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A divisible public resource is to be divided among projects. We study rules that
decide on a distribution of the budget when voters have ordinal preference rankings
over projects. Examples of such portioning problems are participatory budgeting,
time shares, and parliament elections. We introduce a family of rules for portioning,
inspired by positional scoring rules. Rules in this family are given by a scoring vector
(such as plurality or Borda) associating a positive value with each rank in a vote, and
an aggregation function such as leximin or the Nash product. Our family contains well-
studied rules, but most are new. We discuss computational and normative properties
of our rules. We focus on fairness, and introduce the SD-core, a group fairness notion.
Our Nash rules are in the SD-core, and the leximin rules satisfy individual fairness
properties. Both are Pareto-efficient.

1. Introduction
The members of an organization need to divide its budget among several projects. They have
different opinions about the relative value of different projects, and would like to vote over the
budget. What kind of voting rule could they use?

Some cities let citizens vote over the use of the city budget, giving rise to participatory budgeting
(see Aziz and Shah [2021], De Vries et al. [2021]). In deployed applications (such as in Paris,
Madrid, and Warsaw), the projects are indivisible, and can be either fully funded or not at all,
such as refurbishing a school or adding a bike lane. We focus on divisible projects on which an
arbitrary fraction of the budget could be spent, such as ‘education’ or ‘transport’ or ‘parks’. The
result of the vote can be visualized as a pie chart showing which percentage of the budget is spent
on each expense. The ‘budget’ need not be monetary, and we refer to this general scheme as
portioning. There are many applications:

• A conference board deciding how much time to assign to talks, poster sessions, invited talks,
and coffee breaks.

• Coauthors deciding how much space to devote to various topics in a textbook or article with
fixed total length.

• A parliamentary election deciding what percentage of parliament seats should go to each
party (see Section 7).

• A company deciding which charities to direct its annual donations to, letting employees vote
over which charities should receive a donation.
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We ask voters to report their preferences over projects as rankings, the most common format
considered in social choice. If a project is ranked more highly, the voter thinks it is more worthwhile
and should receive a larger fraction of the budget. The rules we study in this paper make an
important assumption: voters’ preferences over budget allocations are implicitly interpreted to be
separable. Thus, a voter ranking project a above project b is assumed to prefer giving a larger
share to a than to b in all possible contexts. In particular, voters cannot express complementarity
or supplementarity between projects, nor that they want the share of a to be 50%, or that projects
a and b should ideally receive the same share. Of the four example applications we mentioned,
separability is plausible for the latter two, but less plausible for the first two (since people typically
want a varied conference program, and textbooks about more than one topic).1

The space of sensible aggregation rules is large, so let us illustrate some important design
considerations by an example.

An Example A company wants to decide about its annual donation to charities. Its five
employees have different preferences about which ones should receive money. The charities under
consideration are a, b, c, d, e. Frances, George and Helena all think a ≻ b ≻ c ≻ d ≻ e; Ingrid
thinks e ≻ b ≻ c ≻ d ≻ a; and John thinks c ≻ a ≻ e ≻ d ≻ b.

a
60%

c
20%

e
20%

Figure 1: Random Dictator

One simple way to split the money is to allocate each person the same share of the total amount
of the donation (20%) and let them decide which charity it should be given to (see Figure 1). To
the social choice theorist, this rule sounds familiar: it is formally identical to Random Dictatorship,
whose output is usually seen not as a division of a budget, but as a probability distribution.
Indeed, any probabilistic social choice function can be repurposed to divide budgets; but these are
often not attractive for portioning since many of them were designed as tie-breaking devices.

The output of random dictatorship can be a good choice, especially if our five employees strongly
prefer their top choice to any other charity. But it is also plausible that Frances, George, Helena
and Ingrid agree that b is good common ground. Random Dictatorship, using plurality scores,
ignores this (plurality scores assign one point to the best alternative and zero to the other ones).
Instead, we could impute Borda scores on our company. For m alternatives, Borda scores assign
m− 1 points to the best alternative, m− 2 to the second best, and so on. For example, Frances,
George, and Helena give 4 ‘utility’ points to a, 3 to b, 2 to c, 1 to d, and 0 to e. Proportional
Borda then allocates money in proportion to the total Borda score of the charities (see Figure 2).
This leads to a significant money share for b. On the other hand, the company now also donates
to d, which is dominated: everyone agrees that c is better than d!

To be more efficient, it makes sense to maximize a notion of social welfare. Suppose the utility
enjoyed by a company employee is the weighted average of the Borda scores of the charity the
company donates to, where the weights come from the fraction of money spent on each charity. It

1If voters prefer mixtures, this could be accommodated by including projects that are themselves mixtures, so that
the outcome is a “mixture of mixtures”, as discussed by Brandl and Brandt [2020, p. 802].
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a
30%b

24%

c
24% d

10%

e
12%

Figure 2: Proportional Borda

remains to decide how to aggregate these utilities. Utilitarianism picks a distribution where the
sum of utilities is greatest. In our example, Borda-utilitarianism — resulting from the choice of
the Borda scoring vector and utilitarianism — gives 100% of the donation to a (see Figure 3).

a
100%

Figure 3: Borda-utilitarianism

This is Pareto-efficient: no other distribution is better for all agents. But it is unfair to Ingrid,
who sees all the funding to her least-preferred choice. Many rules suffer from this phenomenon
of overriding some voters’ preferences: For example, the ‘maximal lotteries’ rule (see the related
work section) also only funds a since it is the Condorcet winner, that is, for any other candidate
x, a majority of voters prefer a to x.

To avoid frustration, we may take a more egalitarian approach, and aim to give every company
employee a significant share. Egalitarianism consists in picking the distribution maximizing the
utility of the worst-off employee. In our example, Borda-egalitarianism — resulting from the choice
of the Borda scoring vector and egalitarianism — gives every employee an average Borda-utility
of 2.4. The outcome is represented in Figure 4.

b
40%

c
60%

Figure 4: Borda-egalitarianism
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We can also maximize Nash social welfare, the product of utilities. This is often seen as a
compromise between maximizing utilitarian and egalitarian welfare notions. While egalitarian
rules perform well when we wish to be fair to each individual, Nash rules tend to be fair to groups.
In our example, Frances, George and Helena form a large group with the same preferences, liking
a most, and accordingly Borda-Nash gives almost half the budget to a (see Figure 5).

a
46%

b
29%

c
26%

Figure 5: Borda-Nash

If there were more than those 3 employees with the same preferences in the company, Borda-Nash
would increase the budget share of a. In contrast, Borda-egalitarianism avoids funding a to benefit
Ingrid (who ranks a last), and the output of egalitarian rules does not change with the number of
employees with identical preferences. Depending on the context, either of these behaviors might
be more appropriate.

Our Contributions We introduce a class of aggregation rules called positional social decision
schemes. Rules in this class first convert each input ranking into scores for the alternatives,
using a scheme such as plurality or Borda scores. Then, these scores are lifted and used to score
distributions (using a weighted average). Finally, the rules select a distribution of the budget
maximizing social welfare given those scores, where different notions of welfare can be used;
classically, we consider utilitarian, egalitarian (leximin), and Nash welfare. Our class contains
known rules such as random dictatorship, but most have not been studied.

We begin by noting basic properties of the rules in our class, giving closed forms and equivalent
definitions in some cases. We also show that the rules in this class can be calculated or approximated
in polynomial time. For rules based on Nash welfare, we show that their output can involve
irrational percentages; we prove that those rules are guaranteed to be rational if the scoring vector
used is plurality or veto, but that no other scoring vector guarantees rational output.

We then formalize intuitive notions of fairness in the budgeting context. The axioms we propose
require that procedures do not ignore individuals: every voter should have at least some of the
budget allocated to favored causes. We also give some group fairness notions. Our strongest
axiom is the SD-core which, roughly, requires that a group of α% of the voters can control what
happens with α% of the budget. We show that the rules in our class based on Nash welfare satisfy
the SD-core, while the egalitarian rules satisfy the individual fairness notions.

We study the performance of our rules on standard social choice properties, such as Pareto-
efficiency, strategyproofness, monotonicity, and participation. In the conclusion, a table summarizes
which properties are satisfied by the various rules.

We close by giving a detailed example of applying our rules to the problem of allocating seats
in a parliament under a party-list system.

Related Work Bogomolnaia et al. [2005] introduced the portioning problem, motivated by
time-sharing. They assume dichotomous preferences, and agents report a subset of the alternatives
(an approval vote), rather than rankings. They study the compatibility of Pareto-efficiency
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and strategyproofness, with positive results (for example, spending the entire budget on the
approval winner satisfies both requirements). However, after adding a fairness axiom, they get an
impossibility result. Related impossibilities are proved by Duddy [2015] and Brandl et al. [2021].
Aziz et al. [2020] introduce some new rules based on welfare maximization, and introduce new
fairness axioms (including a core notion), and a weakened strategyproofness axiom. Guerdjikova
and Nehring [2014] give an axiomatic characterization of the Nash product rule. Michorzewski
et al. [2020] study utilitarian welfare guarantees of various rules in this setting. Brandl et al. [2022]
study cases when the budget is owned by the voters. Freeman et al. [2021] consider portioning
when each agent has a preferred ideal distribution and wants the chosen distribution to be close
to the ideal.

Fain et al. [2016] study portioning in a cardinal model which allows agents to give a full utility
function over alternatives (which may also feature decreasing returns). They study the core and
connect it to the Lindahl equilibrium from the study of public goods, and prove that a core
solution always exists. For a broad class of utility functions, they show that a core solution can
be found in polynomial time by solving a suitable convex program. They also use differential
privacy to design a mechanism for this setting which satisfies approximate versions of efficiency,
truthfulness, and the core.

With rankings as input, this setting has been studied in the formally isomorphic guise of
probabilistic social choice [see Brandt, 2019 for a recent survey]. In this literature, the outcome
distribution is interpreted as a random device, which is used to eventually implement a single
outcome. This makes notions of fairness and proportionality less relevant, and it is seen as desirable
for a rule to randomize as little as possible. For example, the maximal lotteries rule [Kreweras,
1965, Brandl et al., 2016], while attractive according to consistency axioms, spends the entire
budget on the Condorcet winner if it exists. This is often undesirable in a budgeting context. Some
papers on probabilistic social choice also discuss fairness concerns and the portioning application
[see, e.g., Aziz et al., 2018c, Aziz and Stursberg, 2014].

We can view positional decision schemes as choosing a utility function for each voter and then
performing welfare maximization for different social welfare functions. Following the literature
on implicit utilitarian voting [Procaccia and Rosenschein, 2006, Boutilier et al., 2015], Ebadian
et al. [2022] take a different view. They assume that each voter has a true utility function that
is unknown to the voting rule but that is compatible with the reported ranking. The goal is to
find a portioning that approximately maximizes social welfare, no matter what the true utilities
turn out to be. For utilitarian welfare, they show that an O(

√
m)-approximation is possible,

and for Nash welfare, they show that an O(log m)-approximation is possible, where m is the
number of alternatives. They also consider a notion of the core that is related to our SD-core; we
could call their notion the strong SD-core. A distribution fails to be in the (weak) SD-core if a
coalition of voters has a deviation that they all prefer for all possible utility functions compatible
with the reported rankings. The latter is a difficult condition to satisfy, making the SD-core a
somewhat weak property. For Ebadian et al. [2022], a distribution fails to be in the strong SD-core
if a coalition of voters has a deviation that they prefer with respect to some compatible utility
functions. This is so strong that no distribution can be in the SD-core, except for trivial profiles.
Thus, Ebadian et al. [2022] study an approximation they call the α-core, and show that there
always exists a distribution satisfying it for α = O(log m).

In a related setting, mirroring how many cities do participatory budgeting, projects are indivisible
and come with a fixed cost; they can either be fully funded or not at all [Goel et al., 2019, Benade
et al., 2021, Aziz and Shah, 2021]. Several recent papers have studied fairness in this setting [Aziz
et al., 2018b, Fain et al., 2018, Conitzer et al., 2017, Peters et al., 2021, Fairstein et al., 2022,
Los et al., 2022]. It is related to multi-winner elections (which can be seen as the special case
where all projects have the same cost), for which fairness and proportionality are well-studied
[Aziz et al., 2017, Faliszewski et al., 2017, Lackner and Skowron, 2022]. The setting is also known
as combinatorial public projects [Papadimitriou et al., 2008].
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The literature on cake-cutting and item allocation is mostly unrelated to our work: in those
settings, goods are allocated to agents for their exclusive use. In our setting, resources are spent
on projects which can be enjoyed by all agents. On a technical level, the idea of scoring followed
by aggregation has been explored in fair division [Brams and King, 2005, Darmann and Schauer,
2015, Baumeister et al., 2016], and work on the fair allocation of goods to several groups of agents
raises similar issues [see, e.g., Manurangsi and Suksompong, 2019; Bade and Segal-Halevi, 2018;
Segal-Halevi and Suksompong, 2019].

2. Positional social decision schemes
Let X = {x1, . . . , xm} be a set of alternatives and N = {1, . . . , n} be a set of voters. Let L(X) be
the set of linear orders over X. For ≻ ∈ L(X), the rank of alternative xj is r(≻, xj) = 1 + |{xi ∈
X : xi ≻ xj}|. For example, if xj is the top-ranked alternative in ≻ then r(≻, xj) = 1. A profile
P = (≻1, . . . ,≻n) ∈ L(X)n is a collection of linear orders, one for each voter. We write abc as
shorthand for a ≻ b ≻ c. Let ∆(X) = {p : X → [0, 1] :

∑
x∈Xpx = 1} be the set of (probability)

distributions over X. We use notation like 1
2x1 + 1

2x2 to specify a distribution, and write xj for
the distribution with pxj = 1. Given a distribution p, for brevity we sometimes write pj for pxj .
We say that z : X → [0, 1] is a partial distribution if

∑
x∈Xzx ⩽ 1. A social decision scheme (SDS)

[Gibbard, 1977] is a function F assigning to each P ∈ L(X)n a nonempty subset of ∆(X) of
selected distributions. Usually, this set is a singleton, but there can be several tied distributions.

A scoring vector for m alternatives is a vector s = (s1, . . . , sm) of numbers with s1 ⩾ s2 ⩾
· · · ⩾ sm and s1 > sm. We usually assume sm = 0. A scoring vector s is strictly decreasing if
sj > sj+1 for all j < m. The Borda vector is sBorda = (m− 1, m− 2, . . . , 0); the plurality vector is
splurality = (1, 0, . . . , 0); the veto (or antiplurality) vector is sveto = (1, . . . , 1, 0).

For a fixed profile P , we write s[i, j] = sr(≻i,xj) for the s-score that voter i ∈ N assigns to
alternative xj ∈ X. These scores can be lifted to (partial) distributions by taking a weighted
average (i.e., taking the expected score): We say that the s-score of a distribution p for i is
s[i, p] =

∑m
j=1 pjs[i, j]. Finally, define the utility vector s[p] = (s[1, p], . . . , s[n, p]).

A welfare ordering is a weak order ⩾W of utility vectors (α1, . . . , αn) ∈ Rn
⩾0. We denote by >W

the strict part of ⩾W . The most common choices for ⩾W are:

• utilitarianism, which orders vectors by their sum;

• egalitarianism, which orders vectors by their minimum;

• leximin, which sorts the components of the utility vector increasingly and then orders sorted
vectors lexicographically;

• the Nash product [Nash, 1950], which orders vectors by their product.

By combining a scoring vector and a welfare ordering, we can define a positional social decision
scheme.

Definition 1 (Positional Social Decision Schemes). For a scoring vector s and a welfare order-
ing ⩾W , define the social decision scheme Fs,⩾W so that for all profiles P ,

Fs,⩾W (P ) = {p ∈ ∆(X) : s[p] ⩾W s[q] for all q ∈ ∆(X)}.

For the specific ⩾W mentioned, we usually call these rules s-utilitarianism, s-egalitarianism,
s-leximin, and s-Nash.
Example 1 (The case of two alternatives). Consider the profile P = (ab, ab, ba) over two alternatives,
with s = (1, 0). For each r ∈ [0, 1], consider the distribution p(r) = ra + (1− r)b, whose associated
utility vector is (r, r, 1− r).
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• s-utilitarianism selects the distribution p(r) maximizing
∑n

i=1 s[i, p(r)] = 1 + r, which is the
deterministic distribution a.

• s-egalitarianism selects the distribution p(r) maximizing mini=1...n s[i, p(r)] = min(r, 1− r),
which is 1

2a + 1
2b. The same distribution is selected by s-leximin.

• s-Nash selects the distribution p(r) maximizing
∏n

i=1 s[i, p(r)] = r2(1− r), which is 2
3a + 1

3b.

More generally, if a profile consists of q votes for ab and n− q votes for ba, then: s-utilitarianism
selects a if q > n − q and b if q < n − q, and selects all possible distributions if q = n − q; s-
egalitarianism and s-leximin select 1

2a+ 1
2b whenever 1 ⩽ q < n; and s-Nash selects q

na+(1− q
n)b.

For normative analysis, it is useful to extend voters’ rankings of the alternatives to (partial)
preferences over distributions. We assume linear preferences: there is an unknown utility function
ui : X → R consistent with ≻i such that i prefers those distributions p with higher expected utility∑

x∈X ui(x)px. A classical way of ranking distributions despite not knowing ui uses stochastic
dominance (SD): If p and q are (possibly partial) distributions, we write

p ≽SD
i q ⇐⇒

∑
xk≻ixj

pxk
⩾

∑
xk≻ixj

qxk
for all xj ∈ X.

As usual, we then write p ≻SD
i q if p ≽SD

i q but q ̸≽SD
i p, and p ∼SD

i q if p ≽SD
i q and q ≽SD

i p.
If we label alternatives such that x1 ≻i x2 ≻i · · · ≻i xm, we can equivalently write this definition

as

p ≽SD
i q ⇐⇒



p1 ⩾ q1, and
p1 + p2 ⩾ q1 + q2, and
...
p1 + · · ·+ pm−1 ⩾ q1 + · · ·+ qm−1.

Note carefully that our definition does not include the inequality p1 + · · ·+ pm ⩾ q1 + · · ·+ qm,
which usually is part of the definition of SD. This inequality is trivially satisfied if both p and q
are distributions summing to 1. But since we omit this inequality, we can SD-compare partial
distributions. According to our definition of SD, each agent interprets a partial distribution
z with

∑
x∈X zx = α < 1 as if it was the full distribution z + (1 − α)xm, which places the

remaining probability mass 1 − α on the agent’s least-preferred alternative. This extension to
partial distributions will be crucial for the definition of the SD-core in Section 4. Here are some
examples for an agent with x1 ≻i x2 ≻i x3 ≻i x4:

(0.8, 0.1, 0.1, 0) ≻SD
i (0.7, 0.2, 0.1, 0) ≻SD

i (0.7, 0.2, 0, 0.1) ≻SD
i (0.7, 0, 0, 0) ∼SD

i (0.7, 0, 0, 0.3).

The definition of SD-preference is interesting due to the following standard equivalence [Bogo-
molnaia and Moulin, 2001]: distribution p is weakly SD-preferred to q by voter i if and only if p
gives i a weakly higher s-score than does q, for all scoring vectors s with sm = 0. (The condition
that sm = 0 is necessary to implement our way of doing SD-comparisons of partial distributions:
sm = 0 implies that voters are indifferent between not spending part of the budget or spending it
on their worst alternative.) The equivalence is formalized in the following proposition.

Proposition 1. Let p and q be (possibly partial) distributions.

(a) p ≽SD
i q if and only if s[i, p] ⩾ s[i, q] for all scoring vectors s with sm = 0.

(b) If p ≻SD
i q then for each strictly decreasing scoring vector s with sm = 0, we have s[i, p] >

s[i, q].
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Proof. Label alternatives such that x1 ≻i x2 ≻i · · · ≻i xm.
Suppose p ≽SD

i q, and let s be a (weakly decreasing) scoring vector with sm = 0. Since p ≽SD
i q,

we have p1 ⩾ q1, p1 + p2 ⩾ q1 + q2, . . . , p1 + · · ·+ pm−1 ⩾ q1 + · · ·+ qm−1. Now

s[i, p]− s[i, q] =
m−1∑
j=1

sj(pj − qj)

=
m−1∑
j=1

sj((p1 + · · ·+ pj)− (q1 + · · ·+ qj))− sj((p1 + · · ·+ pj−1)− (q1 + · · ·+ qj−1))

=
m−1∑
j=1

(sj − sj+1)((p1 + · · ·+ pj)− (q1 + · · ·+ qj)) ⩾ 0.

Here, the third equality uses that sm = 0. The inequality uses that sj − sj+1 ⩾ 0 since s is
weakly decreasing. Hence, s[i, p] ⩾ s[i, q], showing one direction of (a). We can use the same
calculation to show (b): the last sum in the calculation is strictly positive because (sj − sj+1)
is positive by the assumption that s is strictly decreasing, and because p ≻SD

i q, at least one
of the terms of the sum is strictly positive. For the converse direction of (a), assume s[i, p] ⩾
s[i, q] for all scoring vectors s with sm = 0. This applies in particular to the scoring vectors
s = (1, 0, . . . , 0), (1, 1, 0, . . . , 0), . . . , (1, 1, . . . , 1, 0). Applying s[i, p] ⩾ s[i, q] to each of these vectors
gives p1 ⩾ q1, p1 + p2 ⩾ q1 + q2, . . . , p1 + · · ·+ pm−1 ⩾ q1 + · · ·+ qm−1, that is, p ≽SD

i q.

Thus, p is SD-preferred to q if p gives a higher expected score than q under all scoring vectors.

3. Computation and basic properties
In this section, we look at elementary properties of the family of rules we have defined. We
will note that some of the rules are familiar from the probabilistic context. We also study the
computational complexity of finding an optimal distribution.

3.1. Utilitarianism
From a utilitarian perspective, it is never worth it to spend part of the budget on alternatives
whose total s-score is not maximal: shifting that spending to an s-maximal alternative increases
utilitarian welfare. Thus, up to ties, s-utilitarianism never mixes and spends all resources on an
s-winner. Formally, s-utilitarianism selects those distributions p for which pxj > 0 only if the
score

∑
i∈N s[i, j] is maximum.

Since the behavior of s-utilitarianism is familiar from work on scoring rules in voting [see, e.g,
Zwicker, 2016], we will not study it in much detail.

3.2. Egalitarianism
Plurality-egalitarianism is easy to understand: it returns the uniform distribution over all alterna-
tives that are ranked top by at least one voter. In the probabilistic context, this rule coincides with
the egalitarian simultaneous reservation rule [Aziz and Stursberg, 2014], designed more generally
for preferences with possible indifferences. For other scoring vectors, s-egalitarianism is less simple,
and it need not return a uniform distribution (see the example of Section 1). However, one can
easily evaluate s-egalitarianism using linear programming:

maximize t∗ s.t.
∑m

j=1 s[i, j] · pj ⩾ t∗ for i ∈ N∑m
j=1 pj = 1, and pj ⩾ 0 for xj ∈ X
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Algorithm 1 Computing an s-leximin distribution
Set N ′ ← ∅. For i ∈ N , we will set ti once i is added to N ′.
while N ′ ̸= N do

Using linear programming, find the maximum value t∗ such that there is a distribution
(p1, . . . , pm) satisfying ∑m

j=1 s[i, j]pj ⩾ t∗ for i ∈ N \N ′∑m
j=1 s[i, j]pj = ti for i ∈ N ′∑m
j=1 pj = 1

p1, . . . , pm ⩾ 0

for each i′ ∈ N \N ′ do
Using linear programming, find the maximum ε such that there is a distribution (p1, . . . , pm)
satisfying ∑m

j=1 s[i′, j]pj ⩾ t∗ + ε∑m
j=1 s[i, j]pj ⩾ t∗ for i ∈ N \N ′∑m
j=1 s[i, j]pj = ti for i ∈ N ′∑m
j=1 pj = 1

p1, . . . , pm ⩾ 0

If ε = 0, add i′ to N ′ and set ti′ ← t∗.
end for

end while
return the solution (p1, . . . , pm) of the last linear program solved

Now, s-egalitarianism is not very decisive, in the sense that many different distributions may
maximize the s-egalitarian objective. For example, when P = (abcd, acbd, bdac), and s = (1, 1, 0, 0),
it selects all distributions of the form

p · a + q · b + (1
2 − p) · c + (1

2 − q) · d

where 0 ⩽ p, q ⩽ 1
2 and 1

2 ⩽ p + q ⩽ 1. A standard way of making egalitarianism more decisive
and more efficient is by using leximin instead. In the above example, s-leximin uniquely selects
1
2a + 1

2b.
It is still possible to evaluate s-leximin in polynomial time, by solving O(n2) linear programs

successively. Our algorithm uses the convexity of the set ∆(X) of all distributions, which allows it
to greedily fix the identity of the agent who is worst off in the current iteration. The algorithm is
a special case of a scheme discussed by Nace and Orlin [2007], and is similar to algorithms used
by Kurokawa et al. [2018].

Theorem 1. For every s, one can compute a distribution selected by s-leximin in polynomial
time.

Proof. The algorithm is specified as Algorithm 1. It requires solving at most n(n + 1)/2 linear
programs.

First, we will prove by induction on k ⩾ 1 that at the start of the kth iteration of the while-loop,
it is the case that every distribution p selected by s-leximin satisfies s[i, p] = ti for every i ∈ N .
Second, we show that in each iteration, at least one agent gets added to N ′. From the second
claim it follows that the while-loop terminates after at most n iterations. From the first claim, it
follows that upon termination, we know the values s[i, p] for every i ∈ N that must be attained by
an s-leximin distribution. We can then compute one such distribution by linear programming (or
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as stated in the algorithm, just reuse the most recent optimal solution we have computed because
it satisfies the exact same constraints).

The inductive hypothesis holds vacuously at the start of iteration k = 1. Let k ⩾ 1. Denote by
N ′

k and N ′
k+1 the sets N ′ at the start of the kth and the (k + 1)th iteration. Note N ′

k ⊆ N ′
k+1.

Let p be a distribution selected by s-leximin. From the inductive hypothesis, s[i, p] = ti for all
i ∈ N ′

k. Letting t∗ be the optimum value of the first linear program solved in the kth iteration, we
know that s[i, p] ⩾ t∗ for all i ∈ N \N ′

k. Let i′ ∈ N ′
k+1 \N ′

k be an agent who is added to N ′ in
the kth iteration. Note that the algorithm sets ti′ = t∗. We claim that s[i′, p] = t∗. We already
know s[i′, p] ⩾ t∗. For a contradiction suppose s[i′, p] > t∗. Then in the iteration of the for-loop in
which i′ was added to N ′, the distribution p is a feasible solution to the linear program solved in
that iteration. Because the solution has a strictly positive objective value, this is a contradiction
to i′ being added then. Hence s[i′, p] = t∗. Since our choice of p among distributions selected by
s-leximin was arbitrary, this shows that the inductive hypothesis holds at the start of iteration
k + 1.

It remains to show that at least one agent is added to N ′ at each iteration. Suppose this is
not the case for the kth iteration. Then the linear programs solved in each for-loop iteration
have solutions with positive objective value. For each i′ ∈ N \ N ′

k, let p(i′) be the distribution
found in its for-loop; note s[i′, p(i′)] > t∗. Let p′ be the average of all these distributions, i.e.,
p′ =

∑
i′∈N\N ′

k

1
|N\N ′

k
|p(i′). Then we have s[i, p′] = ti for all i ∈ N ′

k, and s[i, p′] > t∗ for all
i ∈ N \N ′

k. This contradicts t∗ having been the optimum value of the first linear program solved
in the kth iteration of the while-loop.

It is clear that Algorithm 1 proceeds in polynomial time, except that we need to prove that the
values ti have polynomial size. This is shown by Nace and Orlin [2007, Theorem 1].

Let us illustrate the ideas of Algorithm 1 using an example.
Example 2. Let P = (abcd, acbd, bdac), and s = (1, 1, 0, 0). We begin by finding an s-egalitarian
distribution by solving the linear program

max t∗

s.t. pa + pb ⩾ t∗

pa + pc ⩾ t∗

pb + pd ⩾ t∗

pa + pb + pc + pd = 1
pa, pb, pc, pd ⩾ 0

with optimal solution t∗ = 1
2 . Thus, the best we can guarantee is that every voter receives an

s-score of at least 1
2 . We now wish to identify voters who receive an s-score of exactly 1

2 in every
s-egalitarian distribution. To do so, we solve the three linear programs

max ε

s.t. pa + pb ⩾
1
2 + ε

pa + pc ⩾ 1
2

pb + pd ⩾ 1
2

pa + pb + pc + pd = 1
pa, pb, pc, pd ⩾ 0

max ε

s.t. pa + pb ⩾
1
2

pa + pc ⩾ 1
2 + ε

pb + pd ⩾ 1
2

pa + pb + pc + pd = 1
pa, pb, pc, pd ⩾ 0

max ε

s.t. pa + pb ⩾
1
2

pa + pc ⩾ 1
2

pb + pd ⩾ 1
2 + ε

pa + pb + pc + pd = 1
pa, pb, pc, pd ⩾ 0

whose optimal solutions are, respectively, ε = 1, ε = 0 and ε = 0. It follows that voters 2 and 3
receive s-score 1

2 in all s-egalitarian distributions. Thus, Algorithm 1 now sets N ′ = {2, 3} and
t2 = t3 = 1

2 .
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To obtain the s-leximin distribution, we now need to maximize the s-score of agent 1. For this,
we solve the linear program

max t∗

s.t. pa + pb ⩾ t∗

pa + pc = 1
2

pb + pd = 1
2

pa + pb + pc + pd = 1
pa, pb, pc, pd ⩾ 0

with optimal solution t∗ = 1. The algorithm stops and outputs the distribution 1
2a + 1

2b.

3.3. Nash product
The defining optimization problem

max
∑

i∈N log
(∑m

j=1 s[i, j] · pj

)
s.t.

∑m
j=1 pj = 1, and pj ⩾ 0 for xj ∈ X

of s-Nash is a convex program that can be efficiently solved using standard convex programming
solvers.2 However, writing down the optimal distribution precisely, in decimal expansion, is
impossible, as there are instances where s-Nash uniquely returns a distribution with irrational
fractions. For instance, for P = (abc, acb, cab, cab) and s = (2, 1, 0), s-Nash uniquely returns
1+

√
33

8 a + 7−
√

33
8 c. Still, one can approximate optimum Nash welfare up to an additive ε in time

polynomial in n, m, and 1/ε, for example using the ellipsoid method [see Grötschel et al., 1993,
Sec. 4.2]. Thus, all the usual decision problems associated with computing s-Nash are easy.

We can analyze s-Nash using the first-order KKT conditions of the convex program. Let us
first state a version of the KKT theorem.

Theorem 2 (e.g., Beck, 2014, Theorem 11.16). Let f : Rm → R be a continuously differentiable
convex function, and let g1, . . . , gr : Rn → R and h1, . . . , hs : Rn → R be affine functions. Suppose
that x∗ ∈ Rn is an optimal solution to the following problem:

min f(x)
s.t. gj(x) = 0 for j = 1, . . . , r

hk(x) ⩽ 0 for k = 1, . . . , s

Then there exist multipliers λ1, . . . , λr ∈ R and µ1, . . . , µs ⩾ 0 such that for all i = 1, . . . , m,

∂f

∂xi
(x∗) +

r∑
j=1

λj
∂gj

∂xi
(x∗) +

s∑
k=1

µk
∂hk

∂xi
(x∗) = 0

and complementary slackness holds, that is, for all k = 1, . . . , s, we have

µkhk(x∗) = 0.

Analyzing the KKT condition of the Nash optimization problem yields the following important
inequality, which we will repeatedly use to establish properties of the s-Nash rule.

2An alternative method to compute s-Nash is via a proportional response dynamic that is known to converge to a
Nash distribution [Cover, 1984, Brandl et al., 2022].
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Proposition 2. Let p be a distribution selected by s-Nash. Then for every j = 1, . . . , m,

n ⩾
∑
i∈N

s[i, j]
s[i, p] , and if pj > 0 then equality holds. (∗)

Proof. Let p∗ be an optimal distribution selected by s-Nash. Because the quantity s[i, p∗] will
appear in denominators, let us first note that s[i, p∗] > 0 for all i ∈ N , since s[i, p∗] = 0 for some i

would imply
∏

i∈N s[i, p∗] = 0, and for the uniform distribution puniform we have s[i, puniform] > 0
for all i, contradicting the optimality of p∗.

Apply Theorem 2 with objective f(p) = −
∑

i∈N log(
∑m

j=1 s[i, j] ·pj), a single equality constraint
g1(p) =

∑m
j=1 pj − 1, and with m inequality constraints hk(p) = −pk. Note that

∂f

∂xj
(p) = −

∑
i∈N

s[i, j]
s[i, p] .

Since p∗ is an optimal solution, Theorem 2 implies that there are λ = λ1 ∈ R and µ1, . . . , µm ⩾ 0
such that for each j = 1, . . . , m, we have

−
∑
i∈N

s[i, j]
s[i, p∗] + λ− µj = 0 ⇐⇒ λ− µj =

∑
i∈N

s[i, j]
s[i, p∗] .

We have µj ⩾ 0, and by complementary slackness, if p∗
j > 0 then µj = 0. Thus for every

j = 1, . . . , m, we have
λ ⩾

∑
i∈N

s[i, j]
s[i, p∗] , with equality if p∗

j > 0. (1)

Multiplying both sides by p∗
j then gives λp∗

j =
∑

i∈N
s[i,j]

s[i,p∗]p
∗
j (no matter whether p∗

j is positive or
zero). Summing over all j, thus

λ = λ(p∗
1 + · · ·+ p∗

m) =
∑m

j=1
∑

i∈N
s[i,j]

s[i,p∗]p
∗
j = n,

since s[i, p∗] =
∑m

j=1 s[i, j] · p∗
j by definition. Plugging λ = n into (1) gives the desired result.

Using (∗), we can characterize plurality-Nash [see also Moulin, 2003, Example 3.6]:

Theorem 3. Plurality-Nash selects p with pj = pl(xj)/n for all j, where pl(xj) is the number of
voters placing xj top.

Proof. Let p be optimal for plurality-Nash. If some voter i puts xj top then pj > 0, or else
s[i, p] = 0 and the Nash product equals 0. By (∗), we get n =

∑
i∈N

s[i,j]
s[i,p] = pl(xj)/pj , and so

pj = pl(xj)/n. It follows that pj = 0 whenever no voter places xj top.

Thus, we see that plurality-Nash is the same rule as random dictatorship, familiar from the
probabilistic context.

The veto-Nash rule seems sensible when alternatives are nuisances, where each agent wants
to minimize the amount spent on the worst option. In some sense, veto-Nash for nuisances is
as relevant as plurality-Nash for goods, in the portioning context. Mathematically, veto-Nash is
also well-behaved. While we do not provide a closed formula, the following result shows that an
exact optimum for veto-Nash can be found in polynomial time (and that it is rational). It gives a
collection of at most m different explicit rational distributions, and guarantees that a veto-Nash
optimum is among them.
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Theorem 4. Let P be a profile, and let vt(xj) be the number of voters placing xj bottom. Relabel
alternatives so that vt(x1) ⩽ · · · ⩽ vt(xm). If vt(xj) = 0 for some xj, then veto-Nash selects all
distributions over such alternatives. Otherwise, there is k ∈ [m] with (k − 1)vt(xk) <

∑k
j=1 vt(xj),

such that veto-Nash selects the distribution p with

pj = 1− (k − 1)vt(xj)∑k
ℓ=1 vt(xℓ)

if j ∈ [k], and pj = 0 otherwise.

Proof. If vt(xj) = 0 for some xj , then the best-possible Nash product of 1 can be achieved, and is
achieved precisely by distributions whose support consists of never-vetoed alternatives.

Now suppose that vt(xj) > 0 for all xj . Let p be a distribution selected by veto-Nash. We may
assume that there is some k ⩽ m such that p1, . . . , pk are strictly positive and pk+1 = · · · = pm = 0.
If p does not satisfy this, then there are j and ℓ with j < ℓ (and thus vt(xj) ⩽ vt(xℓ)) such that
pj = 0 and pℓ > 0. We claim that the distribution p′ obtained from q by swapping pj and pℓ has a
Nash welfare at least as high as p. This is because∏

i∈N s[i, q]∏
i∈N s[i, p] =

∏
xk∈X(1− qk)vt(xk)∏
xk∈X(1− pk)vt(xk) = (1− qj)vt(xj)(1− qℓ)vt(xℓ)

(1− pj)vt(xj)(1− pℓ)vt(xℓ) = (1− pℓ)vt(xj)

(1− pℓ)vt(xℓ) ⩾ 1

where the last inequality follows because vt(xj)− vt(xℓ) ⩽ 0. Thus we can shift probability mass
in p until p1, . . . , pk are strictly positive and pk+1 = · · · = pm = 0 for some k, without lowering
Nash welfare, as desired. Note that k ⩾ 2, because otherwise p1 = 1 and voters who veto x1 get
utility 0, leading to Nash welfare 0 (since vt(x1) > 0), contradicting optimality.

It follows that for j = 1, . . . , k, inequality (∗) of Proposition 2 holds with equality and can be
written as

n =
∑
i∈N

s[i, j]
s[i, p] =

∑
ℓ∈X\{j}

vt(xℓ) ·
1

1− pℓ
.

Adding vt(xj)/(1− pj) to both sides and rearranging, we get

vt(xj)
1− pj

=
∑
ℓ∈X

vt(xℓ)
1− pℓ

− n.

Note that the right-hand side does not depend on j. Writing T for the value on the right-hand
side, it follows that vt(xj) = T (1− pj), and hence that pj = 1− 1

T vt(xj). Now we get

1 =
k∑

j=1
pj = k − 1

T

k∑
j=1

vt(xj) and hence T =
∑k

j=1 vt(xj)
k − 1 .

Plugging this into pj = 1− 1
T vt(xj), we arrive at the conclusion that

pj = 1− k − 1∑k
ℓ=1 vt(xℓ)

vt(xj) for all j = 1, . . . , k.

These values sum to 1, and are positive provided that (k − 1)vt(xk) <
∑k

j=1 vt(xj). Thus, we
have shown that there is a Nash optimal distribution p of the form promised by the theorem.

This gives a polynomial-time algorithm for computing veto-Nash exactly: if some alternatives are
never vetoed, return any distribution over these. Otherwise iterate over all k ∈ [m] satisfying the
condition of the theorem and calculate the corresponding distribution, and return the one with
highest Nash product.
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Example 3. Assume 2, 3, 3 and 5 voters rank x1, x2, x3 and x4 last, respectively: vt(x1) = 2,
vt(x2) = vt(x3) = 3, vt(x4) = 5. We have to identify the maximum integer k∗ such that
(k∗ − 1)vt(xk∗) <

∑k∗
j=1 vt(xj). From vt(x2) < vt(x1) + vt(x2), 2vt(x3) < vt(x1) + vt(x2) + vt(x3)

and 3vt(x4) > vt(x1) + vt(x2) + vt(x3) + vt(x4) we get k∗ = 3.
Now, k = 2 and k = 3 satisfy the condition of Theorem 4. The distributions corresponding

to k = 2 and k = 3 are respectively p = 3
5x1 + 2

5x2 and p′ = 1
2x1 + 1

4x2 + 1
4x3, one of which is

optimal. The Nash product of p and p′ is, respectively, (2
5)2(3

5)3 ≈ 0.035 and
(

1
2

)2 (
3
4

)6
≈ 0.045.

As p′ has higher Nash social welfare, it is optimal.
Theorems 3 and 4 show that both plurality-Nash and veto-Nash are rational. Are there any

other score vectors s such that s-Nash is guaranteed to be rational? The answer is no: for every
s other than plurality and veto, we can construct a profile where s-Nash uniquely returns an
irrational distribution. This result suggests that a convex programming solver is the best way of
computing s-Nash for s other than plurality and veto.

Theorem 5. Let m ⩾ 3, and let s = (s1, . . . , sm) ∈ Qm be a score vector with sm = 0 and
normalized so that s1 = 1. Unless s = (1, 0, . . . , 0) or s = (1, . . . , 1, 0), there exists a profile
P ∈ L(X)n for some n ∈ N such that s-Nash returns a unique distribution p with p ̸∈ Qm.

Proof sketch. We construct four infinite families of examples, for different shapes of score vectors
s. Here, we give a detailed proof for the case m = 3. The other families require a more involved
construction, but work using similar calculus. The details and a full proof appear in Appendix A.

Suppose m = 3, and let s = (1, r
s , 0), where 0 < r

s < 1 and r
s is in lowest terms. Let D be a

large-enough integer. Consider the following profile: D voters with abc, one voter with bac, and
one voter with bca. Let p be the distribution selected by s-Nash. Note that b Pareto-dominates
c, so that pc = 0. Hence p = (x, 1 − x, 0) for some x. One can show that 0 < x < 1 if D

is large enough (see the appendix). Now, the Nash product obtained by this distribution is
(x + r

s (1− x))D · ((1− x) + r
sx) · (1− x). By optimality, x must make the derivative d/dx vanish.

After a calculation, canceling non-zero factors, this implies that[
(D + 2)(r − s)2

]
· x2 + [−(r − s)((D + 3)r − 2(D + 1)s)] · x +

[
r2 − 2rs−Drs + Ds2

]
= 0

This is a quadratic equation with integer coefficients. Solutions to the equation “ax2 + bx + c = 0”
involve the term

√
b2 − 4ac; thus, they are rational if and only if b2 − 4ac is a perfect square. (We

are reusing the variable names a, b, c here to be consistent with the standard quadratic formula.)
In our case, the term under the square root simplifies to

(D + 1)2r2 + 4(rs + s2).

The first summand is a large perfect square, and the second summand does not depend on D.
Since the distance between consecutive perfect squares is large (in the sense that (z + 1)2 − z2 =
2z + 1 = Θ(z)), the discriminant cannot be a perfect square for large enough D. Hence, x is
irrational.

This irrationality result is in contrast to some other settings, notably Fisher markets, where
maximizing the Nash product is guaranteed to yield a rational outcome [Vazirani, 2012].

4. Fairness
Usually, s-utilitarianism spends 100% on a single alternative. Some agents might rank this
alternative in a very low position, or even in last place. In some contexts, this might be seen as
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unfair and thus might rule out s-utilitarianism as a desirable rule. In this section, we formalize
several notions of fairness, and show that s-egalitarianism satisfies individual fairness, and that
s-Nash satisfies group fairness. Our axioms are inspired by axioms introduced in a model with
approval votes developed by Bogomolnaia et al. [2005].

A minimal fairness axiom is positive share which requires that if voter i ranks x in last position,
then px < 1. Hence, for every voter, a positive amount is spent on alternatives not ranked in last
position. As suggested above, s-utilitarianism fails positive share for any s. However, provided
that sm = 0, positive share is satisfied by s-egalitarianism, s-leximin, and s-Nash. To see this, note
that the uniform distribution has positive egalitarian and Nash welfare, whereas a distribution
violating positive share has zero egalitarian and Nash welfare.

We can strengthen positive share to individual fair share, requiring that if voter i ranks x in
last position, then px ⩽ 1− 1

n . Thus, for each voter, at least 1
n is spent on alternatives not ranked

last. Note that the distribution identified by random dictatorship satisfies this condition and has
egalitarian welfare at least 1

n , normalizing s1 = 1. Thus, the optimum s-egalitarian welfare is
at least 1

n , and hence s-egalitarianism and s-leximin satisfy individual fair share (recalling that
sm = 0). In Theorem 6 below, we show that s-Nash also satisfies it.

Consider X = {a, b}, with 9 voters ab and 1 voter ba. Then s-egalitarianism returns 1
2a + 1

2b.
While this is individually fair, the group of 9 voters is underrepresented. If we desire fairness to
groups, we need a stronger axiom. Let us say that a distribution p satisfies group fair share if
whenever k out of n voters rank x last, then px ⩽ 1 − k

n , so at least k
n is spent on alternatives

other than x. This condition is failed by s-egalitarianism and s-leximin, but s-Nash satisfies it. In
our example, s-Nash picks 9

10a + 1
10b (which is the only distribution satisfying group fair share).

All the notions above focus on avoiding voters’ last-ranked alternative. Despite working in an
ordinal setting, using the SD-extension, we can define a group fairness notion that uses more than
just the last-ranked alternative. An important underlying intuition is that each agent is “entitled”
to 1/n of the budget, and this share should be spent in accordance to the agent’s preferences.
Similarly, a group S ⊆ N of k agents could pool together and be entitled to k/n of the budget.

The intuitive notion of entitlement can be formalized using a core-style concept. A coalition
S ⊆ N of voters is supposed to be able to ‘control’ a fraction of |S|/n of the entire budget.
The notion of control is ambiguous since coalitions may overlap and each share of the budget
is simultaneously ‘controlled’ by several coalitions. However, the entitlement of S is certainly
violated under p if S can come up with a way of using only its entitlement |S|/n which all members
prefer to the way that p uses the entire budget.

Definition 2 (SD-core). A coalition S ⊆ N SD-blocks a distribution p if there exists a partial
distribution z (called a deviation) with

∑
x∈X zx = |S|/n such that z ≽SD

i p for all i ∈ S, and
z ≻SD

j p for some j ∈ S. A distribution p is in the SD-core if no coalition SD-blocks p.

The SD-core is stronger than group fair share (and hence also individual fair share and positive
share).

Proposition 3. If p is in the SD-core then p satisfies group fair share.

Proof. Suppose that p fails group fair share. Thus, there is a coalition S of voters that rank x last
but px > 1−|S|/n. Then S can SD-block p: Write ε = px− (1−|S|/n) > 0 and define a deviation
z with zy = py + ε/(m− 1) for all y ∈ X \ {x}, and zx = 0. Then

∑
y∈X zy = zx +

∑
y∈X\{x} zy =∑

y∈X\{x} (py + ε/(m− 1)) = ε +
∑

y∈X\{x} py = ε + (1− px) = |S|/n, so that z has the required
total weight. It is easy to check that z ≻SD

i p for all i ∈ S. Thus, p is not in the SD-core.

For an example, take the profile with voters abc, acb, bca. Which distributions p are in the
SD-core? First, singleton coalitions {i} block p if px > 2

3 for i’s bottom alternative x, using
z = 1

3y where y is i’s top alternative. The coalition of abc and acb blocks all p with pa + pb ⩽
2
3

and pa + pc ⩽ 2
3 (one inequality strict), using z = 2

3a. All other distributions are in the SD-core.
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b

ac

plurality
Borda

veto

Figure 6: The SD-core of the profile (abc, acb, bca) within the simplex of all distributions. The
shaded area shows the distributions that are in the SD-core. The thick blue line shows
the output of s-Nash for all s = (1, q, 0) with q ∈ [0, 1]. Plurality-Nash selects 2

3a + 1
3b,

Borda-Nash selects 1√
3a + (1− 1√

3)b ≈ 0.58a + 0.42b, and veto-Nash selects 1
3a + 1

3b + 1
3c.

Figure 6 shows the simplex of all distributions, with the SD-core shaded (non-convex in this
example).

Figure 6 shows the outputs of s-Nash for all s as a blue line. The blue line is entirely contained
in the SD-core. In fact, s-Nash is always in the SD-core. We give a direct argument using
equation (∗), which we derived in Proposition 2. The result can also be obtained via the theory of
Lindahl equilibrium [Fain et al., 2016, Foley, 1970].

Theorem 6. For any strictly decreasing s with sm = 0, any distribution selected by s-Nash is in
the SD-core.

Proof. Suppose p is selected by s-Nash. For a contradiction, assume that S ⊆ N is a blocking
coalition of agents. Suppose they deviate using (z1, . . . , zm) ∈ [0, 1]m with

∑m
j=1 zj = |S|/n, such

that z ≽SD
i p for all i ∈ S, and z ≻SD

j p for some j ∈ S. Now, s satisfies the conditions of
Proposition 1(b), and thus we have s[i, z] ⩾ s[i, p] for all i ∈ S, and s[j, z] > s[j, p] for some j ∈ S.
(This is where we use our definition of SD-comparisons between partial distributions.) Then

|S| = n ·
m∑

j=1
zj =

m∑
j=1

nzj

(∗)
⩾

m∑
j=1

zj

∑
i∈N

s[i, j]
s[i, p] (from Proposition 2)

=
∑
i∈N

m∑
j=1

zj
s[i, j]
s[i, p]

=
∑
i∈N

∑m
j=1 zjs[i, j]

s[i, p]

=
∑
i∈N

s[i, z]
s[i, p]

⩾
∑
i∈S

s[i, z]
s[i, p] (since all summands are non-negative)

>
∑
i∈S

1 = |S|. (S blocks)

The last inequality follows because the sum contains |S| terms, each of which is at least 1, and at
least one of which is strictly larger than 1. This is a contradiction.
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Thus, the s-Nash rules are particularly fair to groups. The SD-core can also be seen as a
proportionality requirement: the common resource should be divided so that the share of an
alternative is proportional to its support. For example, this is of interest in politics, to divide
parliament seats among parties.

Theorem 6 only applies to strictly decreasing vectors s, and it might fail otherwise. For example,
veto-Nash is not always in the SD-core.
Example 4. Let m = 4, s = (1, 1, 1, 0) and P = (abcd, abcd, abdc, abdc, acdb, acdb, bcda). Then
s-Nash uniquely selects p = 4

7a + 1
7b + 1

7c + 1
7d. But then the first 7 voters who all rank a top can

deviate using z = 6
7a, because z ≻SD p for each of those 7 voters.

On the other hand, one can check that plurality-Nash is always in the SD-core despite not
satisfying the conditions of Theorem 6.

5. Efficiency
We study the efficiency of our rules. A weak version of Pareto efficiency for our context is known
as ex post efficiency (with terminology taken from the probabilistic interpretation of social decision
schemes) and requires that dominated alternatives must be assigned probability 0.

Definition 3 (ex post efficiency; e.g. Gibbard, 1977). Given a profile P , an alternative y ∈ X is
dominated if there is another alternative x ∈ X such that x ≽i y for all i ∈ N and x ≻i y for some
i ∈ N . A social decision scheme F is ex post efficient if for all profiles P and all distributions
p ∈ F (P ), we have py = 0 for all y ∈ X that are dominated in P .

There are a variety of stronger definitions of the Pareto principle for social decision schemes
[Brandt, 2017]. They do not just reason about dominated alternatives but about dominated
distributions. A particularly natural definition uses the SD extension.

Definition 4 (SD-efficiency; e.g. Bogomolnaia and Moulin, 2001). Given a profile P , a distribution
q SD-dominates p if q ≽SD

i p for all i ∈ N , and q ≻SD
j p for some j ∈ N . A distribution p is

SD-efficient if no distribution dominates it. A social decision scheme F is SD-efficient if for all
profiles P , every distribution p ∈ F (P ) is SD-efficient.

One can check that SD-efficiency implies ex post efficiency. Also, SD-core implies SD-efficiency,
because a distribution is SD-dominated if and only if the grand coalition S = N SD-blocks it.
Thus, by Theorem 6, all s-Nash rules are SD-efficient provided that s is strictly decreasing and
sm = 0.

More generally, which rules of our family are SD-efficient? Let us say that a welfare ordering
⩾W is weakly monotonic if for every two utility vectors α, β ∈ Rn

⩾0 with αi > βi for all i ∈ N ,
we have α >W β. We can show that any positional social decision scheme based on a strictly
decreasing scoring vector and a weakly monotonic welfare ordering is SD-efficient. This result
is slightly surprising because it only requires that ⩾W is weakly monotonic. On first sight, we
would require strict monotonicity (defined like weak monotonicity but with the premise “αi ⩾ βi

for all i ∈ N and αi > βi for some i ∈ N”). Because our result does not need strict monotonicity,
it applies even to s-egalitarianism, not just to s-leximin.

Proposition 4. If s is strictly decreasing with sm = 0, and ⩾W is weakly monotonic, then
Fs,⩾W (P ) is SD-efficient.

Proof. Let us begin by noting that if ≻ is any linear order and p and q are distributions such that
both p ≽SD q and q ≽SD p, then p = q.3 To see this, label alternatives so that x1 ≻ x2 ≻ · · · ≻ xm.

3We thank Patrick Lederer for pointing this fact out to us.
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Since we have an SD-indifference between p and q, the definition of SD implies that p1 = q1,
p1 + p2 = q1 + q2, . . . , p1 + · · · + pm = q1 + · · · + qm. Hence by induction pj = qj for each
j = 1, . . . , m, and so p = q.

Now, suppose for a contradiction that a distribution p SD-dominates q, where q ∈ Fs,⩾W (P ).
Thus, p ≽SD

i q for all i ∈ N . Because p SD-dominates q, we have p ̸= q and so by the above
argument we in fact have p ≻SD

i q for all i ∈ N . By Proposition 1(b), since s is strictly decreasing,
this implies that s[i, p] > s[i, q] for all i ∈ N . Since ⩾W is weakly monotonic, we have that
s[p] >W s[q], contradicting that q ∈ Fs,⩾W (P ).

As a corollary, s-utilitarianism, s-egalitarianism, s-leximin, and s-Nash are all SD-efficient
provided that s is strictly decreasing and sm = 0.

There are positional social decision schemes that violate the assumptions of Proposition 4 yet
are still SD-efficient. For example, plurality-Nash and plurality-egalitarianism are both SD-efficient
[Aziz and Stursberg, 2014] even though the plurality scoring vector is not strictly decreasing.
However, Proposition 4 does not hold if we only assume that s is weakly decreasing. For example,
any positional social decision scheme based on s = (1, 1, 0) cannot even be ex post efficient:
consider the one-voter profile P = (abc). The only ex post efficient distribution is the distribution
p that places all weight on a. But the distribution q that places all weight on b induces the same
s-scores: s[1, p] = s[1, q]. Hence for any ⩾W , if F(1,1,0),⩾W

contains the distribution p, then it
also contains q. Hence F(1,1,0),⩾W

is not ex post efficient. In particular, veto-Nash is not ex post
efficient.

6. Incentive properties
We study incentive properties of our rules, including participation, strategyproofness, and mono-
tonicity.

6.1. Participation
Typically, participation in a voting process is voluntary, and voters can decide whether they wish
to abstain or to cast their ballot. Thus, it is desirable to be able to guarantee that participating is
never detrimental to the voter. This is the motivation of the participation axiom, which we again
phrase based on the SD-extension. To use participation axioms, we need to move to a variable
electorate setting, i.e., allow social decision schemes to take as input profiles with varying numbers
of voters.

Definition 5 (Weak SD-participation). A social decision scheme F satisfies weak SD-participation
if for any set N of voters, any profile P defined on N , and any i ∈ N , we do not have q ≻SD

i p

for any p ∈ F (P ) and q ∈ F (P−i), where P−i is the profile obtained from P by deleting voter i’s
report.

In other words, if voter i abstains, the rule must yield a distribution that is no better under
some utility function consistent with ≻i. We can also define a stronger version, which requires
abstaining to be (weakly) worse under all consistent utility functions.

Definition 6 (Strong SD-participation). A social decision scheme F satisfies strong SD-
participation if for any set N of voters, any profile P defined on N , and any i ∈ N , we have
p ≽SD

i q for all p ∈ F (P ) and q ∈ F (P−i), where P−i is the profile obtained from P by deleting
voter i’s report.

Both weak SD-participation and strong SD-participation were introduced by Brandl et al. [2015].
We will see that many positional social decision schemes satisfy weak SD-participation. The strong
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version, however, is satisfied by many fewer rules. Note that the specific classes of positional social
decision schemes we have studied (s-utilitarianism, s-egalitarianism, s-leximin, s-Nash) all give
rise to variable-electorate rules in an obvious way.

Proposition 5. For any strictly decreasing scoring vector s with sm = 0, s-Nash satisfies weak
SD-participation.

Proof. Let s be strictly decreasing, and let F denote the s-Nash rule. For a contradiction assume
that there are p ∈ F (P ) and q ∈ F (P−i) such that q ≻SD

i p, for some profile P and some voter
i ∈ N . As s is strictly decreasing, by Proposition 1(b), we have that s[i, q] > s[i, p] > 0, where
the last part holds because the Nash product of p must be positive. Because p is an outcome of
s-Nash at profile P , we have

∏
j∈N s[j, p] ⩾

∏
j∈N s[j, q]. Combining these inequalities, and noting

that
∏

j∈N s[j, p] > 0, we find that

∏
j∈N\{i} s[j, p] =

∏
j∈N s[j, p]
s[i, p] >

∏
j∈N s[j, p]
s[i, q] ⩾

∏
j∈N s[j, q]
s[i, q] =

∏
j∈N\{i} s[j, q].

This contradicts that q is an outcome of s-Nash on profile P−i.

Proposition 6. For any strictly decreasing scoring vector s with sm = 0, s-leximin satisfies weak
SD-participation.

Proof. Let s be strictly decreasing, and let F denote the s-leximin rule. For a contradiction
assume that there are p ∈ F (P ) and q ∈ F (P−i) such that q ≻SD

i p, for some profile P and some
voter i ∈ N . As s is strictly decreasing, by Proposition 1(b), we have that s[i, q] > s[i, p] for all
i ∈ N . For a vector α = (α1, . . . , αk) ∈ Rk, write α↑ ∈ Rk for the vector obtained from α by
reordering its entries in non-decreasing order. Let (x1, . . . , xn) = s[q]↑ and let (y1, . . . , yn) = s[p]↑.
Because p is an outcome of s-leximin for the voter set N , we have

(y1, . . . , yn) ⩾L (x1, . . . , xn) (2)

where ⩾L denotes lexicographic comparison. Suppose s[i, q] = xr and s[i, p] = ys. Since s[i, q] >

s[i, p], we have xr > ys. As q is the s-leximin outcome for voter set N \ {i}, it follows that

(x1, . . . , xr−1, xr+1, . . . , xn) ⩾L (y1, . . . , ys−1, ys+1, . . . , yn) (3)

Write y′ for the vector obtained from (y1, . . . , ys−1, ys+1, . . . , yn) by inserting xr in the rth position
and write y′′ for the vector obtained from y′ by replacing xr with ys in the rth position. Then we
have

(x1, . . . , xn) ⩾L y′ (insert xr in rth position in both sides of (3))
>L y′′ (y′ and y′′ are equal before rth position, then xr > ys)
⩾L (y′′)↑ (since α ⩾L α↑ for all α ∈ Rn)
= (y1, . . . , yn),

which is a contradiction to (2).

On the other hand, s-egalitarian rules may fail SD-participation.
Example 5. Let m = 4 and consider the profiles P1 = (abcd, cbad) and P2 = (abcd, cbad, cadb)
which obtained from P1 by adding a new voter cadb. At P1, Borda-egalitarianism can select
0.5a + 0.5c, and at P2 it can select 0.4a + 0.2b + 0.4c which is SD-worse for the new voter.
(Borda-leximin selects 0.5a + 0.5c at both profiles.)

Similarly, at P1, veto-egalitarianism can select c and at P2 it can select a, which is SD-worse for
the new voter. (Veto-leximin selects b at P1 and a at P2.)
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Strong SD-participation is much more difficult to attain. Brandl et al. [2015] show that for any
strictly decreasing scoring vector s, s-utilitarianism satisfies strong SD-participation. However,
this is not true for s-Nash and s-leximin. Examples 6 and 7 show respectively that Borda-leximin
(and Borda-egalitarianism) and Borda-Nash do not satisfy strong SD-participation.
Example 6. Consider the profile where voter 1 has preferences abcd, voter 2 has preferences cbda

and voter 3 has preferences cdba. When only voters 1 and 2 participate, the unique outcome of
Borda-egalitarianism is the distribution where b has probability 1 (giving both voters a Borda
score of 2). If voter 3 participates, the unique outcome for Borda-egalitarianism is 0.4a + 0.6c

(giving all three voters a Borda score of 1.8). But this distribution is not SD-better than the first
according to voter 3’s preferences. It follows that Borda-leximin and Borda-egalitarianism fail
strong SD-participation.
Example 7. Consider the profile where voter 1 has preferences abcdefgh, voter 2 has preferences
fgchabde and voter 3 has preferences fghcabde. If only voters 1 and 2 participate, the (unique)
outcome is the distribution where c has probability 1. If all three voters participate, we have a
mixture between a and f (namely 19

60a + 41
60f), which is not SD-better for voter 3. It follows that

Borda-Nash does not satisfy strong SD-participation.

6.2. Strategyproofness
Next, we briefly discuss strategyproofness of our rules, that is, robustness to strategic misrepresen-
tation of voters’ preferences. A social decision scheme is resolute if, for every profile P , it returns
a unique distribution.4

Definition 7 (SD-strategyproofness). A resolute social decision scheme F is SD-strategyproof if
for all profiles P , all voters i ∈ N , and all linear orders ≻′

i, we have that

F (P ) ≽SD
i F (P−i,≻′

i),

where (P−i,≻′
i) denotes the profile obtained from P by replacing i’s preference report ≻i by ≻′

i.

One can check that plurality-Nash (that is, random dictatorship) is SD-strategyproof. In fact, a
well-known result of Gibbard [1977] shows that random dictatorship is the only social decision
scheme that is anonymous, ex post efficient, and SD-strategyproof. Hence, all other ex post
efficient rules in our class, after making them resolute by tie-breaking, are manipulable.5 (Outside
of our class of rules, Barberà [1979] shows that proportional Borda, mentioned in the Introduction,
is SD-strategyproof, but it is not ex post efficient.)

One can also define a weak version of SD-strategyproofness, that requires that a manipulation
does not lead to an outcome that is SD-better for the manipulator [Postlewaite and Schmeidler,
1986, Bogomolnaia and Moulin, 2001], that is, that F (P−i,≻′

i) ̸≻SD
i F (P ), rather than requiring

that it must be weakly SD-worse. These two notions are different because SD-preferences over
distributions are not complete. We leave a characterization of which positional social decision
schemes satisfy this weak version for future work, but many of these rules fail it (and so far we do
not know a rule in our family that satisfies it, besides random dictatorship).
Example 8. Let m = 3 and consider the profiles P1 = (abc, abc, abc, bac) and P2 =
(abc, abc, abc, bca).

4We need to assume resoluteness to avoid having to compare sets of distributions, and to be consistent with prior
work: the characterization of strategyproof randomized rules by Gibbard [1977] requires it. All our rules can be
made resolute by applying a tie-breaking mechanism based on a fixed priority relation between distributions.

5It remains to check that other positional social decision schemes that fail ex post efficiency also fail SD-
strategyproofness, such as rules based on s = (1, 1, 0, 0). We leave this for future work.
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• On P1, Borda-Nash selects a and on P2, Borda-Nash selects 0.5a + 0.5b. Thus the fourth
voter can manipulate from P1 to P2 and get a strictly SD-better outcome.

• On P1, veto-Nash may select 0.5a + 0.5b6 and on P2, veto-Nash selects b. Again the fourth
voter can manipulate.

• On P1, Borda-leximin selects 0.5a + 0.5b and on P2, Borda-leximin selects 1
3a + 2

3b. Again,
the fourth voter can manipulate.

6.3. Monotonicity
A social decision scheme is monotonic if whenever we move up an alternative in a voter’s ranking,
the share of that alternative in the output distribution does not decrease. Formally, given profiles
P and P ′, we say that P ′ is an x-improvement of P if P ′ is obtained from P by moving up an
alternative x in some voter’s ranking, everything else being unchanged. A social decision scheme F
is monotonic if for all profiles P and P ′ such that P ′ is an x-improvement of P , for all p ∈ F (P ),
there exists q ∈ F (P ′) such that qx ⩾ px.7

Monotonicity is clearly satisfied by s-utilitarianism. It is also satisfied by plurality-Nash (that
is, random dictatorship), as well as plurality-egalitarianism [Aziz and Stursberg, 2014, Thm. 5].
However, other s-Nash, s-leximin and s-egalitarian rules may fail it:
Example 9. Consider first Borda-Nash. Let m = 3, s = (2, 1, 0) and P = (abc, abc, abc, acb, bac, cba),
then s-Nash selects an irrational distribution which rounds to 0.642a + 0.333b + 0.024c. Let
P ′ = (abc, abc, abc, acb, bca, cba). P ′ is a c-improvement of P (the bac voter moves c up one place).
For P ′, s-Nash selects 0.5a + 0.5b. Thus, c’s share has strictly decreased.
Example 10. Consider now Borda-egalitarianism. Let m = 3, s = (2, 1, 0) and P = (cba, abc).
Then s-egalitarianism selects the set of all distributions of the form (α, 1− 2α, α); it contains in
particular the deterministic distribution b. The profile P ′ = (bca, abc) is a b-improvement of P .
But on P ′, s-egalitarianism selects only the distribution

(
1
3 , 2

3 , 0
)
.

In computational experiments, veto-Nash appears to satisfy monotonicity, but we did not prove
this.

How bad is it if a rule fails monotonicity? It depends on the context. Monotonicity can be
interpreted as fairness to alternatives: alternative x should get more if it performs better. However,
rules like s-Nash and s-egalitarianism principally aim to be fair to voters. In Example 10, while
b’s share has decreased, the utility vector moves from (1, 1) to (4

3 , 4
3) while the deterministic

distribution b for P ′ would lead to utility vector (2, 1).

7. Application to seat apportionment in party-list elections
Suppose that a number of seats (of a parliament or of the board of some organization) have to be
filled. In list-based elections, the candidates are partitioned into lists, where a list is a linearly
ordered set of candidates. In political elections, lists are typically associated with parties and
called party lists. The election proceeds as follows:

1. each voter votes for one of the lists;
2. the score of each list is the fraction of votes it receives;
3. these fractional scores are then mapped into an integral distribution of seats;

6This depends on tie-breaking, since all distributions xa + (1 − x)b are optimal for veto-Nash. It is easy to check
that manipulations exist under other tie-breakings.

7Alternatively, one could require that qx ⩾ px for all q ∈ F (P ′). This stronger version is still satisfied by
s-utilitarianism.
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4. each list fills its assigned seats with candidates in the order of the list.
Step 3 is known as apportionment, and its formal study has a long history [Balinski and Young,
2001]. There is a variety of apportionment rules, including the two families of largest remainder and
largest average rules, and the advantages and disadvantages of different rules are well understood.
On the other hand, steps 1 and 2 are rarely critically examined. This is surprising because in
settings where voters express preferences directly over candidates, social choice theorists commonly
criticize systems in which voters only report their top choice. They argue that not enough
information is transmitted to arrive at a high-quality social decision. For list-based elections,
similar arguments suggest that we should elicit more detailed preferences over lists. Recently, Brill
et al. [2020] explored this idea. They studied a model where voters are allowed to approve several
lists instead of just one. In place of step 2, they then use a portioning method defined for approval
voting. Instead of approval votes, it is a natural idea to allow inputs consisting of rankings over
lists. We can then use a social decision scheme (i.e., a portioning method for rankings) to obtain
a method to elect seats with this input format.

France elects its parliament (Assemblée nationale) using district-based elections, where each
district elects one deputy using two-round plurality with runoff. Similar to first-past-the-post
systems, this fails to provide proportional representation, and is biased towards the largest
parties. To address this, there have been calls for some of the seats of the assembly to be
elected via a list-based system [Cohendet et al., 2018]. As a case study, we apply our rules on a
hypothetical profile that is roughly consistent with survey data from the French 2017 presidential
and parliamentary elections. While such survey data reports preferences over candidates (party
leaders), it seems reasonable to also interpret them as preferences over parties. The main 5 parties
participating were La France Insoumise (LFI, left), Parti Socialiste (PS, centre-left), La République
en Marche / Modem (LRM, centre-right), Les Républicains (LR, right), Rassemblement National
(RN, extreme-right nationalist).

We believe that our profile is reasonably realistic. First, the fraction of first positions is consistent
with the actual outcome of the presidential election,8 except for PS whose unusually low score is
thought to have been due to a form of strategic voting induced by plurality with runoff. (Polls
show that many PS voters of the prior election chose to support another candidate in 2017 [Ipsos,
2017a].) Second, in accordance with standard assumptions, the profile is single-peaked along a
left-right axis {LFI, PS, LRM, LR, RN}, except that we added a 9% fraction of “anti-system
votes” ranking LFI–RN or RN–LFI first and second, and LRM last. (Polls show that some voters
switched from one extreme to the other in the second round [Ipsos, 2017b].)

3 voters LFI ≻ PS ≻ LRM ≻ LR ≻ RN
2 voters PS ≻ LFI ≻ LRM ≻ LR ≻ RN
1 voter PS ≻ LRM ≻ LFI ≻ LR ≻ RN
2 voters LRM ≻ PS ≻ LR ≻ LFI ≻ RN
2 voters LRM ≻ LR ≻ PS ≻ LFI ≻ RN
2 voters LRM ≻ LR ≻ PS ≻ RN ≻ LFI
1 voter LR ≻ LRM ≻ RN ≻ PS ≻ LFI
2 voters LR ≻ LRM ≻ PS ≻ LFI ≻ RN
1 voter LR ≻ RN ≻ LRM ≻ PS ≻ LFI
4 voters RN ≻ LR ≻ LRM ≻ PS ≻ LFI
1 voter RN ≻ LFI ≻ LR ≻ PS ≻ LRM
1 voter LFI ≻ RN ≻ PS ≻ LR ≻ LRM

Table 1 shows the outcomes of several of our rules applied to this profile. We also consider
proportional Borda (discussed in Section 1) for comparison. We did not include veto-Nash because

8The parties’ actual first-round scores (after discounting blank and null votes) were 25% LRM, 22% RN, 20% LR,
20% LFI, and 7% PS (plus 7% in total for the other 6 candidates). In the same order, the fraction of votes in
our profile with the respective parties on top are 27%, 23%, 18%, 18% and 14%.
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it is not a very interesting rule in the context of party-list elections: since we seek to represent
voters, we should pay more attention to candidates ranked near the top of votes.9 Finally, for
comparison, we include the actual seat distribution of the assembly, which gives many seats to
LRM.

LFI PS LRM LR RN
∑

ui
∏

ui min ui

Borda-Nash 0.00 0.27 0.27 0.46 0.00 52.5 83.1 1.0
PS LRM LR

Borda-egalitarianism 0.12 0.38 0.00 0.37 0.13 45.8 9.5 2.0
LFI PS LR RN

Borda-utilitarianism 0.00 0.00 1.00 0.00 0.00 56.0 0.0 0.0
LRM

Plurality-Nash 0.18 0.14 0.27 0.18 0.23 44.3 4.6 1.8
LFI PS LRM LR RN

Proportional Borda 0.15 0.22 0.25 0.24 0.14 46.5 13.1 1.7
LFI PS LRM LR RN

Actual seat distribution 0.05 0.08 0.60 0.23 0.01 53.1 51.2 0.6
PS LRM LR

Table 1: The result of applying portioning rules to the list-based election.

Borda-Nash gives zero support to the two extreme parties, and gives moderate support to the
dominant party LRM. The outcome of Borda-egalitarianism is slightly surprising: it gives zero
support to the dominant party LRM, whose supporters are well enough represented by the two
parties immediately to its left (PS) and to its right (LR). As expected, Borda-utilitarianism gives
all its support to the dominant centrist party.10 The rule that is most often used for party-list
elections in the real world, Plurality-Nash, gives much more support to the extremes than the
other rules, because those parties often appear in top position. None of the rules is clearly best.
Intuitively, Borda-Nash looks like a good compromise, but extreme parties are not represented.
This can be corrected either by taking a scoring vector between plurality and Borda, or an
aggregation function between Nash and utilitarianism.

8. Conclusions
We have introduced a class of aggregation rules which can be used to split a budget or another
continuous resource (such as time) between different uses. When combined with an apportionment
step, the rules can also be used to select an outcome in a discrete space such as an allocation of
seats to parties. While a sizeable literature has considered the portioning problem in a model with
approval input, we have provided the first systematic study of portioning rules based on ordinal
input given as rankings.

Portioning rules are formally equivalent to probabilistic social choice functions which have
received significant attention in the literature. However, since their uses are quite different from
portioning, many results from that literature are of limited interest for portioning (for example
axioms such as Condorcet consistency). Indeed, rules that are deemed interesting for randomized
voting are often not interesting for portioning. Informally, the discrepancy between randomized
voting and portioning is that the final outcome in randomized voting is obtained by sampling

9In our profile, veto-Nash selects all distribution whose support contains only PS and LR, since those lists were
not vetoed by any voter in the profile (see Theorem 4).

10Note that the 2017-2022 assembly (elected using district-based plurality with runoff) had more than 50% of its
seats taken by LRM, and very few seats by the extreme parties (around 4% for LFI and 2% for RN).
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ind. fair share SD-core SD-efficient poly time strategyproof monotonic

Plurality-Utilitarianism – – ✓ ✓ – ✓
Borda-Utilitarianism – – ✓ ✓ – ✓

Plurality-Egalitarianism ✓ – ✓ ✓ – ✓
Borda-Egalitarianism ✓ – ✓ ✓ – –

Borda-Leximin ✓ – ✓ ✓ – –
Plurality-Nash ✓ ✓ ✓ ✓ ✓ ✓

Borda-Nash ✓ ✓ ✓ approx. – –
Veto-Nash ✓ – – ✓ – open

Maximal Lotteries – – ✓ ✓ – –
Proportional Borda ✓ – – ✓ ✓ ✓

Table 2: Summary of normative and computational results.

one winner according to the output distribution, while in portioning the final outcome is the
distribution itself. This explains why ex-post notions make sense for randomized voting but
are meaningless for portioning. For example, when there is an alternative that satisfies some
quality criterion (like Condorcet) then selecting this alternative with probability 1 makes sense in
randomized voting: admittedly, there will be unhappy voters in the end, but that is unavoidable
since a single alternative will be selected ex post. In portioning, such an argument no longer makes
sense, and selecting an alternative with probability 1 should be done only in cases where the
agreement for an alternative is extremely strong; selecting a Condorcet winner with probability 1
would be extremely unfair to some voters (see our introductory example). Therefore, randomized
voting rules that are designed so as to satisfy one of these properties (such as the Maximal Lottery
rule) are unnecessarily unfair when applied to portioning. The reverse direction is less clear: our
rules may be of interest to randomized voting. More generally, the connections and differences
between randomization and splitting a common resource need to be discussed further.

Table 2 gives a summary of properties satisfied by some typical SDSs that belong to the family
defined in this paper (the first seven), together with two other SDSs that are not part of the
family (the last two); for these two, references to existing results as well as proofs of novel results
are in Appendix B. As we discussed, plurality-egalitarianism was previously studied as egalitarian
simultaneous reservation, and plurality-Nash is commonly known as random dictatorship.

Anyone wanting to implement positional social decision schemes will need to choose a scoring
vector, and the ‘right’ choice is underdetermined from a theory perspective. This issue is similar
to the choice of a positional scoring rule in deterministic voting. Based on the axioms we have
considered, plurality-Nash (i.e. random dictatorship) is in a distinguished position. It is the only
rule that satisfies all the axioms. (In particular it is provably the only one that satisfies ex post
efficiency and SD-strategyproofness, see Section 6.2.) However, random dictatorship has a major
drawback: it ignores voters’ preferences except for their top alternative. This makes trade-offs
impossible (as the rule is unable to distinguish between someone’s second-best alternative and
their worst alternative), and explains why in Section 7 the outcome of random dictatorship is
biased towards the extremes. This drawback is difficult to formalize convincingly, and a successful
axiomatic criticism of plurality-Nash would be interesting future work.

Using positional scores is certainly not the only way to do portioning based on ordinal profiles.
Other voting rules or social welfare functions that are defined by maximizing scores may also
be adapted towards this aim; further exploration of this topic, especially with a view towards
fairness, is needed.

Finally, it is natural to enrich our setting by allowing ties in the input rankings, i.e., to allow
voters to submit weak orders. One could certainly generalize positional scoring rules to this input,
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which would provide for interesting future work. For randomized social choice, weak orders have
been considered [Aziz and Stursberg, 2014, Aziz et al., 2018a, Bogomolnaia et al., 2005], for
example in the context of strategyproofness. Notably, random dictatorship is not well-defined
anymore if voters do not have a unique top alternative, making the search for good strategyproof
rules rather more difficult or impossible [Brandl et al., 2018].
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A. Proof of Theorem 5
We will construct, for each scoring vector s different from (1, 0, . . . , 0) and (1, . . . , 1, 0), a profile for
which s-Nash returns a distribution which is irrational. To establish irrationality of a distribution,
we show that the probabilities in the output distribution are solutions to a quadratic equation
which only has irrational solutions. We recall some elementary facts about square roots and
quadratic equations:

• If n ∈ N is an integer, then
√

n ∈ Q if and only if n = z2 for some z ∈ N.

• Suppose a, b, c ∈ Z, a ̸= 0, and suppose x ∈ R satisfies ax2 + bx + c = 0. Then

x = (2a)−1(−b +
√

b2 − 4ac) or x = (2a)−1(−b−
√

b2 − 4ac).

Hence, x ∈ Q if and only if the integer b2 − 4ac ⩾ 0 is a perfect square.

• If a, b ∈ N \ {0} and a > b, then a2 < a2 + b < (a + 1)2, and thus a2 + b is not a perfect
square.

We will also use the following two facts about an s-Nash distribution p. Both facts use sm = 0.

• Positive share: we have s[i, p] > 0 for all i ∈ N , because otherwise the Nash product is 0
while a positive Nash product is possible (e.g. uniform distribution) contradicting optimality
of p.

• s-core: For any S ⊆ N , there does not exist a partial distribution z with
∑

x∈X zx = |S|/n
such that s[i, z] > s[i, p] for all i ∈ S. This is implicitly proven in the proof of Theorem 6
that s-Nash satisfies SD-core.

We only consider rational vectors s, and assume that they are non-increasing. We assume that
sm = 0. Without loss of generality (by rescaling), we may assume that s1 = 1. We distinguish
four cases:

1. s1 = · · · = sk = 1 and sk+1 = · · · = sm = 0 for some k ⩾ 2 and m ⩾ k + 2;

2. s1 = 1 and 0 < s2 < 1;

3. s1 = s2 = 1 and 0 < s3 < 1;

4. s1 = · · · = sk = 1 and 0 < sk+1 < 1 for some k ⩾ 3.

In the latter three cases, we call the first non-1 entry q ∈ Q and write q = r/s for r, s ∈ N.

A.1. k-Approval
Suppose s = (1, . . . , 1, 0, 0), where m = k + 2 and k ⩾ 2. We extend the argument to m > k + 2
later; note that we are only interested in the case with at least two zeros at the end of the score
vector, since otherwise s is veto.

Write X = {a1, . . . , ak, x, y}. Consider the following profile, which we can specify by just listing
voters’ k-approval sets.

• One voter approving {a1, . . . , ak}.

• For each i ∈ [k], one voter approving {x, a1, . . . , ai−1, ai+1, . . . , ak}.

• For each i ∈ [k], one voter approving {x, y, a1, . . . , ai−1, ai+2, . . . , ak}, with subscripts mod
k.
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In this profile, y is dominated by x, so in a Nash outcome, y gets probability 0. Further, all the
ai are symmetric, so by neutrality of Nash they all get the same probability. Hence, there exists
some number x ∈ [0, 1] (abusing notation) such that the Nash outcome p satisfies

px = x, py = 0, pa1 = · · · = pak
= (1− x)/k.

Now, if x = 1, then the first voter approving {a1, . . . , ak} gets utility 0, giving Nash product 0.
So x = 1 is not optimal. If x = 0, then consider the coalition of the 2k voters approving x. If
x = 0, they all obtain utility at most (k − 1)/k under p (some voters only get (k − 2)/k). Note
that this coalition can propose the partial distribution z with ∥z∥ = (2k)/(2k + 1) putting all its
weight on alternative x. Under z, every member of the coalition obtains utility (2k)/(2k + 1). An
easy calculation shows that, since k ⩾ 2,

2k

2k + 1 >
k − 1

k
.

Hence, z is an s-core deviation, contradicting optimality of p.
It follows that 0 < x < 1. Now, the Nash product of p as a function of x is

f(x) = (1− x) ·
(

x + k − 1
k

(1− x)
)k

·
(

x + k − 2
k

(1− x)
)k

= (1− x) ·
(

k + x− 1
k

)k

·
(

k + 2x− 2
k

)k

= (1− x) · k−2k · (k + x− 1)k · (k + 2x− 2)k.

By optimality of p, and since 0 < x < 1, we must have ∂f(x)/∂x = 0. Now, by the product rule:

k2k · ∂f(x)/∂x = −(k + x− 1)k · (k + 2x− 2)k + (1− x) · ∂
∂x

[
(k + x− 1)k · (k + 2x− 2)k

]
.

By the product rule, we have
∂

∂x

[
(k + x− 1)k · (k + 2x− 2)k

]
= k · (k + x− 1)k−1 · (k + 2x− 2)k

+ (k + x− 1)k · k · (k + 2x− 2)k−1 · 2.

Inserting and factoring, we get

k2k · ∂f(x)/∂x = (k + x− 1)k−1 · (k + 2x− 2)k−1 ·
[
− (k + x− 1) · (k + 2x− 2)

+ (1− x) · k · (k + 2x− 2)

+ (1− x) · 2k · (k + x− 1)
]

The first two factors are positive (since k ⩾ 2 and x > 0). Thus, for ∂f(x)/∂x = 0 to be the case,
the part in square bracket must be zero. Thus,

0 = −(k + x− 1) · (k + 2x− 2) + (1− x) · k · (k + 2x− 2) + (1− x) · 2k · (k + x− 1)
= (−4k − 2) x2 + (−3k2 + 5k + 4) x + (2k2 − k − 2).

Calculating “b2 − 4ac”, we get

(−3k2 + 5k + 4)2 − 4 · (2k2 − k − 2) · (−4k − 2) = k2 · (9k2 + 2k + 1)
= k2 · 1

9 · ((9k + 1)2 + 8)

The square root of this quantity is rational if and only if (9k + 1)2 + 8 is a perfect square, but this
is never true for k ⩾ 2. Thus, none of the solutions for x is rational.

To extend the argument to m > k + 2, add extra alternatives to the profile constructed above
which no voter approves. Then any Nash solution places 0 on those extra alternatives, and the
argument as above establishes that Nash chooses an irrational distribution.
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A.2. s = (1, q = r
s
, 0, . . . , 0)

We start by considering s = (1, q, 0) and later show how to extend the argument to all vectors s
with s1 = 1 and 0 < s2 < 1. Write X = {a, x, y}, and consider the following profile:

• c voters: a, x, y

• 1 voter: x, a, y

• 1 voter: x, y, a

Note that x dominates y, so y gets probability 0 in Nash-optimum.
Thus, for some a ∈ [0, 1], the Nash optimum p satisfies pa = a, px = 1− a, and py = 0. Note

that a < 1 by positive share for the last voter, and a > 0 for large c since p is in the s-core.
The Nash product of p, as a function of a, is

f(a) =
(

a + r

s
(1− a)

)c

·
(

1− a + r

s
a

)
· (1− a)

= s−c−1 · (sa + r(1− a))c · (s− sa + ra) · (1− a).

Since p is optimal, we must have ∂f(a)/∂a = 0. Using the product rule twice, we get

sc+1 · ∂f(a)/∂a = (1− a) ·
[
c · (sa + r(1− a))c−1 · (s− r) · (s− sa + ra)

+ (sa + r(1− a))c · (r − s)
]

− (sa + r(1− a))c · (s− sa + ra)

Since ∂f(a)/∂a = 0, factoring out the positive factor (sa + r(1− a))c−1, we obtain

0 = (1− a) · c · (s− r) · (s− sa + ra) + (1− a) · (sa + r(1− a)) · (r − s)
− (sa + r(1− a)) · (s− sa + ra)

= a2 ·
(
(r − s)2(c + 2)

)
+ a ·

(
− (r − s)((c + 3)r − 2s(c + 1))

)
+

(
(r2 − 2rs− crs + cs2)

)
Calculating “b2 − 4ac” of this quadratic equation, we get(

− (r − s)((c + 3)r − 2s(c + 1))
)2 − 4

(
(r − s)2(c + 2)

)(
(r2 − 2rs− crs + cs2)

)
= (r − s)2((c + 1)2r2 + 4rs + 4s2)

The square root of this quantity is rational if and only if (c + 1)2r2 + 4rs + 4s2 is a perfect square,
which is not true for large c.

For |X| > 3 and a score vector s = (1, q, . . . , 0), take the profile constructed above and add
extra alternatives z1, . . . , zf in penultimate position, i.e.,

• c voters: a, x, z1, . . . , zf , y

• 1 voter: x, a, z1, . . . , zf , y

• 1 voter: x, y, z1, . . . , zf , a

In this profile, x dominates the extra alternatives, so the extra alternatives get probability 0 in
the Nash outcome. Hence the argument above implies that Nash selects an irrational distribution.
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A.3. s = (1, 1, q = r
s
, 0, . . . , 0)

We start by considering s = (1, 1, q, 0) and later show how to extend the argument to all vectors s
with s1 = s2 = 1 and 0 < s3 < 1. Write X = {a, b, x, y}, and consider the following profile:

• c/2 voters: x ∼ a, b, y

• c/2 voters: x ∼ b, a, y

• 1 voter: a ∼ b, y, x

• 1 voter: a ∼ b, x, y

We have written “∼” for an implicit indifference, because the score vector is 1 in both the first
and second position.

Then y is dominated by a and b, so gets probability 0. Also, a and b are symmetric (in the sense
that after permuting them, every permuted distribution has the same Nash product as before) so
they get the same probability. The probability of x cannot be 1 (by positive share), and it cannot
be 0 if c is large, since otherwise the c voters ranking x first have an s-core deviation.

Writing x for the probability put on x, we see that the optimum p satisfies px = x, py = 0,
pa = pb = (1− x)/2. Thus, the Nash product is

f(x) =
(

x + 1− x

2 + r

s

1− x

2

)c

· (1− x) ·
(

1− x + r

s
x

)
= 2−c · s−c−1 · (2sx + s(1− x) + r(1− x))c · (1− x) · (s− sx + rx)
= 2−c · s−c−1 · (s + r + (s− r)x)c · (1− x) · (s + (r − s)x).

Next, we have, using the product rule twice,

2c · sc+1 · ∂f(x)/∂x = (1− x) ·
[
c · (s + r + (s− r)x)c−1 · (s− r) · (s + (r − s)x)

+ (s + r + (s− r)x)c · (r − s)
]

− (s + r + (s− r)x)c · (s + (r − s)x).

In optimum, we must have ∂f(x)/∂x = 0. Thus, factoring out the positive factor (s+r+(s−r)x)c−1,
this implies

0 = (1− x) ·
[
c · (s− r) · (s + (r − s)x) + (s + r + (s− r)x) · (r − s)

]
− (s + r + (s− r)x) · (s + (r − s)x)

= x2 ·
(
− (c + 2)(r − s)2)

+ x ·
(
(r − s)((c + 3)r − 2sc)

)
+

(
− r2 + (c + 1)rs− (c− 2)s2)

.

Calculating “b2 − 4ac” of this quadratic equation, we get(
(r − s)((c + 3)r − 2sc)

)2 − 4 ·
(
− (c + 2)(r − s)2)

·
(
− r2 + (c + 1)rs− (c− 2)s2)

= (r − s)2
(
(c + 1)2r2 + 8rs + 16s2

)
The square root of this quantity is rational if and only if (c + 1)2r2 + 8rs + 16s2 is a perfect square,
and this is not true for large c.

For |X| > 4 and a score vector s = (1, 1, q, . . . , 0), take the profile constructed above and add
extra alternatives z1, . . . , zf in penultimate position, i.e.,
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• c/2 voters: x ∼ a, b, z1, . . . , zf , y

• c/2 voters: x ∼ b, a, z1, . . . , zf , y

• 1 voter: a ∼ b, y, z1, . . . , zf , x

• 1 voter: a ∼ b, x, z1, . . . , zf , y

In this profile, a dominates the extra alternatives, so the extra alternatives get probability 0 in
the Nash outcome. Hence the argument above implies that Nash selects an irrational distribution.

A.4. s = (1, 1, . . . , 1, q = r
s
, 0, . . . , 0)

Like in the other cases, we explicitly handle the case where s = (1, 1, . . . , 1, q = r
s , 0). The

argument can be extended to all s with s1 = s2 = · · · = sk = 1 and 0 < sk+1 < 1 by adding
extra alternatives to the constructed profile in the penultimate position, noting that alternative b1
dominates the extra alternatives.

Write X = {a, b1, . . . , bk−1, x, y}, and consider the following profile:

• one voter: b1, . . . , bk−1, x, y, a

• one voter: b1, . . . , bk−1, x, a, y

• c/(k − 1) voters: a, b2, . . . , bk−1, x, b1, y

• for i = 2, . . . , k − 1, c/(k − 1) voters: a, b1, . . . , bi−1, bi+1, . . . , bk−1, y, bi, x

Note that b1 dominates y and that b2 dominates x, so both x and y get probability 0. Further,
once we restrict attention to distributions that put 0 on both x and y, we see that b1, . . . , bk−1
are symmetric, in the sense that the Nash product does not change when we permute these
alternatives in input and output. Thus, they all get the same probability. Alternative a cannot
get probability 1 by positive share, and it cannot get probability 0 or else the bottom c voters
have an s-core deviation. Thus, the Nash product as a function of the probability put on a is

f(a) =
(

a + k − 2
k − 1 (1− a) + 1

k − 1
r

s
(1− a)

)c

· (1− a) ·
(

1− a + a
r

s

)
= (k − 1)−c · s−c−1 · (s(k − 1)a + s(k − 2)(1− a) + r(1− a))c · (1− a) · (s− sa + ra)

Applying the product rule twice, we get

(k − 1)c · sc+1 · ∂f(a)/∂a

= (1− a) ·
[
c · (s(k − 1)− s(k − 2)− r) · (s(k − 1)a + s(k − 2)(1− a) + r(1− a))c−1 · (s− sa + ra)

+ (s(k − 1)a + s(k − 2)(1− a) + r(1− a))c · (r − s)
]

− (s(k − 1)a + s(k − 2)(1− a) + r(1− a))c · (s− sa + ra)

In optimum, we must have ∂f(a)/∂a = 0. Thus, factoring out the positive factor
(s(k − 1)a + s(k − 2)(1− a) + r(1− a))c−1, this implies

0 = (1− a) ·
[
c · (s(k − 1)− s(k − 2)− r) · (s− sa + ra)

+ (s(k − 1)a + s(k − 2)(1− a) + r(1− a)) · (r − s)
]

− (s(k − 1)a + s(k − 2)(1− a) + r(1− a)) · (s− sa + ra)
= a2 ·

(
(c + 2)(r − s)2)

+ a ·
(
(r − s)((c + 3)r − 2s(c + 3− k))

)
+

(
r2 + (−4− c + k)rs + (4 + c− 2k)s2)

.
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Calculating the discriminant and simplifying, we get

(r − s)2((c + 1)2r2 + 4(k − 1)rs + 4(k − 1)2s2)

The square root of this quantity is rational if and only if ((c + 1)2r2 + 4(k − 1)rs + 4(k − 1)2s2) is
a perfect square, which is not the case for large c.

B. Additional details for Table 2

Maximal lotteries
On profile (a ≻ b, a ≻ b, b ≻ a), the maximal lottery is the deterministic distribution a, henceforth
the maximal lottery rule violates individual fair share, and thus also the SD-core. The violation
of monotonicity is known from Fishburn [1984]. Maximal lotteries can be computed by linear
programming, and thus in polynomial time. For the satisfaction of SD-efficiency and the violation
of strategyproofness see Aziz et al. [2018d].

Proportional Borda
Polynomial-time computability and monotonicity are straightforward. For strategyproofness see
the discussion by Barberà [1979]. The violation of SD-core and ex-post efficiency can be seen on
the one-voter profile (a ≻ b ≻ c), which outputs 2

3a + 1
3b. For the satisfaction of individual fair

share, we give a proof by case analysis. Let pbx be the proportional Borda score of x for a given
profile.

1. m ⩾ 4 and n ⩾ 2. If x is ranked last by at least one voter then its Borda score is at most
(n− 1)(m− 1), hence pbx ⩽ (n−1)(m−1)

nm(m−1)
2

= 2(n−1)
nm < 2

m ⩽ 1
2 ⩽ 1− 1

n .

2. m ⩾ 3 and n ⩾ 3. If x is ranked last by at least one voter then pbx ⩽ 2(n−1)
3n < 2

3 ⩽ 1− 1
n .

3. m = 3 and n = 2. If x is ranked last by at least one voter then pbx ⩽ 0+2
6 = 1

3 < 1− 1
n .

4. m = 2. If x is ranked last by at least one voter then pbx ⩽ n−1
n = 1− 1

n .

5. n = 1. If the voter ranks x last then pbx = 0 = 1− 1
n .
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