next lemma

aims at making this more precise for X an admissible horo-pointed space. More specifically we are

going to look at a point x and at all the vertical geodesic passing by a point of the disc centred at x

of radius M0 (the (E2) constant) along the horosphere at height h(x), that is V DM0
(x). Let V0 be a

geodesic containing x, we want to quantify the vertical geodesics in V DM0
(x) which start diverging

from the vertical geodesic V0 between the heights h(x) − l and h(x) + l. We shall denote this set by

Div(V0):
Div(V0) ∶= {V ∈ V DM0

(x) ∣ ∣hDiv(V0, V ) − h(x)∣ ≤ l}
Lemma 3.31. With the above notations we have

ηX(V DM0
(x)/Div(V0)) ⪯X e−mlηX(V DM0

(x))
Proof. We might, by slight abuse of notations, intersect a set of vertical geodesics segments E ⊂ V B
with a subset F ⊂ B, it means that we consider the intersection between F and the union of the images

of E. For example:

V DM0
(x) ∩ Bh(x) =DM0

(x).
Any vertical geodesic segment V ∈ V DM0

(x) did not start to diverge from the vertical geodesic V0

at the height h(x), we have hDiv(V,V0) ≤ h(x). Therefore, all the vertical geodesic segments which

did not start to diverge at the height h(x) − l, denoted by V DM0
(x)/Div(V0), are still M0-close to

πh(x)−l(x):
(V DM0

(x)/Div(V0)) ∩ Bh(x)−l ⊂DM0
(πh(x)−l(x)) (66)

We use Lemma 1.8 with z0 = h(x) and z = h(x) − l, which gives

D2l−M0
(πh(x)−l (x) ) ⊂ πh(x)−l (DM0

(x)) = V DM0
(x) ∩Bh(x)−l (67)

Therefore

ηX(V DM0
(x)/Div(V0))

ηX(V DM0
(x)) ≍X

λX
h(x)−l(V DM0

(x)/Div(V0) ∩Bh(x)−l)
λX
h(x)−l(V DM0

(x) ∩ Bh(x)−l) , by Property 3.23,

≤
λX
h(x)−l (DM0

(πh(x)−l(x)))
λX
h(x)−l(V DM0

(x) ∩Bh(x)−l) , by inequality 66

≤
λX
h(x)−l (DM0

(πh(x)−l(x)))
λX
h(x)−l (D2l−M0

(πh(x)−l (x) )) , by inequality 67.

Moreover by the definition of λX and Lemma 3.2

λX
h(x)−l (DM0

(πh(x)−l))
λX
h(x)−l (D2l−M0

(πh(x)−l (x) )) =
µX
h(x)−l (DM0

(πh(x)−l))
µX
h(x)−l (D2l−M0

(πh(x)−l (x) )) ⪯X e−ml. (68)

Therefore

ηX(V DM0
(x)/Div(V0))

ηX(V DM0
(x)) ⪯X e−ml.
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Heuristically, the previous lemma asserts that most of the vertical geodesics segments passing close

to a point x, start diverging from each other close to the height h(x).
We now provide an estimate on the exponential contraction of the measure µ along the vertical

direction.

Lemma 3.32. There exists M(⋈) such that the following holds. Let h0 ∈ R, let U ⊂ (X ⋈ Y )h0
be a

measurable subset. Let ∆ > M and let A ⊂ (X ⋈ Y )h0−∆ be a measurable subset. Suppose also that all

vertical rays V intersecting U intersect A. Then

µh0−∆(A) ⪰⋈ e(m−n)∆µh0
(U)

Proof. Since π⋈h0−∆
(U) ⊂ A we have

µh0−∆ (π⋈h0−∆(U)) ≤ µh0−∆ (A)
Where π⋈ is defined in Notations 1.13. We recall that for all x ∈ X , UY

x ∶= {y ∈ Y ∣ (x, y) ∈ U}. By
definition

µh0
(U) = µX

h0
⊗ µY

−h0
(U) = ∫

Xh0

µY
−h0
(UY

x )dµX
h0
(x) (69)

For all x ∈ UX let us denote Ux ∶= {(x, y) ∈ U ∣ y ∈ UY }, then
(Ux)Y = UY

x ∶= {y ∈ Y ∣ (x, y) ∈ U}
Furthermore UY

x ⊂ πY
−h0
[πY

∆−h0
(UY

x )], hence
µY
−h0
(UY

x ) ≤ µY
−h0
(πY
−h0
[πY

∆−h0
(UY

x )]) ≍⋈ en∆µY
∆−h0

[πY
∆−h0

(UY
x )] , by assumption (E3),

which gives us,

µh0
(U) ⪯⋈ en∆ ∫

UX

µY
∆−h0

[πY
∆−h0

(UY
x )]dµX

h0
(x), by definition ofµh0

. (70)

However we have

πY
∆−h0
(UY

x ) = (π⋈h0−∆(Ux))Y = (π⋈h0−∆(U))YπX
h0−∆

(x) (71)

= {y ∈ (π⋈h0−∆(U))Y ∣ (πX
h0−∆(x), y) ∈ π⋈h0−∆(U)}

Hence

µh0
(U) ⪯⋈ en∆ ∫

UX

µY
∆−h0

[(π⋈h0−∆(U))YπX
h0−∆

(x)]dµX
h0
(x), by (70) and (71),

= en∆ ∫
πX
h0−∆

(UX)
µY
∆−h0

[(π⋈h0−∆(U))Yx′]dπX
h0
∗ µX

h0
(x′)

≍⋈ en∆e−m∆ ∫
πX
h0−∆

(UX)
µY
∆−h0

[(π⋈h0−∆(U))Yx′]dµX
h0−∆(x′), by assumption (E3).

= e(n−m)∆µh0−∆ (π⋈h0−∆(U))
Furthermore, as said at the beginning we have µh0−∆ (π⋈h0−∆

(U)) ≤ µh0−∆ (A), therefore
µh0−∆(A) ⪰⋈ e(m−n)∆µh0

(U).
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In the next Lemma we transfer a control on the measure µ to a control on the measure η.

Lemma 3.33. Let M0 be the constant involved in assumption (E2), B be a box and z ∈ h(B). Let

A ⊂ (B)z and let E ⊂ B such that h+(E) ≤ h(A). Then, if there exists Q ≥ 1 such that µ (NM0
(E)) ≤

Q−1µ (NM0
(A)), we have that

η (VNM0
(E)) ⪯⋈ Q−1η (VNM0

(A))
Proof. Let Z ⊂ E be a 2M0-maximal separating set, we have:

1. The balls B(p,M0) for p ∈ Z are pairwise disjoint.

2. We have the following inclusions:

⊔
p∈Z

B(p,M0) ⊂NM0
(E) ⊂ ⋃

p∈Z

B(p,3M0)

The radius 3M0 is required since we cover allNM0
(E) and not onlyE. Furthermore, all balls and disks

of radiusM0 have comparable measure µ by assumption (E2) and Corollary (3.17), therefore

µ(NM0
(E)) ≍⋈ #Z ≍⋈ ∑

p∈Z

µ(B(p,M0)) ≍⋈ ∑
p∈Z

µh(p)(DM0
(p)) (72)

Moreover, for all v ∈ V E, there exists p ∈ Z such that v ∩ D3M0
(p) ≠ ∅. Consequently we have

VNM0
(E) ⊂ ⋃

p∈Z
V D3M0

(p), hence
η (VNM0

(E)) ≤ ∑
p∈Z

η (V D3M0
(p)) ≍X ∑

p∈Z

λh(p) (D3M0
(p)) , by Property 3.23,

≤ ∑
p∈Z

λX
h(p) (D6M0

(pX))λY
−h(p) (D6M0

(pY )) .
Furthermore, disks of radius r are included in rectangles of width 2r, hence

η (VNM0
(E)) ⪯⋈ ∑

p∈Z

eh(p)(m−n)µh(p) (D6M0
(p)) , by the definition of λh(p),

≤ eh(a)(m−n) ∑
p∈Z

µh(p) (D6M0
(p)) , because h+(E) ≤ h(A),

⪯⋈ eh(a)(m−n)µ (NM0
(E)) , by inequalities (72).

Using similar arguments we obtain

η (VNM0
(A)) ≍⋈ λh(a) (VNM0

(A)) ≍⋈ eh(a)(m−n)µ (VNM0
(A))

Combined with the assumption µ (NM0
(E)) ≤ Q−1µ (NM0

(A)) we have
η (VNM0

(A)) ⪰⋈ eh(a)(m−n)Qµ (NM0
(E)) ⪰⋈ Qη (VNM0

(E)) .

Heuristically, if a set E is sufficiently small and below a set A, then the set of vertical geodesic

segments intersecting E will also be small.

51



4 Proof of the geometric rigidity

The aim of this chapter is to present a proof of our key result. Let (X,Y ) and (X ′, Y ′) be two horo-

pointed admissible couples, of parameter respectively (m,n) and (m′, n′). Let us assume that m > n
andm′ > n′.

Theorem 4.1. Let Φ ∶X ⋈Y →X ′ ⋈Y ′ be a (k, c) quasi-isometry, then there exist two quasi-isometries

ΦX ∶ X → X ′ and ΦY ∶ Y → Y ′ such that

d⋈(Φ, (ΦX ,ΦY ) ) ⪯k,c,⋈ 1
Although this statement is similar to the statement in the case of Sol andDiestel-Leader, our broader

setting of admissible spaces requires additional key arguments, such as lemma 3.3, and therefore relies

heavily on the previous sections.

To make the exposition of the various statements in this chapter smoother, we made the following

abuse of notation. In a statement, when a parameter, say θ, needs to be sufficiently small, we will write

it by "For θ ⪯⋈ 1 we have ..." instead of "There exists a constant M(⋈) such that if θ ≤ 1
M
, then ...".

From now until the end of this chapter we consider Φ ∶ X ⋈ Y → X ′ ⋈ Y ′ a (k, c)-quasi-isometry with

fixed constants k ≥ 1 and c ≥ 0.

4.1 Vertical geodesics with ε-monotone image

In order to construct a product map, the key idea is to use the quadrilateral lemmas of Section 2.4 on

the image by the quasi-isometry Φ of a quadrilateral in X ⋈ Y . To do so we need to locate which

vertical geodesic segments are sent close to vertical geodesic segments. Thanks to Proposition 2.6 it is

sufficient to look for vertical geodesic segments with an ε-monotone image under Φ, where 0 ≤ ε < 1
is a parameter to be determined later (depending on ⋈, k and c). We call good these vertical geodesic

segments.

Notation 4.2. We recall that we denote V B the set of vertical geodesic segments of the boxB. Let us denote
by V gB the set of good vertical geodesic segments and V bB the set of bad vertical geodesic segments, that

is

V gB ∶= {γ ∈ V B ∣ Φ ○ γ is ε-monotone}
V bB ∶= {γ ∈ V B ∣ Φ ○ γ is not ε-monotone} = V B ∖ V gB

In the following lemma, we prove the existence of an appropriate scale on which almost all boxes

possess almost only good vertical geodesics. We shall denote by η ∶= ηV B , ηX ∶= ηXV BX and ηY ∶= ηY
V BY .

Proposition 4.3. For 0 < θ ⪯⋈ 1, there exist two positive constants M(k, c,⋈, ε) and M ′(k, c,⋈) such
that for all r0 ≥ M , N ≥ M ′

ε
and S ≥ M ′

εθ3
and boxes B at scale L ∶= NSr0, there exist k0 ∈ {1, ..., S}, a

box tiling ⊔
i∈I
Bi = B at scale R = Nk0r0 and Ig ⊂ I such that:

1. λ( ⋃
i∈Ig

Bi) ≥ (1 − θ)λ (B) (Boxes indexed by Ig cover almost all B)

2. ∀i ∈ Ig ,
ηi(V bBi)
ηi(V Bi) ≤ θ (almost all vertical geodesic segments in Bi have ε-monotone image)

where ηi ∶= ηV Bi .
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Proof. We recall from Lemma 2.9 the definition of δs(α) for a quasi-geodesic segment α.

As ∶= {α ([kN sr0, (k + 1)N sr0]) ∣k ∈ {0, ...,NS−s − 1}} ,
Then δs(α) is the proportion of segments in As which are not ε-monotone:

δs(α) ∶= #{β ∈ As∣β is not ε-monotone}
#As

. (73)

Using Proposition 2.9 on every vertical geodesic segment in B we have that ∀α ∈ V B
S∑
s=1

δs(α) ⪯⋈,k,c 1
ε
. (74)

We now integrate the inequality (74) with respect to η over V B to get

1

ε
⪰⋈,k,c 1

η(V B) ∫
α∈V B

( S

∑
s=1

δs(α))dη = S

∑
s=1

⎛⎜⎝
1

η(V B) ∫
α∈V B

δs(α)dη⎞⎟⎠ .
Consequently there exists k0 ∈ {1, ..., S} such that

1

η(V B) ∫
α∈V B

δk0(α)dη ⪯⋈,k,c 1

Sε
⪯⋈ θ3, by assumption on S. (75)

From now on we denote R ∶= Nk0r0. There are
L
R
layers of boxes at scale R in B. We average δk0(α)

along all α ∈ V B:
1

η(V B) ∫
α∈V B

δk0(α)dη = 1

η(V B) ∫
α∈V B

R

L

L
R
−1

∑
k=0

δk0(α([kR; (k + 1)R]))dη

= 1

η(V B)
R

L

L
R
−1

∑
k=0
∫

α∈V B

δk0(α([kR; (k + 1)R]))dη (76)

Let us denote by B[k] ∶= B ∩h−1([kR; (k + 1)R[) the k-th layer of B. Since vertical geodesic segments

ofX ⋈ Y are couples of vertical geodesic segments, V B[k] is in bijection with V BX[k] × V BY[k] which is

itself in bijection with BXkR ×BY−(k+1)R as explained in Section 3.6. Let us denote by f this bijection.

f ∶ B[k] → BXkR × BY−(k+1)R
α ↦ (αX(kR), αY (−(k + 1)R))

For all α ∈ V B and for all k ∈ {0, ..., L
K
− 1} we have δk0(α([kR; (k + 1)R])) = 0 or 1, hence

δk0(α([kR; (k + 1)R])) = 1V bB[k]
(α([kR; (k + 1)R]))

= 1f(V bB[k])(αX((k + 1)R), αY (−kR))
Therefore

∫
α∈V B

δk0(α([kR; (k + 1)R])dη
= ∫
(αX ,αY )∈V BX×V BY

1f(V bB[k])(αX((k + 1)R), αY (−kR))dηXdηY

= ∫
(x,y)∈BX

0
×BY
−L

1f(V bB[k])(πX
kR(x), πY

−(k+1)R(y))dλX
0 dλY

−L, by definition ηX and ηY ,

≍⋈ ∫
(x′,y′)∈BX

kR
×BY
−(k+1)R

1f(V bB[k])(x′, y′)dλX
kRdλ

Y
−(k+1)R, by Property 3.5. (77)
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Let ⊔i∈I Bi be the box tiling at scale R as in Proposition 3.11, and for all k ∈ {0, . . . ,N − 1} let us
denote by Ik ⊂ I the indices of the boxes Bi which tile B[k]. Then we have V B[k] = ⊔i∈Ik V Bi and
V bB[k] = ⊔i∈Ik V

bBi. Therefore for all (x, y) ∈ BXkR × BY−(k+1)R
1f(V bB[k])(x, y) = 1f(⊔i∈Ik V bBi)(x, y) = ∑

i∈Ik

1f(V bBi)(x, y)
Hence from inequality (77) we have

∫
α∈V B

δk0(α([kR; (k + 1)R])dη ≍⋈ ∫
(x,y)∈BX

kR
×BY
−(k+1)R

∑
i∈Ik

1f(V bBi)(x, y)dλX
kRdλ

Y
−(k+1)R

= ∑
i∈Ik

∫
(x,y)∈BX

kR
×BY
−(k+1)R

1f(V bBi)(x, y)dλX
kRdλ

Y
−(k+1)R

= ∑
i∈Ik

∫
α∈V Bi

1V bBi(α)dηi = ∑
i∈Ik

ηi (V bBi)
In combination with inequality (76) we have

1

η(V B) ∫
α∈V B

δk0(α)dη ⪰⋈ 1

η(V B)
R

L

L
R
−1

∑
k=0

∑
i∈Ik

ηi(V bBi)

⪰⋈∑
i∈I

Rηi(V Bi)
Lη(V B)

ηi(V bBi)
ηi(V Bi)

⪰⋈∑
i∈I

λ(Bi)
λ(B)

ηi(V bBi)
ηi(V Bi) , by Property 3.22

Let us denote by Ib the set of indices i of boxes Bi such that
ηi(V bBi)
ηi(V Bi) ≥ θ, and Ig ∶= I ∖ Ib. By

definition, Ig satisfies the second part of our proposition, we are left with proving that it also satisfies

the first part. To do so we assume by contradiction that λ( ⋃
i∈Ib

Bi) ≥ θλ (B), then
1

η(V B) ∫
α∈V B

δk0(α)dη ⪰⋈ ∑
i∈Ib

λ(Bi)
λ(B)

ηi(V bBi)
ηi(V Bi) , since Ib ⊂ I,

⪰⋈ θ
∑
i∈Ib

λ(Bi)
λ(B) , by the definition of Ib,

⪰⋈ θ2, by the contradiction assumption,

which contradicts inequality (75) for θ ⪯⋈ 1. Therefore λ( ⋃
i∈Ib

Bi) < θλ (B), hence λ( ⋃
i∈Ig

Bi) ≥ (1 −
θ)λ (B).

Let B be a box at scale R. Let us denote the upward and downward oriented vertical geodesic

segments by

V ↑B ∶={V ∈ V gB ∣ h(Φ ○ V (0)) ≤ h(Φ ○ V (R))}
V ↓B ∶={V ∈ V gB ∣ h(Φ ○ V (0)) ≥ h(Φ ○ V (R))}

We are now going to show that in a given box Bi with i ∈ Ig , almost all vertical geodesic segments

share the same orientation.
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Lemma 4.4. For 0 < ε2 ⪯k,c,⋈ θ ⪯k,c,⋈ 1, and for R ⪰k,c,⋈ 1
ε
we have that if B is a box at scale R such

that η (V bB) ≤ θη (V B), then one of the two following statements holds:

1. η (V ↑B ∩ V gB) ≥ (1 − 3√θ)η (V B)
2. η (V ↓B ∩ V gB) ≥ (1 − 3√θ)η (V B)
In the proof, we first characterise a set of vertical geodesic segment whose images share the same

orientation, then we show that this set has almost full measure.

Proof. Without loss of generality we can assume that h(B) = [0,R[. Let us denote by
GY (vX) ∶={vY ∈ V BY ∣ (vX , vY ) ∈ V gB}

GX ∶={vX ∈ V BX ∣ ηY (GY (vX)) ≥ (1 −√θ)ηY (V BY )}
By construction we have

⋃
vX∈V BX

GY (vX) = (V gB)Y

Applying Lemma 3.24 with V1 ∶= V g(B) and α ∶= θ we get
ηX (GX) ≥ (1 −√θ)ηX (V BX) (78)

Let vX1 ∶ [0,R] →X and vX2 ∶ [0,R] →X be two vertical geodesic segments of GX , then

ηY (GY (vX1 )) ≥ (1 −√θ)ηY (V BY )
ηY (GY (vX2 )) ≥ (1 −√θ)ηY (V BY )

Hence

ηY (GY (vX1 ) ∩GY (vX2 )) ≥ (1 − 2√θ)ηY (V BY ) (79)

Let vY1 , v
Y
2 ∈ GY (vX1 ) ∩GY (vX2 ) and let us denote by Vi,j ∶= (vXi , vYj ) with i, j = 1,2. By definition

of vY1 and vY2 , the quasigeodesic segments Φ (Vi,j) are ε-monotone.

two cases occur. As a first case let us assume that

dX (vX1 (0), vX2 (0)) >√θR
dY (vY1 (0), vY2 (0)) >√θR

Let M be the constant involved in Proposition 2.13. For R ≥ 4kc and ε ≤
√
θ

20kM
we have that

√
θR ≥

10kMεR + 2kc, hence we can apply Proposition 2.13 on V1,1 and V2,2, which gives us that they share

the same orientation.

The second case, that is when either dX (vX1 (0), vX2 (0)) ≤ √θR or dY (vY1 (0), vY2 (0)) ≤ √θR, is

treated thanks to an auxiliary geodesic segment. Hence without loss of generality we focus on the case

dX (vX1 (0), vX2 (0)) ≤√θR and consider a geodesic segment vX3 ∈ G
X verifying dX (vX1 (0), vX3 (0)) >√

θR and dX (vX2 (0), vX3 (0)) >√θR. To prove its existence, we consider the measure of

GX ∖ VBX(D√θR
(vX1 (0)) ∪D√θR

(vX2 (0))) (80)

Let M0 be the constant of assumption (E2). By Lemma 3.2 we have for all r1 ≥ r2 > M0 and for all

x ∈ X0 that µ0(Dr1(x)) ≍⋈ em ∣r1−r2 ∣
2 µ0(Dr2(x)), therefore

λ0 (D√θR
(vX1 (0))) ⪯⋈em

√
θR−R
2 λ0 (DR(vX1 (0))) ≤ e−mR

4 λ0 (DR(vX1 (0))) , since θ ≤
1

4
. (81)
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Furthermore, by Lemma 1.8 the bottom of B contains a disk of radius 2R −M0, hence by Lemma 3.2

we have ηX (V BX) ≍X λ0 (D2R(vX1 (0))). Combined with inequality (81) we have

λ0 (D√θR
(vX1 (0))) ⪯⋈ e−mR

4 ηX (V BX) .
The same formula holds for vX2 instead of vX1 . By inequality (78) we have that

ηX (GX) ≥ (1 −√θ)ηX (V BX) ≥ 1

2
ηX (V BX) ,

hence there existsM(⋈) such that

ηX (GX ∖ VBX (D√
θR
(vX1 (0)) ∪D√θR

(vX2 (0)))) ≥(1
2
− 2Me−m

R
4 )ηX (V BX)

>0, for R ≥
4

m
ln(4M + 1).

Therefore there exists vX3 ∈ G
X such that

dX (vX1 (0), vX3 (0)) >√θR
dX (vX2 (0), vX3 (0)) >√θR

Applying twice Lemma 2.13, first on V1,1 and V3,3, then on V2,2 and V3,3, we get that the Φ(V1,1) has
the same orientation as Φ(V3,3) which has the same orientation as Φ(V2,2). Therefore Φ(V1,1) and
Φ(V2,2) share the same orientation.

Let us fix vX0 ∈ BX and vY0 ∈ GY (vX1 ). Then every image of a vertical geodesic segment V ∈
⋃

vX∈GX

{vX} × (GY (vX0 ) ∩GY (vX)) shares the same orientation as the image of (vX0 , vY0 ). Further-
more

η ( ⋃
vX∈GX

{vX} × (GY (vX1 ) ∩GY (vX))) = ∫
vX∈GX

ηY (GY (vX1 ) ∩GY (vX))dηX

≥ ∫
vX∈GX

(1 − 2√θ)ηY (V BY )dηX , by inequality (79),

=(1 − 2√θ)ηY (V BY ) ηX (GX)
≥(1 − 2√θ)ηY (V BY ) (1 −√θ)ηX (V BX) , by inequality (78)

≥(1 − 3√θ)η (V B) ,
which proves the lemma.

4.2 Factorisation of a quasi-isometry in small boxes

The Proposition 4.3 gives us two scalesR and L such that all boxes at scale L can be tiled with boxes at

scale R. Moreover, almost all of them, that is the Bi for i ∈ Ig , contained almost only vertical geodesic

segments with ε-monotone image under Φ.

A map f ∶ X ⋈ Y → X ′ ⋈ Y ′ is called a product map if there exist a two maps fX and fY such

that one of the two following holds:

1. We have fX ∶X →X ′, fY ∶ Y → Y ′ and ∀p = (pX , pY ) ∈X ⋈ Y , f(p) = (fX (pX) , fY (pY )).
2. We have fX ∶X → Y ′, fY ∶ Y →X ′ and ∀p = (pX , pY ) ∈X ⋈ Y , f(p) = (fY (pY ) , fX (pX)).
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In particular, when we denote by (fX , fY ) a product map on a horospherical product, it implies that

when h(x) + h(y) = 0, we have h(fX(x)) + h(fY (y)) = 0. Therefore a product map is height

respecting.

Theorem 4.5. For 0 < θ ≤ ε ⪯⋈ 1, r0 ⪰⋈ ε√
2

ε
,N ⪰⋈ 1 and for S ⪰⋈

1

εθ2
, we have that for any i ∈ Ig , there

exists a product map Φ̂i, and U
′
i ⊂ Bi such that:

1. λ(U ′i) ≥ (1 − θ 1

8 )λ (Bi)
2. For all (x, y) ∈ U ′i , d⋈′ (Φ(x, y), Φ̂i(x, y)) ⪯k,c,⋈ εR.

In particular we have ∆h(Φ(x, y), Φ̂i(x, y)) ⪯k,c,⋈ εR.

Since almost all the points in a good box are surrounded by almost only good vertical geodesic

segment (Lemma 3.26), we show that given two points sharing the sameX coordinates, we can almost

always construct a quadrilateral verifying the hypotheses of Proposition 2.11.

Lemma 4.6. Let M0 be the constant of assumption (E2). For 0 < θ ⪯⋈ 1 and for R ⪰⋈ 1
θ
, let B be a box

at scale R ofX ⋈ Y . Let us assume the existence of a subset U of B such that:

(a) λ(U) ≥ (1 − θ)λ(B)
(b) For all x ∈ U , η (V b

B(DM0
(x))) ≤√θη (VB(DM0

(x)))
Then we have:

1. For all a1, a2 ∈ U such that aX1 = aX2 , there exist b1, b2 ∈ B and four vertical geodesic segments γi,j
linking ai to bj such that a1, a2, b1 and b2 form a coarse vertical quadrilateral with nodes of scale

D = θR, meaning that the configuration verifies the assumptions of Proposition 2.11.

2. For i, j ∈ {1,2}, Φ(γi,j) has ε-monotone image under Φ.

By Lemma 3.26, the boxes Bi, with i ∈ Ig , verify the assumptions of this Lemma. Moreover, we

recall that a vertical quadrilateral satisfy the assumptions of Proposition 2.11.

Proof of Lemma 4.6. Let M0 be the constant of assumption (E2). Let a1, a2 ∈ U . For i ∈ {1,2} let us
denote V Di ∶= VB (DM0

(ai)) and V bDi ∶= V b
B (DM0

(ai)). For all v = (vX , vY ) ∈ VB and all i ∈ {1,2}
let us denote by:

1. EY
i (vX) ∶= {vY ∈ V DY

i ∣ (vX , vY ) ∈ V bDi}
2. FX

i ∶= {vX ∈ V DX
i ∣ ηY (EY

i (vX)) ≥ θ 1

4 ηY (V DY
i )}

Thanks to Lemma 3.25, applied with V1 ∶= V bB, α ∶=√θ and a = ai, we have that
ηX (FX

i ) < θ 1

4 ηX (V DX
i ) (82)

Let us take a1 and a2 in U such that aX1 = aX2 , then V DX
1 = V DX

2 :

1. ηX(V DX
i /(FX

1 ∪ F
X
2 )) ≥ (1 − 2θ 1

4 )ηX(V DX
i )

2. For all x ∈ V DX
i /(FX

1 ∪F
X
2 ) and i ∈ {1,2} we have ηY (EY

i (vX)) < θ 1

4 ηY (V DY
i ).
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The sets V DX
i /(FX

1 ∪ F
X
2 ) enclose the vertical geodesics segments in BX passing close to aX1 = aX2

such that almost all the induced vertical geodesic segments around a1 and a2 in B are good (ie. have

ε-monotone images under the quasi-isometry Φ).

Since we have a sufficient proportion of good vertical geodesic segments, we will be able to find several

of them that intersect the same neighbourhood in two different points sufficiently far from each other. If

h(aX1 ) < θR, the construction of the quadrilateral of Proposition 2.11 with D = θR is straightforward

since the four points a1, a2, b1 and b2 would be θR close, hence without loss of generality we may

assume that h(aX1 ) ≥ θR. Moreover, as we did before we can also suppose that h(B) = [0,R[.
We apply Lemma 1.8 with z0 = h(a1) and z = h(a1) − θR to get the following inclusions:

DX
2θR−M0

(πh(a1)−θR (aX1 ) ) ⊂ πh(a1)−θR (DM0
(aX1 )) ⊂DX

2θR+M0
(πh(a1)−θR (aX1 ) ) (83)

We now suppose by contradiction that any couple of good vertical geodesic segments does not diverge

quickly. Thismeans that they stayM0-close until they attain a height lower thanh(aX1 )−θR. Therefore

πh(a1)−θR (V DX
i /(FX

1 ∪ F
X
2 )) ⊂DX

M0
(πh(a1)−θR (aX1 ))

Thanks to the inclusions (83) we have V DX
2θR−M0

(πh(a1)−θR(aX1 )) ⊂ V DX
1 , hence, combined with

Property 3.23 we obtain

ηX (V DX
1 /(FX

1 ∪ F
X
2 ))

ηX(V DX
1 ) ⪯⋈

λX
h(a1)−θR (DM0

(πh(a1)−θR (aX1 )))
λX
h(a1)−θR (D2θR (πh(a1)−θR (aX1 )))

⪯⋈em(M0−2θR), by Lemma 3.2

which, for R large enough in comparison to 1
θ
, contradicts the fact that ηX(V DX

1 /(FX
1 ∪ FX

2 )) ≥(1 − 2θ 1

4 )ηX(V DX
1 ), the first conclusion of the previously used Lemma 3.25. Hence there exists a

couple of vertical geodesic segments V X
1 and V X

2 of V DX
i /(FX

1 ∪ F
X
2 ) diverging quickly from each

other. Furthermore we have ηY (EY
i (vX)) < θ 1

4 ηY (V DY
i ), hence there exists segments V Y

1 and V Y
2

such that (V X
1 , V Y

1 ) ∈ V g
B (DM (a1)) and (V X

2 , V Y
2 ) ∈ V g

B (DM (a2)).
Let us define bXi = V X

i (h(a1) − 1
2
d (aX1 , aX2 )), so that bX1 and bX2 are at the height where V X

1 and V X
2

diverge. Then let us define bY1 = bY2 = V Y
1 (−h(a1) + 1

2
d (aX1 , aX2 )) and γij = (V X

i , V Y
j ) to ensure

that the vertical geodesic segments of the quadrilateral γ11 ∪ γ12 ∪ γ22 ∪ γ21 have close endpoints.

Furthermore by construction, they diverge from each other and have ε-monotone image under Φ.

In the next proofs, we will be using Proposition 2.6 on each of the four images Φ(γij), which will

provide us with a new quadrilateral (ε + θ)R close to Φ (γ11 ∪ γ12 ∪ γ22 ∪ γ21) on which the assump-

tions of Lemma 2.11 are verified.

Finally we deduce that on a good box, the quasi-isometry Φ is close to a product map.

Proof of Theorem 4.5. Let i ∈ Ig and Bi a good box (defined in Lemma 4.3). Then following Lemma 4.3,

we have ηi(V bBi) ≤ θηi(V Bi). Therefore by Lemma 4.4, one of the two following statements hold:

1. η (V ↑B ∩ V gB) ≥ (1 − 3√θ)η (V B)
2. η (V ↓B ∩ V gB) ≥ (1 − 3√θ)η (V B)

Let us first assume that the dominant orientation is upward. Let us choose V1 = V B∖(V ↑B ∩ V gB), the
vertical geodesics which have neither dominant orientation nor ε-monotone image by Φ. By Lemma

3.26, used with α ∶= θ2, we have that there exists Ui ⊂ Bi such that:

1. λ(Ui) ≥ (1 −√θ)λ(Bi)
2. For p ∈ Ui we have η (V1(DM0

(x))) > η (V B(DM0
(x)))√θ.
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Let us apply Lemma 3.30, with U ∶= Ui and α ∶= √θ, then there exists U ′ ⊂ Ui of almost full mea-

sure such that ∀z ∈ h(U ′), ∃(x0,z , y0,z) ∈ Bz such that ∀(x1, y1) ∈ U ′z , we have (x1, y0,z) ∈ U ′ and(x0,z, y1) ∈ U ′. Let a, a0 ∈ U ′ such that aX = aX0 . By Lemma 4.6 applied on a0 and a, there ex-

ist b1, b2 ∈ Bi and four vertical geodesics Vij in V ↑B ∩ V gB such that b1 and b2 form a coarse vertical

quadrilateral T with a0 and a, where Vij are the edges of T . Proposition 2.6 gives a constantM(k, c,⋈)
and four vertical geodesic segments MεR-close to the four sides of Φ(T ). Furthermore we assumed

that the dominant orientation is upward, hence the images of the four sides are all upward oriented.

Hence thanks to Proposition 2.11 we get

dX′ (Φ(a0)X′ ,Φ(a)X′) ⪯k,c,⋈ εR
Then for all a ∈ U ′ such that aX = aX0

dX′ (Φ(a0)X′ ,Φ(a)X′) ⪯k,c,⋈ εR (84)

We show similarly that for all a ∈ U ′ such that aY = aY0 we have

dY ′ (Φ(a0)Y ′ ,Φ(a)Y ′) ⪯k,c,⋈ εR. (85)

Let us define the product map Φ̂i ∶= (Φ̂X
i , Φ̂Y

i ) ∶ X ⋈ Y → X ′ ⋈ Y ′. For all z ∈ h(U ′), let (x0,z, y0,z) ∈
U ′z be the points involved in Lemma 3.30, and for all z ∈ [0,R[∖h(U ′), let us fix an arbitrary point(x0,z, y0,z) ∈ (Bi)z . We can therefore define for all x ∈ X

Φ̂X
i (x) ∶= V X′

Φ(x,y0,z)(h ○Φ(x0,z, y0,z)).
Then for all (x, y) ∈ U ′ the triangle inequality gives

dX′ (Φ̂X
i (x),Φ(x, y)X′) = dX′ (V X′

Φ(x,y0,z)(h ○Φ(x0,z, y0,z)),Φ(x, y)X′)
≤dX′ (V X′

Φ(x,y0,z)(h ○Φ(x0,z, y0,z)),Φ(x, y0,z)X′) + dX′ (Φ(x, y0,z)X′ ,Φ(x, y)X′) (86)

Furthermore, as the distance between two points of the same vertical geodesics is equal to their differ-

ence of height, we can write the following equality

dX′ (V X′
Φ(x,y0,z)(h ○Φ(x0,z, y0,z)),Φ(x, y0,z)X′) =∆h(Φ(x, y0,z)X′ ,Φ(x0,z , y0,z)X′)

We combine it with inequality (86), and then use the Lipschitz Property of h to get

dX′ (Φ̂X
i (x),Φ(x, y)X′) ≤∆h(Φ(x, y0,z)X′ ,Φ(x0,z , y0,z)X′) + dX′ (Φ(x, y0,z)X′ ,Φ(x, y)X′)

≤ dX′ (Φ(x, y0,z)X′ ,Φ(x0,z, y0,z)X′) + dX′ (Φ(x, y0,z)X′ ,Φ(x, y)X′)
⪯k,c,⋈ 2εR, by inequality (84).

Similarly, Φ̂Y
i (y) is defined by

Φ̂Y
i (y) ∶= V Y ′

Φ(x0,z ,y)(h ○Φ(x0,z, y0,z)).
and we show similarly that dY ′ (Φ̂Y

i (y),Φ(x, y)Y ′) ⪯k,c,⋈ εR. Furthermore for all (x, y) ∈ Ui we have

h(Φ̂X
i (x)) = −h(Φ̂Y

i (y)), hence Φ̂i ∶= (Φ̂X
i , Φ̂Y

i ) ∶ X ⋈ Y → X ′ ⋈ Y ′ is a well defined product map.

Then we chose U ′i ∶= U ′ to conclude the proof.
The downward orientation case is dealt in the sameway by switching the definitions of Φ̂X

i and Φ̂Y
i .
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4.3 Shadows and orientation

We use the fact that m > n to prove that Φ is orientation preserving, hence the upward orientation is

dominant, on each good box at scale R.

Proposition 4.7. Assume that m > n. For R ⪰⋈ 1
θ
the product map Φ̂i of Theorem 4.5 is orientation

preserving for each i ∈ Ig .
We recall that given a box B, the shadow of a subset U ⊂ B, we denote by Sh(U), the set of points

of B below U in the following sens:

Sh(U) ∶= {p ∈ B ∣ ∃V ∈ V B containing p and intersecting U on a point p′ such that h(p′) ≥ h(p)}.
And we remind the reader that given a subset S ⊂ X , the large Y -horosphere given by S and denote

byHS ⊂X ⋈ Y , is the set

HS ∶= S ⋈ Y

Let us denote B = Bi for i ∈ Ig . Thanks to Theorem 4.5, there exist U = Ui with λ(U) ≥ (1 − θ 1

4 ). We

consider two parameters ρ1 and ρ2 with 1 ⪰⋈ ρ2 ⪰⋈ ρ1 ⪰⋈ θ
1

16 . The relations between them will be

specified later. Hence Lemma 3.28 applies with α = θ 1

4 , and it gives us a Y -horosphereHx0
such that

λ(Sh(HDM0
(x0)) ∩U c) > θ 1

16λ(Sh(HDM0
(x0)))

Then we apply twice Lemma 3.29 with α = θ 1

4 , and ρ = ρi for i ∈ {1,2} to get two planes P1 and P2

such that for i ∈ {1,2}
λh(Pi)(Pi ∩ Sh(HDM0

(x0)) ∩U c) ⪯⋈ θ 1

16λh(Pi)(Pi ∩ Sh(HDM0
(x0))),

and such that ρiR <∆h(Pi,Hx0
) < 2ρiR.

The next lemma will gives us the existence of two subsets below a Y -horosphere H , which are

sufficiently big (for the measure µ in comparison to the horosphere) and sufficiently apart from each

other so that any path linking them must get close toH .

Lemma 4.8. Let M1(k, c,⋈) be a constant depending on k, c and the metric measured spaces X ⋈ Y . In

the settings above, for R ⪰⋈ 1
ρ2
, there exist S1 and S2, two subsets of P2 ∩ Bsuch that for j ∈ {1,2} we

have:

1. ∀s1 ∈ S1, s2 ∈ S2, dX(sX1 , sX2 ) ≥ ρ2R.

2. λh(P2)(Sj ∩U c) ⪯⋈ θ 1

32λh(P2)(Sj).
3. µh(P2) (Sj) ⪰⋈ exp (m−n2 ρ2R)µh(H)(NM0

(H)).
4. Any path γ joining S1 and S2 of length l(γ) ≤M1ρ2R intersects N6ρ1R(H).

Proof. For j ∈ {1,2}, let us denote by Qj ∶= Pj ∩ Sh(HDM0
(x0)). We tile QX

1 with the top of boxes as

in a box tiling. More precisely, let M0 be the constant involved in assumption (E2), and let Z ⊂ QX
1

be an 2M0-maximal separating set of QX
1 . Then there exists a set of disjoint cells {C(x) ∣ x ∈ Z} such

that:

1. ∀x ∈ Z , D(x,M0) ⊂ C(x) ⊂D(x,2M0)
2. QX

1 = ⋃x∈Z C(x)
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Figure 18: Construction of S(x)X in Lemma 4.8

61



Thanks to this tessellation, we tileQ1 with the large horosphereHC(x) ∶= C(x)×BY−h(P1) = C(x)×QY
1 .

Furthermore for any two points x1, x2 ∈ Z

λh(P1)(HC(x1)) = λX
h(P1)(C(x1))λY

−h(P1) (BY−h(P1))
≍⋈ λX

h(P1)(C(x2))λY
−h(P1) (BY−h(P1)) , by Lemma 3.2,

= λh(P1)(HC(x2))
Therefore λ (Q1) ≍⋈ λY (QY

1 )#Z . We tileQ2 by projections of the tessellation ofQ1, these projections

look like stripes on Q2

Q2 = ⊔
x∈Z

πX
h(P2)(C(x)) × BY−h(P2) (87)

Let us denote these stripes by S(x) ∶= πX
h(P2)(C(x)) × BY−h(P2) for all x ∈ Z . For all x1, x2 ∈ Z ,

dX(x1, x2) ≥M0, hence by Lemma 1.3 ∀(sX1 , sY1 ) ∈ S(x1) and ∀(sX2 , sY2 ) ∈ S(x2) we have
dX (sX1 , sX2 ) ≥ 2∆h(P1, P2) −M0 = 2ρ2R − 2ρ1R −M0 −M (88)

≥ 2(ρ2 − 2ρ1)R, for R ≥ 2(M0 +M)
ρ1

. (89)

Furthermore we have by construction that

λX
h(P2) (πX

h(P2)(C(x1))) ≍⋈ λX
h(P2) (πX

h(P2)(C(x2)))
Thereforeλh(P2)(S(x1)) ≍⋈ λh(P2)(S(x2)), and by the tessellation (87), λh(P2) (Q2) ≍⋈ λY

h(P2)(QY
2 )#Z .

By Lemma 3.29, used with α ∶= θ 1

4 , we get

λh(P2) (Q2 ∩U c) ⪯⋈ θ 1

16λh(P2) (Q2) .
Moreover, for all x1, x2 ∈ Z we have λh(P2)(S(x1)) ≍⋈ λh(P2)(S(x2)) and the set of stripes S(x) for
x ∈ Z (ZX

1 ) tile the setQ2. Therefore there exists Z
′ ⊂ Z such that#Z ′ ≥ (1 − θ 1

32 )#Z and such that

for all x ∈ Z ′ we have λh(P2)(S(x) ∩U c) ≤ θ 1

32λh(P2)(S(x)).
We are now able to define S1 and S2. Let x1, x2 ∈ Z be distinct and, for j ∈ {1,2}, let us denote by Sj

the following subset of S(xj)
Sj ∶= πX

h(P2)(C(xj)) × IntMρ2R (BY−h(P2)) (90)

By Lemma 3.3, applied with r = Mρ2R, z0 = −h−B and z1 = −h(P2), we have µY
h(P2) (BY−h(P2)) ≍⋈

µY
h(P2) (IntMρ2R (BY−h(P2))), therefore

µh(P2)(Sj) ≍⋈ µh(P2)(S(xj)) (91)

The first point of the Lemma holds by inequality (89), and the second point holds because we choose

x1 and x2 in Z ′.

Let us now prove the third point. Let y0 ∈ Y the nucleus of the cell of BY , we have BY−z ∶= πY
−z(C(y0)).

Then by Lemma 1.8 applied with p = y0, z0 = h+ and z = h(H) − ρ2R we have

D2∣h−−h(P2)∣−M0
(πY
−h(P2)(y0)) ⊂ BY−h(P2) ⊂D2∣h−−h(P2)∣+M0

(πY
−h(P2)(y0))
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It follows that for x ∈ Z
πX
h(P2)(C(x)) ×DY

2(∣h−−h(H)∣−ρ2R)−M0
(πY
−h(P2)(y0)) ⊂ S(x)

⊂ πX
h(P2)(C(x)) ×DY

2(∣h−−h(H)∣−ρ2R)+M0
(πY
−h(P2)(y0))

By Lemma 1.8, πX
h(P2)(C(x)) resembles a disk of radius 2∣h(P1) − h(P2)∣ ±M0 = 2(ρ2 − ρ1)R ±M0.

Lemma 3.2 gives µX
h(P2) (πX

h(P2)(C(x))) ≍ em(ρ2−ρ1)R. Again by Lemma 3.2 applied on

DY
2(∣h−−h(H)∣−ρ2R)+M0

(πY
−h(P2)(y0)) ,

we have

µh(P2)(S(x)) ≍⋈ em(ρ2−ρ1)Ren(∣h−−h(H)∣−ρ2R)
SimilarlyQ2 resembles a product D2ρ2R±M0

×BY
−h(P2), hence

µh(P2) (Q2) ≍⋈ emρ2Ren(∣h−−h(H)∣−ρ2R).

Therefore we obtain an estimate of #Z

µh(P2) (Q2)
µh(P2)(S(x)) ≍⋈ e

mρ1R. (92)

Applying Lemma 3.32 with A = Q2, U =NM0
(H) and∆ = ρ2R gives

µh(P2) (Q2) ⪰⋈ exp ((m − n)ρ2R))µh(H) (NM0
(H)) .

In combination with inequalities (91) and (92) we have for j ∈ {1,2}
µh(P2) (Sj) ⪰⋈ exp((m − n)ρ2R −mρ1R)µh(H)(NM0

(H))
⪰⋈ exp(m − n

2
ρ2R)µh(H)(NM0

(H)),
where the last inequality holds since (m−n)ρ2 −mρ1 ≥ m−n

2
ρ2 when ρ1 ≤ m−n

m
ρ2. Therefore the third

conclusion of this Lemma holds.

Let us prove the fourth conclusion. Let γ be a path joining s1 ∈ S1 and s2 ∈ S2 such that l(γ) ≤Mρ2R.

By inequality (89), dX (sX1 , sX2 ) ≥ 2ρ2R−4ρ1R. By Lemma 1.5 there exists a constantM ′(δ) such that

the geodesic segment [sX1 , sX2 ] contains a point sX3 within 4ρ1R −M ′(δ) ≤ 5ρ1R of HX = {x0}, for
R ≥ M ′(δ)

ρ1
. Therefore by Proposition 1.12

l(γX) ≥ 2δdX(γX ,sX
3
).

However, every δ-hyperbolic space with δ ≤ 1 is also 1-hyperbolic. Therefore we can assume without

loss of generality that δ ≥ 1. Then we have

l(γX) ≥ 2dX(γX ,sX
3
) ≥ 2dX(γX ,HX)−5ρ1R.

Hence log2(Mρ2R) ≥ d (γX ,HX)−5ρ1R. Furthermore, there existsM ′(k, c,⋈) such that forR ≥ M ′

ρ2

we have log2(Mρ2R) ≤ ρ1R. In this case

d (γX ,HX) ≤ 6ρ1R
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Therefore there exists t ∈ R such that ∆h(γ(t),H) ≤ 6ρ1R. Let us now look at γY . Two cases arise,

we have either γY (t) ∈ Sh (BY−h(P2)) or γY (t) ∉ Sh (BY−h(P2)).
In the first case, there exists y ∈ HY such that γY (t) ∈ Vy . Furthermore ∆h(γ(t),H) ≤ 6ρ1R, hence

dY (γY (t),HY ) = ∆h(γY (t),HY ) ≤ 6ρ1R and consequently dY (γY ,HY ) ≤ 6ρ1R. Which proves

d (γ,H) ≤ 6ρ1R.

In the second case, when γY (t) ∉ BY−h(P2), by our claim (90) we have that the vertical geodesic ray

VγY (t) starting at γY (t) intersect Y−h(P2) in a point y such that dY (y,SY
1 ∪ S

Y
2 ) >Mρ2R. Therefore

Mρ2R ≥ l(γ) ≥ 1

2
l (γY ) ≥ 1

2
(d(s1, γ(t)) + d(γ(t), s2))

>
2Mρ2R

2
>Mρ2R,

which is absurd, hence the second case when γY (t) ∉ BY−h(P2) does not occur. Therefore we always

have that γ intersect the 6ρ1R-neighbourhood of H .

Proof of Proposition 4.7. Let us be in the settings above. Let us assume by contradiction that Φ̂ is ori-

entation reversing, which means that there exists Φ̂X ∶ X → Y ′ and Φ̂X ∶ Y → X ′ such that for all(x, y) ∈ B we have Φ̂(x, y) = (Φ̂Y (y), Φ̂X(x)).
For all p ∈ X ′ ⋈Y ′ such that d⋈′ (p, Φ̂(H ∩U)) ≤ ρ1R there exists q ∈H ∩U such that d⋈′ (p, Φ̂(q)) ≤
ρ1R. Therefore by the triangle inequality

d⋈′ (p,Φ(q)) ≤ d⋈′ (p, Φ̂(q)) + d⋈′ (Φ̂(q),Φ(q)) ⪯k,c,⋈ ρ1R + εR, by Theoreom 4.5 since q ∈ U,

⪯k,c,⋈ ρ1R, since ε ≤ ρ1.

Hence there exists M(k, c,⋈) such that Nρ1R(Φ̂(H ∩ U)) ⊂ NMρ1R(Φ(H ∩ U)). We show similarly

that for j ∈ {1,2}
Nρ1R(Φ(Sj ∩U)) ⊂NMρ1R(Φ̂(Sj ∩U)). (93)

LetM ′(⋈) be the constant involved in Corollary 3.17. Then

µ (N8kρ1R(Φ(H))) ⪯k,c,⋈ e8kρ1Rm′µ (Nkc+c(Φ(H))) , by Corollary 3.16,

⪯k,c,⋈ e8kρ1Rm′µ (N1(H)) , by Lemma 3.18,

≤ e8kρ1Rm′µ (NM ′(H))
≍⋈ e8kρ1Rm′µh(H) (NM ′(H)) , by the second part of Lemma 3.17.

⪯⋈ e8kρ1Rm′µh(H) (NM0
(H)) , by the first part of Lemma 3.17.

Combined with 2. of Lemma 4.8 we have

µ (N8kρ1R(Φ(H))) ⪯⋈ e−(m−n)ρ22 Re8kρ1Rm′µh(P2) (Sj)
⪯⋈ e−(m−n)

ρ2
2
Re8kρ1Rm′µh(P2) (Sj ∩U) , thanks to 2. of Lemma 4.8,

⪯⋈ e−(m−n)
ρ2
4
Rµh(P2) (N1(Sj ∩U)) , since ρ1 ≤

m − n
16km′

ρ2,

≍⋈ e−(m−n)
ρ2
4
Rµ (NM ′(Sj ∩U)) , by Lemma 3.17.

≤ e−(m−n)
ρ2
4
Rµ (NM ′+kc+c(Sj ∩U))
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Hence using Lemma 3.18 on NM ′(Sj ∩U)
µ (N8kρ1R(Φ(H))) ⪯k,c,⋈ e−(m−n)ρ24 Rµ (NM ′+1(Φ(Sj ∩U)))

≤ e−(m−n)
ρ2
4
Rµ (Nρ1R(Φ(Sj ∩U))) , for R ≥

M ′

ρ1
,

≤ e−(m−n)
ρ2
4
Rµ (NMρ1R(Φ̂(Sj ∩U))) , by inequality (93)

⪯k,c,⋈ e−(m−n)
ρ2
4
ReMρ1Rm′µ (NM ′(Φ̂(Sj ∩U))) , by Lemma 3.17,

⪯k,c,⋈ e−(m−n)
ρ2
8
Rµ (NM ′(Φ̂(Sj ∩U))) , since ρ1 ≤

m − n
8Mm′

ρ2,

≍k,c,⋈ e−(m−n)
ρ2
8
Rµẑ0 (NM ′(Φ̂(Sj ∩U))) , by the first part of Lemma 3.17.

where ẑ0 ∶= Φ̂(P2). Since Φ̂ is orientation reversing, we can now apply Lemma 3.33 with Aj = Φ̂(Sj ∩
U), E =N8kρ1R(Φ(H)) and Q = e(m−n)ρ28 R we have that

η (VNM0
(Φ̂(Sj ∩U))) ⪰k,c,⋈ e(m−n)ρ28 Rη (VNM0

(E)) .
Then, as pointed out below Lemma 3.26, we can apply it on a Aj with V1 = V E. Hence there exist

UAj
⊂ Aj such that:

⋅ λẑ0(UAj
) ≥ (1 − e(m−n)ρ28 R)λẑ0(Aj).

⋅ For all p ∈ U , most of the vertical geodesic in DM0
(p) do not intersect E.

By Property 3.23 we have

λẑ0 (NM0
(Φ̂(Sj ∩U))) ⪰k,c,⋈ e(m−n)ρ28 Rλẑ0 (π⋈ẑ0 (NM0

(E))) .
Hence by the definition of λẑ0

µẑ0 (NM0
(Φ̂(Sj ∩U))) ⪰k,c,⋈ e(m−n)ρ28 Rµẑ0 (π⋈ẑ0 (NM0

(E))) . (94)

Let us denote E′ ∶= NM0
(Φ̂(Sj ∩ U) ∖ UAj

). Since Φ̂ is MεR-close to Φ on U by Theorem 4.5, we

have (similarly as in inequality (93)) that

Nρ1R (Φ̂−1 (E′)) ⊂NMρ1R (Φ−1 (E′))
Therefore

µ (Nρ1R (Φ̂−1 (E′))) ⪯k,c,⋈ µ (NMρ1R (Φ−1 (E′)))
⪯k,c,⋈ e6Mρ1Rmµ (Nkc+c (Φ−1 (E′))) , by the first part of Lemma 3.17,

≍k,c,⋈ e6Mρ1Rmµ (N1 (E′)) , by Lemma 3.18,

≍k,c,⋈ e6Mρ1Rmµẑ0 (NM0
(E′)) , by the second part of Lemma 3.17,

⪯k,c,⋈ e−(m−n)
ρ2
8
Re6Mρ1Rmµẑ0 (NM0

(Φ̂(Sj ∩U))) , by inequality 94,

⪯k,c,⋈ e(m−n)
ρ2
16

Rµh(P2) (NM0
(Sj ∩U)) , since ρ1 ≤

ρ2

M
,

⪯k,c,⋈ e(m−n)
ρ2
16

Rµh(P2) (NM0
(Sj)) , since Sj ∩U have almost full measure in Sj.

Following the second conclusion of Lemma 4.8, there exists a constant M(⋈) such that λh(P2)(Sj ∩

U c) ≤Mθ
1

32λh(P2)(Sj).
We apply twice Lemma 3.24 for j = 1,2 with (V1, η) = (NM0

(SX
j ) ×NM0

(SY
j ) , µh(P2)), V0 = U c

∩
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Nρ1R (Φ̂−1 (E′)) andα ∶= e(m−n)ρ216Rµh(P2)+Mθ
1

32 . Let us denoteGY (pX) ∶= {pY ∈ V Y
1 ∣ (pX , pY ) ∈ V0},

we have that

µX
h(P2) ({pX ∈ V X

1 ∣ µY
−h(P2) (GY (pX))}) ≥ (1 − e−(m−n)ρ232R)µY

h(P2) (V Y
1 ) .

Since e−(m−n)
ρ2
32

R
+Mθ

1

32 < 1
2
, there exists s1 ∈ (S1∩U)∖ Φ̂−1 (E′) and s2 ∈ (S2∩U)∖ Φ̂−1 (E′) such

that sY1 = sY2 .

Let us denote by ŝj ∶= Φ̂(sj) for j ∈ {1,2}. By construction we have ŝj ∈ Aj , then V DM0
(ŝj) contains

almost only vertical geodesic segments which do not intersect E. Since ŝX
′

1 = ŝX
′

2 , and by Lemma

3.25, we can find two vertical geodesics v1 ∈ V DM0
(ŝ1) and v2 ∈ V DM0

(ŝ2) which do not intersect

E =N8kρ1R(Φ(H)), and such that vX1 = vX2 . Since vY1 and vY2 meet (up to an additive constant) at the

height −ẑ0 +
1
2
dY ′(ŝY ′1 , ŝY

′
2 ), there exist M(δ) such that the concatenation of v1 and v2 is (1,M(δ))-

quasigeodesic linking ŝ1 to ŝ2.

Let us denote by γ ∶= Φ−1(v1∪v2), then γ is a (k, c+M)-quasigeodesic. By Lemma 2.1 of [GS19], there

exists a 2k-Lipschitz, (k,4(M + c))-quasi-geodesic γ′ in the 2(M + c)-neighbourhood of γ, linking

Φ−1(ŝ1) to Φ−1(ŝ2). Let us denote s′1 = Φ−1(ŝ1) and s′2 = Φ−1(ŝ2). Because γ′ is 2k-Lipschitz, and
since Φ−1 is a (k, c)-quasi-isometry we have

l(γ′) ≤ 2kd⋈′(ŝ1, ŝ2) ≤ k2d⋈(s′1, s′2) + c (95)

Furthermore, γ′ does not intersect the 1
k
(7kρ1R − 2c) − c-neighbourhood of H since Φ−1 is a quasi-

isometry. Moreover s′j and sj are εR close to each other, that is

d⋈(s′j, sj) = d⋈(Φ−1(Φ̂(sj)), sj)
≤ kd⋈′(Φ̂(sj),Φ(sj)) ⪯k,c,⋈ εR, since sj ∈ U. (96)

Consequently by the triangle inequality we get

d⋈(s′1, s′2) ≤ d⋈(s′1, s1) + d⋈(s1, s2) + d⋈(s2, s′2)
⪯k,c,⋈ εR + d⋈(s1, s2), since Φ̂−1(sj) ∈ U (97)

Furthermore sY1 = sY2 , therefore by Corollary 1.11, withM = 15C0 we obtain

d⋈(s1, s2) ≤ dX (sX1 , sX2 ) +M ≤ 2ρ2R +M, by the first point of Lemma 4.8.

Combined with inequalities (95) and (97) we get

l(γ′) ⪯k,c,⋈ 2k2(2ρ2R +M + 2εR) + c ⪯k,c,⋈ ρ2R, for R ≥
M + c

ρ2
.

For j ∈ {1,2}, let γj ∶= [sj , s′j], by inequality (96) we have l(γj) ⪯k,c,⋈ εR. Hence the path γ′′,

constructed as the concatenation of γ1, γ
′ and γ2, is a path linking s1 ∈ S1 to s2 ∈ S2, of length

l(γ) ⪯k,c,⋈ ρ2R since ε ≤ ρ2. Furthermore, by construction, γ′′ does not intersect the 7ρ1R − 3c −

2MεR > 6ρ1R-neighbourhood of H . This contradicts the fourth point of Lemma 4.8, therefore Φ is

orientation preserving.

4.4 Factorisation of a quasi-isometry in big boxes

In Section 4.2 we proved that for all i ∈ Ig , Φ∣Bi is close to a quasi-isometry product Φ̂i = (Φ̂X
i , Φ̂Y

i ) on
a set of almost full measure Ui ⊂ Bi. In this section we prove that Φ is close to Φ̂ on all boxes at scale

L on a set of almost full measure. This is a step-forward since this is true on all boxes at scale L and

not only a significant number of them.
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Theorem 4.9. For 0 < θ ⪯k,c,⋈ 1 there exists L0(k, c,⋈, θ) 0 such that for all L ≥ L0 and for all box B
at scale L, there exists M(k, c,⋈), U ∈ B and a (k,M√θL)-quasi-isometry product map Φ̂ = (Φ̂X , Φ̂Y )
such that:

1. λ(U) ≥ (1 − θ)λ(B)
2. d⋈′ (Φ∣U , Φ̂∣U) ⪯⋈ θL.

With Φ̂X
∶X →X ′ and Φ̂Y

∶ Y → Y ′.

Let B be a box at scale L, let i ∈ Ig and for all i ∈ Ig let Ui ⊂ Bi be as in Theorem 4.5, where Ui is

the subset of Bi on which Φ is close to a product map Φ̂i. Let us denote by W ⊂ B the "good" set of B
W ∶= ⊔

i∈Ig

Ui

where "good" means the set on which Φ is close to a product maps on boxes at scale R. We introduce

the application P which quantifies the portion of a geodesic segment which is not inW .

Definition 4.10. Let γ ∶ [0,L] →X ⋈Y be a vertical geodesic segment. We denote the measure of points

in γ ∩W c by

P (γ) ∶= Leb (γ−1(W c)) (98)

The value of P (γ) is related to γ being ε-monotone.

Lemma 4.11. For 0 ≤ ε ⪯k,c,⋈
√
θ ⪯k,c,⋈ 1, there exists M(⋈, k, c) such that for all vertical geodesic

segments γ ∶ [0,L] →X ⋈ Y we have

P (γ) ≤√θL⇒ Φ ○ γ is M
√
θ-monotone.

Proof. Let t1, t2 ∈ [0,L] such that h(Φ(γ(t1))) = h(Φ(γ(t2))) and such that t2 ≥ t1. Let us decompose[t1, t2] into segments of length
√
θR. Without loss of generality we can assume that t2 − t1 ≥

√
θL.

Let us denote N ∶= ⌊ t2−t1√
θR
⌋, Ii ∶= [t1 + i√θR, t1 + (i + 1)√θR[ for any i ∈ {0, ...,N − 1} and IN ∶=

[t1 + (N − 1)√θR, t2]. We have

[t1, t2] ∶= N⊔
i=0

Ii

Then for all i ∈ {0, ...,N} let us choose si ∈ Ii such that γ(si) ∈W if possible, and any si ∈ Ii otherwise.
Let us denote by J the set of odd indexes in {0, ...,N}, we split J into the following sets:

J0 ∶= {j ∈ J ∣ γ(sj) and γ(sj+2) are both in the same box and inW}
J1 ∶= {j ∈ J ∣ γ(sj) and γ(sj+1) are in different boxes}
J ′1 ∶= {j ∈ J ∣ γ(sj+1) and γ(sj+2) are in different boxes}
J2 ∶= {j ∈ J ∣ Ij ⊂W c}
J ′2 ∶= {j ∈ J ∣ Ij+2 ⊂W c}

We claim that

J = J0 ⊔ (J1 ∪ J ′1 ∪ J2 ∪ J ′2)
To prove it, one can see that two cases arise when an odd index j is not in J0. The first case is when

γ(sj) and γ(sj + 2) are not in the same box, which leads to the fact that either j ∈ J1 or j ∈ J ′1. The
second case happens when γ(sj) or γ(sj+2) are not inW , which leads to either Ij ⊂W c or Ij+2 ⊂W c.

Therefore, we proved that an odd index is either in J0 or in J1 ∪ J
′
1 ∪ J2 ∪ J

′
2.
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We have that P (γ) ≤ √θL, hence #J2 ≤
√
θL√
θR
= L

R
and similarly#J ′2 ≤

L
R
. Furthermore there are

less than L
R
boxes intersecting γ, therefore#J1 ≤ t2−t1

R
≤ L

R
and #J ′1 ≤

L
R
, hence

#(J1 ∪ J ′1 ∪ J2 ∪ J ′2) ≤ 4L
R

#J0 =#J −#(J1 ∪ J ′1 ∪ J2 ∪ J ′2) ≥ t2 − t1

2
√
θR
− 4

L

R

We see that the "good" indexes are in majority compared to the "bad" indexes. We now use that fact to

prove that ∣t2 − t1∣ is smaller than
√
θL. Let us denote q(t) ∶= h ○Φ ○ γ(t) for all t ∈ [0,L]. We assume

thatN is odd, the case where N is even is treated identically. By assumption q(t1) = q(t2) therefore
0 =q(t2) − q(t1) = q(t2) − q(sN) +∑

i∈J

(q(si+2) − q(si)) + q(s1) − q(t1)
=q(t2) − q(sN) + ∑

i∈J0

(q(si+2) − q(si)) + ∑
i∈J∖J0

(q(si+2) − q(si)) + q(s1) − q(t1) (99)

However we proved that #J0 is much bigger than #(J ∖ J0), and for any i ∈ J0, q(si+2) − q(si) is a
positive number by the upward orientation of the quasi-isometry on W . Therefore we will show that∣t1 − t2∣ must be small for this equality to hold. First, we have to consider that ∀i ∈ {0, ...,N}

l(Ii+1) ≤ ∣si − si+2∣ ≤ l(Ii) + l(Ii+1) + l(Ii+2)
⇒
√
θR ≤ ∣si − si+2∣ ≤ 3√θR

⇒∣q(si) − q(si+2)∣ ⪯k,c,⋈ √θR
Hence for all i ∈ J ∖ J0 we have q(si+2) − q(si) ⪰k,c,⋈ −√θR. Furthermore for all i ∈ J0, si and si+2
are in the same box and inW , therefore by Corollary 2.7, there existsM(k, c,⋈) such that

q(si+2) − q(si) ≥ 1

k
∣si − si+2∣ −MεR ⪰k,c,⋈

√
θR; since

√
θ ≥ 2Mε.

Combined with equality (99)

0 ⪰k,c,⋈
√
θR#J0 −

√
θR#(J1 ∪ J ′1 ∪ J2 ∪ J ′2) ⪰ ∣t2 − t1∣ −√θL

Hence ∣t2−t1∣ ⪯k,c,⋈ √θL, which proves that there existsM(k, c,⋈) such that γ isM√θ-monotone.

Let M be the constant involved in Lemma 4.11, let θ′ = θ
1

16 and let ε′ ∶= 2M
√
θ′. We now show

that almost all vertical geodesic segments of boxes at scale L have ε′-monotone images under Φ.

Let us denote by V gB ⊂ V B the set of vertical geodesic segments of V B whose image by Φ are

ε′-monotone.

Lemma 4.12. For L ⪰k,c,⋈ 1
θ
and for any box B at scale L we have that

η (V gB) ≥ (1 − θ 1

32 )η (V B) (100)

Proof. Lemma 4.11 tells us that P (γ) ≥√θL for all γ ∈ V bB. Computing the measure λ ofW c we have

λ(W c) =
L

∫
0

λz (W c
z )dz ≍⋈

L

∫
0

η (VB (W c
z ))dz, by Proposition 3.23,

≍⋈
L

∫
0

∫
V B

1VB(W c
z )(γ)dη(γ)dz ≍⋈ ∫

V B

L

∫
0

1VB(W c
z )(γ)dzdη(γ), by Fubini Theorem. (101)
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However we have

1VB(W c
z )(γ) = { 0 if z ∈ γ−1(W )

1 if z ∈ γ−1(W c) (102)

Therefore 1VB(W c
z )(γ) = 1γ−1(W c)(z). With inequality (101) it gives us

λ(W c) ≍⋈ ∫
V B

L

∫
0

1γ−1(W c)(z)dzdη(γ) ≥ ∫
V bB

L

∫
0

1γ−1(W c)(z)dzdη(γ), since V bB ⊂ V B
≥ ∫
V bB

Leb (γ−1(W c))dη(γ) = ∫
V bB

P (γ)dη(γ) (103)

Let us assume by contradiction that η (V gB) < (1−√θ′)η (V B), hencewe have η (V bB) >√θ′η (V B).
Therefore by inequality (103)

λ(W c) ⪰⋈ η (V bB)√θ′L ≥√θ′η (V B)√θ′L
≍⋈ θ′λ(B),

which contradicts the first conclusion of Theorem 4.9 for θ ⪯k,c,⋈ 1.
As in Section 4.2, we deduce that, in boxes which have almost only vertical geodesic segment with

2M
√
θ′-monotone image, Φ is close to a product map. Let us denote ε′ ∶= 2Mθ

1

16 and θ′ ∶= 2Mθ
1

16 ,

then for 0 < θ′ ⪯k,c,⋈ 1 we have that θ′ ≤ ε′ ≤
√
θ′.

Proof of Theorem 4.9. The proof is similar to Theorem 4.5. The Lemma 4.12 plays the role of the second

conclusion of Lemma 4.3, with ε′ instead of ε. In a box at scale L, almost all vertical geodesic segment

have ε′-monotone image by Φ.

Then, because ε′ ⪯k,c,⋈
√
θ′, Lemma 4.4 provides us with a dominant orientation. In combination

with Lemma 3.26, we get Lemma 4.6, which provides us with the vertical quadrilateral.

Afterwards, we make use of them, as in the proof of Theorem 4.5, to construct the quasi-isometry

product Φ̂. In a box at scaleR, the upper-bound εR on the distance betweenΦ and Φ̂ is achieved since

θ′ ≤ ε, and in our box at scale L, it is achieved since θ′ ≤ ε′.
Finally, the exponents on θ of Theorem 4.9 can be removed since we can fix θ, then do the proof

with a parameter θ̃ = θ8, then replace θ̃ by θ8.

This is a step forward since now, Theorem 4.9 holds for all boxes at scaleL, and not only a significant

proportion of boxes at scale R.

4.5 A quasi-isometry quasi-respects the height

Let p, q ∈ X ⋈ Y be such that h(p) = h(q). In this section we are aiming the following theorem, which

estimates the difference of height between the images of p and q under Φ.

Theorem 4.13. For 0 < θ ⪯k,c,⋈ 1, there exists M(k, c,⋈, θ) (here M depends also on θ) such that for all

p and q in X ⋈ Y with h(p) = h(q) we have
∆h(Φ(p),Φ(q)) ≤ θd⋈(p, q) +M. (104)

By the previous section, we know that in a box of a sufficiently large scale, the quasi-isometry Φ is

(on a set of almost full measure) close to a product map. We first show that this product map is coarsely

an homothety along the height function.

Let L0 be the constant of Theorem 4.9, let L ≥ L0 and let B be a box at scale L. Let us denote by

h+ ∶= sup{h(p)∣p ∈ B} and by h− ∶= inf{h(p)∣p ∈ B}. Let Φ̂ ∶= (Φ̂X , Φ̂Y ) ∶ X ⋈ Y → X ′ ⋈ Y ′ be the

corresponding product map of Theorem 4.9.
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Lemma 4.14. Let a ∈ Bh+ and b ∈ Bh− be two points of B, one on its top part and one on its bottom part.

Then we have both:

∣∆h(Φ̂(a), Φ̂(b)) − m

m′
L∣ ⪯k,c,⋈ θ 1

2L

∣∆h(Φ̂(a), Φ̂(b)) − n

n′
L∣ ⪯k,c,⋈ θ 1

2L

Proof. Let U ⊂ B the set involved in Theorem 4.9, we recall that λ(U) ≥ (1 − θ)λ(B) and that for all

p ∈ U , d⋈′(Φ(p), Φ̂(p)) ⪯⋈,k,c θL. Since the measure λ identically weights the level sets of B, by a

Markov inequality there exists z+ ∈ [h+ − θ 1

2L,h+] and z− ∈ [h−, h− + θ 1

2L] such that

λz+(Uz+) ≥ (1 − θ 1

2 )λz+(Bz+)
λz−(Uz−) ≥ (1 − θ 1

2 )λz−(Bz−).
By the definition of λz+ we have that

1
2
µz+(Bz+) ≤ µz+(Uz+) ≤ µz+(Bz+). Furthermore µz+(Bz+) ≍⋈

enLe(m−n)∣h+−z+∣ since we went down by a height ∣h+ − z+∣ in the box. Therefore:

enLe(m−n)θ
1
2 L ⪯k,c,⋈ µz+(Nkc+c(Uz+)) ⪯k,c,⋈ enL.

Furthermore, Bz+ resembles a rectangle of width 2∣h+ − z+∣ in X and 2(L − ∣h+ − z+∣) in Y , hence we

have:

µY
z+(Nkc+c(UY

z+)) ⪰k,c,⋈ enLe(m−n)θ 1
2L 1

µX
z+(BXz+) ⪰k,c,⋈ e

nLe2(m−n)θ
1
2L

By Lemma 3.18, and since Φ̂ is close to Φ on U , we deduce:

enLe2(m−n)θ
1
2 L ⪯k,c,⋈ µY

z+(N1(Φ̂(UY
z+))) ⪯k,c,⋈ enL. (105)

Let ∆ ≥ 0 be ∣h(Φ̂(Uz+)) − h(Φ̂(Uz−))∣. For all p ∈ Uz+ there exists a vertical geodesic Vp of θ-

monotone image under Φ passing close to p. Furthermore, dY (V Y
p (z−),UY

z−) ≤ 2θ
1

2L since BYz−
has a relatively small diameter. Therefore, all vertical geodesics starting at N1 (Φ̂Y (UY

z+)) intersectN
Mθ

1
2L
(Φ̂Y (UY

z−)). Hence we have that
N1 (Φ̂Y (UY

z+)) ⊂ πh(Φ̂(Uz+))(NMθ
1
2L
(Φ̂Y (UY

z−)) ).
Therefore:

µY ′(N1(Φ̂Y (UY
z+))) ≤ µY ′(π

h(Φ̂(Uz+))(NMθ
1
2 L
(Φ̂Y (UY

z−)) ))
⪯k,c,⋈ en

′∆µY ′(N
Mθ

1
2L
(Φ̂Y (UY

z−)))
⪯k,c,⋈ en

′∆e−n
′Mθ

1
2 LµY ′(N1(Φ̂Y (UY

z−))), by Corollary 3.16,

⪯k,c,⋈ en
′∆en

′Mθ
1
2 Leθ

1
2 L, because BYz−has small µ measure,

= en′∆en′(M+1)θ
1
2L.

Combined with inequality (105) we obtain

enLe2(m−n)θ
1
2 L ⪯k,c,⋈ en′∆en′(M+1)θ

1
2 L,
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which provides us with enL ⪯k,c,⋈ en
′∆eM

′θ
1
2 L, where M ′ is a constant depending on k, c, ⋈ and ⋈′.

Then there existsM ′′(k, c,⋈,⋈′) such that by taking the logarithm we get

nL ≤ n′∆ +M ′′θ
1

2L.

Similarly, we do the same proof onΦ−1, on the box of height∆ containing Φ̂(Uz+∪Uz−)which provides
us with

n′∆ ≤ nL +M ′′θ
1

2L.

Therefore ∣∆ − n
n′L∣ ⪯k,c,⋈ θ 1

2L. To obtain the same results with the constants m and m′, we focus on

the sets UX
z+ and U

X
z− instead of U

Y
z+ and UY

z− .

As a corollary we obtain a first quasi-isometry invariant for horospherical products.

Proposition 4.15. If X ⋈ Y and X ′ ⋈ Y ′ are quasi-isometric, then m
n
= m′

n′ .

Proof. By Lemma 4.14, and by the triangle inequality we have that ∣ m
m′ −

n
n′ ∣ ⪯k,c,⋈ 1

L
for all L ≥ L0.

Therefore, m
m′ = n

n′ , hence
m
n
= m′

n′ .

Lemma 4.16. Let 0 < θ ⪯k,c,⋈ 1. Let p ∶= (pX , pY ), q ∶= (qX ; qY ) ∈ X ⋈ Y such that d⋈(p, q) ≥ L2
0 and

such that pY = qY (hence h(p) = h(q)). Then we have:

∆h(Φ(p),Φ(q)) ⪯k,c,⋈ θ 1

2L.

Proof. Let B be a box of scale L, such that p and q are contained in its bottom part. Let V X
p ∈ V BX

be the vertical geodesic segment of X of length L starting at p. We apply Lemma 4.3 on V X
p ⋈ B with

r0 = L0, L ≥ L2
0, we obtain that there exists R ≥ L0, a box tilling B ⋃

i∈I
Bi of boxes at scale R and Ig ⊂ I

such that:

1. λ( ⋃
i∈Ig

Bi) ≥ (1 − θ)λ (B) (Boxes indexed by Ig cover almost all B)

2. ∀i ∈ Ig ,
ηi(V bBi)
ηi(V Bi) ≤ θ (almost all vertical geodesic segments in Bi have ε-monotone image)

where ηi ∶= ηV Bi . In this setting, we have that V Bi ∶= {(V X
p , V Y )∣V Y ∈ V BYi }, hence most vertical

geodesics in BYi are a good vertical geodesic of Bi when coupled with a portion of V X
p .

Let us denote by J ∶= {0, ..., L
R
− 1} and for all j ∈ J let us denote by pXj ∶= V X

p (jR), then
V X
p (jR) ∶= ⋃

j∈J
[pXj ;pXj+1].

Since the measure of the good boxes cover almost all B, and because the measure λ equally weights

the level sets, by a Markov inequality argument there exists Jg ⊂ J such that for all j ∈ Jg , B[jR;(j+1)R]
is almost entirely covered by boxes of Ig . Therefore, again by Markov inequality argument, there exists

Wp ⊂ V Y B such that:

1. η(Wp) ≥ (1 − θ 1

2 )η(V Y B);
2. ∀V Y ∈Wp and ∀j ∈ Jg we have V Y ([−(j + 1)R;−jR]) ∈ ⋃

i∈Ig

V gBYi .
Let V Y ∈ Wp, for all j ∈ J let us denote by pi ∶= (V X

p (jR), V Y (−jR)). By Lemma 4.14, for all j ∈ J
we have

∣∆h(Φ̂(pj), Φ̂(pj+1)) − m

m′
R∣ ⪯k,c,⋈ θ 1

2R (106)
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For all j ∈ Jg , let us denote by Bj the box at scale R containing [pj ;pj+1]. By the choice of R, we have

that most vertical geodesic segments of BYj have θ-monotone image when coupled with [pXj ;pXj+1].
Furthermore Bj contains almost only good vertical geodesic segments, therefore, there exists v ∈

V gBj such that ([pXj ;pXj+1] , vY ) ∈ V gBj and such that (vX , [pYj ;pYj+1]) ∈ V gBj . Therefore there

exists a good coarse vertical quadrilateral containing pj and pj+1, hence d (Φ(pj), Φ̂(pj)) ⪯k,c,⋈ θR.

Similarly we have d (Φ(pj+1), Φ̂(pj+1)) ⪯k,c,⋈ θR. Hence combined with inequality (106) we get

∣∆h(Φ(pj),Φ(pj+1)) − m

m′
R∣ ⪯k,c,⋈ θ 1

2R.

Therefore by the triangle inequality, there existsM(k, c,⋈) and M ′(k, c,⋈) such that:

∆h(Φ(p0),Φ(pL
R
−1) ≤

L
R
−1

∑
j=0

∆h(Φ(pj),Φ(pj+1))
≤ ∑

j∈Jg

∆h(Φ(pj),Φ(pj+1)) + ∑
j∈J∖Jg

∆h(Φ(pj),Φ(pj+1))
≤#Jg (m

m′
R +Mθ

1

2R) +#(J ∖ Jg)(kR + c)
≤
L

R
(m
m′

R +Mθ
1

2R) + θ L
R
(kR + c)

≤
m

m′
L +M ′θ

1

2L

Similarly we have ∆h(Φ(p0),Φ(pL
R
−1) ≥ m

m′L −M
′θ

1

2L. By doing the same reasoning on q we have

that for all V Y ∈ Wq , ∣∆h(Φ(q0),Φ(qL
R
−1) − m

m′L∣ ⪯k,c,⋈ θ
1

2L, where qj ∶= (V X
q (jR), V Y (−jR)).

FurthermoreWp ∩Wq is non empty for θ
1

2 ⪯k,c,⋈ 1, then let V Y ∈Wp ∩Wq . Without loss of generality

we can assume that Φ(p) ≥ Φ(q), we have:
∆h(Φ(p),Φ(q)) = h(Φ(p)) − h(Φ(p0)) + h(Φ(p0)) − h(Φ(pL

R
−1)) + h(Φ(pL

R
−1))

− h(Φ(qL
R
−1)) + h(Φ(qL

R
−1)) − h(Φ(q0)) + h(Φ(q0)) − h(Φ(q))

⪯k,c,⋈ d⋈(p, p0) − m

m′
L +Mθ

1

2L + d⋈(pL
R
−1, qL

R
−1) + m

m′
L +Mθ

1

2L + d⋈(q, q0)
⪯k,c,⋈ d⋈(p, p0) + d⋈(pL

R
−1, qL

R
−1) + d⋈(q, q0) + 2θ 1

2L.

However d⋈(p, p0) ≤M0 since they share the same X coordinate and because the top part of BY as a

diameter of at most M0, similarly d⋈(q, q0) ≤M0. By construction pYL
R
−1
= qYL

R
−1
, furthermore the top

part of BX as a diameter of at most M0, hence d⋈(pL
R
−1, qL

R
−1) ≤M0. Finally we obtain:

∆h(Φ(p),Φ(q)) ⪯k,c,⋈ θ 1

2L.

Corollary 4.17. Any vertical geodesic ray V ofX ⋈ Y satisfies, for all t1, t2 ∈ R

h (Φ ○ V (t1)) = h (Φ ○ V (t2)) ⇒ ∣t1 − t2∣ ⪯k,c,⋈ 1
Proof. Suppose V is a vertical geodesic segment parametrised by arclength. Suppose 0 < t1 < t2 are such
that h(Φ(V (t1))) = h(Φ(V (t2))). We apply Theorem 4.13 on Φ−1 with p = Φ(V (t1)), q = Φ(V (t2)),
where θ is here fixed and depends only on k, c and the metric measured space (X ⋈ Y,d⋈). Then we

have

∆h(V (t1), V (t2)) ⪯k,c,⋈ θ 1

2 ∣t1 − t2∣ (107)
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However ∆h(V (t1), V (t2)) = ∣t1 − t2∣, hence
(1 − θ 1

2 ) ∣t1 − t2∣ ⪯k,c,⋈ 1
Hence ∣t1 − t2∣ ⪯k,c,⋈ 1 since θ 1

2 ≤ 1
2
.

This is stronger than being ε-monotone since it true on all R.

4.6 Factorisation of a quasi-isometry on the whole space

Finally, we provide the proof of the Theorem 4.1, which states that Φ is close to a product map Φ̂ on

the whole spaceX ⋈ Y .

Proof of Theorem 4.1. We first pick an arbitrary vertical geodesic V X
0 of X and an arbitrary vertical

geodesic V Y
0 of Y . Then we work with the two embedded copiesX0 ∶= X ⋈ V Y

0 and Y0 ∶= V X
0 ⋈ Y of

X and Y in X ⋈ Y . Let p ∈ X ⋈ Y , there exist a unique a ∈ X0 and a unique b ∈ Y0 such that pX = aX
and pY = bY . We can construct a coarse vertical quadrilateral Q containing p and a as in Lemma 4.6.

Thanks to Corollary 4.17, we know that Φ(Q) is in theM(k, c,⋈)-neighbourhood of a coarse vertical

quadrilateralQ′ on which we use Proposition 2.11. This gives us

dX′ (Φ(p)X′ ,Φ(a)X′) ⪯k,c,⋈ 1 (108)

∆h(Φ(p)X′ ,Φ(a)X′) ⪯k,c,⋈ 1 (109)

Similarly we have dY ′ (Φ(p)Y ′ ,Φ(b)Y ′) ⪯k,c,⋈ 1. Let us denote
Φ̂X
∶ X →X ′

x ↦ Φ (x,V Y
0 (−h(x)))X′

By rewriting inequality (108) we have

dX′ (Φ(p)X′ , Φ̂X′ (pX)) =dX′ (Φ(p)X′ , Φ̂X (aX)) = dX′ (Φ(p)X′ ,Φ (aX , V Y
0 (−h(aX)))X′)

=dX′ (Φ(p)X′ ,Φ (a)X′) ⪯k,c,⋈ 1
Similarly by denoting Φ̂Y

∶= Φ (V X
0 (−h(y)), y)Y ′ for all y ∈ Y , we have

dY (Φ(p)Y , Φ̂Y (pY )) ⪯k,c,⋈ 1 (110)

The last problem is that given a point p, the heights of Φ̂X (pX) and Φ̂Y (pY ) may differ. As in the

proof of Theorem 4.5, inequality (109) guaranties that they are sufficiently close so that, which allows

us to chose Φ̂X and Φ̂Y such that for Φ̂ ∶= (Φ̂X , Φ̂Y ) is a well defined product map onX ⋈Y . Then we

have

d⋈′ (Φ(p), Φ̂(p)) ⪯k,c,⋈ 1
∆h(Φ(p), Φ̂(p)) ⪯k,c,⋈ 1

We now prove that Φ̂X and Φ̂X are quasi-isometries. Let x,x′ ∈X , then

dX′ (Φ̂X(x), Φ̂X(x′)) ⪯k,c,⋈ dX′ (Φ (x,V Y
0 (−h(x)))X′ ,Φ (x′, V Y

0 (−h(x′)))X′)
≤ d⋈′ (Φ (x,V Y

0 (−h(x))) ,Φ (x′, V Y
0 (−h(x′))))

≤ kd⋈ ((x,V Y
0 (−h(x))) , (x′, V Y

0 (−h(x′)))) + c
≤ kdX(x,x′) + dY (V Y

0 (−h(x)), V Y
0 (−h(x′))) + c +M(k, c,⋈), by Corollary 1.11.

≤ kdX(x,x′) +∆h(x,x′) + c +M ≤ (k + 1)dX(x,x′) + c +M.
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Similarly

dX′ (Φ̂X(x), Φ̂X(x′))
⪰k,c,⋈ dX′ (Φ (x,V Y

0 (−h(x)))X′ ,Φ (x′, V Y
0 (−h(x′)))X′)

≥ 2d⋈′ (Φ (x,V Y
0 (−h(x))) ,Φ (x′, V Y

0 (−h(x′)))) − dY ′ (Φ (x,V Y
0 (−h(x)))Y ′ ,Φ (x′, V Y

0 (−h(x′)))Y ′)
≥
1

k
dX (x,x′) − c − dY ′ (Φ̂Y (V Y

0 (−h(x))) , Φ̂Y (V Y
0 (−h(x)))) − 2M, by the triangle inequality,

≥
1

k
dX (x,x′) − c − 2M.

The proof that Φ̂Y is a quasi-isometry is similar.

5 Some solvable Lie groups as horospherical products

In this chapter, we provide a characterisation of the quasi-isometry group a the horospherical product

of two Heintze groups. See Theorem 5.13 for the precise description.

5.1 Admissibility of Heintze groups

In this section we show that a Heintze group satisfies the conditions required to apply our main rigidity

result 4.1.

Definition 5.1. (Heintze group)

A Heintze group is a solvable Lie group S = N ⋊A R where N is a connected, simply connected, nilpotent

Lie group, and A is a derivation of Lie(N) whose eigenvalues all have positive real parts.
Heintze obtained in his work [Hei74] that any negatively curved homogeneous manifold is isomet-

ric to a Heintze group.

Remark 5.2. A Heintze group admits a left-invariant metric with strictly negative sectional curvature,

see [Hei74] for further details. From now on we fix g a left-invariant metric on N ⋊A R with maximal

sectional curvature −1. Since N ⋊A R is simply connected, it is a CAT (−1)-space.
From now on we fix the metric g such that S = N ⋊A R is a CAT(−1) space. Therefore S is a δ-

hyperbolic, Busemann, proper, geodesically complete metric space. Moreover, we show that S satisfies

all three assumptions of Definition 3.1. The assumption (E1) holds thanks to the decomposition S =
N ⋊AR. We have for all (n, z) ∈ N ⋊A R, g(n,z) = exp(−zA)(gN )n exp(−zA)t ⊕ dz2, where gN is the

restriction of g to the Lie algebra ofN . Let us denote by gz ∶= exp(−zA)gN exp(−zA)t a left invariant
metric onN , then let us denote by µ ∶= µg the measure on S induced by g and by µz ∶= µgz the measure

onN induced by gz . Then for all measurable subset U ⊂ S we have

µ(U) ∶= ∫
S

1U (n, z)dµg(n, z) = ∫
R

∫
N

1U (n, z)dµgz(n)dz
= ∫

R

µz(Uz)dz,
where Uz ∶= {n ∈ N ∣(n, z) ∈ U}. Assumption (E2) holds with constant M0 = 1 since gn,z is

left-invariant, and assumption (E3) arises from the fact that det(gz) = exp(−2z R(tr(A)))det(g).
Therefore, any Heintze group is an admissible horo-pointed space. Let us denote S1 ∶= N1 ⋊A1

R and

S2 ∶= N2 ⋊A2
R, then

S1 ⋈ S2 = (N1 ×N2) ⋊A R,

with A the matrix diag(A1,−A2). Similarly let us denote by S′1 ∶= N ′1 ⋊A′1 R and S′2 ∶= N ′2 ⋊A′2 R two

Heintze groups, withN ′1,N
′
2 being two simply connected Lie groups andA′1,A

′
2 being two derivations.

74



5.2 Precision on the components of the product map

We first refine Theorem 4.1 for Heintze groups.

Remark 5.3. For any vertical geodesics V of (N1 × N2) ⋊A R there exist n1 ∈ N1, n2 ∈ N2 and an

arclength parametrisation of V such that V (t) = (n1, n2, t).
Let Φ ∶ (N1 × N2) ⋊A R → (N ′1 × N ′2) ⋊A′ R be a (k, c)-quasi-isometry. Let us assume that

R(tr(A1)) > R(tr(A2)) and thatR(tr(A′1)) > R(tr(A′2)). By Theorem 4.1 there exist Φ̂1 ∶ S1 → S′1
and Φ̂2 ∶ S2 → S′2 such that

d⋈(Φ, (Φ̂1, Φ̂2)) ⪯k,c,⋈ 1.
Lemma 5.4. Let i ∈ {1,2}, then for any vertical geodesic V ∈ Si, there exists a vertical geodesic V

′ such

that

dHff (Φ̂i(V ), V ′) ⪯k,c,⋈ 1
Proof. Since Si = Ni ⋊Ai

R is a Gromov hyperbolic space, there existsM(k, c,⋈) such that image of a

vertical geodesic by Φ̂i is in aM -neighbourhood of a geodesic γ of Si. By Corollary 4.17 γ is a vertical

geodesic, hence for V ′ ∶= γ we have dHff (Φ̂i(V ), V ′) ⪯k,c,⋈ 1.
Let n ∈ Ni and let us denote by Vn the vertical geodesic Vn ∶ R → Si ; t ↦ (n, t). By Lemma 5.4

there exists a vertical geodesic V ′n such that

dHff(Φ̂i(Vn), V ′n) ⪯k,c,⋈ 1 (111)

Furthermore V ′n is unique since it is an infinite geodesic of the Heintze group Si. We define a map

Ψi ∶ Ni → N ′i as the following

For all n ∈Ni , Ψi(n) = P (V ′n(0)) , (112)

where P ∶ N ′i ⋊Ai
R→ N ′i is the natural projection onNi.

The goal of this subsections is to prove the following theorem.

Theorem 5.5. There exists t0 ∈ R such that for the aforementioned Ψi we have

d⋈ (Φ,(Ψ1,Ψ2,
R(tr(A1))
R(tr(A′1)) idR + t0)) ⪯k,c,⋈ 1.

We can replace
R(tr(A1))
R(tr(A′

1
)) by

R(tr(A2))
R(tr(A′

2
)) thanks to Proposition 4.15. We first show Φ̂i and Ψi are

related.

Lemma 5.6. Let i ∈ {1,2}. There exists fi ∶ R→ R such that for all (n, t) ∈ Si

dSi
(Φ̂i(n, t), (Ψi(n), fi(t))) ⪯k,c,⋈ 1

Proof. Let fi ∶ R → R; t ↦ h(Φ̂i(eNi
, t)). Then by Theorem 4.1 we have that h(Φ̂i(n, t)) = fi(t) for

all n ∈Ni. Therefore by the definition of Ψi we have (Ψi(n), fi(t)) = V ′n(fi(t)). Hence
dS′

i
(Φ̂i(n, t), (Ψi(n), fi(t))) = dS′

i
(Φ̂i(n, t), V ′n(fi(t))) . (113)

However by inequality (111), there exists st ∈ R such that

dS′i (Φ̂i(n, t), V ′n(st)) ⪯k,c,δ 1 (114)
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Furthermore we know that

1 ⪰k,c,⋈ dS′
i
(Φ̂i(n, t), V ′n(st)) ≥∆h(Φ̂i(n, t), V ′n(st)) = ∣fi(t) − st∣ (115)

Therefore

dS′i (Φ̂i(n, t), V ′n(fi(t))) ≤ dS′i (Φ̂i(n, t), V ′n(st)) + dS′i (V ′n(st), V ′n(fi(t))) ,by the triangle inequality,

= dS′
i
(Φ̂i(n, t), V ′n(st)) + ∣fi(t) − st∣ ⪯k,c,⋈ 1 ,by inequalities (114) and (115).

Combined with equality (113) it provides us with dS′i (Φ̂i(n, t), (Ψi(n), fi(t))) ⪯k,c,⋈ 1
Corollary 5.7. (Quasi-isometries quasi-preserve the horosphere volume)

Let t ∈ R, r > 0 and n ∈ Ni. Then the map Φ̃i ∶= (Ψi, fi) quasi-preserves the volume of any disk

D ∶=Dr(n, t)
µSi

t (D) ≍k,c,⋈ µS′i
t (N1 (Φ̃i(D)))

Proof. By Lemma 5.6, there exists M(k, c,⋈) such that Φ̃i is M -close to Φ̂i. Therefore, there exists

k′, c′ depending only on k, c and S1 ⋈ S2 such that Φ̃i is a (k′, c′)-quasi-isometry.

We first exhibit Z a 2(k′c′ + 1)-maximal separating set of D. Then Φ̃i(Z) verifies:
1. The disksD1(p) with p ∈ Φ̃i(Z) are pairwise disjoints.
2. ⋃

p∈Φ̃i(Z)
D1(p) ⊂N1 (Φ̃i(D)) ⊂ ⋃

p∈Φ̃i(Z)
D2k′(k′c′+1)+c′+1(p)

Furthermore by Lemma 3.2, we have ∀(n, t) ∈ Z
µSi

t (Dk′c′(n, t)) ≍k,c,⋈ µSi

t (D2k′c′(n, t))
µ
S′i
fi(t)(D1(Φi(n, t))) ≍k,c,⋈ µS′i

fi(t)(D2k′(k′c′+1)+c′+1(Φi(n, t)))
Therefore

µSi

t (D) ≍k,c,⋈ #Z ≍k,c,⋈ µS′i
t (N1 (Φ̃i(D)))

Lemma 5.8. (Quasi-isometries quasi-translate the height)

Let fi ∶ R → R be the function involved in Lemma 5.6. Then for all t ∈ R

∣R(tr(A1))
R(tr(A′1)) t − (fi(t) − fi(0))∣ ⪯k,c,⋈ 1

Proof. We recall that for all t ∈ R, fi(t) ∶= h(Φ̂i(eNi
, t)). Let n ∈ Ni, r > 0, t ∈ R, and let us denote

U ⊂ Ni such thatDr(n,0) = (U,0). Then we have

µSi

0 (U,0) = e2R(tr(Ai))tµSi

t (U, t) (116)

However Φ̃i(U,0) = (Ψi(U), fi(0)) and Φ̃i(U, t) = (Ψi(U), fi(t)), therefore
µ
S′i
fi(0) (N1(Φ̃i(U,0))) = µS′i

fi(0) (N1(Ψi(U), fi(0)))
= e2R(tr(A′i))(fi(t)−fi(0))µS′i

fi(t) (N1(Ψi(U), fi(t)))
= e2R(tr(A′i))(fi(t)−fi(0))µS′i

fi(t) (N1(Φ̃i(U, t))) (117)
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Furthermore by Lemma 5.7 we have

µSi

0 (U,0) ≍k,c,⋈ µS′i
fi(0) (N1(Φ̃i(U,0)))

µSi
t (U, t) ≍k,c,⋈ µS′i

fi(t) (N1(Φ̃i(U, t)))
In combination with equalities (116) and (117), it provides us with

µSi

0 (U,0) = e2R(tr(Ai))tµt(U, t) ≍k,c,⋈ e2R(tr(Ai))tµS′i
fi(t) (N1(Φ̃i(U, t)))

= e2R(tr(Ai))te2R(tr(A′i))(fi(0)−fi(t))µS′i
fi(0) (N1(Φ̃i(U,0)))

≍k,c,⋈ e2R(tr(Ai))te2R(tr(Ai))(fi(0)−fi(t))µSi

0 (U,0)
Hence we have e2R(tr(Ai))t ≍k,c,⋈ e2R(tr(A′i))(fi(t)−fi(0)), which, composed with the logarithm, gives

us

∣R(tr(A1))
R(tr(A′1)) t − (fi(t) − fi(0))∣ ⪯k,c,⋈ 1. (118)

Corollary 5.9. There exists t0 ∈ R such that for i ∈ {1,2} and for all (n, t) ∈ Ni ×R

dSi
(Φ̂i(n, t),(Ψi(n), R(tr(A1))

R(tr(A′1))t + t0)) ⪯k,c,⋈ 1
Proof. The proof is a direct application of Lemmas 5.6 and 5.8 by taking t0 ∶= fi(0).

In this corollary t0 depends on Φ.

Proof of Theorem 5.5. Using Lemma 5.9 onN1 and N2 provides us with Theorem 5.5.

5.3 Hamenstädt distance and product maps of bilipschitz maps.

As presented in section 5.3 of [CKDNO21], the parabolic visual boundary of Ni ⋊R may be identified

with the Lie group Ni endowed with the following Ai-homogeneous Hamenstädt distance.

Definition 5.10. (Hamenstädt distance) For any n,m ∈Ni, we define their Hamenstädt distance as

dNi,Ai,H(n,m) ∶= exp(−12 lim
s→+∞

(2s − dNi⋊Ai
R((n,−s), (m,−s))))

We might omit Ai andNi in the notation. We denote Bilip(N) the group of bilipschitz maps ofN

for the Hamenstädt distance.

Bilip(Ni) ∶= {Ψ ∶ (Ni, dH)→ (Ni, dH) ∣ ∃k ≥ 1,Ψ is a (k,0)-quasi-isometry} .
This is indeed a distance when the left invariant metric g is normalized so that R⋉Ai

Ni is a CAT(−1)
space.

Two quasi-isometriesΦ and Φ′ are said to be equivalent when they are at finite distance from each

other.

Φ ∼ Φ′ ⇔ sup
x

d⋈(Φ(x),Φ′(x)) < +∞
In this section we prove the following characterisation of the quasi-isometry group of S1 ⋈S2 = (N1 ×

N2) ⋊A R.
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Theorem 5.11. Let N1 ⋊A1
R andN2 ⋊A2

R be two Heintze group, let Φ ∈ QI((N1 ×N2)⋊AR) and let
Ψ1, Ψ2 be as in Theorem 5.5, we have the following isomorphism.

f ∶ QI((N1 ×N2) ⋊A R)/∼→ Bilip(N1) ×Bilip(N2)
Φ ↦ (Ψ1,Ψ2)

This distance is related to the height divergence of vertical geodesics in the following way.

Lemma 5.12. (Extended Backward Lemma) Let n,m ∈ Ni, let V ∶ t ↦ (n, t) and let W ∶ t ↦ (m, t),
then

dH(n,m) ≍k,c,⋈ exp (hDiv(V,W ))
See Corollary 1.4 for the definition of hDiv(V,W ).

Proof. By the Corollary 1.4 there exists a height hDiv(V,W ) ∈ R such that V andW diverge from each

other at the height hDiv(V,W ). Hence there existsM(k, c,⋈) such that for all s1 ≤ s2 ≤ hDiv(V,W )
d(V (s2),W (s2)) −M ≤ dSi

(V (s1),W (s1)) + 2∣s2 − s1∣ ≤ dSi
(V (s2),W (s2)) +M.

Therefore

exp (dSi
(V (s1),W (s1)) + 2∣s2 − s1∣) ≍k,c,⋈ exp (dSi

(V (s2),W (s2))) , (119)

Let us denote h0 ∶= hDiv(V,W ). Then we can compute de Hamenstädt distance dH(n,m)
dH(n,m) = exp (−1

2
lim

s→+∞
(2s − dSi

(V (−s)W (−s))))
≍k,c,⋈ exp(−1

2
lim

s→+∞
(2s − dSi

(V (h0),W (h0)) − (2h0 + 2s))) ,by inequality (119),

≍k,c,⋈ exp(−1
2

lim
s→+∞

( − dSi
(V (h0),W (h0)) − 2h0))

= exp⎛⎝
dSi
(V (h0),W (h0))

2
+ h0
⎞
⎠ = exp

⎛
⎝
dSi
(V (h0),W (h0))

2

⎞
⎠ exp (h0)

≍k,c,⋈ exp (h0) ,by definition of hDiv(V,W ).

We show that the aforementioned maps Ψi are bilipschitz.

Theorem 5.13. Let Ψi be the map of Theorem 5.5. Then Ψi is a bilipschitz homeomorphism either from

(Ni, dH) to (N ′i , (dH)
R(tr(A1))
R(tr(A′

1
))) or from (Ni, (dH)R(tr(A

′
1
))

R(tr(A1))) to (N ′i , dH).
Proof. Let n,m ∈ Ni and let V ∶ t ↦ (n, t) and W ∶ t ↦ (m, t) be two vertical geodesics of Ni ⋊Ai

R.

Let us denote by λ0 ∶= R(tr(A1))
R(tr(A′

1
)) . By the Lemma 5.12 we have

dH(n,m) ≍k,c,⋈ exp (hDiv(V,W ))
Since Φi ∶= (Ψi, λ0idR + t0) is a (k′, c′)-quasi-isometry, we have:

1. dSi
((Ψi(n), λ0hDiv(V,W ) + t0), (Ψi(m), λ0hDiv(V,W ) + t0)) ≍k,c,⋈ 1

2. ∀s ≥ hDiv(V,W ), dSi
((Ψi(n), λ0s + t0), (Ψi(m), λ0s + t0)) ⪯k,c,⋈ 1
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Furthermore, for all n ∈ Ni, Φ̃i(Vn) = VΨi(n) hence Φ̃i(Vn) is a vertical geodesics of S′i . Then there

existsM(k, c,⋈) such that

(λ0hDiv(V,W ) + t0) −M ≤ hDiv (Φ̃i(V ), Φ̃i(W )) ≤ (λ0hDiv(V,W ) + t0) +M.

Consequently Lemma 5.12 provides us with

dH (Ψi(n),Ψi(m)) ≍k,c,⋈ exp (hDiv(VΨi(n),WΨi(m))) = exp (hDiv (Φ̃i(V ), Φ̃i(W )))
≍k,c,⋈ exp(t0) exp (λ0hDiv (V,W ))
≍k,c,⋈ exp(t0) (dH(n,m))λ0 , by Lemma 5.12.

Where t0 depends only on Φ. Furthermore, if λ0 ≤ 1, (dH)λ0 is still a distance by concavity. Hence,

depending on the value of λ0, either Ψi ∶ (Ni, dH) → (N ′i , (dH)λ0) or Ψi ∶ (Ni, (dH)λ0) → (N ′i , dH)
is a bilipschitz map.

We now focuses on self quasi-isometries of (N1 ×N2) ⋊A R.

Proof of Theorem 5.11: Let Ψ1, Ψ2 be as in Theorem 5.5, and let f be the application

f ∶ QI((N1 ×N2) ⋊A R)/∼→ Bilip(N1) ×Bilip(N2)
Φ ↦ (Ψ1,Ψ2)

We first show that this application is well defined. LetΦ,Φ′ ∈ QI((N1×N2)⋊AR) be such thatΦ ∼ Φ′,
which means that d⋈(Φ,Φ′) ⪯k,c,⋈ 1.

By Theorems 5.5 and 5.13, there exist Ψi,Ψ
′
i ∈ Bilip(Ni) such that:

1. d(Φ, (Ψ1,Ψ2, idR)) ⪯k,c,⋈ 1
2. f(Φ) = (Ψ1,Ψ2)
3. d(Φ′, (Ψ′1,Ψ′2, idR)) ⪯k,c,⋈ 1
4. f(Φ′) = (Ψ′1,Ψ′2)

By the definition of Ψi and Ψ
′
i , for all n ∈ N we have

Ψi(n) =P (V ′n(0))
Ψ′i(n) =P (V ′′n (0))

Where V ′n the unique vertical geodesic close to Φ̂i(Vn) and V ′′n the unique vertical geodesic close to

Φ̂′i(Vn). However Φ ∼ Φ′, then Φ̂i(Vn) and Φ̂′i(Vn) are M -close to each other for some M(k, c,⋈),
therefore dHff(V ′n, V ′′n ) ⪯k,c,⋈ 1. However these vertical geodesics are unique, then V ′n = V ′′n . Conse-

quently,Ψi(n) = Ψ′i(n), hence Ψi = Ψ′i, therefore f is well defined.

Let us now prove that f is injective. Let Φ and Φ′ be two quasi-isometries of (N1 ×N2)⋊AR such that

f(Φ) = f(Φ′). Then by Theorem 5.5 and by the triangle inequality

d⋈ (Φ,Φ′) ≤ d⋈ (Φ, (Ψ1,Ψ2, idR)) + d⋈ ((Ψ1,Ψ2, idR),Φ′) ⪯k,c,⋈,Φ,Φ′ 1.

Hence Φ ∼ Φ′, which proves that f is injective.

Let Ψi ∈ Bilip(Ni, dH), our goal is to show that (Ψi, idR) is a quasi-isometry of (Ni ⋊A R, dSi
). Let(n, tn), (m, tm) ∈ Si. By Lemma 5.12 applied on n andm, there exists a constantM(k, c,⋈) such that

ln (dH(n,m)) −M ≤ hDiv (Vn, Vm) ≤ ln (dH(n,m)) +M. (120)
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Similarly, by Lemma 5.12 applied on Ψi(n) and Ψi(m)
ln (dH(Ψi(n),Ψi(m))) −M ≤ hDiv (VΨi(n), VΨi(m)) ≤ ln (dH(Ψi(n),Ψi(m))) +M. (121)

However by Theorem 5.13, Ψi ∈ Bilip(Ni, dH) hence dH(n,m) ≍ dH(Ψi(n),Ψi(m)). Therefore by
inequalities (120) and (121) we have

∣hDiv (Vn, Vm) − hDiv (VΨi(n), VΨi(m))∣ ⪯ 1. (122)

Moreover by Lemma 1.3 we can characterise the distance between two points thanks to the height of

divergence of their associated vertical geodesics. Let us denote h0 = hDiv (Vn, Vm). By inequality (122)
and by Lemma 1.3, if h0 ≥max(tn, tm) we have both:

∣dSi
((n, tn), (m, tm)) − (∣tm − h0∣ + ∣tn − h0∣)∣ ⪯δ 1

∣dSi
((Ψi(n), tn), (Ψi(m), tm)) − (∣tm − h0∣ + ∣tn − h0∣)∣ ⪯δ 1

Consequently by the triangle inequality there existsM(δ) such that

dSi
((n, tn), (m, tm)) −M ≤ dSi

((Ψi(n), tn), (Ψi(m), tm)) ≤ dSi
((n, tn), (m, tm)) +M

Similarly, if h0 ≤max(tn, tm) we have both:
∣dSi
((n, tn), (m, tm)) − (∣tm − tn∣)∣ ⪯δ 1

∣dSi
((Ψi(n), tn), (Ψi(m), tm)) − (∣tm − tn∣)∣ ⪯δ 1

Hence again

dSi
((n, tn), (m, tm)) −M ≤ dSi

((Ψi(n), tn), (Ψi(m), tm)) ≤ dSi
((n, tn), (m, tm)) +M

Therefore (Ψi, idR) is a (1,M)-quasi-isometry of Ni ⋊R, hence (Ψ1,Ψ2, idR) is also a (1,M)-quasi-
isometry, which provides us with f(Ψ1,Ψ2, idR) = (Ψ1,Ψ2). Hence f is surjective, and finally bijec-

tive.

Let us nowprove that f is amorphism. LetΦ,Φ′ ∈ QI((N1×N2)⋊AR). Furthermore, d⋈ (Φ′, (Ψ′1,Ψ′2, idR)) ⪯
1, hence d⋈ (Φ ○Φ′,Φ ○ (Ψ′1,Ψ′2, idR)) ⪯ 1 sinceΦ is a quasi-isometry. Moreover, d⋈ (Φ, (Ψ1,Ψ2, idR)) ⪯
1, therefore by the triangle inequality

d⋈ (Φ ○Φ′, (Ψ1,Ψ2, idR) ○ (Ψ′1,Ψ′2, idR)) ⪯ 1.
However

(Ψ1,Ψ2, idR) ○ (Ψ′1,Ψ′2, idR) = (Ψ1 ○Ψ
′
1,Ψ2 ○Ψ

′
2, idR),

which provides us with

d⋈ (Φ ○Φ′, (Ψ1 ○Ψ
′
1,Ψ2 ○Ψ

′
2, idR)) ⪯ 1.

Consequently f(Φ ○Φ′) = (Ψ1 ○Ψ
′
1,Ψ2 ○Ψ

′
2).

In this proof we showed that Φ ∼ (Ψ1,Ψ2, idR), therefore any quasi-isometry is in the equivalence

class of an (1,M)-quasi-isometry.
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5.4 Quasi-isometric classification and necessary conditions to being quasi-isometric

Thanks to Proposition 4.15 and Theorem 5.13 we are able to provide necessary conditions and quasi-

isometric classifications for families of solvable Lie groups of the form R ⋉Diag(A1,A2) (N1 ×N2).
Let us recall two consequences implied by being quasi-isometric in the Lie group setting. For i ∈{1,2}, let Ni, N

′
i be two simply connected, nilpotent Lie groups and let Ai, A

′
i be two matrices whom

eigenvalues have positive real parts, acting by derivation on the corresponding Lie algebra. Let us

assume that R(tr(A1)) > R(tr(A2)) and R(tr(A′1)) > R(tr(A′2)). If R ⋉Diag(A1,A2) (N1 ×N2) and
R ⋉Diag(A′

1
,A′

2
) (N ′1 ×N ′2) are quasi-isometric then:

1.
R(tr(A1))
R(tr(A2)) =

R(tr(A′
1
))

R(tr(A′
2
)) (Proposition 4.15)

2. For i ∈ {1,2}, there existsNi and N ′i are bilipschitz. (Theorem 5.13)

Let us denote by

SN1,N2
∶= R ⋉Diag(A1,A2) (N1 ×N2).

Combining Lemma 4.1 of paper [PS17] and Theorem 5.13 we obtain the following statement.

Proposition 5.14. Let us assume thatR(tr(A1)) >R(tr(A2)) andR(tr(A′1)) >R(tr(A′2)). IfSN1,N2

and SN ′
1
,N ′

2
are quasi-isometric, then we have that for i ∈ {1,2}, Ai and

R(tr(A1))
R(tr(A′

1
))A′i share the same

characteristic polynomial.

A Carnot group N is a simply connected, nilpotent Lie group with a Lie algebra Lie(N) which
admits a grading: there exists a family of subspaces Vi with i ∈ {1, ..., r} for some r ≥ 1 such that

Vi+1 = [V1, Vi] for i < r and such that

Lie(N) = r

⊕
i=1

Vi.

A Carnot group is equipped with a 1-parameter family of automorphisms called dilations on N and

defined for t ∈ R by δt ∶= exp(tD), with D a Lie derivation on Lie(N) verifying that Dv = iv for

v ∈ Vi and i ∈ {1, ..., r}. Such a derivation is called a Carnot derivation. A Lie group S(N1,N2)
is Carnot-Sol type if N1 and N2 are Carnot groups and if there respective derivations A1 and A2 are

Carnot derivations. CombiningTheorem 5.13 and Theorem 2 of [Pan89], we get the following necessary

condition

Proposition 5.15. Let S(N1,N2) and S(N ′1,N ′2) be two Carnot-Sol type Lie groups and assume that

R(tr(A1)) >R(tr(A2)) and that R(tr(A′1)) >R(tr(A′2)). Then:
SN1,N2

and SN ′
1
,N ′

2
are quasi-isometric ⇒ For i ∈ {1,2}, Ni and N

′
i are isomorphic.

Furthermore, for a given Carnot derivation A on a Carnot group N , there exists a positive real

α > 0 such that R ⋉A N = Sα where Sα ∶= R ⋉α N is the group defined by the action of R via the

dilation (δαt)t∈R on N . Let N1 and N2 be two Carnot groups and for any two positive reals α,β > 0,
let Gα,β ∶= R ⋉α,−β (N1 ×N2) be the group defined by the action of R onN1 ×N2,

R→ Aut(N ×N), t↦ (δαt, δ−βt) .
Note that Gα,β = Sα ⋈ Sβ . Thanks to the quasi-isometry invariant of Proposition 4.15, we obtain the

quasi-isometry classification for Carnot-Sol type Lie groups.

Proposition 5.16. Let (α,β) and (σ, τ) be two pairs of positive reals with α > β and σ > τ , then

Gα,β quasi-isometric to Gσ,τ ⇔ α

β
= σ

τ
⇔ Gα,β isomorphic to Gσ,τ
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Proof. If α
β
= σ

τ
, then Gα,β and Gσ,τ are isomorphic and thus in particular quasi-isometric (or even

bilipschitz) with respect to any left-invariant Riemannian metrics on the groups. Indeed, the map

Gα,β → Gσ,τ , (x, y, t) ↦ (x, y,λt)
is an isomorphism. For (xi, yi, ti) ∈ Gα,β for i ∈ {1,2}, we have in Gσ,τ

(x1, y1, λt1) ⋅ (x2, y2, λt2) = (x1 ⋅ δσλt1x2, y1 ⋅ δ−τλt1y2, λ(t1 + t2))
= (x1 ⋅ δαt1x2, y1 ⋅ δ−βt1y2, λ(t1 + t2)),

which is the image of (x1, y1, t1) ⋅ (x2, y2, t2). Proposition 4.15 conclude the proof since the ratios of

traces of the respective derivations are α
β
and σ

τ
.

Otherwise stated, two non-unimodular Carnot-Sol type solvable Lie groups are quasi-isometric if

and only if they are isomorphic.
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A On the finitely generated groups quasiisometric to bifiliform by

cyclic groups

by Gabriel Pallier

In his thesis, Ferragut proves structural statement on quasiisometries between (and of) solvable Lie

groups and horospherical products, allowing some progress on their quasiisometry classification. The

goal of this appendix is to give one further application, this time towards quasiisometric rigidity, given

by combining Ferragut’s theorem 5.11 and the litterature, namely the main result of Dymarz-Xie’s work

[DX16], and the work by Xie on quasiconformal maps on filiform groups [Xie15].

In the following Theorem, for n ⩾ 2 we let Fn denote the model filiform group of class n, and let δn
denote a Carnot derivation of its Lie algebra fn (See Section A.1 for definitions). Combining Ferragut’s

theorem with the main theorem in [DX16], we obtain the following.

TheoremA.1 (After Ferragut and Dymarz-Xie). Let n,m be positive integers such that 3 ⩽ n <m. Then,

no finitely generated group is quasiisometric to the group Gn,m = (Fn ×Fm) ⋊(δn,−δm) R.
We call the groups Gn,m bifiliform by cyclic. Theorem A.1 is one case of the first part of the con-

jectural statement [DPX22, 1.2.2 (2)] and as such, a small step towards quasiisometric rigidity. If F0

denotes the trivial group, then we can allow n = 0 as well (provided m ⩾ 3): a stronger statement ac-

tually holds [DX16, Theorem 5.8]. The full conclusion of quasiisometric rigidity, namely that a finitely

generated group quasiisometric to some Gn,m for 3 ⩽ n ⩽ m is virtually a lattice in Gn,n, is to be

expected, but seems currently out of reach; we provide a few comments on this in Section A.2.
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The author thanks Tullia Dymarz for lecturing on the Dymarz-Xie theorem at the Thematic School on

quasiisometric rigidity at the CIMI in 2017, and Xiangdong Xie for a useful discussion.

A.1 Proof of Theorem A.1, after Ferragut and Dymarz-Xie

The outline of the proof is the same as in [EFW12, Theorem 7.3] dealing with the group Sol(m,n).
We expand slightly the argument, while replacing Hinkkannen’s theorem by [DX16, Theorem 1.1] and

Eskin-Fisher-Whyte’s description of QI(Sol(m,n)) with Ferragut’s description of QI(Gn,m) when
m ≠ n.

Let n ⩾ 2. The model filiform group Fn is the simply connected nilpotent Lie group with Lie algebra

fn. The latter has basis (e1, . . . , en+1)where [e1, ej] = ej+1 for 2 ⩽ j ⩽ n. Let δ be the Carnot derivation
such that δe1 = e1, δe2 = e2 and δej = (j − 1)ej for 3 ⩽ j ⩽ n + 1. We denote by Affδ(Fn) the group of

maps Fn → Fn of the form Lg ○exp(tδ) for some t ∈ R, where Lg denotes the left translations by some

g ∈ Fn;Affδ(Fn) is isomorphic to the Carnot-type Heintze group over Fn. Note that tr(δ) = 1+ n(n+1)
2

.

For ǫ1, ǫ2 ∈ {−1,1}, let hǫ1,ǫ2 be the automorphism of fn defined by

⎧⎪⎪⎨⎪⎪⎩
hǫ1,ǫ2(e1) = ǫ1e1,
hǫ1,ǫ2(ej) = ǫj−21 ǫ2ej 2 ⩽ j ⩽ n + 1

The hǫ1,ǫ2 generate a Viergruppe V . We may as well consider this group as a group of automorphisms

of Fn. Let us recall the following statement from [DX16, p.1132], which is not hard to check.

Lemma A.2. The sequence

1Ð→ Affδ(Fn)→ Sim(Fn)→ V Ð→ 1.

is exact.
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Here Sim(Fn) denotes the group of similarities (ormetric homotheties) of the Carnot-Carathéodory

metric on Fn for which e1, e2 form an orthonormal basis of the horizontal distribution. The lemma

implies that this group is almost connected and that Affδ(Fn) is its unit component.

Let Γ be a finitely generated group quasiisometric to

Gn,m = (Fn × Fm) ⋊R.
Then Γ uniformly quasiacts on any model space of Gn,m, in particular on the horospherical product

metric in which the standard bases in fn and fm are orthonormal, orthonormal to each other, and to the

R direction (once a section has been fixed for the latter). Precisely, let f ∶Γ→ Gm,n be the quasiisometry,

and f̂ its coarse inverse; then for each γ ∈ Γ we have that

Tγ = f ○Lγ ○ f̂

is a quasiisometry of Gn,m, where Lγ ∶Γ → Γ is the left multiplication by γ.

Assume n ≠ m and proceed towards a contradiction. By Ferragut’s theorem 5.11 applied to the

group Gn,m and its self-quasiisometries Tγ , we get a homomorphism

ρ ∶ Γ→ Bilip(Fn) ×Bilip(Fm)
which to γ associates the boundary maps of Tγ on the upper and lower boundaries. By Dymarz and

Xie’s theorem [DX16, Theorem 1.1], and Lemma A.2 recalled above, there is an index 16 subgroup Γ′

of Γ and a homomorphism

ρ′ ∶ Γ′ → Affδ(Fn) ×Affδ(Fm).
Apriori, the boundary actions ρ and ρ′ are only quasisymmetrically conjugate; but in the case of filiform

groups, quasiconformal maps are bilipschitz, as shown by Xie [Xie15]. Extending the pair of bilipschitz

conjugating maps to the interior, we get a quasiisometry h of Gn,m and the following diagram.

Γ′

Gn,m Gn,m

Γ′

Gn,m Gn,m

Lγ

f

f ′

h

T ′γ

f
f ′

Tγ

h

Fix a word distance d on Γ′ and let λ ⩾ 1 and c be such that f ′ and its coarse inverse f̂ ′ are both (k, c)-
quasiisometries in the sense of Definition 2.1. It follows that the additive quasiisometry constant of T ′γ
is at most kc + c for all γ ∈ Γ′, while the multiplicative constant is at most k2. The image of ρ′ cannot

lie anywhere inAffδ(Fn)×Affδ(Fm); ρ′ must reach a subgroup of pairs of boundary maps that extend

to quasiisometries with a uniform bound on additive quasiisometry constants. We claim that ρ′(Γ′) is
contained in the subgroup

L = {g ∈ (Fn ⋊δn R) × (Fm ⋊δm R) ∶ ∃(x, y) ∈ Fn × Fm,∃t ∈ R, g = (x, t, y,−t)}
which is isomorphic toGn,m andwhose action by quasiisometries onGn,m is the left multiplication.

This is a consequence of the following Lemma.

Lemma A.3. Let Q be a group of self-quasiisometries of Gn,m with uniformly bounded multiplicative

and additive constants. Then there exists a quasi-character η ∶ Q→ R such that

sup
x∈Gn,m,Φ∈Q

∣∣h(Φ(x)) − h(x)∣ − η(Φ)∣ < +∞.
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Proof. To every Φ inQ, Ferragut associates two functions that are denoted f1 and f2 and defined in the

proof of Lemma 5.6. When the quasiisometry constants of Φ are bounded, the difference between f1
and f2 is bounded, and Ferragut proves that the quasiisometry Φ is at bounded distance, say K , from

a quasiisometry which moves the height by some t0: this is the conclusion of Corollary 5.9, where the

quotients of the real parts of the traces of A1 and A′1 is 1 in our case. The latter t0 can be defined as

f1(0) or f2(0) (which differ by a bounded amount). Now it is a consequence of the bound expressed

in Corollary 5.9 that K is bounded by some constant only depending on the quasiisometry constants

k and c of Φ. So we can define η(Φ) ∶= t0, where t0 is as in the statement of Corollary 5.9.

Consider themap π from (Fn⋊δnR)×(Fm⋊δmR) toR×R defined by π(x, t, y, s) = (t, s). Applying
Lemma A.3 to Q = {T ′γ}γ∈Γ′ we find that the image of π ○ ρ must lie at a finite distance from the line{(t,−t) ∶ t ∈ R}. Since π ○ ρ is a group homomorphism, the image of π ○ ρ must be contained in this

line, so that ρ′(Γ′) is contained in L.

We need to prove that the image of ρ′ is a lattice in Gn,m, and that its kernel is finite. This is done

exactly following the lines of [EFW12]: we have to check that the homomorphism ρ′ is proper (which

implies that the kernel is finite and the image is discrete), and co-compact (which will achieve showing

that ρ′(Γ′) is a lattice). To see that ρ′ is proper, observe that it is by definition the f ′-conjugate of the

left action of Γ′ on itself by left-translations, which is proper; and since f is a quasiisometry, the same

property follows for ρ′. Similarly, the left translation action of Γ′ on itself is co-compact; the same

follows for ρ′, since f has co-bounded image.

Finally, note that Gn,m is unimodular (and hence, can contain a lattice) if and only if n =m. Since

we proved that ρ′(Γ′) is such a lattice, we conclude that n ≠m was not possible.

A.2 Final comments

Theorem A.1 is a quasiisometric rigidity statement expressed in a negative form. We would like to

emphasize that obtaining the traditional form of quasiisometric rigidity for the class of groups S (com-

pletely solvable, and not Gromov-hyperbolic) encompassing Sol(m,n) andGm,n, may be described as

a two-step process, whose completion need not be chronological:

1. First, show that the non-unimodular groups in S are not quasiisometric to any finitely generated

groups. This is what was done in [EFW12], and the present appendix.

2. Then, show that any finitely generated group quasiisometric to a unimodular group in S , is
virtually a lattice there. Note that even the latter do not always have lattices (in general this can be

determined using Auslander’s criterion [Aus73, III.6]). In the case of Sol this step is significantly

harder (compare [EFW13] to [EFW12]).

A similar two-step process occurs, though with a slightly different mechanism, when obtaining

quasiisometric rigidity for Gromov-hyperbolic completely solvable groups. There, what is expected can

be stated as follows: any finitely generated group quasiisometric to a negatively curved, isometrically

homogeneous Riemannian manifoldX , should be virtually a uniform lattice in a rank one Lie group, of

whichX is the associated symmetric space. The analogue of the second step was achieved in the 1980s

and early 1990s by contributions of Tukia, Pansu, Gabai, Casson-Jungres and Chow. The first step is

not complete as of now; it is usually reached through the pointed sphere conjecture, explicitely stated

by Cornulier [Cor18], and has been an active stream of research in the last decade, led by Xie (of which

[Xie15] is a sample result), with an important contribution by Carrasco Piaggio [CP17] essentially

showing that X as above should belong to the class of Carnot-type homogeneous spaces of negative

curvature.

Finally, one may hope for quasiisometric rigidity statements in which the mystery group Γ is as-

sumed locally compact rather than finitely generated. In the negative curvature case, Cornulier proved

that the classical work of the authors cited above, plus [KL09], yield the desired description of com-

pactly generated locally compact groups quasiisometric to symmetric spaces [Cor18]. Beyond symmet-
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ric spaces, the Dymarz-Xie theorem [DX16, Theorem 5.8] is currently a rare example of a QI rigidity

statement allowing this generality.
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