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Abstract:
We consider the path-dependent McKean-Vlasov equation, in which both the drift and the

diffusion coefficients are allowed to depend on the whole trajectory of the process up to the
current time t, and depend on the corresponding marginal distributions. We give a proof of
strong well-posedness of the equation in the Lp setting, p ≥ 2, locally in time, as well as the
propagation of chaos properties. Then, we introduce an interpolated Euler scheme, a key object
to simulate numerically the process, and we prove the convergence, with an explicit rate, of
this scheme towards the strong solution in the Lp norm. As applications we give results for
two mean-field limit equations arising in biology and neuroscience.
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1. Introduction

In this paper, we consider the path-dependent McKean-Vlasov equation in Rd of the form{
dXt = b(t,X·∧t, µ·∧t)dt+ σ(t,X·∧t, µ·∧t)dBt,

X0 : (Ω,F ,P)→
(
Rd,B(Rd)

)
random variable

(1.1)

where the arguments X·∧t and µ·∧t of the coefficients b and σ keep track of the whole trajectory of
X· and its marginal distribution µ· between 0 and t > 0 (see below (1.3) and (1.4) for the precise
definitions) and (Bt)t≥0 is an Rq-valued Brownian motion independent of X0.

The equation (1.1) can be seen as the generalization of the classical McKean-Vlasov equation

dXt = b(t,Xt, µt)dt+ σ(t,Xt, µt)dBt (1.2)

first introduced by McKean in [34] as a stochastic model naturally associated to a class of non-linear
PDEs. See also [37] for a systematic presentation of the McKean-Vlasov equation, including the
notion of propagation of chaos.

We prove the well-posedness of the path-dependent McKean-Vlasov equation (1.1), the propa-
gation of chaos properties for an associated particle system and the convergence of an interpolated
Euler scheme defined further in (1.15), with a quantitative estimate for the convergence rate.

A more detailed presentation of the context surrounding this model and its applications, as well
as a comparison of our results with the existing literature regarding Equation (1.1) is drawn in
Subsection 1.3.

1.1. Model

We place ourselves in a filtered probability space (Ω,F , (Ft)t≥0,P) satisfying the usual condition. Let
T > 0 be fixed. We write C([0, T ], E) for the set of continuous maps from [0, T ] to some topological
space E, and, for p ≥ 1, Pp(Rd) for the set of probability distributions on Rd admitting a finite
moment of order p. Write B(Rd) for the Borel σ-algebra of Rd. We introduce the definitions of
X·∧t, µ·∧t and give more precision on the form of our drift and diffusion coefficients in (1.1). Let
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α = (αt)t∈[0,T ] ∈ C
(
[0, T ],Rd

)
and let (νt)t∈[0,T ] ∈ C

(
[0, T ],Pp(Rd)

)
. For a fixed t0 ∈ [0, T ], we define

α·∧t0 = (αt∧t0)t∈[0,T ] by

αt∧t0 :=

{
αt if t ∈ [0, t0],

αt0 if t ∈ (t0, T ].
(1.3)

Then it is obvious that α·∧t0 ∈ C
(
[0, T ],Rd

)
. Similarly, we define ν·∧t0 = (νt∧t0)t∈[0,T ] by

νt∧t0 :=

{
νt if t ∈ [0, t0],

νt0 if t ∈ (t0, T ],
(1.4)

and it is straightforward to see that ν·∧t0 ∈ C
(
[0, T ],Pp(Rd)

)
.

Let Md,q(R) denote the space of matrices of size d×q, equipped with the operator norm |||·|||. Our
path-dependent McKean-Vlasov equation writes

Xt = X0 +

∫ t

0

b(s,X·∧s, µ·∧s) ds+

∫ t

0

σ(s,X·∧s, µ·∧s) dBs (1.5)

where

- X0 : (Ω,F ,P)→
(
Rd,B(Rd)

)
is a random vector in Lp(P),

- b : [0, T ]× C
(
[0, T ],Rd

)
× C

(
[0, T ],Pp(Rd)

)
→ Rd,

- σ : [0, T ]× C
(
[0, T ],Rd

)
× C

(
[0, T ],Pp(Rd)

)
→Md,q(R),

- (Bt)t∈[0,T ] is an (Ft)-standard Brownian motion valued in Rq, independent of X0,
- µ·∧t denotes the marginal distributions of the process X·∧t, that is, for every s ∈ [0, T ],

µs∧t = P ◦X−1
s∧t.

1.2. Assumptions and main results

We shall work with two sets of assumptions, both depending on an index p ≥ 2. The first one
is required to derive our proof of strong well-posedness in Lp spaces and our result regarding the
propagation of chaos. The second one is needed to obtain the convergence of our interpolated Euler
scheme. Remark that the time horizon T > 0 is fixed. For a Polish space (S, dS), we recall the
definition of the Wasserstein distance Wp on Pp(S)

Wp(µ, ν) := inf
π∈Π(µ,ν)

(∫
S×S

dS(x, y)p π(dx, dy)
) 1
p

= inf
{
E
[
dS(X,Y )p

] 1
p , X, Y : (Ω,F ,P)→ (S,S)with P ◦X−1 = µ, P ◦ Y −1 = ν

}
(1.6)

where Π(µ, ν) denotes the set of probability measures on (S × S,S⊗2) with marginals µ and ν, and
S denotes the Borel σ-algebra on S generated by the distance dS . We write Wp for the case S = Rd
and Wp for the case S = C([0, T ],Rd) endowed with the sup norm ‖ · ‖sup.

Assumption (I). There exists p ≥ 2 such that

1. X0 ∈ Lp(P).
2. The coefficient functions b, σ are continuous in t and Lipschitz continuous in α and in (µt)t∈[0,T ]

with respect to the sup norm ‖ · ‖sup and the distance dp uniformly in t, i.e. there exists L > 0
s.t.

∀ t ∈ [0, T ], ∀α, β ∈ C
(
[0, T ],Rd

)
and ∀ (µt)t∈[0,T ], (νt)t∈[0,T ] ∈ C

(
[0, T ],Pp(Rd)

)
,∣∣∣b(t, α, (µt)t∈[0,T ]

)
− b
(
t, β, (νt)t∈[0,T ]

)∣∣∣ ∨ ∣∣∣∣∣∣σ(t, α, (µt)t∈[0,T ]

)
− σ

(
t, β, (νt)t∈[0,T ]

)∣∣∣∣∣∣
≤ L

[
‖α− β‖sup + dp

(
(µt)t∈[0,T ], (νt)t∈[0,T ]

)]
,

where dp is defined by

dp
(
(µt)t∈[0,T ], (νt)t∈[0,T ]

)
:= sup

t∈[0,T ]

Wp(µt, νt). (1.7)
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Theorem 1.1. Under Assumption (I), there exists a unique strong solution X = (Xt)t∈[0,T ] from

(Ω,F ,P) to
(
C
(
[0, T ],Rd

)
, ‖ · ‖sup

)
of the path-dependent McKean-Vlasov equation (1.5). Moreover,

there exists a constant Γ > 0 depending on b, σ, L, T, d, p such that∥∥∥ sup
t∈[0,T ]

|Xt|
∥∥∥
p
≤ Γ

(
1 + ‖X0‖p

)
. (1.8)

We then turn to our result regarding the propagation of chaos. Let T > 0 be the same time hori-
zon as before. For N ≥ 1, let X1,N

0 , . . . , XN,N
0 be i.i.d. copies of X0 in (1.5) and Bi := (Bit)t∈[0,T ],

1 ≤ i ≤ N be N independent standard Rq-valued Brownian motions, independent of the Brown-
ian motion (Bt)t∈[0,T ] in (1.5) and of (X0, X

1,N
0 , . . . , XN,N

0 ). We introduce the N -particle system

(X1,N
t , . . . , XN,N

t )t∈[0,T ] defined by
Xi,N
t = Xi,N

0 +
∫ t

0
b
(
s,Xi,N

·∧s , µ
N
·∧s
)
ds+

∫ t
0
σ
(
s,Xi,N

·∧s , µ
N
·∧s
)
dBis, 1 ≤ i ≤ N, t ∈ [0, T ],

µNt := 1
N

∑N
i=1 δXi,Nt

, t ∈ [0, T ].
(1.9)

We prove in Proposition 4.2 that this particle system is well-posed. Our result regarding propa-
gation of chaos is the following.

Theorem 1.2. Assume that Assumption (I) holds with p ≥ 2. Let X be the unique solution of (1.5)
given by Theorem 1.1 and write µ := P ◦ X−1 and (µt)t∈[0,T ] for its marginal distributions. Let

(X1,N
t , . . . , XN,N

t )t∈[0,T ] be the processes defined by the N -particle system (1.9) and (Y 1, . . . , Y N ) be
N i.i.d. copies of X. Then

1. there holds, for some constant Cd,p,L,T > 0, for all N ≥ 1,

∥∥∥ sup
t∈[0,T ]

Wp

(
µt,

1

N

N∑
i=1

δXi,Nt

)∥∥∥
p
≤ Cd,p,L,T

∥∥∥Wp(µ, ν
N )
∥∥∥
p
, (1.10)

where νN := 1
N

∑N
i=1 δY i is the empirical measures of (Y 1, . . . , Y N ). Moreover, the norm

‖Wp(µ, ν
N )‖p converges to 0 as N →∞.

2. For a fixed k ∈ N∗, we have the weak convergence:(
X1,N , . . . , Xk,N

)
⇒
(
Y 1, . . . , Y k

)
as N →∞. (1.11)

We then focus on the interpolated Euler scheme, and give a quantitative convergence result. In
the following definition, M ∈ N∗ should be thought of as the temporal discretization number, while
h := T

M is the time step. For every m = 0, . . . ,M , we set tm = mh. We introduce an interpolated
Euler scheme, in which we only need to consider a discrete sequence of random variables and a
discrete sequence of probability measures as the inputs of each step. To simplify the notations, we
will write x0:m := (x0, ..., xm), µ0:m := (µ0, ..., µm). Our discretization scheme uses the following
interpolator.

Definition 1.3 (Interpolator). (a) For every m = 1, . . . ,M , we define a piecewise affine interpola-
tor im on m+ 1 points in Rd by

x0:m ∈ (Rd)m+1 7−→ im(x0:m) = (x̄t)t∈[0,T ] ∈ C
(
[0, T ],Rd

)
, (1.12)

where for every t ∈ [0, T ], x̄t is defined by

∀ k = 0, ...,m− 1, ∀ t ∈ [tk, tk+1), x̄t =
1

h
(tk+1 − t)xk +

1

h
(t− tk)xk+1,

∀ t ∈ [tm, T ], x̄t = xm.

By convention, we define, for every t ∈ [0, T ], i0(x0)t := x0.
(b) Let p ≥ 1. For every m = 1, ...,M , we define a piecewise affine interpolator for m+ 1 probability

measures in Pp(Rd), still denoted by im with a slight abuse of notation, by

µ0:m ∈ (Pp(Rd))m+1 7−→ im(µ0:m) = (µ̄t)t∈[0,T ] ∈ C
(
[0, T ],Pp(Rd)

)
, (1.13)
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where for every t ∈ [0, T ], µ̄t is defined by

∀ k = 0, ...,m− 1, ∀ t ∈ [tk, tk+1), µ̄t =
1

h
(tk+1 − t)µk +

1

h
(t− tk)µk+1,

∀ t ∈ [tm, T ], µ̄t = µm. (1.14)

By convention, we define, for every t ∈ [0, T ], i0(µ0)t := µ0.

With this at hand, we define our interpolated Euler scheme in which we use the short-hand
notation Yt0:tm (respectively, νt0:tm) to denote (Yt0 , . . . , Ytm) (resp. (νt0 , . . . , νtm)).

Definition 1.4. Let M ∈ N∗, h = T
M . For every m = 0, ...,M , we set tm = mh. For the same

Brownian motion (Bt)t∈[0,T ] and random vector X0 as in (1.5), the interpolated scheme (X̃M
tm)0≤m≤M

of the path-dependent McKean-Vlasov equation (1.5) is defined as follows :

1. X̃M
0 = X0;

2. for all m ∈ {0, . . . ,M − 1},

X̃M
tm+1

= X̃M
tm + h bm(tm, X̃

M
t0:tm , µ̃

M
t0:tm) +

√
hσm(tm, X̃

M
t0:tm , µ̃

M
t0:tm)Zm+1, (1.15)

where, for k ∈ {0, . . . ,M}, µ̃Mtk is the probability distribution of X̃M
tk

, where, for m = 0, . . . ,M − 1,
Zm+1 = 1√

h
(Btm+1 −Btm), and where the applications

bm : [0, T ]× (Rd)m+1 ×
(
Pp(Rd)

)m+1 −→ Rd,

σm : [0, T ]× (Rd)m+1 ×
(
Pp(Rd)

)m+1 −→Md,q(R)

are defined as follows : ∀ t ∈ [0, T ], x0:m ∈ (Rd)m+1, µ0:m ∈
(
Pp(Rd)

)m+1

{
bm(t, x0:m, µ0:m) := b

(
t, im(x0:m), im(µ0:m)

)
,

σm(t, x0:m, µ0:m) := σ
(
t, im(x0:m), im(µ0:m)

)
.

(1.16)

The applications bm and σm can often discretize computations from a numerical point of view.
For instance, if

b
(
t, (Xs)s∈[0,T ], (µs)s∈[0,T ]

)
:=

∫ t

0

E [φ(Xs)]ds (1.17)

with a bounded function φ, then

bm(tm, X̃
M
t0:tm , µ̃

M
t0:tm) =

h

2

(
E
[
φ(X̃M

t0 )
]

+ E
[
φ(X̃M

tm)
])

+ h

m−1∑
k=1

E
[
φ(X̃M

tk
)
]
. (1.18)

Computing an integral quantity such as (1.17) is numerically more demanding than dealing with
sums as in (1.18). This is especially important when one wants to use a particle system to estimate
such quantities.

In order to prove the convergence of the interpolated Euler scheme (1.15) to the unique strong
solution of (1.5), we will first assume Assumption (I), guaranteeing the uniqueness of the latter, but
also some additional regularity on the coefficients.

Assumption (II). The coefficient functions b, σ are γ-Hölder in t for some 0 < γ ≤ 1, uniformly in
α and in (µt)t∈[0,T ], in the following sense : there exists L > 0 s.t.

∀ t, s ∈ [0, T ], ∀α ∈ C
(
[0, T ],Rd

)
and ∀ (µt)t∈[0,T ] ∈ C

(
[0, T ],Pp(Rd)

)
,

max
(∣∣∣b(t, α, (µt)t∈[0,T ]

)
− b
(
s, α, (µt)t∈[0,T ]

)∣∣∣, ∣∣∣∣∣∣σ(t, α, (µt)t∈[0,T ]

)
− σ

(
s, α, (µt)t∈[0,T ]

)∣∣∣∣∣∣)
≤ L

(
1 + ‖α‖sup + sup

t∈[0,T ]

Wp(µt, δ0)
)
|t− s|γ , (1.19)

where δ0 is the Dirac measure at 0.

With this at hand, we state our third main result, that regards the discretization scheme.
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Theorem 1.5 (Convergence rate of the interpolated Euler scheme). Under Assumptions (I) and

(II), for (Xt)t∈[0,T ] the unique strong solution to (1.5) given by Theorem 1.1, for (X̃M
tm)0≤m≤M the

interpolated Euler scheme from Definition 1.4 with parameter M large enough, for h = T
M , one has,∥∥∥∥ sup

0≤m≤M

∣∣∣Xtm − X̃M
tm

∣∣∣∥∥∥∥
p

≤ C̃
(
hγ +

(
h| ln(h)

∣∣) 1
2
)
, (1.20)

where C̃ > 0 is a constant depending on L, p, d, ‖X0‖p , T and γ.

From Definition 1.4, we can introduce a continuous extension of (X̃M
tm)0≤m≤M , denoted by X̂M =

(X̂M
t )t∈[0,T ] and defined by X̂M := iM (X̃M

t0:tM ). Then we have the following convergence.

Corollary 1.6. Under Assumptions (I) and (II), for M large enough, one has∥∥∥∥∥ sup
t∈[0,T ]

∣∣∣Xt − X̂M
t

∣∣∣∥∥∥∥∥
p

≤ C̃
(
hγ +

(
h| ln(h)

∣∣) 1
2
)
, (1.21)

where C̃ > 0 is a constant depending on L, p, d, ‖X0‖p , T and γ.

1.3. Previous results and main contributions

1.3.1. The standard McKean-Vlasov equation

Originally used for the study of plasma physics, the standard McKean-Vlasov equation (1.2) has
since then been popularized for applications in opinion dynamics [22], finance (for instance through
the rank-based model, see [27] and the references therein) and neurosciences [5, 9, 15]. It also plays
a key role in the theory of mean-field games [7, 8], with applications in biological models on animal
competition, road traffic engineering and dynamic economic models, see Huang-Malhamé-Caines [6]
and the references within. We also refer to the recent review [10, 11] for the different notions of
propagation of chaos for the particle system associated to this equation and the strategies to prove
them.

In this context, the results proved in this paper are known. Regarding the strong well-posedness
in Lp and the form of propagation of chaos obtained in this paper, we refer to the illuminating
exposition of Sznitman [37] and the recent notes of Lacker [28]. The Euler scheme of (1.2) is studied
in a paper by the second author and Pagès [32], where an explicit rate of convergence was also
obtained.

1.3.2. Path-dependent framework

The discussion regarding the generalized McKean-Vlasov equation with path-dependent coefficients
appears in some recent works, see Cosso et al. [12], Lacker [29] and Djete-Possamäı-Tan [17]. In
those papers, the dependency on the measure argument is different from (1.5). More specifically, the
dynamics of [12, 17, 29] take the form

dXt = b
(
t,X·∧t,L(X·∧t)

)
dt+ σ

(
t,X·∧t,L(X·∧t)

)
dBt (1.22)

where L(X·∧t) ∈ Pp(C([0, T ],Rd)) is the probability distribution of the whole path X·∧t.
Certainly, in our definition of the path-dependent McKean-Vlasov equation, the measure argument

µ·∧t made from the marginal distributions can be considered as a special case of the dependency on
L(X·∧t). The well-posedness of (1.5), given in Theorem 1.1 has been obtained by Djete-Possamäı-Tan
[17]. We still include a proof in order to make this paper self-contained. We emphasize nevertheless
several advantages of our setting (1.5):

(i) from the theoretical perspective, Lacker [29] studied the propagation of chaos of (1.22) in
total variation distance by means of a Girsanov transform. This work is close to ours, since
it focuses on the particle system associated to (1.22) and its convergence rather than on the
limit equation (1.22). In contrast with [29], our diffusion coefficient σ is allowed to depend
on the measure argument, a case which can not be treated via Girsanov argument. Also, our
propagation of chaos result is given in Wasserstein distance;
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(ii) our measure arguments are taken in C([0, T ],Pp(Rd)) instead of Pp
(
C([0, T ],Rd)

)
. This frame-

work constitutes a trade-off between the theoretical aspects, the numerical perspectives and
the applications. Indeed, our setting can be simulated more easily and with more precision in
general, and, concerning applications, some path-dependent McKean-Vlasov equations, fitting
(1.5), can also be found in the recent work on the 2d parabolic-parabolic Keller-Segel equation
of Tomašević and Fournier-Tomašević [39, Equation (1.2)] [21].

We present the regularized equation from [21, 39] as an application, as well as a system, generalized
from [20], corresponding to the microscopic dynamics of some neural mass model for the visual cortex
and its mean-field limit. In the latter, a delay between the emission and the reception of the signals
and a modulation of the exchanges with time create the path-dependency. The inclusion of this
latter modulation is important from the modeling point of view, as it opens the possibility to tune
in intrinsic excitability into the model.

The interpolated Euler scheme presented here is of strong importance, as it gives a road-map to
simulate the equation. Our estimate quantifies the corresponding error, which is also key in practice.
Combining our results on the interpolated Euler scheme and the propagation of chaos for the particle
system will be the starting point of a forthcoming work devoted to an implementable particle method
for the numerical simulation of (1.5). This line of reasoning is inspired by the numerical analysis
for the classical McKean-Vlasov equation, see in particular [1, Section 3], [3, Equation (2.3)], [23],
[30, Section 7.1] and [31]. Besides, the Euler scheme also plays a major role in the study of the
convex order (see e.g. [32] and [33] for the classical McKean-Vlasov equation) which we also plan to
investigate in a future work.

1.4. Strategy and plan of the paper

Section 2 is devoted to our applications. For both models, we show that Assumptions (I) and (II)
hold, yielding results of well-posedness in Lp, p ≥ 2, of propagation of chaos for the associated
particle system and the convergence of our interpolated Euler scheme.

In Section 3, we establish the well-posedness of (1.5). The strategy is largely inspired from Bouleau
[4], who applied it to diffusions, see also [30, Chapter 5] where the second author derived similar
results for the classical McKean-Vlasov equation (without path-dependency), and Lacker [28]. While
the norms used in this method are more involved than in earlier works, the main idea of the proof
is reminiscent of the one of Sznitman [37] based on earlier work by Dobrushin [18]. By considering
appropriate trajectorial spaces, and by introducing norms depending on well-chosen parameters, we
are able to perform a classical fixed-point argument. We introduce first the space

Hp,C,T :=
{
Y ∈ LpC([0,T ],Rd)

(Ω,F , (Ft)t∈[0,T ],P) s.t. Y is (Ft)t∈[0,T ] − adapted.
}
,

that we endow with a suitable norm ‖ · ‖p,C,T with parameter C > 0. Then, we identify every
probability measure on C([0, T ],Rd) admitting a finite p moment with a continuous map from [0, T ]
to Pp(Rd). The main argument is then to endow the Banach product space Hp,C,T×C([0, T ],Pp(Rd))
with a suitable distance, denoted dH×P and to show that, roughly, the map

ΦC : Hp,C,T × C([0, T ],Pp(Rd))→ Hp,C,T × C([0, T ],Pp(Rd))

(Y, (νt)t∈[0,T ]) 7→
(

Φ
(1)
C (Y, (νt)t∈[0,T ]), ι

(
P

Φ
(1)
C (Y,(νt)t∈[0,T ])

))
(1.23)

where

Φ
(1)
C (Y, (νt)t∈[0,T ]) :=

(
X0 +

∫ t

0

b(s, Y·∧s, ν·∧s)ds+

∫ t

0

σ(s, Y·∧s, ν·∧s)dBs

)
t∈[0,T ]

is Lipschitz continuous, with a Lipschitz constant strictly smaller than one for C large enough,
turning ΦC into a contraction mapping. Here ι

(
P

Φ
(1)
C (Y,(νt)t∈[0,T ])

)
in (1.23) denotes the marginal

distributions of Φ
(1)
C

(
Y, (νt)t∈[0,T ]

)
. This allows to perform a fixed-point argument to obtain the

well-posedness of (1.5).

Section 4 is devoted to our proof of Theorem 1.2. We split it into two parts. Proposition 4.2 focuses
on the well-posedness of the particle system (1.9) and relies on a by now fairly classical argument:
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by writing the coefficients in a vectorized manner, we obtain the system (1.9) in the form of a path-
dependent stochastic differential equation in some extended space, whose well-posedness is given by
Theorem 1.1. In Subsection 4.2, we prove Theorem 1.2. Our proof is based on a coupling argument.
Recalling that (µt)t∈[0,T ] denote the marginal distributions of X solving (1.5), we introduce the
system (Y 1, . . . , Y N ) such that for all i ∈ {1, . . . , N},

Y it = Xi,N
0 +

∫ t

0

b
(
s, Y i·∧s, µ·∧s

)
ds+

∫ t

0

σ
(
s, Y i·∧s, µ·∧s

)
dBis, t ∈ [0, T ]. (1.24)

Note that, by uniqueness in Theorem 1.1, (Y 1, . . . , Y N ) are i.i.d. copies ofX. Then, writing (νNt )t∈[0,T ]

for the empirical measure of the particle system (1.24) and noticing that

sup
t∈[0,T ]

Wp

(
µNt , µt

)
≤ sup
t∈[0,T ]

Wp

(
µNt , ν

N
t

)
+ sup
t∈[0,T ]

Wp

(
νNt , µt

)
,

we control, in expectation, the first term on the right-hand side by the second one using a coupling
of (µNt , ν

N
t ) for all t ∈ [0, T ] and Assumption (I). Thus, for some constant Cp,d,T,L depending on p,

d, T and L, ∥∥∥ sup
t∈[0,T ]

Wp

(
µNt , µt

)∥∥∥
p
≤ Cp,d,T,L

∥∥∥ sup
t∈[0,T ]

Wp

(
νNt , µt

)∥∥∥
p
. (1.25)

It only remains to use the convergence towards 0 of the right-hand side, which follows from general
results of convergence in the Wasserstein distance for i.i.d. sampling. We note that this coupling
strategy only provides a result valid for a finite time horizon T > 0: the constant Cp,d,T,L explodes
as T →∞.

Section 5 is devoted to the study of the convergence of the interpolated Euler scheme. We start
by giving the definition of the theoretical continuous extension (X̃t)t∈[0,T ] of (X̃tm)0≤m≤M in (1.15).

The objective of Section 5 is to prove the convergence of the process X̃ = (X̃t)t∈[0,T ] towards the
unique solution X in Lp-norm, which directly implies Theorem 1.5. To do this, we first study the
properties of the interpolator im and link the uniform norm of the interpolated process and the
interpolated marginal distributions with the underlying collections of points and measures. In a
second part, we prove that the sup norm of (X̃t)t∈[0,T ] is bounded in Lp and study the Lp-norm

of a specific modulus of continuity of (X̃t)t∈[0,T ] adapted to our temporal discretization. The proof
relies on a combination of functional inequalities with Lévy’s modulus of continuity theorem for
the control of the diffusive component. The use of the latter is the key point limiting our rate of
convergence in the final result. Finally, we obtain Theorem 1.5 and Corollary 1.6 by combining the
properties of the interpolated Euler scheme and its continuous extension with our assumptions on
the drift and diffusion coefficients.

1.5. Notations

We place ourselves in a filtered probability space (Ω,F , (Ft)t≥0,P) satisfying the usual condition.
The law of a random variable X is denoted by PX = P ◦X−1. Sometimes we also write X ∼ µ to
indicate that X has distribution µ. In the whole paper, (Bt)t∈[0,T ] denotes an (Ft)t∈[0,T ] Brownian
motion valued in Rq, q ∈ N∗. The same holds for (Bit)t∈[0,T ] with i ∈ N∗. We denote by N (0, Iq)
the Rq standard normal distribution, where Iq is the q× q identity matrix. The Lp norm is denoted
‖ · ‖p for p ∈ (0,∞]. On R, we write a ∧ b := min(a, b) and a ∨ b = max(a, b). We write | · | for the
Euclidean norm on Rd, a · b for the scalar product of a, b ∈ Rd, δx for the Dirac measure at x, |||·|||
for the operator norm on Md,q(R), the space of matrices of dimensions (d, q). We recall that, for
A ∈Md,q(R),

|||A||| := sup
z∈Rq,|z|≤1

∣∣Az∣∣.
We write (E, ‖ · ‖E) for the Banach space E endowed with the norm ‖ · ‖E . Let P(E) denote the set
of probability distributions on E, while Pp(E) denotes the set of probability distributions with p-th
finite moment. We write supp(µ) for the support of a probability distribution µ. The Wasserstein
distance on Pp(Rd) is denoted byWp, defined by (1.6). We shall use repeatedly the space of Rd-valued
continuous applications, denoted C([0, T ],Rd), that is,

C
(
[0, T ],Rd

)
:=
{
α = (αt)t∈[0,T ] such that t ∈ [0, T ] 7→ αt is continuous

}
.
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We endow this space with the supremum norm ‖α‖sup = supt∈[0,T ] |αt|. The projection πt from

C([0, T ],Rd) to Rd is defined by πt(α) = αt for all (αt)t∈[0,T ] ∈ C([0, T ],Rd).
A handful of further spaces will be introduced throughout the text, that we gather here for clarity.

The space LpC([0,T ],Rd)
(Ω,F ,P) is the Lp-space of random variables defined on (Ω,F ,P) with values

in C([0, T ],Rd). We endow this space with the norm ‖·‖p,C,T defined in (3.1). We further consider the
space Hp,C,T of (Ft)t∈[0,T ]-adapted processes in LpC([0,T ],Rd)

(Ω,F ,P), and the space Pp(C([0, T ],Rd))
of probability distributions µ on C([0, T ],Rd) such that∫

C([0,T ],Rd)

‖ξ‖psup µ(dξ) <∞.

The Wasserstein distance on Pp(C([0, T ],Rd)) is denoted by Wp, see (1.6). For any two probability
distributions µ, ν, the set of all probability distributions with marginals µ and ν is denoted Π(µ, ν).
We also introduce C

(
[0, T ],Pp(Rd)

)
the space of probability distributions (µt)t∈[0,T ] such that t ∈

[0, T ] 7→ µt ∈ Pp(Rd) is continuous with respect to the distanceWp (see (1.6)). We endow this space
with the distance

dp

(
(µt)t∈[0,T ], (νt)t∈[0,T ]

)
:= sup

t∈[0,T ]

Wp(µt, νt).

We also use the distance dH×P defined on Hp,C,T × C
(
[0, T ],Pp(Rd)

)
in (3.13). The application ι is

key to the fixed-point argument performed in Section 3, and sends elements from Pp(C([0, T ],Rd))
to C

(
[0, T ],Pp(Rd)

)
by ι(µ) = (µt)t∈[0,T ], see Lemma 3.2. We use the notation Cp1,...,pn for a positive

constant depending on parameters p1, . . . , pn whose value is allowed to change from line to line.

2. Applications

2.1. A neural mass model with intrinsic excitability

Our starting point is the microscopic setting leading, in the mean-field limit, to Jansen and Rit’s
model [26], in the form of the equations given by Faugeras-Touboul-Cessac [20]. This neural mass
model (NMM) includes three different neurons population and is used to get a deeper understanding
of visual cortical signals, more specifically of the emergence of oscillations in the electrical activity
of the brain registered by an electroencephalogram after a stimulation of a sensory pathway. The
three populations are organised as follows: the pyramidal population, thereafter numbered 1, the
excitatory feedback population, indexed by 2, and the inhibitory interneuron population, indexed
by 3. More details on the model can be find in [20], see in particular Figure 2 for a graphical
representation.

At the level of the particle system, given a time horizon T > 0 and a number Nj ∈ N∗ of neurons
in population j, the equations for the potential of the neuron i in population j of [20] take the form

dVj,i(t) = − 1

τj
Vj,i(t)dt+

( 3∑
k=1

Nk∑
`=1

J̄j,kS
(
Vk,`(t)

)
+ Ij(t)

)
dt+ fj(t)dW

j,i
t , (2.1)

for t ∈ [0, T ], where the first drift term corresponds to a modulation of the exchanges with time
realized through the so-called g-shape of the postsynaptic potentials of population j.

An important effect for the visual cortex is the so-called potentiation due to intrinsic excitability
[14]: depending on its previous behavior, the sensibility of a neuron to incoming signals can vary.
When the neuron was previously highly active, it reaches an excitability state in which incoming
signals are magnified. In order to model this feature, we enrich the coefficients J̄j,k, constant in
(2.1), by including a path-dependent function of the trajectory of the neuron at hand. As a second
extension, we include a delay in the signal received by the neurons i from population j from the
neuron ` from population k. To simplify, we consider the same delay 4 in each population, but
we notice that our setting could easily adapt to treat a delay depending on the population (by a
straightforward adaptation of the initial data).

We thus consider

τ1 = τ2 > 0, τ3 > 0, J̄i,j =
Ji,j
Nj

(2.2)
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with

J =

 0 J1,2 J1,3

J2,1 0 0
J3,1 0 0

 (2.3)

where J1,2, J1,3, J2,1 and J3,1 are functions of [0, T ]× C([0, T ],Rd) given by

Ji,j

(
t, (αs)s∈[0,T ]

)
= Di,j

(
1 + ε

∫ t

0

ϕ(αs)ds
)
, (2.4)

where for all (i, j) ∈ {(1, 2), (1, 3), (2, 1), (3, 1)}, Di,j are fixed, positive constants and ε is a small
parameter modulating the rate-based plasticity [36, Section 6.6]. The function ϕ is assumed to be
bounded and Lipschitz continuous from C([0, T ],Rd) to R.

Note that this extends the model of [20], in which the Ji,j , modeling the postsynaptic strength
between population i and j are all constant, and that our hypotheses allow for any choice of Ji,j
that are regular enough (see Assumptions I and II). The setting (2.4) should be thought of as a
toy model illustrating our ability to take into account the effect of the potential trajectory on the
postsynaptic strengths.

We also introduce a delay parameter 4 ∈ [0, T ) and consider ultimately the following microscopic
system, for j ∈ {1, 2, 3}, i ∈ {1, . . . , Nj} and t ∈ [0, T ]

dVj,i(t) = − 1

τj
Vj,i(t)dt+

( 3∑
k=1

Nk∑
`=1

J̄j,k

(
t,
(
Vj,i(·)

)
·∧t

)
S
(
Vk,`(t−4)

)
+ Ij(t)

)
dt

+ fj(t)dW
j,i
t (2.5)

The functions Ij , fj from R+ to R are assumed to be Lipschitz continuous. The Brownian motions

(W j,i
t )t≥0 for {(j, i) : j ∈ {1, 2, 3}, i ∈ {1, . . . , Nj}} are assumed to be mutually independent, and

the function S is given on R by

S(v) =
vm

1 + er(v0−v)
, (2.6)

with r > 0 and 0 < v0 < vm. Note that this function is bounded and Lipschitz continuous with
constant vmr.

As the number of particles in each population grows to infinity, it is natural to expect the system
to be described by the following system of three path-dependent McKean-Vlasov equations. Write
µjt for the distribution of the potential of population j ∈ {1, 2, 3} at time t in [0, T ]. In the mean-field
limit, we obtain the following system set on [0, T ], for j ∈ {1, 2, 3},

V̄j(t)= V̄j(0) +
∫ t

0
e
− t−sτj

{∑3
k=1Dj,k

(
1 + ε

∫ s
0
ϕ
(
V̄j(u)

)
du
) ∫

R S(y)µks−4(dy)
}

ds

+
∫ t

0
e
− t−sτj Ij(s)ds+

∫ t
0
e
− t−sτj fj(s)dW

j
s

V̄j(t) ∼ µjt , t ∈ [0, T ],

(2.7)

where (W 1,W 2,W 3) are three independent Brownian motions. We summarize those assumptions
as follow:

Assumption 2.1

1. For s ∈ [−4, 0], fix V̄j(s) = 0 (leading to µjs = δ0, s ∈ [−4, 0] in (2.7));
2. the functions Ij , fj : R+ → R are Lipschitz continuous;
3. the function S is given by (2.6);
4. the function ϕ appearing in the definition of Ji,j in (2.4) is bounded, Lipschitz continuous from
C([0, T ],Rd) to R.

Proposition 2.1. Under Assumption 2.1, the system (2.7) satisfies Assumptions (I) and (II).

This provides a proof of well-posedness on finite time [0, T ] for any T > 0 for this upgraded version
of the model treated in [20], where we have added possible intrinsic excitability as well as a delay
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between the emission and reception of the signals. In addition, Proposition 2.1 induces a moment
propagation result, in the sense that, still letting V̄j(s) = 0 for all s ∈ [−4, 0), if V̄j(0) ∈ Lp, p ≥ 2
for j ∈ {1, 2, 3}, then V̄j(t) ∈ Lp at all time t ∈ [0, T ]. Proposition 2.1 also provides a justification
for the derivation of (2.7) from the particle system (2.1). More precisely, letting for all s ∈ [−4, T ],
µ̃s = µ1

s ⊗ µ2
s ⊗ µ3

s, we prove in Appendix A.1 the following.

Proposition 2.2. Let N ∈ N∗ and assume that N1 = N2 = N3 = N . Assume that for all
i ∈ {1, . . . , N} and for all s ∈ [−4, 0], (V1,i(s), V2,i(s), V3,i(s)) = 0R3 . Under Assumption 2.1,

the particle system (2.1) is well-defined. Moreover, defining µNt := 1
N

∑N
i=1 δ(V1,i(t),V2,i(t),V3,i(t)), we

have ∥∥∥ sup
t∈[0,T ]

Wp

(
µ̃t, µ

N
t

)∥∥∥
p
−→
N→∞

0.

We plan to study numerically (2.7) in a future work, as was done for the first model (2.1) in
[20]. Propositions 2.1 and 2.2 give a path towards the simulation of the dynamics of (2.7). In
particular, our interpolated Euler scheme is a first step towards the numerical investigation not
only of the limiting equation, but also of the particle system and its convergence. For models of
neuron masses, one key aspect is the understanding of the steady states and of their dependency
with regards to the parameters of the system. A bifurcation analysis must be conducted to get a
clear picture of the possible outcomes. A numerical study of (2.7) and of the corresponding particle
system could shed a new light on this matter: the non-Markovian property of the limiting equation
could lead to new behaviors compared with classical model for neuron masses [20]. We mention
that the justification of neural mass models from the microscopic dynamics is a challenging topic in
computational neuroscience, see e.g. Deschle et al. [16] and the references therein.

2.2. A regularized equation for the 2-dimensional parabolic-parabolic Keller-Segel
model

In [39], Tomašević provides a stochastic interpretation, based on earlier work of Talay-Tomašević
[38], of the parabolic-parabolic Keller-Segel model via a stochastic representation which falls into
the framework of (1.5). In particular, the drift of the corresponding process depends on the past of
its law. The Keller-Segel equation describes the time evolution of the density ρt of a cell population,
and of the concentration ct of a chemical attractant. The term parabolic-parabolic refers to the fact
that the chemical attractant itself is not constant in time, as opposed to alternative Keller-Segel
models which involve time-dependency solely for the cell population. We refer to Horstmann [24, 25]
for a review of the standard Keller-Segel model and its variations.

In the study of the stochastic representation, Tomašević [39, Equation (3.6)] introduced a regu-
larized problem, on which we will focus. Let T > 0 be fixed. Set in [0, T ] × R2, the equation takes
the following form{

dXε
t = bε0(t,Xε

t ) + χ
∫ t

0

[
e−λ(t−s)(Kε

t−s ∗ µεs
)
(Xε

t ) ds
]
dt+ dBt,

µεs = PXεs ,
(2.8)

where ε > 0 is the regularization parameter, λ, χ are positive constants, and

bε0(t, x) := χe−λt(∇c0 ∗ gεt )(x), gεt (x) :=
1

2π(t+ ε)
e−
|x|2
2t , Kε

t (x) := − x

2π(t+ ε)2
e−
|x|2
2t ,

where c0 belongs to H1(R2), the usual Sobolev space.
The equation (2.8) is key to the argument in [39] because drift and density estimates can be

obtained for the regularized process, those being uniform in the regularization parameter ε when a
condition on the size of χ is fulfilled.

In [39, Theorem A.1], a proof of well-posedness in L1(Rd) for the problem (2.8) is provided with
the initial condition that X0 is an F0-measurable random variable, where (Ft)t≥0 is the filtration
associated to the Brownian motion (Bt)t≥0. We obtain a similar well-posedness in the Lp framework
for p ≥ 2, implying also propagation of moments in finite time, as corollaries of the following
proposition.

Proposition 2.3. Let p ≥ 2. Assume that T > 0 and X0 ∈ Lp. Then, the equation (2.8) satisfies
Assumption (I).
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Corollary 2.4. Let p ≥ 2. Assume that T > 0 and X0 ∈ Lp. Then there exists a unique process
(Xt)t≥0 solving (2.8) continuous in time such that ‖ sups∈[0,T ] |Xs|‖p <∞.

The proof of Proposition 2.3, as well as the following Proposition 2.6, is postponed to Appendix
A.2. Corollary 2.4 and the following Corollary 2.5 are straightforward applications of Theorems 1.1
and 1.2.

As noticed in [39], the existence of the particle system corresponding to the nonregularized par-
ticle system and its propagation of chaos is a difficult problem, tackled with the introduction of a
Markovian (enriched) particle system in [21].

As a first step towards a different approach, we prove a propagation of chaos result for a path-
dependent particle system associated to (2.8).

Corollary 2.5. For N ≥ 1, p ≥ 2, let X1,N
0 , . . . , XN,N

0 be i.i.d. copies of X0 ∈ Lp in (2.8) and Bi :=
(Bit)t∈[0,T ], 1 ≤ i ≤ N be N independent standard R2-valued Brownian motions, independent of the

Brownian motion (Bt)t∈[0,T ] in (2.8) and (X0, X
1,N
0 , . . . , XN,N

0 ). Then, under the same assumption
as in Proposition 2.3, the N -particle exchangeable regularized Keller-Segel system set on [0, T ] Xi,N

t = Xi,N
0 +

∫ t
0
bε0(s,Xi,N

s ) ds+ χ
∫ t

0

∫ s
0

[
e−λ(s−u)

(
Kε
s−u ∗ µNu

)(
Xε
s

)
du
]
ds+Bit,

µNt := 1
N

∑N
i=1 δXi,Nt

, t ∈ [0, T ],

is well-posed, and ∥∥∥ sup
t∈[0,T ]

Wp

(
µεt, µ

N
t

)∥∥∥
p
−→
N→∞

0.

We now turn to the issue of simulating the Keller-Segel parabolic-parabolic equation in dimension
2. We show that the interpolated Euler scheme corresponding to (2.8) converges, in Lp norm, to the
desired solution, in the case where c0 also belongs to W 1,∞(Rd). This gives a first approach to the
simulation of the problem based on a non-markovian particle system associated to the regularized
path-dependent equation thanks to the process from Definition 1.4. Again, the proof is presented in
Appendix A.2.

Proposition 2.6. Assume that c0 ∈ H1(Rd) ∩ W 1,∞(Rd). Let (Xt)t∈[0,T ] be the unique strong

solution to (2.8) given by Proposition 2.3. Let (X̃M
tm)0≤m≤M be the interpolated Euler scheme from

Definition 1.4. Then, for M large enough, for some C̃ > 0 independent of M , for h = T
M , we have∥∥∥∥ sup

0≤m≤M

∣∣∣Xtm − X̃M
tm

∣∣∣∥∥∥∥
p

≤ C̃
(
h+

(
h| ln(h)

∣∣) 1
2
)
.

3. Strong well-posedness

In this section, we prove Theorem 1.1, following the strategy sketched in Section 1.4. Assumption
(I) is supposed to hold throughout the rest of this paper.

Let Lp
C
(

[0,T ],Rd
)(Ω,F ,P) denote the space of C

(
[0, T ],Rd

)
-valued r.v. Y = (Yt)t∈[0,T ] having an

Lp-norm ‖Y ‖p :=
[
E ‖Y ‖psup

]1/p
=
[
E supt∈[0,T ] |Yt|

p ]1/p
< +∞. For a fixed constant C > 0, we

define another norm ‖·‖p,C,T on Lp
C
(

[0,T ],Rd
)(Ω,F ,P) by

‖Y ‖p,C,T := sup
t∈[0,T ]

e−Ct
∥∥∥ sup

0≤s≤t
|Ys|

∥∥∥
p
. (3.1)

It is obvious that ‖·‖p,C,T and ‖·‖p are equivalent since

∀Y ∈ Lp
C
(

[0,T ],Rd
)(Ω,F ,P), e−CT ‖Y ‖p ≤ ‖Y ‖p,C,T ≤ ‖Y ‖p . (3.2)

We define

Hp,C,T :=
{
Y ∈ Lp

C
(

[0,T ],Rd
)(Ω,F , (Ft)t∈[0,T ],P) s.t. Y is (Ft)t∈[0,T ] − adapted.

}
. (3.3)
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The next lemma shows that Hp,C,T endowed with the norm ‖·‖p,C,T is a Banach space. For simplicity
we skip its proof, which can be found in [30, Lemma 5.1.1].

Lemma 3.1. The space Hp,C,T equipped with ‖·‖p,C,T is a complete space.

For any random variable Y ∈ Lp
C
(

[0,T ],Rd
)(Ω,F ,P), its probability distribution PY naturally lies

in the space

Pp
(
C([0, T ],Rd)

)
:=

{
µ probability distribution on C([0, T ],Rd) s.t.

∫
C([0,T ],Rd)

‖α‖psup µ(dα) < +∞

}
.

Recall the definition of the Wasserstein distance on Pp(S) for (S, dS) a Polish space from (1.6), and
that we write Wp when (S, dS) = (C([0, T ],Rd), ‖ · ‖sup), Wp when S = Rd. Since the underlying
space

(
C([0, T ],Rd), ‖·‖sup

)
is Polish, the space Pp

(
C([0, T ],Rd)

)
equipped with Wp is complete and

separable (see [2]).
Let us consider now

C
(
[0, T ],Pp(Rd)

)
:=
{

(µt)t∈[0,T ] s.t. t 7→ µt is a continuous application from [0, T ] to
(
Pp(Rd),Wp

)}
equipped with the distance

dp
(
(µt)t∈[0,T ], (νt)t∈[0,T ]

)
:= sup

t∈[0,T ]

Wp(µt, νt). (3.4)

As
(
Pp(Rd),Wp

)
is a complete space (see [2]), C

(
[0, T ],Pp(Rd)

)
equipped with the uniform distance

dp is also a complete space.
For any t ∈ [0, T ], we define πt : C

(
[0, T ],Rd

)
→ Rd by

α 7→ πt(α) = αt. (3.5)

The following lemma, and its proof, can be found in [30, Lemmas 5.1.2 & 5.1.3].

Lemma 3.2. The application ι : Pp
(
C([0, T ],Rd)

)
→ C

(
[0, T ],Pp(Rd)

)
defined by

µ 7→ ι(µ) = (µ ◦ π−1
t )t∈[0,T ] = (µt)t∈[0,T ]

is well-defined and 1-Lipschitz continuous.

Lemma 3.3. Under Assumption (I), the coefficient functions b and σ have a linear growth in α and
(µt)t∈[0,T ] in the sense that there exists a constant Cb,σ,L,T s.t. for every t ∈ [0, T ], α ∈ C

(
[0, T ],Rd

)
,

(µt)t∈[0,T ] ∈ C
(
[0, T ],Pp(Rd)

)
,∣∣b(t, α, (µt)t∈[0,T ])

∣∣ ∨ ∣∣∣∣∣∣σ(t, α, (µt)t∈[0,T ])
∣∣∣∣∣∣ ≤ Cb,σ,L,T(1 + ‖α‖sup + sup

t∈[0,T ]

Wp(µt, δ0)
)
. (3.6)

Proof of Lemma 3.3. Let δ0,[0,T ] ∈ C
(
[0, T ],Pp(Rd)

)
be such that δ0,[0,T ](t) = δ0 for all t ∈ [0, T ]

and let 0 ∈ C
(
[0, T ],Rd

)
be such that for all t ∈ [0, T ], 0(t) = 0. Then∣∣∣b(t, α, (µt)t∈[0,T ]

)∣∣∣− ∣∣∣b(t,0, δ0,[0,T ]

)∣∣∣ ≤ ∣∣∣b(t, α, (µt)t∈[0,T ]

)
− b
(
t,0, δ0,[0,T ]

)∣∣∣
≤ L

(
‖α− 0‖sup + dp

(
(µt)t∈[0,T ], δ0,[0,T ]

))
= L

(
‖α‖sup + sup

t∈[0,T ]

Wp(µt, δ0)
)
.

Consequently,∣∣∣b(t, α, (µt)t∈[0,T ]

)∣∣∣ ≤ ( sup
t∈[0,T ]

∣∣b(t,0, δ0,[0,T ]

)∣∣ ∨ L)(‖α‖sup + sup
t∈[0,T ]

Wp(µt, δ0) + 1
)
. (3.7)

Similarly, we have∣∣∣∣∣∣σ(t, α, (µt)t∈[0,T ]

)∣∣∣∣∣∣ ≤ ( sup
t∈[0,T ]

∣∣∣∣∣∣σ(t,0, δ0,[0,T ]

)∣∣∣∣∣∣ ∨ L)(‖α‖sup + sup
t∈[0,T ]

Wp(µt, δ0) + 1
)

(3.8)

so that one can take Cb,σ,L,T := sup
t∈[0,T ]

∣∣b(t,0, δ0,[0,T ]

)∣∣ ∨ sup
t∈[0,T ]

∣∣∣∣∣∣σ(t,0, δ0,[0,T ]

)∣∣∣∣∣∣ ∨ L to conclude.
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Before proving that the McKean-Vlasov equation (1.5) has a unique strong solution under As-
sumption (I), we first recall two important technical tools used throughout the proof: the generalized
Minkowski Inequality and the Burkölder-Davis-Gundy Inequality. For the proof of these two inequal-
ities, we refer to [35, Section 7.8] among other references.

Lemma 3.4 (The Generalized Minkowski Inequality). For any (bi-measurable) process X = (Xt)t≥0,
for every p ∈ [1,∞) and for every T ∈ [0,+∞],∥∥∥∥∥

∫ T

0

Xt dt

∥∥∥∥∥
p

≤
∫ T

0

‖Xt‖p dt.

Lemma 3.5 (Burkölder-Davis-Gundy Inequality (continuous time)). For every p in (0,+∞), there
exists two real constants cBDGp > 0 and CBDGp > 0 such that, for every continuous local martingale
(Xt)t∈[0,T ] null at 0, denoting (〈X〉t)t∈[0,T ] its total variation process,

cBDGp

∥∥∥√〈X〉T∥∥∥
p
≤

∥∥∥∥∥ sup
t∈[0,T ]

|Xt|

∥∥∥∥∥
p

≤ CBDGp

∥∥∥√〈X〉T∥∥∥
p
.

Note that under Assumption (I), t → σ(t,X·∧t, µ·∧t) is adapted and continuous, hence progres-
sively measurable. Recall also that p ≥ 2. A direct application of those two inequalities provides the
following lemma.

Lemma 3.6. Let (Bt)t∈[0,T ] be a (Ft)t∈[0,T ] standard Brownian motion, and (Ht)t∈[0,T ] be an

(Ft)t∈[0,T ] progressively measurable process having values in Md,q(R) such that
∫ T

0
|||Ht|||2dt <∞,

P-a.s.. Then, for all t ∈ [0, T ],∥∥∥∥∥ sup
s∈[0,t]

∣∣∣ ∫ s

0

Hu dBu

∣∣∣∥∥∥∥∥
p

≤ CBDGd,p

[ ∫ t

0

∥∥∥|||Hu|||
∥∥∥2

p
du
] 1

2
.

Proof. Notice first that it follows from Lemma 3.5 that
∫ ·

0
HsdBs is a d-dimensional local martingale

satisfying ∥∥∥∥∥ sup
s∈[0,t]

∣∣∣∣∫ s

0

Hu dBu

∣∣∣∣
∥∥∥∥∥
p

≤ CBDGd,p

∥∥∥∥∥∥
√∫ t

0

|||Hu|||2du

∥∥∥∥∥∥
p

. (3.9)

Applying this, and using that when U ≥ 0,
∥∥√U∥∥

p
=
∥∥U∥∥ 1

2
p
2

, we obtain

∥∥∥ sup
s∈[0,t]

∣∣∣ ∫ s

0

Hu dBu

∣∣∣∥∥∥
p
≤ CBDGd,p

∥∥∥∥∫ t

0

|||Hu|||2du

∥∥∥∥
1
2

p
2

≤ CBDGd,p

[ ∫ t

0

∥∥∥|||Hu|||2
∥∥∥p

2

du
] 1

2

where we used Minkowski’s inequality (recall that p ≥ 2) to obtain the last inequality. The proof
follows by noticing that ‖|U |2‖p

2
= ‖U‖2p.

Lemma 3.7. Under Assumption (I), for any
(
X, (µt)t∈[0,T ]

)
,
(
Y, (νt)t∈[0,T ]

)
belowing to the space

Hp,C,T × C
(
[0, T ],Pp(Rd)

)
and for any t ∈ [0, T ], one has∥∥∥∥∥ sup

s∈[0,t]

∣∣∣∣∫ s

0

[
b(u,X·∧u, µ·∧u)− b(u, Y·∧u, ν·∧u)

]
du

∣∣∣∣
∥∥∥∥∥
p

≤ L
∫ t

0

[∥∥∥ sup
s∈[0,u]

|Xs − Ys|
∥∥∥
p

+ sup
s∈[0,u]

Wp(µs, νs)
]
du,

and ∥∥∥∥∥ sup
s∈[0,t]

∣∣∣∣∫ s

0

[
σ(u,X·∧u, µ·∧u)− σ(u, Y·∧u, ν·∧u)

]
dBu

∣∣∣∣
∥∥∥∥∥
p

≤ Cd,p,L
{∫ t

0

[∥∥∥ sup
s∈[0,u]

|Xs − Ys|
∥∥∥2

p
+ sup
s∈[0,u]

W2
p (µs, νs)

]
du
} 1

2

,

where Cd,p,L is a positive constant only depending on d, p, L.
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Proof. For any
(
X, (µt)t∈[0,T ]

)
,
(
Y, (νt)t∈[0,T ]

)
∈ Hp,C,T × C

(
[0, T ],Pp(Rd)

)
, for any t ∈ [0, T ], we

have∥∥∥ sup
s∈[0,t]

∣∣∣ ∫ s

0

[
b(u,X·∧u, µ·∧u)− b(u, Y·∧u, ν·∧u)

]
du
∣∣∣∥∥∥
p
≤
∥∥∥∥∫ t

0

∣∣b(u,X·∧u, µ·∧u)− b(u, Y·∧u, ν·∧u)
∣∣du∥∥∥∥

p

≤
∫ t

0

‖b(u,X·∧u, µ·∧u)− b(u, Y·∧u, ν·∧u)‖p du (by Lemma 3.4)

≤
∫ t

0

∥∥∥L[ ‖X·∧u − Y·∧u‖sup + dp
(
(µv∧u)v∈[0,T ], (νv∧u)v∈[0,T ]

)]∥∥∥
p

du

≤
∫ t

0

∥∥∥L[ sup
s∈[0,u]

|Xs − Ys|+ sup
s∈[0,u]

Wp(µs, νs)
]∥∥∥
p
du

(by Assumption (I) and by definitions (1.3) and (1.4))

≤ L
∫ t

0

[∥∥∥ sup
s∈[0,u]

|Xs − Ys|
∥∥∥
p

+ sup
s∈[0,u]

Wp(µs, νs)
]
du (3.10)

and, by applying Lemma 3.6,∥∥∥∥∥ sup
s∈[0,t]

∣∣∣∣∫ s

0

[
σ(u,X·∧u, µ·∧u)− σ(u, Y·∧u, ν·∧u)

]
dBu

∣∣∣∣
∥∥∥∥∥
p

≤ CBDGd,p

[ ∫ t

0

∥∥|||σ(u,X·∧u, µ·∧u)− σ(u, Y·∧u, ν·∧u)|||
∥∥2

p
du
] 1

2

.

By Assumption (I) and by definition of α·∧u and µ·∧u in (1.3) and (1.4), we get∥∥∥∥∥ sup
s∈[0,t]

∣∣∣∣∫ s

0

[
σ(u,X·∧u, µ·∧u)− σ(u, Y·∧u, ν·∧u)

]
dBu

∣∣∣∣
∥∥∥∥∥
p

≤ CBDGd,p

[ ∫ t

0

∥∥∥L[ sup
s∈[0,u]

|Xs − Ys|+ sup
s∈[0,u]

Wp(µs, νs)
]∥∥∥2

p
du
] 1

2

≤ CBDGd,p L
[ ∫ t

0

[∥∥∥ sup
s∈[0,u]

|Xs − Ys|
∥∥∥
p

+ sup
s∈[0,u]

Wp(µs, νs)
]2

du
] 1

2

≤
√

2CBDGd,p L
{∫ t

0

[∥∥∥ sup
s∈[0,u]

|Xs − Ys|
∥∥∥2

p
+ sup
s∈[0,u]

W2
p (µs, νs)

]
du
} 1

2

. (3.11)

The conclusion follows by letting Cd,p,L =
√

2CBDGd,p L.

The idea of our proof of well-posedness follows from Feyel’s approach, originally developed by
Bouleau [4, Section 7] for the existence and uniqueness of a strong solution to the SDE dXt =
b(Xt)dt+ σ(Xt)dBt. We define a distance dp,C,T on C([0, T ],Pp(Rd)) as follows:

∀(µt)t∈[0,T ], (νt)t∈[0,T ] ∈ C([0, T ],Pp(Rd)),
dp,C,T

(
(µt)t∈[0,T ], (νt)t∈[0,T ]

)
:= sup

t∈[0,T ]

e−CtWp(µt, νt). (3.12)

We also define a distance dH×P on Hp,C,T × C([0, T ],Pp(Rd)) as follows:

∀
(
X, (µt)t∈[0,T ]

)
,
(
Y, (νt)t∈[0,T ]

)
∈ Hp,C,T × C

(
[0, T ],Pp(Rd)

)
,

dH×P

((
X, (µt)t∈[0,T ]

)
,
(
Y, (νt)t∈[0,T ]

))
:= ‖X − Y ‖p,C,T + sup

t∈[0,T ]

e−CtWp(µt, νt). (3.13)

Recall that X0 ∈ Lp(Rd) is given by Assumption (I). We define an application1

ΦC : Hp,C,T × C
(
[0, T ],Pp(Rd)

)
→ Hp,C,T × C

(
[0, T ],Pp(Rd)

)
1The C in the subscript of ΦC is the same constant C as in (Hp,C,T , ‖·‖p,C,T ). We carry this notation throughout

this section.
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by

∀ (Y, (νt)t∈[0,T ]) ∈ Hp,C,T × C
(
[0, T ],Pp(Rd)

)
,

ΦC(Y, (νt)t∈[0,T ]) =
(

Φ
(1)
C (Y, (νt)t∈[0,T ]), ι(PΦ

(1)
C (Y,(νt)t∈[0,T ])

)
)
, where

Φ
(1)
C (Y, (νt)t∈[0,T ]) :=

(
X0 +

∫ t

0

b(s, Y·∧s, ν·∧s)ds+

∫ t

0

σ(s, Y·∧s, ν·∧s)dBs

)
t∈[0,T ]

The application ΦC has the following properties.

Proposition 3.8. (i) Under Assumption (I), the map ΦC is well-defined, and there holds∥∥∥ sup
s∈[0,t]

∣∣Φ(1)
C (Y, ι(PY ))s

∣∣∥∥∥
p

≤ ‖X0‖p + Cb,σ,L,T (2T + CBDGd,p

√
2T ) + 2Cb,σ,L,T

∫ t

0

∥∥∥ sup
s∈[0,u]

∣∣Ys∣∣∥∥∥
p
du (3.14)

+ 2
√

2CBDGd,p Cb,σ,L,T

(∫ t

0

∥∥∥ sup
s∈[0,u]

∣∣Ys∣∣∥∥∥2

p
du
) 1

2
.

(ii) Under Assumption (I), ΦC is Lipschitz continuous in the sense that: for any
(
X, ι(PX)

)
and(

Y, ι(PY )
)

in Hp,C,T × C
(
[0, T ],Pp(Rd)

)
,

dH×P

(
ΦC
(
X, ι(PX)

)
,ΦC

(
Y, ι(PY )

))
≤
(K1

C
+
K2√
C

)
dH×P

((
X, ι(PX)

)
,
(
Y, ι(PY )

))
,

where K1, K2 are real positive constants which do not depend on the constant C.

Proof. (i) It follows from Lemma 3.2 that for every Y ∈ Hp,C,T , ι(PY ) belongs to C
(
[0, T ],Pp(Rd)

)
.

Let ν = PY . We need to prove that Φ
(1)
C

(
Y, ι(ν)

)
∈ Hp,C,T . For any t ∈ [0, T ],∥∥∥∥∥ sup

s∈[0,t]

∣∣∣Φ(1)
C

(
Y, ι(ν)

)
s

∣∣∣∥∥∥∥∥
p

=

∥∥∥∥∥ sup
s∈[0,t]

∣∣X0 +

∫ s

0

b(u, Y·∧u, ν·∧u)du+

∫ s

0

σ(u, Y·∧u, ν·∧u)dBu
∣∣∥∥∥∥∥
p

≤

∥∥∥∥∥|X0|+
∫ t

0

∣∣b(u, Y·∧u, ν·∧u)
∣∣du+ sup

s∈[0,t]

∣∣∣ ∫ s

0

σ(u, Y·∧u, ν·∧u)dBu

∣∣∣∥∥∥∥∥
p

≤ ‖X0‖p +

∥∥∥∥∫ t

0

∣∣b(u, Y·∧u, ν·∧u)
∣∣du∥∥∥∥

p

+

∥∥∥∥∥ sup
s∈[0,t]

∣∣∣ ∫ s

0

σ(u, Y·∧u, ν·∧u)dBu

∣∣∣∥∥∥∥∥
p

. (3.15)

Owing to Assumption (I), we have ‖X0‖p < +∞. For the second part of (3.15), it follows from
Lemma 3.3 that∥∥∥∥∫ t

0

b(u, Y·∧u, ν·∧u)du

∥∥∥∥
p

≤
∫ t

0

‖b(u, Y·∧u, ν·∧u)‖p du

≤
∫ t

0

∥∥∥Cb,σ,L,T (1 + ‖Y·∧u‖sup + sup
s∈[0,T ]

Wp(νs∧u, δ0)
)∥∥∥
p
du

≤
∫ t

0

Cb,σ,L,T
(
1 +

∥∥∥ sup
s∈[0,T ]

|Ys∧u|
∥∥∥
p

+ sup
s∈[0,T ]

∥∥Ys∧u∥∥p)du
≤ 2Cb,σ,L,T

∫ t

0

(
1 +

∥∥∥ sup
s∈[0,T ]

|Ys∧u|
∥∥∥
p

)
du

≤ 2Cb,σ,L,T

∫ t

0

(
1 +

∥∥∥ sup
s∈[0,u]

|Ys|
∥∥∥
p

)
du (3.16)
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where we used that sups∈[0,T ]

∥∥Ys∧u∥∥p ≤ ∥∥∥ sups∈[0,T ] |Ys∧u|
∥∥∥
p

and

∥∥∥ sup
s∈[0,T ]

|Ys∧u|
∥∥∥
p

=
∥∥∥ sup
s∈[0,u]

|Ys|
∥∥∥
p
.

By definition of ‖ · ‖p,C,T , we deduce∥∥∥∥∫ t

0

b(u, Y·∧u, ν·∧u)du

∥∥∥∥
p

≤ 2Cb,σ,L,T

∫ t

0

(
1 + eCT ‖Y ‖p,C,T

)
du < +∞,

where we used (3.2) in the following way∥∥∥ sup
s∈[0,u]

|Ys|
∥∥∥
p
≤
∥∥∥ sup
s∈[0,T ]

|Ys|
∥∥∥
p
≤ eCT ‖Y ‖p,C,T < +∞. (3.17)

On the other hand, by using Lemma 3.6,∥∥∥∥∥ sup
s∈[0,t]

∣∣∣ ∫ s

0

σ(u, Y·∧u, ν·∧u)dBu

∣∣∣∥∥∥∥∥
p

≤ CBDGd,p

[ ∫ t

0

∥∥|||σ(u, Y·∧u, ν·∧u)|||
∥∥2

p
du
] 1

2

.

As before, we then invoke Lemma 3.3 to obtain∥∥∥∥∥ sup
s∈[0,t]

∣∣∣ ∫ s

0

σ(u, Y·∧u, ν·∧u)dBu

∣∣∣∥∥∥∥∥
p

≤ CBDGd,p

{∫ t

0

∥∥∥Cb,σ,L,T(1 + ‖Y·∧u‖sup + sup
s∈[0,T ]

Wp(νs∧u, δ0)
)∥∥∥2

p
du
} 1

2

≤ CBDGd,p Cb,σ,L,T

{∫ t

0

[
1 +

∥∥∥ sup
s∈[0,T ]

|Ys∧u|
∥∥∥
p

+ sup
s∈[0,T ]

Wp(νs∧u, δ0)
]2

du
} 1

2

≤ CBDGd,p Cb,σ,L,T

{∫ t

0

[
1 +

∥∥∥ sup
s∈[0,T ]

|Ys∧u|
∥∥∥
p

+ sup
s∈[0,T ]

∥∥Ys∧u∥∥p]2du
} 1

2

≤ CBDGd,p Cb,σ,L,T

{∫ t

0

[
1 + 2

∥∥∥ sup
s∈[0,T ]

|Ys∧u|
∥∥∥
p

]2
du
} 1

2

,

where we used again the inequality sups∈[0,T ]

∥∥Ys∧u∥∥p ≤ ∥∥∥ sups∈[0,T ] |Ys∧u|
∥∥∥
p
. Making again use of∥∥∥ sups∈[0,T ] |Ys∧u|

∥∥∥
p

=
∥∥∥ sups∈[0,u] |Ys|

∥∥∥
p
, we get

∥∥∥∥∥ sup
s∈[0,t]

∣∣∣ ∫ s

0

σ(u, Y·∧u, ν·∧u)dBu

∣∣∣∥∥∥∥∥
p

≤ CBDGd,p Cb,σ,L,T

{
2T + 8

∫ t

0

∥∥∥ sup
s∈[0,u]

|Ys|
∥∥∥2

p
du
} 1

2

≤ CBDGd,p Cb,σ,L,T

(√
2T + 2

√
2
{∫ t

0

∥∥∥ sup
s∈[0,u]

|Ys|
∥∥∥2

p
du
} 1

2
)

(3.18)

< +∞,

where the last inequality of the above formula is due to (3.17), and where we used the inequality√
a+ b ≤

√
a+
√
b for a, b ≥ 0.

Hence, for every t ∈ [0, T ],
∥∥∥ sup
s∈[0,t]

∣∣Φ(1)
C

(
Y, ι(ν)

)
s

∣∣∥∥∥
p
< +∞, which directly implies

∥∥∥Φ
(1)
C

(
Y, ι(ν)

)∥∥∥
p,C,T

= sup
t∈[0,T ]

e−Ct

∥∥∥∥∥ sup
s∈[0,t]

∣∣∣Φ(1)
C

(
Y, ι(ν)

)
s

∣∣∣∥∥∥∥∥
p

< +∞.

Thus Φ
(1)
C

(
Y, ι(ν)

)
∈ Hp,C,T . The inequality (3.14) follows by injecting (3.16) and (3.18) into (3.15).

(ii) We split the proof of this inequality into three steps.
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Step 1. We first prove that for any X,Y ∈ Hp,C,T , dp,C,T
(
ι(PX), ι(PY )

)
≤ ‖X − Y ‖p,C,T . In fact

dp,C,T
(
ι(PX), ι(PY )

)
= sup
t∈[0,T ]

e−CtWp(PX ◦ π−1
t , PY ◦ π−1

t ) ≤ sup
t∈[0,T ]

e−Ct ‖Xt − Yt‖p

≤ sup
t∈[0,T ]

e−Ct

∥∥∥∥∥ sup
s∈[0,t]

|Xs − Ys|

∥∥∥∥∥
p

= ‖X − Y ‖p,C,T .

Step 2. We prove that Φ
(1)
C is Lipschitz continuous, in the sense that∥∥∥Φ

(1)
C

(
X, ι(µ)

)
− Φ

(1)
C

(
Y, ι(ν)

)∥∥∥
p,C,T

≤
(2L

C
+
Cd,p,L√

C

)
‖X − Y ‖p,C,T , (3.19)

where Cd,p,L > 0 is the constant given by Lemma 3.7 and is independent of the parameter C of the
application ΦC . For any X,Y ∈ Hp,C,T , set µ = PX and ν = PY . Then∥∥∥Φ

(1)
C

(
X, ι(µ)

)
− Φ

(1)
C

(
Y, ι(ν)

)∥∥∥
p,C,T

=
∥∥∥ ∫ ·

0

(
b(u,X·∧u, µ·∧u)− b(u, Y·∧u, ν·∧u)

)
du (3.20)

+

∫ ·
0

(
σ(u,X·∧u, µ·∧u)− σ(u, Y·∧u, ν·∧u)

)
dBu

∥∥∥
p,C,T

≤
∥∥∥∥∫ ·

0

(
b(u,X·∧u, µ·∧u)− b(u, Y·∧u, ν·∧u)

)
du

∥∥∥∥
p,C,T

+

∥∥∥∥∫ ·
0

(
σ(u,X·∧u, µ·∧u)− σ(u, Y·∧u, ν·∧u)

)
dBu

∥∥∥∥
p,C,T

= sup
t∈[0,T ]

e−Ct

∥∥∥∥∥ sup
s∈[0,t]

∣∣∣∣∫ s

0

[
b(u,X·∧u, µ·∧u)− b(u, Y·∧u, ν·∧u)

]
du

∣∣∣∣
∥∥∥∥∥
p

(3.21)

+ sup
t∈[0,T ]

e−Ct

∥∥∥∥∥ sup
s∈[0,t]

∣∣∣∣∫ s

0

[
σ(u,X·∧u, µ·∧u)− σ(u, Y·∧u, ν·∧u)

]
dBu

∣∣∣∣
∥∥∥∥∥
p

.

We treat the two terms in (3.20) separately. Owing to Lemma 3.7, we first have

sup
t∈[0,T ]

e−Ct

∥∥∥∥∥ sup
s∈[0,t]

∣∣∣∣∫ s

0

[
b(u,X·∧u, µ·∧u)− b(u, Y·∧u, ν·∧u)

]
du

∣∣∣∣
∥∥∥∥∥
p

≤ L sup
t∈[0,T ]

e−Ct
∫ t

0

[∥∥∥ sup
s∈[0,u]

|Xs − Ys|
∥∥∥
p

+ sup
s∈[0,u]

Wp(µs, νs)
]
du

≤ L sup
t∈[0,T ]

e−Ct
∫ t

0

[∥∥∥ sup
s∈[0,u]

|Xs − Ys|
∥∥∥
p

+ sup
s∈[0,u]

∥∥Xs − Ys
∥∥
p

]
du

(since Wp(µs, νs) ≤ ‖Xs − Ys‖p)

≤ 2L sup
t∈[0,T ]

e−Ct
∫ t

0

eCu
(
e−Cu

∥∥∥ sup
s∈[0,u]

|Xs − Ys|
∥∥∥
p

)
du

≤ 2L sup
t∈[0,T ]

e−Ct
∫ t

0

eCudu ‖X − Y ‖p,C,T (by the definition of ‖·‖p,C,T in (3.1) )

= 2L sup
t∈[0,T ]

e−Ct
eCt − 1

C
‖X − Y ‖p,C,T

≤ 2L

C
‖X − Y ‖p,C,T .
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On the other hand, using Lemma 3.7

sup
t∈[0,T ]

e−Ct

∥∥∥∥∥ sup
s∈[0,t]

∣∣∣∣∫ s

0

[
σ(u,X·∧u, µ·∧u)− σ(u, Y·∧u, ν·∧u)

]
dBu

∣∣∣∣
∥∥∥∥∥
p

≤ sup
t∈[0,T ]

e−CtCd,p,L

{∫ t

0

[∥∥∥ sup
s∈[0,u]

|Xs − Ys|
∥∥∥2

p
+ sup
s∈[0,u]

W2
p (µs, νs)

]
du
} 1

2

≤ sup
t∈[0,T ]

e−CtCd,p,L

{∫ t

0

[∥∥∥ sup
s∈[0,u]

|Xs − Ys|
∥∥∥2

p
+ sup
s∈[0,u]

∥∥Xs − Ys
∥∥2

p

]
du
} 1

2

≤
√

2Cd,p,L sup
t∈[0,T ]

e−Ct
{∫ t

0

e2Cu
(
e−Cu

∥∥∥ sup
s∈[0,u]

|Xs − Ys|
∥∥∥
p

)2

du
} 1

2

≤
√

2Cd,p,L
∥∥X − Y ∥∥

p,C,T
sup
t∈[0,T ]

e−Ct
{∫ t

0

e2Cudu
} 1

2

≤
√

2Cd,p,L ‖X − Y ‖p,C,T sup
t∈[0,T ]

e−Ct
[e2Ct − 1

2C

] 1
2

≤ Cd,p,L√
C
‖X − Y ‖p,C,T ,

since supt∈[0,T ] e
−Ct

[
e2Ct−1

2C

] 1
2 ≤ 1√

2C
. Injecting those two results in (3.20), we obtain (3.19).

Step 3. We combine the results of the previous two steps to conclude. We have, from the definition
of dH×P in (3.13),

dH×P

(
ΦC
(
X, ι(µ)

)
,ΦC

(
Y, ι(ν)

))
=
∥∥∥Φ

(1)
C

(
X, ι(µ)

)
− Φ

(1)
C

(
Y, ι(ν)

)∥∥∥
p,C,T

+ dp,C,T

(
P

Φ
(1)
C (X,ι(µ))

, P
Φ

(1)
C (Y, ι(ν))

)
and using Step 1, and (3.19),

dH×P

(
ΦC
(
X, ι(µ)

)
,ΦC

(
Y, ι(ν)

))
≤ 2
(2L

C
+
Cd,p,L√

C

)
‖X − Y ‖p,C,T

≤ 2
(2L

C
+
Cd,p,L√

C

)
dH×P

(
(X,µ), (Y, ν)

)
.

The proof follows by letting K1 = 4L and K2 = 2Cd,p,L.

To obtain the precise description of the upper bound of ‖ sups∈[0,T ] |Xs|‖p, we will need the
following version of Gronwall’s lemma. We refer to [35, Lemma 7.3] for a proof (among many others).

Lemma 3.9 (“À la Gronwall” Lemma). Let f : [0, T ] → R+ be a Borel, locally bounded and non-
decreasing function and let ψ : [0, T ]→ R+ be a non-negative non-decreasing function satisfying

∀t ∈ [0, T ], f(t) ≤ A
∫ t

0

f(s)ds+B

(∫ t

0

f2(s)ds

) 1
2

+ ψ(t),

where A,B are two positive real constants. Then, for any t ∈ [0, T ],

f(t) ≤ 2e(2A+B2)tψ(t).

Proposition 3.8 directly implies the existence and uniqueness of a strong solution of the McKean-
Vlasov equation (1.5) as shown below.

Proof of Theorem 1.1. Proposition 3.8 implies that ΦC is a Lipschitz continuous function. Moreover,
for a large enough constant C, we have

(
K1

C + K2√
C

)
< 1, so that ΦC is a contraction mapping.

Therefore, ΦC has a unique fixed point
(
H, ι(PH)

)
in Hp,C,T ×C

(
[0, T ],Pp(Rd)

)
and this process H

is the unique strong solution of the McKean-Vlasov equation (1.5).
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We turn to the proof of (1.8). Let (X,PX) be the unique strong solution of (1.5). Then, we

have Φ
(1)
C (X, ι(PX)) = X since X is a fixed point of the application ΦC . Therefore, (3.14) takes the

following form∥∥∥ sup
s∈[0,t]

∣∣Xs

∣∣∥∥∥
p
≤ ‖X0‖p + Cb,σ,L,T (2T + CBDGd,p

√
2T ) + 2Cb,σ,L,T

∫ t

0

∥∥∥ sup
s∈[0,u]

∣∣Xs

∣∣∥∥∥
p
du

+ 2
√

2CBDGd,p Cb,σ,L,T

(∫ t

0

∥∥∥ sup
s∈[0,u]

∣∣Xs

∣∣∥∥∥2

p
du
) 1

2
.

We let f(t) :=
∥∥∥ sups∈[0,t]

∣∣Xs

∣∣∥∥∥
p
, and apply Lemma 3.9 to get

∥∥∥ sup
s∈[0,t]

∣∣Xs

∣∣∥∥∥
p
≤ Cp,d,b,σ,L,T eCp,d,b,σ,L,T t(1 + ‖X0‖p),

with the constant Cp,d,b,σ,L,T > 0 defined by

Cp,d,b,σ,L,T =
(
4Cb,σ,L,T + 8(CBDGd,p Cb,σ,L,T )2

)
∨ 2
(
1 ∨ Cb,σ,L,TT +

√
2T CBDGd,p Cb,σ,L,T

)
. (3.22)

The conclusion follows by choosing t = T and Γ = Cp,d,b,σ,L,T e
Cp,d,b,σ,L,TT .

4. Propagation of chaos for the particle system

In this section, we study the particle system (1.9) and its convergence when N →∞. In Subsection
4.1, we prove the well-posedness of the particle system at fixed N . For this, we write the system
(1.9) as an Nd-dimensional path-dependent diffusion to which we apply Theorem 1.1. In Subsection
4.2, we show the propagation of chaos. We use a synchronous coupling with i.i.d. particles sharing
the marginal distributions of the solution to (1.5). This is of course reminiscent of the celebrated
approach developed in dimension 1 by Sznitman [37], although our proof is more in the line of the
recent exposition of Lacker [28].

4.1. Well-posedness of the particle system

We begin this subsection with a technical lemma. For the sake of clarity, for ` ≥ 1, we write | · |` to
denote the Euclidean norm in R` in what follows.

Lemma 4.1. Let N ∈ N∗ be fixed, let p ≥ 2 and consider the application

LN : C
(
[0, T ], (Rd)N

)
→ C

(
[0, T ],Pp(Rd)

)
ᾱ = (α1, . . . , αN )→ LN (ᾱ) =

( 1

N

N∑
i=1

δαit

)
t∈[0,T ]

.

Then,

(i) the application LN is well-defined;

(ii) the application LN is N
− 1
p -Lipschitz continuous from

(
C
(
[0, T ], (Rd)N

)
, ‖ · ‖sup

)
to the space(

C
(
[0, T ],Pp(Rd)

)
, dp
)

where ‖ᾱ‖sup = supt∈[0,T ] |ᾱt|Nd and dp is defined by (1.7).

Proof. (i) We prove that for all ᾱ = (α1, . . . , αN ) ∈ C
(
[0, T ], (Rd)N

)
,

(a) for all t ∈ [0, T ], N−1
∑N
i=1 δαit ∈ Pp(R

d);

(b) the map t→ N−1
∑N
i=1 δαit is continuous with respect to Wp.

For (a), the property follows from the fact that N−1
∑N
i=1 δαit is obviously a probability measure on

Rd, which satisfies∫
Rd
|ζ|pd
( 1

N

N∑
i=1

δαit

)(
dζ
)

=
1

N

N∑
i=1

|αit|
p
d ≤ max

1≤i≤N
sup
t∈[0,T ]

|αit|
p
d <∞
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by assumptions on (α1, . . . , αN ). To prove (b), we consider s, t ∈ [0, T ]. Noting that 1
N

∑N
i=1 δ(αit,αis)

is a coupling of ( 1

N

N∑
i=1

δαit ,
1

N

N∑
i=1

δαis

)
,

the definition of the Wasserstein distance yields

Wp
p

( 1

N

N∑
i=1

δαit ,
1

N

N∑
i=1

δαis

)
≤
∫
Rd×Rd

∣∣x− y∣∣p
d

( 1

N

N∑
i=1

δ(αit,αis)

)
(dx,dy)

=
1

N

N∑
i=1

∣∣∣αit − αis∣∣∣p
d
,

and this last term converges to 0 as |t− s| → 0 by continuity of each (αiu)u∈[0,T ].

(ii) Let ᾱ = (α1, . . . , αN ), β̄ = (β1, . . . , βN ) be elements of C([0, T ], (Rd)N ). Then, using that
1
N

∑N
i=1 δ(αit,βit) is a coupling of ( 1

N

N∑
i=1

δαit ,
1

N

N∑
i=1

δβit

)
,

and using the definition of the Wasserstein distance, we get

dpp

(
LN (ᾱ), LN (β̄)

)
= sup
t∈[0,T ]

Wp
p

( 1

N

N∑
i=1

δαit ,
1

N

N∑
i=1

δβit

)
≤ sup
t∈[0,T ]

[ ∫
Rd×Rd

|x− y|pd
( 1

N

N∑
i=1

δ(αit,βit)

)
(dx, dy)

]
= sup
t∈[0,T ]

1

N

N∑
i=1

∣∣∣αit − βit∣∣∣p
d

≤ 1

N
sup
t∈[0,T ]

∣∣∣ᾱt − β̄t∣∣∣p
Nd

where we used that p ≥ 2 and the convexity of x 7→ x
p
2 in R+. We conclude by noticing that the

last inequality implies

dp

(
LN (ᾱ), LN (β̄)

)
≤ N−

1
p sup
t∈[0,T ]

∣∣∣ᾱt − β̄t∣∣∣
Nd

= N
− 1
p ‖ᾱ− β̄‖sup.

Proposition 4.2. Let N ∈ N∗ be fixed and suppose that Assumption (I) holds for some p ≥ 2.
Then the particle system (1.9) is well-posed, and for all t ∈ [0, T ], i ∈ {1, . . . , N}, Xi,N belongs to
LpC([0,T ],Rd)

(P).

Proof of Proposition 4.2. For all t ∈ [0, T ], we write X̄t = (X1,N
t , . . . , XN,N

t ) in (Rd)N and W̄t =
(B1

t , . . . B
N
t ). We rewrite the system (1.9) as follows{

dX̄t = B(t, X̄·∧t)dt+ Σ(t, X̄·∧t)dW̄t, t ∈ [0, T ],

X̄0 = (X1,N
0 , . . . , XN,N

0 ).
(4.1)

Here, B : [0, T ] × C([0, T ], (Rd)N ) → RNd and Σ : [0, T ] × C([0, T ], (Rd)N ) → MNd×Nq(R), are
defined, for t ∈ [0, T ], for ᾱ = (α1, . . . , αN ) ∈ C([0, T ], (Rd)N ), by

B(t, ᾱ) :=


b
(
t, α1, LN (ᾱ)

)
b
(
t, α2, LN (ᾱ)

)
...

b
(
t, αN , LN (ᾱ)

)
 ,
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Σ(t, ᾱ) :=


σ
(
t, α1, LN (ᾱ)

)
σ
(
t, α2, LN (ᾱ)

)
. . .

σ
(
t, αN , LN (ᾱ)

)
 .

Let t ∈ [0, T ] and ᾱ, β̄ ∈ C([0, T ],Rd)N . By Assumption (I),

∣∣B(t, ᾱ)−B(t, β̄)
∣∣
Nd
≤

N∑
i=1

∣∣∣b(t, αi, LN (ᾱ)
)
− b
(
t, βi, LN (β̄)

)∣∣∣
d

≤ L
N∑
i=1

(
‖αi − βi‖sup + dp

(
LN (ᾱ), LN (β̄)

))
≤ L

(
N +N

1− 1
p
)
‖ᾱ− β̄‖sup (4.2)

where we used Lemma 4.1. Similarly,∣∣∣∣∣∣Σ(t, ᾱ)− Σ(t, β̄)
∣∣∣∣∣∣ = sup

z=(z1,...,zN )∈(Rq)N
|z|Nq≤1

∣∣∣(Σ(t, ᾱ)− Σ(t, β̄)
)
z
∣∣∣
Nd

≤ sup
z=(z1,...,zN )∈(Rq)N

|z|Nq≤1

N∑
i=1

∣∣∣(σ(t, αi, LN (ᾱ))− σ(t, βi, LN (β̄))
)
zi
∣∣∣
d

≤ sup
z=(z1,...,zN )∈(Rq)N

∀1≤i≤N,|zi|q≤1

N∑
i=1

∣∣∣(σ(t, αi, LN (ᾱ))− σ(t, βi, LN (β̄))
)
zi
∣∣∣
d

≤
N∑
i=1

∣∣∣∣∣∣σ(t, αi, LN (ᾱ))− σ(t, βi, LN (β̄))
∣∣∣∣∣∣

and we apply again Assumption (I) and Lemma 4.1 to conclude. It follows that B and Σ satisfy
Assumption (I) with ambient dimension Nd. We conclude by using Theorem 1.1 which gives the
well-posedness of the system (4.1) (note that there is no dependency in the measure arguments for
the coefficients).

4.2. Propagation of chaos

In this subsection we prove Theorem 1.2.

Let (Y it )t≥0, 1 ≤ i ≤ N be N processes solving

Y it = Xi,N
0 +

∫ t

0

b
(
s, Y i·∧s, µ·∧s

)
ds+

∫ t

0

σ
(
s, Y i·∧s, µ·∧s

)
dBis, t ∈ [0, T ], (4.3)

where (µs)s∈[0,T ] in the coefficient functions are the marginal distributions of the unique solution X
of (1.5) given by Theorem 1.1, and where Bi = (Bit)t∈[0,T ], 1 ≤ i ≤ N are the same i.i.d. standard

Brownian motions considered in the particle system (1.9). Recall that Xi,N
0 , 1 ≤ i ≤ N are i.i.d.

copies of X0. It follows from the uniqueness in Theorem 1.1 that Y i = (Y it )t∈[0,T ] are i.i.d. copies of
X.

With the help of the following lemma, we define, for all ω ∈ Ω,

νN (ω) :=
1

N

N∑
i=1

δY i(ω), (4.4)

which is a random measure valued in Pp(C([0, T ],Rd)) for all p ≥ 1.

Lemma 4.3. Let αi = (αit)t∈[0,T ], 1 ≤ i ≤ N be elements of C([0, T ],Rd). Then
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(1) the empirical measure νN,α := 1
N

∑N
i=1 δαi ∈ Pp(C[0, T ],Rd)) for all p ≥ 1;

(2) let ι : Pp(C([0, T ],Rd))→ C([0, T ],Pp(Rd)) be the application defined in Lemma 3.2. Then

ι
(
νN,α

)
=
( 1

N

N∑
i=1

δαit

)
t∈[0,T ]

.

Proof. (1) For all p ≥ 1,∫
C([0,T ],Rd)

‖x‖psup ν
N,α(dx) =

∫
C([0,T ],Rd)

‖x‖psup

( 1

N

N∑
i=1

δαi
)

(dx)

=
1

N

N∑
i=1

‖αi‖psup <∞.

(2) Recall the definition of the coordinate map πt from (3.5). We only need to prove that for a fixed

t ∈ [0, T ],

νN,α ◦ π−1
t =

1

N

N∑
i=1

δαit . (4.5)

Obviously both sides are probability measures on (Rd,B(Rd)). Let B ∈ B(Rd), we have

νN,α ◦ π−1
t (B) = νN,α

(
π−1
t (B)

)
=
( 1

N

N∑
i=1

δαi
)({

β ∈ C([0, T ],Rd) : πt(β) ∈ B
})

=
1

N

N∑
i=1

δαi
({
β ∈ C([0, T ],Rd) : βt ∈ B

})
,

where we used that πt(β) = βt. Notice in addition that

δαi
({
β ∈ C([0, T ],Rd) : βt ∈ B

})
=

{
1 if αit ∈ B,
0 otherwise.

On the other hand, ( 1

N

N∑
i=1

δαit

)
(B) =

1

N

N∑
i=1

δαit(B)

where

δαit(B) =

{
1 if αit ∈ B,
0 otherwise.

It follows that for all B ∈ B(Rd),

(
νN,α ◦ π−1

t

)
(B) =

( 1

N

N∑
i=1

δαit

)
(B),

and finally that (4.5) holds.

With the processes Y i, 1 ≤ i ≤ N from (4.3) at hand, we introduce a family of random distribu-
tions (νNt )t∈[0,T ] defined by

∀ω ∈ Ω, t ∈ [0, T ], νNt (ω) :=
1

N

N∑
i=1

δY it (ω). (4.6)

Lemma 4.1 guarantees that for every ω, (νNt (ω))t∈[0,T ] ∈ C([0, T ],Pp(Rd)) since

(νNt (ω))t∈[0,T ] = LN

((
Y 1(ω), . . . , Y N (ω)

))
.
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Moreover, by Lemma 4.3, for every ω ∈ Ω,(
νNt (ω)

)
t∈[0,T ]

= ι
(
νN (ω)

)
so that (νNt (ω))t∈[0,T ] can be identified with the marginal distributions of νN (ω).

Proof of Theorem 1.2. Fix N > 1 and i ∈ {1, . . . , N}. Let Y i, 1 ≤ i ≤ N be the solutions to
(4.3) and νN the associate empirical measure defined by (4.4), as detailed above. We have, for all
s ∈ [0, T ],

Xi,N
s − Y is =

∫ s

0

[
b
(
u,Xi,N

·∧u , µ
N
·∧u
)
− b
(
u, Y i·∧u, µ·∧u

)]
du

+

∫ s

0

[
σ
(
u,Xi,N

·∧u , µ
N
·∧u
)
− σ(u, Y i·∧u, µ·∧u

)]
dBiu.

We set, for all t ∈ [0, T ], for all i ∈ {1, . . . , N},

fi(t) :=

∥∥∥∥∥ sup
s∈[0,t]

∣∣∣Xi,N
s − Y is

∣∣∣∥∥∥∥∥
p

.

Then

fi(t) =

∥∥∥∥∥ sup
s∈[0,t]

∣∣∣Xi,N
s − Y is

∣∣∣∥∥∥∥∥
p

≤
∥∥∥∫ t

0

∣∣∣b(s,Xi,N
·∧s , µ

N
·∧s
)
− b
(
s, Y i·∧s, µ·∧s

)∣∣∣ds
+ sup
s∈[0,t]

∣∣∣ ∫ s

0

[
σ
(
u,Xi,N

·∧u , µ
N
·∧u
)
− σ

(
u, Y i·∧u, µ·∧u

)]
dBiu

∣∣∣∥∥∥
p

≤
∫ t

0

∥∥∥b(s,Xi,N
·∧s , µ

N
·∧s
)
− b
(
s, Y i·∧s, µ·∧s

)∥∥∥
p
ds

+ CBDGd,p

[ ∫ t

0

∥∥∥ ∣∣∣∣∣∣∣∣∣σ(s,Xi,N
·∧s , µ

N
·∧s
)
− σ

(
s, Y i·∧s, µ·∧s

)∣∣∣∣∣∣∣∣∣ ∥∥∥2

p
ds
] 1

2
(4.7)

using Lemma 3.6. With a computation similar to (3.10), recalling that the marginal distributions
(µNt )t∈[0,T ] are themselves random, so that for all u ∈ [0, T ],∥∥∥dp((µNv∧u)v∈[0,T ], (µv∧u)v∈[0,T ]

)∥∥∥
p

=
∥∥∥ sup
v∈[0,u]

Wp(µ
N
v , µv)

∥∥∥
p
,

we find∫ t

0

∥∥∥b(s,Xi,N
·∧s , µ

N
·∧s
)
− b
(
s, Y i·∧s, µ·∧s

)∥∥∥
p
ds

≤ L
∫ t

0

∥∥∥ sup
v∈[0,s]

∣∣Xi,N
v − Y iv

∣∣∥∥∥
p
ds+ L

∫ t

0

∥∥∥ sup
v∈[0,s]

Wp

(
µNv , µv

)∥∥∥
p
ds

≤ L
∫ t

0

fi(s) ds+ L

∫ t

0

∥∥∥ sup
v∈[0,s]

Wp

(
µNv , µv

)∥∥∥
p
ds. (4.8)

Using a derivation similar to (3.11), one also finds

CBDGd,p

[ ∫ t

0

∥∥∥∣∣∣∣∣∣∣∣∣σ(s,Xi,N
·∧s , µ

N
·∧s
)
− σ

(
s, Y i·∧s, µ·∧s

)∣∣∣∣∣∣∣∣∣∥∥∥2

p
ds
] 1

2

≤
√

2CBDGd,p L
{[∫ t

0

∥∥∥ sup
v∈[0,s]

∣∣Xi,N
v − Y iv

∣∣∥∥∥2

p
ds
] 1

2

+
[ ∫ t

0

∥∥∥ sup
v∈[0,s]

Wp

(
µNv , µv

)∥∥∥2

p
ds
] 1

2
}

=
√

2CBDGd,p L
{[∫ t

0

fi(s)
2ds
] 1

2

+
[ ∫ t

0

∥∥∥ sup
v∈[0,s]

Wp

(
µNv , µv

)∥∥∥2

p
ds
] 1

2
}
. (4.9)
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By using the triangle inequality, for all s ∈ [0, T ], we get first

sup
v∈[0,s]

Wp
p

(
µNv , µv

)
≤
(

sup
v∈[0,s]

Wp

(
µNv , ν

N
v

)
+ sup
v∈[0,s]

Wp

(
νNv , µv

))p
≤ 2p

(
sup
v∈[0,s]

Wp
p

(
µNv , ν

N
v

)
+ sup
v∈[0,s]

Wp
p

(
νNv , µv

))
. (4.10)

In addition, the empirical measure defined for all t ∈ [0, T ] by 1
N

∑N
i=1 δ(Xi,Nt ,Y it ) is a random coupling

of the empirical measures µNt and νNt . Thus, for all v ∈ [0, T ],

Wp
p

(
µNv , ν

N
v

)
≤
∫
Rd×Rd

|x− y|p 1

N

N∑
i=1

δ(Xi,Nv ,Y iv )(dx,dy)

=
1

N

N∑
i=1

∣∣∣Xi,N
v − Y iv

∣∣∣p.
Taking the supremum over [0, s] and the expectation, noticing that

sup
v∈[0,s]

N∑
i=1

|Xi,N
v − Y iv |p ≤

N∑
i=1

sup
v∈[0,s]

|Xi,N
v − Y iv |p

almost surely, we get

E
[

sup
v∈[0,s]

Wp
p

(
µNv , ν

N
v

)]
≤ 1

N

N∑
i=1

E
[

sup
v∈[0,s]

∣∣Xi,N
v − Y iv

∣∣p]
≤ 1

N

N∑
i=1

fi(s)
p ≤ sup

1≤i≤N
fi(s)

p.

Taking the expectation in (4.10) and using this last inequality, we find∥∥∥ sup
v∈[0,s]

Wp

(
µNv , µv

)∥∥∥p
p
≤ 2p

(
sup

1≤i≤N
fi(s)

p +
∥∥∥ sup
v∈[0,s]

Wp

(
νNv , µv

)∥∥∥p
p

)
and since p ≥ 2, a concave inequality gives,∥∥∥ sup

v∈[0,s]

Wp

(
µNv , µv

)∥∥∥
p
≤ 2
(

sup
1≤i≤N

fi(s) +
∥∥∥ sup
v∈[0,s]

Wp

(
νNv , µv

)∥∥∥
p

)
. (4.11)

Bringing together (4.7), (4.8), (4.9) and (4.11), denoting f̄(t) := sup1≤i≤N fi(t) for t ∈ [0, T ], we
find, for all i ∈ {1, . . . , N}

fi(t) ≤ L
∫ t

0

fi(s) ds+ 2L

∫ t

0

f̄(s) ds+ 2L

∫ t

0

∥∥∥ sup
v∈[0,s]

Wp

(
νNv , µv

)∥∥∥
p
ds

+
√

2CBDGd,p L
[ ∫ t

0

fi(s)
2 ds

] 1
2

+ 2
√

2CBDGd,p L
[ ∫ t

0

(
f̄(s) +

∥∥∥ sup
v∈[0,s]

Wp(ν
N
v , µv)

∥∥∥
p

)2

ds
] 1

2
.

Using the positivity of the Wasserstein distance and of the (fi)1≤i≤N , we obtain

fi(t) ≤ 3L

∫ t

0

f̄(s) ds+ 2L

∫ t

0

∥∥∥ sup
v∈[0,s]

Wp

(
νNv , µv

)∥∥∥
p
ds

+
(√

2 + 4
)
CBDGd,p L

[ ∫ t

0

f̄(s)2 ds
] 1

2
+ 4CBDGd,p L

[ ∫ t

0

∥∥∥ sup
v∈[0,s]

Wp

(
νNv , µv

)∥∥∥2

p
ds
] 1

2
,

and taking the supremum over {1, . . . , N} on the left-hand-side, we can apply Lemma 3.9 to get

f̄(t) ≤ 4Leκ0t
{∫ t

0

∥∥∥ sup
v∈[0,s]

Wp(ν
N
v , µv)

∥∥∥
p
ds+ 2CBDGd,p

[ ∫ t

0

∥∥∥ sup
v∈[0,s]

Wp

(
νNv , µv

)∥∥∥2

p
ds
] 1

2
}

(4.12)
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with κ0 := 6L + ((
√

2 + 4)CBDGd,p L)2 > 0. Injecting this result into (4.11) and using that for all

s ∈ [0, T ], supv∈[0,s]Wp(ν
N
v , µv) ≤ supv∈[0,T ]Wp(ν

N
v , µv) almost surely, we get∥∥∥ sup

v∈[0,T ]

Wp

(
µNv , µv

)∥∥∥
p
≤ 2
(

1 + 4Leκ0T (T + 2CBDGd,p

√
T )
)∥∥∥ sup

v∈[0,T ]

Wp

(
νNv , µv

)∥∥∥
p
. (4.13)

By Lemma 4.3, (νNv )v∈[0,T ] can be identified with the marginal distributions of νN . Moreover, by
Lemma 3.2, the map ι is 1-Lipschitz continuous. Thus,∥∥∥ sup

v∈[0,T ]

Wp

(
νNv , µv

)∥∥∥
p

=
∥∥∥dp(ι(νN ), ι(µ)

)∥∥∥
p
≤
∥∥∥Wp(ν

N , µ)
∥∥∥
p
.

Combining this inequality with (4.13) concludes the proof of (1.10). The limit is obtained by ap-
plying the convergence of ‖Wp(ν

N , µ)‖p with νN being an empirical measure of i.i.d. processes with
distribution µ on the separable metric space C([0, T ],Rd), see for instance [28, Corollary 2.14].

To prove (1.11), we simply note that for all k ∈ {1, . . . , N}

E
[

sup
1≤i≤k

sup
t∈[0,T ]

∣∣Xi,N
t − Y it

∣∣p] ≤ k∑
i=1

E
[

sup
s∈[0,T ]

∣∣Xi,N
s − Y is

∣∣p] ≤ kf̄(t)p ≤ Cp,d,T,Lk
∥∥∥Wp(ν

N , µ)
∥∥∥p
p
,

where we applied (4.12) to obtain the last inequality, with a constant Cp,d,T,L > 0. We conclude by
using again [28, Corollary 2.14].

5. Interpolated Euler scheme and associated convergences

This section is devoted to the proof of Theorem 1.5. For this purpose, we first define the associated
theoretical continuous Euler scheme (X̃M

t )t∈[0,T ] of (X̃M
tm)0≤m≤M from (1.15). We use the same

temporal discretization as Definition 1.4: let M ∈ N∗, h = T
M . For every m = 0, ...,M , we set

tm = mh. As the size of the discretization parameter M will sometimes play a role, we write
(X̃M

t )t≥0 when we wish to emphasize the dependency of the process in M and omit this superscript
when it is clear from context.

Definition 5.1. Given the discretized scheme (X̃M
t0:tM ) with the associated probability distributions

(µ̃Mt0:tm) from Definition 1.4, using the same notations bm, σm as in (1.16), we define the continuous

Euler scheme, (X̃M
t )t∈[0,T ] by setting, for all t ∈ (tm, tm+1], X̃M

0 = X0,

X̃M
t = X̃M

tm + (t− tm) bm(tm, X̃
M
t0:tm , µ̃

M
t0:tm) + σm (tm, X̃

M
t0:tm , µ̃

M
t0:tm)(Bt −Btm).

(5.1)

According to the definition of bm and σm in (1.16), the continuous Euler scheme (5.1) writes, for
t ∈ (tm, tm+1], m ∈ {0, . . . ,M − 1},

X̃M
t = X̃M

tm + (t− tm) b
(
tm, im

(
X̃M
t0:tm

)
, im
(
µ̃Mt0:tm

))
+ σm

(
tm, im

(
X̃M
t0:tm

)
, im
(
µ̃Mt0:tm

))(
Bt −Btm

)
.

In order to compare this with equation (1.5), we write, for all t ∈ [0, T ], µ̃Mt for the distribution of

X̃M
t , and for all m ∈ {0, . . . ,M − 1} we set

t := tm, [t] := m if t ∈ [tm, tm+1). (5.2)

With this at hand, the process (X̃M
t )t∈[0,T ] satisfies

X̃M
t = X̃M

0 +

∫ t

0

b
(
s, i[s]

(
X̃M
t0:t[s]

)
, i[s]

(
µ̃Mt0:t[s]

))
ds+

∫ t

0

σ
(
s, i[s]

(
X̃M
t0:t[s]

)
, i[s]

(
µ̃Mt0:t[s]

))
dBs. (5.3)

Theorem 1.5 is a direct result of the following proposition.
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Proposition 5.2. Under Assumptions (I) and (II), for (Xt)t∈[0,T ] the unique strong solution to

(1.5) given by Theorem 1.1, for (X̃M
t )t∈[0,T ] the Euler scheme from Definition 5.1 with parameter

M large enough, for h = T
M , one has,∥∥∥∥∥ sup
t∈[0,T ]

∣∣∣Xt − X̃M
t

∣∣∣∥∥∥∥∥
p

≤ C̃
(
hγ +

(
h| ln(h)

∣∣) 1
2
)
, (5.4)

where C̃ > 0 is a constant depending on L, p, d, ‖X0‖p , T and γ.

This section is organized as follows. Subsection 5.1 shows several preliminary results for the inter-
polator im that will be used for the proof of Proposition 5.2. Subsection 5.2 gathers several properties
of the process (X̃M

t )t≥0 from Definition 5.1. Finally, in Subsection 5.3, we prove Proposition 5.2,
Theorem 1.5 and Corollary 1.6.

Remark 5.3. We might define the classical continuous Euler scheme (X̄t)t≥0 by setting

1. X̄0 = X0;
2. for all m ∈ {0, . . . ,M − 1}, t ∈ (tm, tm+1]

X̄t = X̄tm + (t− tm) b(tm, X̄·∧tm , µ̄·∧tm) + σ(tm, X̄·∧tm , µ̄·∧tm) (Bt −Btm).

The convergence of this non-implementable continuous Euler scheme towards the solution of (1.5)
can then be proved using similar arguments as those developed in this section.

5.1. Preliminary results

We gather several properties that will be used for the proof of Proposition 5.2. For two probability
measures µ, ν ∈ Pp(Rd) and for λ ∈ [0, 1], we define λµ+ (1− λ)ν by

∀B ∈ B
(
Rd
)
,
(
λµ+ (1− λ)ν

)
(B) := λµ(B) + (1− λ)ν(B). (5.5)

It is easy to check that λµ+ (1− λ)ν ∈ Pp(Rd).

Lemma 5.4. Let µ, ν ∈ Pp(Rd) with p ≥ 1.

(a) The application τ : λ ∈ [0, 1] 7→ τ(λ) = λµ + (1 − λ)ν ∈ Pp(Rd) is 1
p -Hölder continuous with

respect to the Wasserstein distance Wp. Moreover, for every λ1, λ2 ∈ [0, 1], we have

Wp

(
τ(λ1), τ(λ2)

)
≤ |λ1 − λ2|

1
pWp(µ, ν).

(b) Let δ0 denote the Dirac measure on 0 ∈ Rd. Then

sup
λ∈[0,1]

Wp

(
τ(λ), δ0

)
≤ Wp(µ, δ0) ∨Wp(ν, δ0).

Remark that Lemma 5.4 implies that the interpolator im defined by (1.13) and (1.14) is well
defined.

Proof of Lemma 5.4. Let X,Y be such that PX = µ, PY = ν and consider another random variable
U having uniform distribution on [0, 1], independent of (X,Y ). One can easily check that for all
λ ∈ [0, 1],

1{U≤λ}X + 1{U>λ}Y ∼ τ(λ).

(a) Let λ1, λ2 ∈ [0, 1]. We assume without loss of generality that λ1 < λ2. We have

W p
p

(
τ(λ1), τ(λ2)

)
≤ E

[∣∣∣1{U≤λ1}X + 1{U>λ1}Y − 1{U≤λ2}X − 1{U>λ2}Y
∣∣∣p]

= E
[∣∣∣− 1{λ1<U≤λ2}X + 1{λ1<U≤λ2}Y

∣∣∣p]
= E

[
1{λ1<U≤λ2}

∣∣X − Y ∣∣p] = P (λ1 < U ≤ λ2)E
[∣∣X − Y ∣∣p] (as U ⊥⊥ (X,Y ))

= (λ2 − λ1)E [|X − Y |p]. (5.6)
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Taking the infimum over (X,Y ) ∈ Π(µ, ν), we find

Wp

(
τ(λ1), τ(λ2)

)
≤ (λ2 − λ1)

1
pWp(µ, ν),

where Wp(µ, ν) is finite since µ, ν ∈ Pp(Rd). This concludes the proof of (a).

(b) For every fixed λ ∈ [0, 1],

W p
p

(
τ(λ), δ0

)
= E

[∣∣X1{U≤λ} + Y 1{U>λ}
∣∣p]

= E
[∣∣X1{U≤λ} + Y 1{U>λ}

∣∣p1{U≤λ}]+ E
[∣∣X1{U≤λ} + Y 1{U>λ}

∣∣p1{U>λ}]
= E

[∣∣X∣∣p1{U≤λ}]+ E
[∣∣Y ∣∣p1{U>λ}] = λE

[
|X|p

]
+ (1− λ)E

[
|Y |p

]
≤ λWp

p (µ, δ0) + (1− λ)Wp
p (ν, δ0) ≤ Wp

p (µ, δ0) ∨Wp
p (ν, δ0).

Then we can conclude since the previous inequality is true for every λ ∈ [0, 1].

Lemma 5.5 (Properties of the interpolator im). Let m ∈ {1, ...,M}.

(a) For every x0:m ∈ (Rd)m+1, ‖im(x0:m)‖sup = sup0≤k≤m |xk|.
(b) For every µ0:m ∈

(
Pp(Rd)

)m+1
, supt∈[0,T ]Wp

(
im(µ0:m)t, δ0

)
= sup0≤k≤mWp(µk, δ0).

Proof of Lemma 5.5. (a) First, it is obvious that sup0≤k≤m |xk| ≤
∥∥im(x0:m)

∥∥
sup

by the definition

of im. For every k ∈ {0, ...,m− 1}, for every t ∈ [tk, tk+1], we have∣∣im(x0:m)t
∣∣ ≤ |xk| ∨ |xk+1| ≤ sup

0≤k≤m
|xk| (5.7)

and for every t ∈ [tm, T ], we have
∣∣im(x0:m)t

∣∣ = xm ≤ sup0≤k≤m |xk|. Then we can conclude

sup0≤k≤m |xk| =
∥∥im(x0:m)

∥∥
sup

.

(b) First, it is obvious that supt∈[0,T ]Wp

(
im(µ0:m)t, δ0

)
≥ sup0≤k≤mWp(µk, δ0) by the definition of

im. For every k ∈ {0, ...,m− 1}, we have

sup
t∈[tk,tk+1]

Wp

(
im(µ0:m)t, δ0

)
≤ Wp(µk, δ0) ∨Wp(µk+1, δ0) (by Lemma 5.4-(b))

≤ sup
0≤k≤m

Wp(µk, δ0)

and
sup

t∈[tm,T ]

Wp

(
im(µ0:m)t, δ0

)
=Wp(µm, δ0) ≤ sup

0≤k≤m
Wp(µk, δ0).

Then we can conclude that supt∈[0,T ]Wp

(
im(µ0:m)t, δ0

)
= sup0≤k≤mWp(µk, δ0).

5.2. Properties of the discretization scheme

We gather here several properties of the process (X̃M
t )t≥0 from Definition 5.1.

Proposition 5.6. For all M ∈ N∗, write (X̃M
t )t∈[0,T ] for the process from Definition 5.1 with

parameter M . Then under Assumptions (I), we have

(a) For every M ∈ N∗,
∥∥ supt∈[0,T ]

∣∣X̃M
t

∣∣∥∥
p
≤ Γ

(
1 +‖X0‖p

)
with the same constant Γ from Theorem

1.1.
(b) There exists a constant κ depending on L, b, σ, ‖X0‖p , p, d, T such that for M ∈ N∗ large enough,

there holds ∥∥∥∥∥ sup
0≤m≤M−1

sup
v∈[tm,tm+1]

∣∣∣X̃M
v − X̃M

tm

∣∣∣ ∥∥∥∥∥
p

≤ κ
(
h
∣∣ ln(h)

∣∣) 1
2 .

Proposition 5.6 directly implies the following result.
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Corollary 5.7. Under Assumptions (I), we have, for a large enough time discretization number
M ∈ N∗, ∥∥∥∥ ∥∥∥X̃M − iM

(
X̃M
t0:tM

)∥∥∥
sup

∥∥∥∥
p

≤ 2κ
(
h
∣∣ ln(h)

∣∣) 1
2

and dp

(
(µ̃t)t∈[0,T ], iM

(
µ̃t0:tM

))
≤ 3κ

(
h
∣∣ ln(h)

∣∣) 1
2 . (5.8)

Proof of Corollary 5.7. Let M be fixed and large enough. We drop the superscript in X̃M for sim-
plicity. It is obvious that∥∥∥X̃ − iM(X̃t0:tM

)∥∥∥
sup

= sup
0≤m≤M−1

sup
t∈[tm,tm+1]

∣∣∣X̃t − iM
(
X̃t0:tM

)
t

∣∣∣
≤ sup

0≤m≤M−1
sup

t∈[tm,tm+1]

[∣∣∣X̃t − X̃tm

∣∣∣+
∣∣∣iM(X̃t0:tM

)
t
− X̃tm

∣∣∣]
≤ sup

0≤m≤M−1
sup

t∈[tm,tm+1]

[∣∣∣X̃t − X̃tm

∣∣∣+
∣∣∣X̃tm+1

− X̃tm

∣∣∣]
≤ 2 sup

0≤m≤M−1
sup

t∈[tm,tm+1]

∣∣∣X̃t − X̃tm

∣∣∣. (5.9)

Then we conclude by applying Proposition 5.6-(b).
Consider now random variables (Um) 0≤m≤M i.i.d. having the uniform distribution on [0,1] and

independent of the process (X̃t)t∈[0,T ]. For every m ∈ {0, ...,M − 1} and for every t ∈ [tm, tm+1],

1{Um> t−tm
h }X̃tm + 1{Um≤ t−tmh }X̃tm+1 ∼ iM (X̃t0:tM )t.

Then

dp

(
(µ̃t)t∈[0,T ], iM

(
µ̃t0:tM

))
= sup
t∈[0,T ]

Wp

(
µ̃t, iM

(
µ̃t0:tM

)
t

)
= sup

0≤m≤M−1
sup

t∈[tm,tm+1]

Wp

(
µ̃t, iM

(
µ̃t0:tM

)
t

)
≤ sup

0≤m≤M−1
sup

t∈[tm,tm+1]

∥∥∥X̃t − 1{Um> t−tm
h }X̃tm − 1{Um≤ t−tmh }X̃tm+1

∥∥∥
p

≤ sup
0≤m≤M−1

sup
t∈[tm,tm+1]

(∥∥∥(X̃t − X̃tm)1{Um> t−tm
h }

∥∥∥
p

+
∥∥∥(X̃t − X̃tm+1

)1{Um≤ t−tmh }
∥∥∥
p

)
≤ 3 sup

0≤m≤M−1
sup

t∈[tm,tm+1]

∥∥∥X̃t − X̃tm

∥∥∥
p
≤ 3κ

(
h
∣∣ ln(h)

∣∣) 1
2 , (5.10)

where the last inequality comes from Proposition 5.6-(b).

Proof of Proposition 5.6. (a) Step 1. In this first step, we prove that for every fixed M ∈ N∗∥∥∥ sup
0≤k≤M

∣∣ X̃tk

∣∣ ∥∥∥
p
< +∞ (5.11)

by induction. First, ‖X̃t0‖p = ‖X0‖p < +∞ by Assumption (I). Now assume that, for some l ≥ 0,∥∥∥ sup0≤k≤l |X̃tk |
∥∥∥
p
< +∞. It follows, using also Minkowski inequality, that∥∥∥ sup

0≤k≤l+1

∣∣X̃tk

∣∣∥∥∥
p
≤
∥∥∥ sup

0≤k≤l

∣∣X̃tk

∣∣+
(∣∣X̃tl+1

∣∣− sup
0≤k≤l

∣∣X̃tk

∣∣)
+

∥∥∥
p

≤
∥∥∥ sup

0≤k≤l

∣∣X̃tk

∣∣∥∥∥
p

+
∥∥∥(∣∣X̃tl+1

∣∣− sup
0≤k≤l

∣∣X̃tk

∣∣)
+

∥∥∥
p

≤
∥∥∥ sup

0≤k≤l

∣∣X̃tk

∣∣∥∥∥
p

+
∥∥∥(∣∣X̃tl+1

∣∣− ∣∣X̃tl

∣∣)
+

∥∥∥
p

≤
∥∥∥ sup

0≤k≤l

∣∣X̃tk

∣∣∥∥∥
p

+
∥∥∥∣∣∣ ∣∣X̃tl+1

∣∣− ∣∣X̃tl

∣∣∣∣∣ ∥∥∥
p

≤
∥∥∥ sup

0≤k≤l

∣∣X̃tk

∣∣∥∥∥
p

+
∥∥∥X̃tl+1

− X̃tl

∥∥∥
p
. (5.12)
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Moreover,∥∥∥X̃tl+1
− X̃tl

∥∥∥
p

=
∥∥∥h bl(tl, X̃t0:tl , µ̃t0:tl) +

√
hσl(tl, X̃t0:tl , µ̃t0:tl)Zl+1

∥∥∥
p

≤ h
∥∥∥b(tl, il(X̃t0:tl), il

(
µ̃t0:tl

))∥∥∥
p

+
√
h
∥∥∥ ∣∣∣∣∣∣∣∣∣σ(tl, il(X̃t0:tl), il

(
µ̃t0:tl

))∣∣∣∣∣∣∣∣∣ ∥∥∥
p

∥∥∥Zl+1

∥∥∥
p

(by the definition of bl and σl in Definition 1.3 and as Zl+1 ⊥⊥ σ(Ftl))

≤
(
h+
√
hCp,q

)∥∥∥Cb,σ,L,T(1 +
∥∥il(X̃t0:tl)

∥∥
sup

+ sup
t∈[0,T ]

Wp

(
il
(
µ̃t0:tl

)
t
, δ0
))∥∥∥

p
,

where we used Lemma 3.3, where Cp,q = ‖Zl+1‖p < +∞ is a constant depending only on p and q,
as Zl+1 ∼ N (0, Iq). We now invoke Lemma 5.5 to obtain∥∥∥X̃tl+1

− X̃tl

∥∥∥
p
≤
(
h+
√
hCp,q

)∥∥∥Cb,σ,L,T(1 + sup
0≤k≤l

∣∣X̃tk

∣∣+ sup
0≤k≤l

Wp

(
µ̃tk , δ0

))∥∥∥
p

≤ Cb,σ,L,T
(
h+
√
hCp,q

)(
1 +

∥∥∥ sup
0≤k≤l

∣∣X̃tk

∣∣ ∥∥∥
p

+ sup
0≤k≤l

∥∥X̃tk

∥∥
p

)
≤ Cb,σ,L,T

(
h+
√
hCp,q

)(
1 + 2

∥∥∥ sup
0≤k≤l

∣∣X̃tk

∣∣ ∥∥∥
p

)
< +∞ (5.13)

where we used the induction hypothesis to obtain the last inequality. Thus∥∥∥ sup
0≤k≤l+1

∣∣X̃tk

∣∣∥∥∥
p
< +∞

which concludes the proof of (5.11) by induction.

Step 2. We prove that
∥∥∥ supt∈[0,T ]

∣∣X̃t

∣∣∥∥∥
p
< +∞. First, by (5.3) we get for every t ∈ [0, T ],

∥∥∥ sup
u∈[0,t]

|X̃u|
∥∥∥
p

=
∥∥∥ sup
u∈[0,t]

∣∣∣X0 +

∫ u

0

b
(
s, i[s]

(
X̃t0:t[s]

)
, i[s]

(
µ̃t0:t[s]

) )
ds

+

∫ u

0

σ
(
s, i[s]

(
X̃t0:t[s]

)
, i[s]

(
µ̃t0:t[s]

) )
dBs

∣∣∣ ∥∥∥
p

≤ ‖X0‖p +
∥∥∥∫ t

0

∣∣∣ b(s, i[s](X̃t0:t[s]

)
, i[s]

(
µ̃t0:t[s]

) )∣∣∣ds∥∥∥
p

+
∥∥∥ sup
u∈[0,t]

∣∣∣ ∫ u

0

σ
(
s, i[s]

(
X̃t0:t[s]

)
, i[s]

(
µ̃t0:t[s]

) )
dBs

∣∣∣ ∥∥∥
p
, (5.14)

where we used Minkowski’s inequality to obtain the second inequality. The second term in (5.14)
can be upper bounded as follows: using Lemma 3.4,∥∥∥∫ t

0

∣∣∣ b(s, i[s](X̃t0:t[s]

)
, i[s]

(
µ̃t0:t[s]

) )∣∣∣ds∥∥∥
p

≤
∫ t

0

∥∥∥ b(s, i[s](X̃t0:t[s]

)
, i[s]

(
µ̃t0:t[s]

) )∥∥∥
p

ds

≤
∫ t

0

∥∥∥Cb,σ,L,T(1 +
∥∥i[s](X̃t0:t[s]

)∥∥
sup

+ sup
u∈[0,T ]

Wp

(
i[s]
(
µ̃t0:t[s]

)
u
, δ0
))∥∥∥

p
ds

=

∫ t

0

∥∥∥Cb,σ,L,T(1 + sup
0≤k≤[s]

∣∣X̃tk

∣∣+ sup
0≤k≤[s]

Wp

(
µ̃tk , δ0

))∥∥∥
p
ds

=

∫ t

0

Cb,σ,L,T

(
1 + 2

∥∥∥ sup
0≤k≤[s]

∣∣X̃tk

∣∣ ∥∥∥
p

)
ds

≤ T Cb,σ,L,T + 2Cb,σ,L,T

∫ t

0

∥∥∥ sup
0≤k≤[s]

∣∣X̃tk

∣∣ ∥∥∥
p
ds (5.15)

which is finite by (5.11). We used Lemma 3.3 to obtain the second inequality, and Lemma 5.5 to
deduce the next equality.
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Moreover, combining Lemmas 3.6 and 3.3, the third term in (5.14) can be upper bounded as
follows ∥∥∥ sup

u∈[0,t]

∣∣∣ ∫ u

0

σ
(
s, i[s]

(
X̃t0:t[s]

)
, i[s]

(
µ̃t0:t[s]

) )
dBs

∣∣∣ ∥∥∥
p

≤ CBDGd,p

{∫ t

0

∥∥∥Cb,σ,L,T(1 +
∥∥i[s](X̃t0:t[s]

)∥∥
sup

+ sup
u∈[0,T ]

Wp

(
i[s]
(
µ̃t0:t[s]

)
u
, δ0
))∥∥∥2

p
ds
} 1

2

= CBDGd,p

{∫ t

0

∥∥∥Cb,σ,L,T(1 + sup
0≤k≤[s]

∣∣X̃tk

∣∣+ sup
0≤k≤[s]

Wp

(
µ̃tk , δ0

))∥∥∥2

p
ds
} 1

2

≤
√

2T CBDGd,p Cb,σ,L,T + 2CBDGd,p Cb,σ,L,T

{∫ t

0

∥∥∥ sup
0≤k≤[s]

∣∣X̃tk

∣∣ ∥∥∥2

p
ds
} 1

2

(5.16)

which is again finite by (5.11). We used again Lemma 5.5 to get the third line. We conclude that∥∥∥ supt∈[0,T ]

∣∣X̃t

∣∣∥∥∥
p
< +∞.

Step 3. We conclude the proof of (a). Using that∥∥∥ sup
0≤k≤[s]

∣∣X̃tk

∣∣∥∥∥2

p
≤
∥∥∥ sup
u∈[0,s]

∣∣X̃u

∣∣∥∥∥2

p

by the definition of [s], see (5.2), the inequalities (5.14), (5.15) and (5.16) in the previous step imply
that for every t ∈ [0, T ]∥∥∥ sup

u∈[0,t]

|X̃u|
∥∥∥
p
≤ ‖X0‖p + T Cb,σ,L,T + 2Cb,σ,L,T

∫ t

0

∥∥∥ sup
u∈[0,s]

|X̃u|
∥∥∥
p
ds

+
√

2T CBDGd,p Cb,σ,L,T + 2CBDGd,p Cb,σ,L,T

{∫ t

0

∥∥∥ sup
u∈[0,s]

|X̃u|
∥∥∥2

p
ds
} 1

2

.

Hence, by applying Lemma 3.9 with f(t) :=
∥∥∥ sup
u∈[0,t]

|X̃u|
∥∥∥
p
, we obtain

∥∥∥ sup
u∈[0,t]

|X̃u|
∥∥∥
p
≤ Cp,d,b,σ,L,T eCp,d,b,σ,L,T t(1 + ‖X0‖p)

with the constant Cp,d,b,σ,L,T > 0 defined by (3.22). Then∥∥∥ sup
u∈[0,T ]

|X̃u|
∥∥∥
p
≤ Cp,d,b,σ,L,T eCp,d,b,σ,L,TT (1 + ‖X0‖p),

and we conclude by recognizing Γ = Cp,d,b,σ,L,T e
Cp,d,b,σ,L,TT from Theorem 1.1.

(b) By hypothesis, M is large enough so that h = T
M ≤

1
2 . We have∥∥∥∥∥ sup

0≤m≤M−1
sup

v∈[tm,tm+1]

∣∣∣X̃v − X̃tm

∣∣∣ ∥∥∥∥∥
p

≤
∥∥∥ sup

0≤m≤M−1
sup

v∈[tm,tm+1]

∣∣∣(v − tm) bm(tm, X̃t0:tm , µ̃t0:tm) + σm(tm, X̃t0:tm , µ̃t0:tm)(Bv −Btm)
∣∣∣ ∥∥∥

p

≤
∥∥∥ sup

0≤m≤M−1
sup

v∈[tm,tm+1]

[∣∣∣(v − tm) bm(tm, X̃t0:tm , µ̃t0:tm)
∣∣∣+∣∣∣σm(tm, X̃t0:tm , µ̃t0:tm)(Bv −Btm)

∣∣∣ ]∥∥∥
p

≤
∥∥∥ sup

0≤m≤M−1

[
h
∣∣∣bm(tm, X̃t0:tm , µ̃t0:tm)

∣∣∣+
∣∣∣∣∣∣∣∣∣σm(tm, X̃t0:tm , µ̃t0:tm)

∣∣∣∣∣∣∣∣∣ sup
v∈[tm,tm+1]

∣∣∣Bv −Btm∣∣∣]∥∥∥
p

≤ h
∥∥∥∥ sup

0≤m≤M−1

∣∣∣bm(tm, X̃t0:tm , µ̃t0:tm)
∣∣∣ ∥∥∥∥
p

+

∥∥∥∥∥ sup
0≤m≤M−1

[∣∣∣∣∣∣∣∣∣σm(tm, X̃t0:tm , µ̃t0:tm)
∣∣∣∣∣∣∣∣∣ sup

v∈[tm,tm+1]

∣∣∣Bv −Btm∣∣∣
]∥∥∥∥∥

p
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where we used that |tm+1 − tm| = h and Minkowski’s inequality. We now apply Lévy’s modulus
of continuity theorem, see e.g. [13, Theorem 1.1.1] to handle the Brownian component in the last
inequality: there exists M0 ≥ 0 such that for M ≥M0,∥∥∥ sup

0≤m≤M−1
sup

v∈[tm,tm+1]

∣∣∣X̃v − X̃tm

∣∣∣ ∥∥∥
p
≤ h

∥∥∥∥ sup
0≤m≤M−1

∣∣∣bm(tm, X̃t0:tm , µ̃t0:tm)
∣∣∣ ∥∥∥∥
p

+ 2
(
h
∣∣ ln(h)

∣∣) 1
2

∥∥∥∥ sup
0≤m≤M−1

∣∣∣∣∣∣∣∣∣ σm(tm, X̃t0:tm , µ̃t0:tm)
∣∣∣∣∣∣∣∣∣ ∥∥∥∥

p

.

We now treat the two terms on the right-hand-side of this inequality. First, by definition of bm,∥∥∥∥ sup
0≤m≤M−1

∣∣∣bm(tm, X̃t0:tm , µ̃t0:tm)
∣∣∣ ∥∥∥∥
p

=

∥∥∥∥ sup
0≤m≤M−1

∣∣∣b(tm, im(X̃t0:tm

)
, im
(
µ̃t0:tm

))∣∣∣ ∥∥∥∥
p

≤
∥∥∥ sup

0≤m≤M−1
Cb,σ,L,T

(
1 +

∥∥im(X̃t0:tm

)∥∥
sup

+ sup
u∈[0,T ]

Wp

(
im
(
µ̃t0:tm

)
u
, δ0

))∥∥∥
p

≤
∥∥∥∥ sup

0≤m≤M−1
Cb,σ,L,T

(
1 + sup

0≤k≤m
|X̃k|+ sup

0≤k≤m
Wp

(
µ̃tk , δ0

) )∥∥∥∥
p

≤
∥∥∥∥Cb,σ,L,T(1 + sup

0≤k≤M
|X̃k|+ sup

0≤k≤M
Wp

(
µ̃tk , δ0

) )∥∥∥∥
p

≤ Cb,σ,L,T
(

1 + 2
∥∥∥ sup

0≤k≤M
|X̃k|

∥∥∥
p

)
≤ Cb,σ,L,T

(
1 + 2 Γ(1 + ‖X0‖p)

)
< +∞, (5.17)

where we used Lemma 3.3 to obtain the first inequality, and Lemma 5.5 to get the second one. Let

C? := Cb,σ,L,T

(
1 + 2 Γ(1 + ‖X0‖p)

)
, where we recall that Γ is given in Theorem 1.1. By a similar

computation, we obtain ∥∥∥∥ sup
0≤m≤M−1

∣∣∣∣∣∣∣∣∣ σm(tm, X̃t0:tm , µ̃t0:tm)
∣∣∣∣∣∣∣∣∣ ∥∥∥∥

p

≤ C?.

Then, using that for h ∈ [0, 1
2 ], h ≤ (h| ln(h)|)

1
2 ,∥∥∥∥∥ sup

0≤m≤M−1
sup

v∈[tm,tm+1]

∣∣∣X̃v − X̃tm

∣∣∣ ∥∥∥∥∥
p

≤ 3C?
(
h
∣∣ ln(h)

∣∣) 1
2 (5.18)

and we can conclude by letting κ := 3C?.

5.3. Proof of Proposition 5.2, Theorem 1.5 and Corollary 1.6

Before turning to the proof of Proposition 5.2, we briefly prove Theorem 1.5 and Corollary 1.6, which
are two easy consequences of Proposition 5.2.

Proof of Theorem 1.5. The proof is straightforward since∥∥∥∥ sup
0≤m≤M

∣∣∣Xtm − X̃M
tm

∣∣∣∥∥∥∥
p

≤

∥∥∥∥∥ sup
t∈[0,T ]

∣∣∣Xt − X̃M
t

∣∣∣∥∥∥∥∥
p

by the definitions of
(
X̃M
tm

)
0≤m≤M and

(
X̃M
t

)
t∈[0,T ]

in Definition 1.4 and Definition 5.1.

Proof of Corollary 1.6. Corollary 5.7 implies that∥∥∥∥X̂ − X̃∥∥
sup

∥∥
p
≤ 2κ

(
h
∣∣ ln(h)

∣∣) 1
2 .

Then the result is a direct application of Theorem 1.5.
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Proof of Proposition 5.2. For every s ∈ [0, T ], we have

Xs − X̃s =

∫ s

0

[
b(u,X·∧u, µ·∧u)− b

(
u, i[u]

(
X̃t0:t[u]

)
, i[u]

(
µ̃t0:t[u]

) )]
du

+

∫ s

0

[
σ(u,X·∧u, µ·∧u)− σ

(
u, i[u]

(
X̃t0:t[u]

)
, i[u]

(
µ̃t0:t[u]

) )]
dBu,

and we set

f(t) :=

∥∥∥∥∥ sup
s∈[0,t]

∣∣∣Xs − X̃s

∣∣∣∥∥∥∥∥
p

.

It follows from Proposition 5.6-(a) that X̃ = (X̃t)t∈[0,T ] ∈ LpC([0,T ],Rd)
(Ω,F ,P). Consequently,

µ̃ ∈ Pp
(
C([0, T ],Rd)

)
and ι(µ̃) = (µ̃t)t∈[0,T ] ∈ C

(
[0, T ],Pp(Rd)

)
by applying Lemma 3.2. Hence,

f(t) =

∥∥∥∥∥ sup
s∈[0,t]

∣∣∣Xs − X̃s

∣∣∣∥∥∥∥∥
p

≤
∥∥∥∫ t

0

∣∣∣b(s,X·∧s, µ·∧s)− b(s, i[s](X̃t0:t[s]

)
, i[s]

(
µ̃t0:t[s]

) )∣∣∣ds
+ sup
s∈[0,t]

∣∣∣∣∫ s

0

[
σ(u,X·∧u, µ·∧u)− σ

(
u, i[u]

(
X̃t0:t[u]

)
, i[u]

(
µ̃t0:t[u]

) )]
dBu

∣∣∣∣ ∥∥∥
p

≤
∫ t

0

∥∥∥b(s,X·∧s, µ·∧s)− b(s, i[s](X̃t0:t[s]

)
, i[s]

(
µ̃t0:t[s]

) )∥∥∥
p

ds

+ CBDGd,p

[ ∫ t

0

∥∥∥∣∣∣∣∣∣∣∣∣σ(s,X·∧s, µ·∧s)− σ
(
u, i[u]

(
X̃t0:t[u]

)
, i[u]

(
µ̃t0:t[u]

) )∣∣∣∣∣∣∣∣∣∥∥∥2

p
ds
] 1

2

(5.19)

using Lemma 3.6. The first term in (5.19) can be upper bounded by∫ t

0

∥∥∥b(s,X·∧s, µ·∧s)− b(s, i[s](X̃t0:t[s]

)
, i[s]

(
µ̃t0:t[s]

) )∥∥∥
p

ds

≤
∫ t

0

‖b(s,X·∧s, µ·∧s)− b(s,X·∧s, µ·∧s)‖p ds

+

∫ t

0

∥∥∥b(s,X·∧s, µ·∧s)− b(s, i[s](X̃t0:t[s]

)
, i[s]

(
µ̃t0:t[s]

) )∥∥∥
p

ds. (5.20)

For the first term in (5.20), we use Assumption (II) to obtain∫ t

0

‖b(s,X·∧s, µ·∧s)− b(s,X·∧s, µ·∧s)‖p ds

≤
∫ t

0

L
∥∥∥1 + ‖X·∧s‖sup + sup

u∈[0,T ]

Wp(µu∧s, δ0)
∥∥∥
p
|s− s|γds

≤
(
LT + 2LT

∥∥ sup
t∈[0,T ]

|Xt|
∥∥
p

)
hγ

≤ hγ2LTΓ(1 + ‖X0‖p), (5.21)

where we used (1.8) to obtain the last inequality. For the second term of (5.20), we have∫ t

0

∥∥∥b(s,X·∧s, µ·∧s)− b(s, i[s](X̃t0:t[s]

)
, i[s]

(
µ̃t0:t[s]

) )∥∥∥
p

ds

≤
∫ t

0

∥∥∥ L [∥∥X·∧s − i[s](X̃t0:t[s]

)∥∥
sup

+ dp

(
(µv∧s)v∈[0,T ], i[s]

(
µ̃t0:t[s]

))]∥∥∥
p
ds

≤ L
∫ t

0

∥∥∥ ∥∥X·∧s − i[s](X̃t0:t[s]

)∥∥
sup

∥∥∥
p

ds+ L

∫ t

0

dp

(
(µv∧s)v∈[0,T ], i[s]

(
µ̃t0:t[s]

))
ds

≤ L
∫ t

0

∥∥∥ ∥∥X·∧s − X̃·∧s∥∥sup

∥∥∥
p

ds+ L

∫ t

0

∥∥∥ ∥∥X̃·∧s − i[s](X̃t0:t[s]

)∥∥
sup

∥∥∥
p

ds

+ L

∫ t

0

dp

(
(µv∧s)v∈[0,T ], (µ̃v∧s)v∈[0,T ]

)
ds+ L

∫ t

0

dp

(
(µ̃v∧s)v∈[0,T ], i[s]

(
µ̃t0:t[s]

))
ds
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and, using Corollary 5.7,∫ t

0

∥∥∥b(s,X·∧s, µ·∧s)− b(s, i[s](X̃t0:t[s]

)
, i[s]

(
µ̃t0:t[s]

) )∥∥∥
p

ds

≤ L
∫ t

0

∥∥∥ sup
v∈[0,s]

|Xv − X̃v|
∥∥∥
p

ds+2LTκ
(
h
∣∣ ln(h)

∣∣) 1
2

+L

∫ t

0

sup
v∈[0,s]

Wp(µv, µ̃v)ds+3LTκ
(
h
∣∣ ln(h)

∣∣) 1
2

≤ L
∫ t

0

f(s)ds+ LT 5κ
(
h
∣∣ ln(h)

∣∣) 1
2 + L

∫ t

0

sup
v∈[0,s]

∥∥Xv − X̃v

∥∥
p
ds

≤ 2L

∫ t

0

f(s)ds+ 5LTκ
(
h
∣∣ ln(h)

∣∣) 1
2 , (5.22)

Now we consider the second term of (5.19). It follows by applying Lemma 3.6 and norm inequalities
that

CBDGd,p

[ ∫ t

0

∥∥∥∣∣∣∣∣∣∣∣∣σ(s,X·∧s, µ·∧s)− σ
(
s, i[s]

(
X̃t0:t[u]

)
, i[s]

(
µ̃t0:t[u]

) )∣∣∣∣∣∣∣∣∣∥∥∥2

p
ds
] 1

2

≤
√

2CBDGd,p

[ ∫ t

0

∥∥∥∣∣∣∣∣∣∣∣∣σ(s,X·∧s, µ·∧s)− σ
(
s, i[s]

(
X̃t0:t[s]

)
, i[s]

(
µ̃t0:t[s]

) )∣∣∣∣∣∣∣∣∣∥∥∥2

p
ds
] 1

2

+
√

2CBDGd,p

[ ∫ t

0

∥∥∥|||σ(s,X·∧s, µ·∧s)− σ(s,X·∧s, µ·∧s)|||
∥∥∥2

p
ds
] 1

2

(5.23)

For the first term in (5.23), we use the same argument as the one giving (5.21) to get[ ∫ t

0

∥∥∥|||σ(s,X·∧s, µ·∧s)− σ(s,X·∧s, µ·∧s)|||
∥∥∥2

p
ds
] 1

2 ≤ hγ
(√

2T + 2
√
TΓ2(1 + ‖X0‖p)

)
(5.24)

for some constant Γ2 > 0 depending explicitely on κ from (1.8) and the constants of Lemma 3.4 and
Assumptions (I) and (II). The second term of (5.23) can be upper bounded as follows

√
2CBDGd,p

[ ∫ t

0

∥∥∥∣∣∣∣∣∣∣∣∣σ(s,X·∧s, µ·∧s)− σ
(
s, i[s]

(
X̃t0:t[s]

)
, i[s]

(
µ̃t0:t[s]

) )∣∣∣∣∣∣∣∣∣∥∥∥2

p
ds
] 1

2

≤
√

2CBDGd,p

[ ∫ t

0

∥∥∥L [∥∥X·∧s − i[s](X̃t0:t[s]

)∥∥
sup

+ dp

(
(µv∧s)v∈[0,T ], i[s]

(
µ̃t0:t[s]

))]∥∥∥2

p
ds
] 1

2

≤ 2LCBDGd,p

[ ∫ t

0

∥∥∥∥∥X·∧s − i[s](X̃t0:t[s]

)∥∥
sup

∥∥∥2

p
ds
] 1

2

+ 2LCBDGd,p

[ ∫ t

0

dp

(
(µv∧s)v∈[0,T ], i[s]

(
µ̃t0:t[s]

))2

ds
] 1

2

≤ 2
√

2LCBDGd,p

[ ∫ t

0

∥∥∥ ∥∥X·∧s − X̃·∧s∥∥sup

∥∥∥2

p
ds
] 1

2

+ 2
√

2LCBDGd,p

[ ∫ t

0

∥∥∥ ∥∥X̃·∧s − i[s](X̃t0:t[s]

)∥∥
sup

∥∥∥2

p
ds
] 1

2

+ 2
√

2LCBDGd,p

[ ∫ t

0

dp

(
(µv∧s)v∈[0,T ], (µ̃v∧s)v∈[0,T ]

)2

ds
] 1

2

+ 2
√

2LCBDGd,p

[ ∫ t

0

dp

(
(µ̃v∧s)v∈[0,T ], i[s]

(
µ̃t0:t[s]

))2

ds
] 1

2

≤ 4
√

2LCBDGd,p

[ ∫ t

0

f(s)2ds
] 1

2

+ 2
√

2LCBDGd,p

√
T 5κ

(
h
∣∣ ln(h)

∣∣) 1
2 (5.25)
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by a similar reasoning as the one leading to (5.22). Bringing those inequalities together, we find

f(t) ≤L 2hγ TΓ
(
1 + ‖X0‖p

)
+ 2L

∫ t

0

f(s)ds+ 5LTκ
(
h
∣∣ ln(h)

∣∣) 1
2

+ hγ
(√

2T + 2
√
T Γ2(1 + ‖X0‖p)

)
+ 4
√

2LCBDGd,p

[ ∫ t

0

f(s)2ds
] 1

2

+ 10
√

2LCBDGd,p

√
T κ
(
h
∣∣ ln(h)

∣∣) 1
2 . (5.26)

The conclusion follows by applying Lemma 3.9.

Appendix A: Proof of Section 2

A.1. Proof for Subsection 2.1

We provide in this appendix the proofs of the results from Subsection 2.1.

Proof of Proposition 2.2. We write (2.1) in the form of (1.9) and apply Theorem 1.2. Letting, for
all i ∈ {1, . . . , N}, Ṽi = (V1,i, V2,i, V3,i), the system (2.1) writes,

dṼi(t) = b
(
t, Ṽi(· ∧ t), µ̃·∧t

)
dt+ σ(t)dW̃t, t ∈ [0, T ],

where, for all t ∈ [0, T ], σ(t) = diag
(
f1(t), f2(t), f3(t)

)
, W̃ i

t = (W 1,i(t),W 2,i(t),W 3,i(t)), and, for s in
[0, T ], x = (xt)t∈[0,T ] ∈ C([0, T ],Rd), (µt)t∈[0,T ] ∈ C([0, T ],Pp(R3)), µ = (µ1, µ2, µ3), b = (b1, b2, b3)
where for all j ∈ {1, 2, 3},

bj(t, x, µ) := − (xT )j
τj

+

3∑
k=1

Dj,k

(
1 + ε

∫ t

0

ϕ(xs) ds
)∫

R3

S(xk)µt−4(dx1,dx2,dx3)

+ Ij(t).

This definition should be understood in the sense that µt−4 is replaced by δ0R3
when t ≤ 4. Note

that, in the sense of Assumption (I), the first term on the right-hand side of the definition of b is
clearly Lipschitz. Moreover, writing, for (µt)t∈[0,T ] ∈ C([0, T ],Pp(R3)), (xt)t∈[0,T ] in C([0, T ],Rd),

Hk(t, x) := Dj,k

(
1 + ε

∫ t

0

ϕ(xs)ds
)
, Lk(t, µ) =

∫
R3

S(xk)µt−δ(dx1,dx2,dx3), (A.1)

it follows from our assumptions that both Hk and Lk are bounded, and Lipschitz in the sense of
Assumption (I). Since the product of bounded Lipschitz functions is Lipschitz, it follows that b
satisfies Assumption (I). The fact that σ also checks this hypothesis follows from the assumptions
on (fj)1≤j≤3.

A.2. Proofs for Subsection 2.2

We provide in this appendix the proofs of the results from Subsection 2.2.

Proof of Proposition 2.3. Since the diffusion matrix is the identity, we only need to focus on the
drift coefficient. We recall from [39, Proof of Proposition 3.9] that there exists Cε > 0 such that for
all t ∈ [0, T ] and x, y ∈ R2,

|bε0(t, x)− bε0(t, y)|+ |Kε
t (x)−Kε

t (y)| ≤ Cε|x− y|, (A.2)

where, for t = 0, we consider the natural extension of bε0 and Kε
t , namely,

bε0(0, x) = 0 and Kε
0(x) = 0. (A.3)

Using this, one sees easily that bε0 satisfy the Lipschitz condition in the sense of Assumption (I), the
continuity in time being straightforward from its definition. The continuity in time of the second
drift term

A
(
t, x, (µs)s∈[0,T ]

)
:= χ

∫ t

0

e−λ(t−s)
[ ∫

Rd
Kε
t−s(x− y)µs(dy)

]
ds,
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is deduced from the form of Kε
t (x). We focus now on the Lipschitz condition for this term. We have,

for all t ∈ [0, T ], x1, x2 ∈ Rd and (µt)t∈[0,T ], (νt)t∈[0,T ] in C([0, T ],Pp(Rd)), by triangle inequality,∣∣∣A(t, x1, (µs)s∈[0,T ]

)
−A

(
t, x2, (νs)s∈[0,T ]

)∣∣∣
≤ χ

∣∣∣ ∫ t

0

e−λ(t−s)
[ ∫

Rd

(
Kε
t−s(x1 − y)−Kε

t−s(x2 − y)
)
µs(dy)

]∣∣∣ds
+ χ

∣∣∣ ∫ t

0

e−λ(t−s)
∫
Rd
Kε
t−s(x2 − y)

(
µs − νs

)
(dy)

∣∣∣ds
:= B1

t +B2
t ,

the last equality standing for definitions of B1
t and B2

t . Using Jensen’s inequality and (A.2), we
obtain

B1
t ≤

χ

λ
Cε|x1 − x2|(1− e−λt) ≤

χ

λ
Cε|x1 − x2|.

For the second term, we use the dual representation of the Wasserstein distance W1 (see e.g. [19],
[40, Remark 6.5]), namely, for every µ, ν ∈ P1(Rd),

W1(µ, ν) = sup
{∫

Rd
ϕdµ−

∫
Rd
ϕdν

∣∣∣ ϕ : Rd → R Lipschitz continuous (A.4)

with Lipschitz constant [ϕ]Lip ≤ 1
}

and the fact that for every µ, ν ∈ Pp(Rd), p ≥ 1, W1(µ, ν) ≤ Wp(µ, ν). This implies

B2
t ≤ χ

∫ t

0

e−λ(t−s)CεWp(µs, νs)ds ≤
χ

λ
Cε dp

(
(µs)s∈[0,T ], (νs)s∈[0,T ]

)
,

which concludes the proof that the drift coefficient satisfies Assumption (I), and the proposition
follows by applying Theorem 1.1.

Proof of Proposition 2.6. We treat the two terms of the drift separately. Again from [39, Proof of
Proposition 3.9], there exists Cε > 0 such that for all t ∈ [0, T ], x ∈ Rd,∣∣Kε

t (x)
∣∣ ≤ Cε, (A.5)

where for t = 0, we consider the same extension of Kε
t as in (A.3).

Step 1: Term involving bε0. Note that, for t ∈ [0, T ], x ∈ Rd,

bε0(t, x) = χe−λt
∫
Rd
∇c0(y) 1

t+ε
1

2π e
−
|x−y|2

2t dy.

Hence

∂tb
ε
0(t, x) = −λbε0(t, x)− χe−λt

∫
Rd
∇c0(y) 1

(t+ε)2
1

2π e
−
|x−y|2

2t dy

− χe−λt
∫
Rd
∇c0(y) 1

t+ε
|x−y|2
4πt2 e−

|x−y|2
2t dy.

From (A.5), the only singularity at t = 0 is on the last term on the right-hand side, and easily
handled by considering the change of variable y → (x − y)/

√
t from R2 to R2. Using that c0 ∈

H1(Rd) ∩W 1,∞(Rd), we deduce that for all t ≥ 0, x ∈ Rd,

|∂tbε0(t, x)| ≤ C

for some constant C > 0 independent of t.

Step 2: Term in A. With the same notations as before, we consider, for 0 ≤ u ≤ t, x ∈ Rd,
(µt)t∈[0,T ] ∈ C

(
[0, T ],Pp(Rd)

)
,

A
(
t, x, (µs)0≤s≤T

)
−A

(
u, x, (µs)0≤s≤T

)
= χ

{∫ t

u

e−λ(t−s)
∫
Rd
Kε
t−s(x− y)µs(dy)ds (A.6)

+

∫ u

0

[
e−λ(t−s)

∫
Rd
Kε
t−s(x− y)µs(dy)

− e−λ(u−s)
∫
Rd
Kε
u−s(x− y)µs(dy)

]
ds.
}
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Using (A.5) leads to ∣∣∣ ∫ t

u

e−λ(t−s)
∫
Rd
Kε
t−s(x− y)µs(dy)ds

∣∣∣ ≤ C2|t− u|

for some constant C2 > 0. For the second term on the right-hand-side of (A.6), we notice that the
function defined for t ≥ 0, x ∈ Rd

g(t, x) = e−λt x
(t+ε)2 e

−
|x|2
2t

is such that

∂tg(t, x) =
(
− λ− 2

(t+ε)

)
g(t, x)− e−λt x|x|2

2t2(t+ε)2 e
−
|x|2
2t

so that ∣∣∂tg(t, x)
∣∣ ≤ C2

hence g is Lipschitz in time. We conclude that Assumption (II) holds with γ = 1, and applying
Theorem 1.5, the result follows.
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de probabilités XLI 371–377. Springer.

[3] Bossy, M. and Talay, D. (1997). A stochastic particle method for the McKean-Vlasov and
the Burgers equation. Math. Comp. 66 157–192. MR1370849

[4] Bouleau, N. (1988). Processus stochastiques et applications. Hermann Paris.
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