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Path-dependent McKean-Vlasov equation: strong well-posedness

and convergence of an interpolated Euler scheme

Armand Bernou ∗ Yating Liu †

7th November, 2022

Abstract

We consider the path-dependent McKean-Vlasov equation, in which both the drift and the

diffusion coefficients are allowed to depend on the whole trajectory of the process up to the

current time t, and depend on the corresponding marginal distributions. We prove the strong

well-posedness of the equation in the Lp setting, p ≥ 2, locally in time. Then, we introduce

an interpolated Euler scheme, a key object to simulate numerically the process, and we prove

the convergence of this scheme towards the strong solution in the Lp norm. Our result is

quantitative and provides an explicit rate. As applications we give results for two mean-field

equations arising in biology and neuroscience.

Keywords: path-dependent McKean-Vlasov equation, interpolated Euler scheme, well-posedness

of non-linear SDEs, convergence rate of numerical scheme.

1 Introduction

In this paper, we consider the path-dependent McKean-Vlasov equation in R
d of the form

{
dXt = b(t,X·∧t, µ·∧t)dt+ σ(t,X·∧t, µ·∧t)dBt,

X0 : (Ω,F ,P) →
(
R
d,B(Rd)

)
random variable

(1.1)

where the terms X·∧t and µ·∧t in the coefficients b and σ keep track of the whole trajectory of X·
and its marginal distribution µ· between 0 and t > 0 (see below (1.2) and (1.3) for the precise

definitions) and (Bt)t≥0 is an R
q-valued Brownian motion independent of X0.

The equation (1.1) can be seen as the generalization of the classical McKean-Vlasov equation

dXt = b(t,Xt, µt)dt + σ(t,Xt, µt)dBt, first introduced by McKean in [McK67] as a stochastic

model naturally associated to a class of non-linear PDEs. See also [Szn91] for a systematic

presentation of the McKean-Vlasov equation.

Originally used for the study of plasma physics, the McKean-Vlasov equation has since then

been popularized for applications in opinion dynamics [HK02], finance (for instance through the

rank-based model, see [KF09] and the references therein) and neurosciences [CCP11, CPSS15,

DIRT15]. It also plays a key role in the theory of mean-field games, with applications in biological

models on animal competition, road traffic engineering and dynamic economic models, see Huang-

Malhamé-Caines [CHM06] and the references within.
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The path-dependent version (1.1) studied in this paper is the underlying dynamics in models

of optimal control investigated (mainly for financial applications) by Cosso et al. [CGK+20].

These path-dependent McKean-Vlasov dynamics also appear in the recent work of Tomašević

on the 2d parabolic-parabolic Keller-Segel equation [Tom21, Equation (1.2)] and in models of

cortical signals, such as the Jansen-Rit model [JR95, FTC09]. In this paper, our first focus is

on deriving a proof of existence and uniqueness for the strong solution of (1.1) with finite Lp

norm. In a second part, we focus on an interpolated Euler scheme, a key tool that gives a clear

road-map for the numerical simulation of (1.1). We prove its convergence towards the unique

strong solution, and derive the rate of this convergence in Lp.

1.1 Model

We place ourselves in a filtered probability space (Ω,F , (Ft)t≥0,P) satisfying the usual con-

dition. Let T > 0 be fixed. For p ≥ 1, we write Pp(R
d) for the set of probability distributions

on R
d admitting a finite moment of order p, C([0, T ], E) for the set of continuous maps from

[0, T ] to some topological space E. Write B(Rd) for the Borel σ-algebra of Rd. We introduce the

definitions of X·∧t, µ·∧t and give more precision on the form of our drift and diffusion coefficients

in (1.1). Let α = (αt)t∈[0,T ] ∈ C
(
[0, T ],Rd

)
and let (νt)t∈[0,T ] ∈ C

(
[0, T ],Pp(R

d)
)
. For a fixed

t0 ∈ [0, T ], we define α·∧t0 = (αt∧t0)t∈[0,T ] by

αt∧t0 :=

{
αt if t ∈ [0, t0],

αt0 if t ∈ (t0, T ].
(1.2)

Then it is obvious that α·∧t0 ∈ C
(
[0, T ],Rd

)
. Similarly, we define ν·∧t0 = (νt∧t0)t∈[0,T ] by

νt∧t0 :=

{
νt if t ∈ [0, t0],

νt0 if t ∈ (t0, T ],
(1.3)

and it is straightforward to see that ν·∧t0 ∈ C
(
[0, T ],Pp(R

d)
)
.

Let Md,q(R) denote the space of matrices of size d× q, equipped with the operator norm |||·|||.
Our path-dependent McKean-Vlasov equation writes

Xt = X0 +

∫ t

0
b(s,X·∧s, µ·∧s)ds+

∫ t

0
σ(s,X·∧s, µ·∧s)dBs (1.4)

where

- X0 : (Ω,F ,P) →
(
R
d,B(Rd)

)
is a random vector in Lp(P),

- b : [0, T ]× C
(
[0, T ],Rd

)
× C

(
[0, T ],Pp(R

d)
)
→ R

d,

- σ : [0, T ]× C
(
[0, T ],Rd

)
× C

(
[0, T ],Pp(R

d)
)
→ Md,q(R),

- (Bt)t∈[0,T ] is an (Ft)-standard Brownian motion valued in R
q, independent of X0.

- µ·∧t denotes the marginal distributions of the process X·∧t, that is, for every s ∈ [0, T ],

µs∧t = P ◦X−1
s∧t.

Our goal is to prove the well-posedness of the path-dependent McKean-Vlasov equation (1.4)

and to prove the convergence of an interpolated Euler scheme defined further in (1.12), with a

quantitative estimate for the convergence rate. The interpolated Euler scheme presented here is
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of strong importance, as it gives a road-map to simulate the equation. Our estimate quantifies

the corresponding error, which is also key in practice and will be the starting point of a future

work devoted to the implementable particle method for the numerical simulation. This line of

reasoning is inspired by the numerical analysis for the classical McKean-Vlasov equation (see e.g.

[BT97, Equation (2.3)], [Liu19, Section 7.1], [AKH02, Section 3] and [HL22]). Besides, the Euler

scheme also plays a major role in the study of the convex order (see e.g. [LP20] and [LP22] for

the classical McKean-Vlasov equation) which we also plan to study in a forthcoming work.

1.2 Assumptions and main results

We shall work with two sets of assumptions, both depending on an index p ≥ 2. The first one

is required to derive our proof of strong well-posedness in Lp spaces. The second one is needed to

obtain the convergence of our interpolated Euler scheme. Remark that the time horizon T > 0 is

fixed. We recall the definition of the Wasserstein distance Wp on Pp(R
d):

Wp(µ, ν) := inf
π∈Π(µ,ν)

(∫

Rd×Rd

|x− y|pπ(dx, dy)
) 1
p

(1.5)

= inf
{
E
[
|X − Y |p

]1
p , X, Y : (Ω,F ,P) → (Rd,B(Rd))with P ◦X−1 = µ, P ◦ Y −1 = ν

}

where Π(µ, ν) denotes the set of probability measures on (Rd × R
d,B(Rd)⊗2) with marginals µ

and ν.

Assumption (I). There exists p ≥ 2 such that

1. X0 ∈ Lp(P).

2. The coefficient functions b, σ are continuous in t and Lipschitz continuous in α and in

(µt)t∈[0,T ] with respect to the sup norm ‖ · ‖sup and the Wasserstein distance Wp uniformly

in t, i.e. there exists L > 0 s.t.

∀ t ∈ [0, T ], ∀α, β ∈ C
(
[0, T ],Rd

)
and ∀ (µt)t∈[0,T ], (νt)t∈[0,T ] ∈ C

(
[0, T ],Pp(R

d)
)
,

∣∣∣b(t, α, (µt)t∈[0,T ])− b(t, β, (νt)t∈[0,T ])
∣∣∣ ≤ L

[
‖α− β‖sup + dp

(
(µt)t∈[0,T ], (νt)t∈[0,T ]

)]
, (1.6)

∣∣∣∣∣∣σ(t, α, (µt)t∈[0,T ])− σ(t, β, (νt)t∈[0,T ])
∣∣∣∣∣∣ ≤ L

[
‖α− β‖sup + dp

(
(µt)t∈[0,T ], (νt)t∈[0,T ]

)]
,

where dp is defined by

dp
(
(µt)t∈[0,T ], (νt)t∈[0,T ]

)
:= sup

t∈[0,T ]
Wp(µt, νt). (1.7)

Theorem 1. Under Assumption (I), there exists a unique strong solution X = (Xt)t∈[0,T ] from

(Ω,F ,P) to
(
C
(
[0, T ],Rd

)
, ‖ · ‖sup

)
of the path-dependent McKean-Vlasov equation (1.4). More-

over, there exists a constant Γ > 0 depending only on b, σ, L, T, d, p such that

∥∥∥ sup
t∈[0,T ]

|Xt|
∥∥∥
p
≤ Γ

(
1 + ‖X0‖p

)
. (1.8)

We then turn to the quantitative result regarding the convergence of our interpolated Euler

scheme. In the following definition, M ∈ N
∗ should be thought as the temporal discretization

number, while h := T
M is the time step. We propose an interpolated Euler scheme, in which

we only need to consider a discrete sequence of random variables and a discrete sequence of
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probability measures as the inputs of each step. To simplify the notation, we will denote by x0:m :=

(x0, ..., xm), µ0:m := (µ0, ..., µm). Our discretization scheme uses the following interpolator.

Definition 2 (Interpolator). (a) For every m = 1, . . . ,M , we define a piecewise affine interpo-

lator im on m+ 1 points in R
d by

x0:m ∈ (Rd)m+1 7−→ im(x0:m) = (x̄t)t∈[0,T ] ∈ C
(
[0, T ],Rd

)
, (1.9)

where for every t ∈ [0, T ], x̄t is defined by

∀ k = 0, ...,m − 1, ∀ t ∈ [tk, tk+1), x̄t =
1

h
(tk+1 − t)xk +

1

h
(t− tk)xk+1,

∀ t ∈ [tm, T ], x̄t = xm.

By convention, we define, for every t ∈ [0, T ], i0(x0)t := x0.

(b) Let p ≥ 1. For every m = 1, ...,M , we define a piecewise affine interpolator for m + 1

probability measures in Pp(R
d), still denoted by im with a slight abuse of notation, by

µ0:m ∈ (Pp(R
d))m+1 7−→ im(µ0:m) = (µ̄t)t∈[0,T ] ∈ C

(
[0, T ],Pp(R

d)
)
, (1.10)

where for every t ∈ [0, T ], µ̄t is defined by

∀ k = 0, ...,m − 1, ∀ t ∈ [tk, tk+1), µ̄t =
1

h
(tk+1 − t)µk +

1

h
(t− tk)µk+1,

∀ t ∈ [tm, T ], µ̄t = µm. (1.11)

By convention, we define, for every t ∈ [0, T ], i0(µ0)t := µ0.

With this at hand, we define our interpolated Euler scheme in which we use the short-hand

notation Yt0:tm (respectively, νt0:tm) to denote (Yt0 , . . . , Ytm) (resp. (νt0 , . . . , νtm)).

Definition 3. Let M ∈ N
∗, h = T

M . For every m = 0, ...,M , we set tm = mh. Given a Brownian

motion (Bt)t∈[0,T ] and X0, the discretization scheme (‹XM
tm)0≤m≤M of the path-dependent McKean-

Vlasov equation (1.4) is defined as follows :

1. ‹XM
0 = X0;

2. for all m ∈ {0, . . . ,M − 1},

‹XM
tm+1

= ‹XM
tm + h bm(tm, ‹XM

t0:tm , µ̃
M
t0:tm) +

√
hσm(tm, ‹XM

t0:tm, µ̃
M
t0:tm)Zm+1, (1.12)

where, for all k ∈ {0, . . . ,M}, µ̃Mtk is the probability distribution of ‹XM
tk
, where, for m = 0, ...,M−

1, Zm+1 =
1√
h
(Btm+1 −Btm), and where the applications

bm : [0, T ] × (Rd)m+1 ×
(
Pp(R

d)
)m+1 −→ R

d,

σm : [0, T ] × (Rd)m+1 ×
(
Pp(R

d)
)m+1 −→ Md,q(R)

are defined as follows

∀ t ∈ [0, T ], x0:m ∈ (Rd)m+1, µ0:m ∈
(
Pp(R

d)
)m+1

bm(t, x0:m, µ0:m) := b
(
t, im(x0:m), im(µ0:m)

)
, σm(t, x0:m, µ0:m) := σ

(
t, im(x0:m), im(µ0:m)

)
. (1.13)
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The notations bm and σm can often discretize computations from a numerical point of view.

For instance, if

b
(
t, (Xs)s∈[0,T ], (µs)s∈[0,T ]

)
:=

∫ t

0
E [φ(Xs)]ds

with a bounded function φ, then

bm(tm, ‹XM
t0:tm , µ̃

M
t0:tm) =

h

2

(
E [φ(‹XM

t0 )] + E [φ(‹XM
tm)]

)
+ h

m−1∑

k=1

E [φ(‹XM
tk
)].

In order to prove the convergence of the interpolated Euler scheme (1.12) to the unique strong

solution of (1.4), we will first assume Assumption (I), guaranteeing the uniqueness of the latter,

but also some additional regularity on the coefficients.

Assumption (II). The coefficient functions b, σ are γ-Hölder in t, 0 < γ ≤ 1, uniformly in α

and in (µt)t∈[0,T ], i.e. there exists L > 0 s.t.

∀ t, s ∈ [0, T ], ∀α ∈ C
(
[0, T ],Rd

)
and ∀(µt)t∈[0,T ] ∈ C

(
[0, T ],Pp(R

d)
)
,

∣∣∣b(t, α, (µt)t∈[0,T ])− b(s, α, (µt)t∈[0,T ])
∣∣∣ ∨

∣∣∣∣∣∣σ(t, α, (µt)t∈[0,T ])− σ(s, α, (µt)t∈[0,T ])
∣∣∣∣∣∣

≤ L
(
1 + ‖α‖sup + sup

t∈[0,T ]
Wp(µt, δ0)

)
|t− s|γ , (1.14)

where δ0 is the Dirac measure at 0.

With this at hand, we state our second main result, that regards the discretization scheme.

Theorem 4 (Convergence rate of the interpolated Euler Scheme). Under Assumptions (I) and

(II), for (Bt)t∈[0,T ] an R
q-valued Brownian motion, for (Xt)t∈[0,T ] the unique strong solution to

(1.4) given by Theorem 1, for (‹XM
tm)0≤m≤M the Euler scheme from Definition 3 with parameter

M large enough, for h = T
M , one has,

∥∥∥∥∥ sup
0≤m≤M

∣∣∣Xtm − ‹XM
tm

∣∣∣
∥∥∥∥∥
p

≤ C̃
(
hγ +

(
h| ln(h)

∣∣)12
)
, (1.15)

where C̃ > 0 is a constant depending on L, p, d, ‖X0‖p , T and γ.

From Definition 3, we can define a continuous version of (‹XM
tm)0≤m≤M , denoted by “XM =

(“XM
t )t∈[0,T ] and defined by “XM := iM (‹XM

t0:tM ). Then we have the following convergence.

Corollary 5. Under Assumptions (I) and (II), for M large enough, one has

∥∥∥∥∥ sup
t∈[0,T ]

∣∣∣Xt − “XM
t

∣∣∣
∥∥∥∥∥
p

≤ C̃
(
hγ +

(
h| ln(h)

∣∣)12
)
, (1.16)

where C̃ > 0 is a constant depending on L, p, d, ‖X0‖p , T and γ.

Remark 6. Theorems 1 and 4 in this paper can be generalized to the following equation having

both path-dependent and marginal part in the coefficient functions

dXt = b
(
t,Xt, µt,X·∧t, µ·∧t

)
dt+ σ

(
t,Xt, µt,X·∧t, µ·∧t

)
dBt, (1.17)

when

b : [0, T ]× R
d × Pp(R

d)× C
(
[0, T ],Rd

)
× C

(
[0, T ],Pp(R

d)
)
→ R

d and
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σ : [0, T ] × R
d × Pp(R

d)× C
(
[0, T ],Rd

)
× C

(
[0, T ],Pp(R

d)
)
→ Md,q(R)

satisfy some adapted conditions. More precisely, for the well-posedness result, we require that

for some p ≥ 2,

1. X0 ∈ Lp(P).

2. The coefficient functions b, σ are continuous in t and Lipschitz continuous in the parameters

(x, ν, α, (µt)t∈[0,T ]) in the following sense: there exists L > 0 s.t.

∀ t ∈ [0, T ], ∀x, x′ ∈ R
d, ∀ ν, ν ′ ∈ Pp(R

d),

∀α,α′ ∈ C
(
[0, T ],Rd

)
and ∀ (µt)t∈[0,T ], (µ

′
t)t∈[0,T ] ∈ C

(
[0, T ],Pp(R

d)
)
,

∣∣∣b(t, x, ν, α, (µt)t∈[0,T ])− b(t, x′, ν ′, α′, (µ′t)t∈[0,T ])
∣∣∣

≤ L
[
|x− x′|+Wp(ν, ν

′) + ‖α− α′‖sup + dp
(
(µt)t∈[0,T ], (µ

′
t)t∈[0,T ]

)]
,

∣∣∣∣∣∣σ(t, x, ν, α, (µt)t∈[0,T ])− σ(t, x′, ν ′, α′, (ν ′t)t∈[0,T ])
∣∣∣∣∣∣

≤ L
[
|x− x′|+Wp(ν, ν

′) + ‖α− α′‖sup + dp
(
(µt)t∈[0,T ], (µ

′
t)t∈[0,T ]

)]
.

To extend Theorem 4 to this larger setting for the following interpolated Euler scheme with the

same time discretization as in Definition 3

‹XM
t0 = X0,

‹XM
tm+1

= ‹XM
tm + h b

(
tm, ‹XM

tm , µ̃
M
tm , im(‹XM

t0:tm), im(µ̃Mt0:tm)
)

+
√
hσ

(
tm, ‹XM

tm , µ̃
M
tm , im(‹XM

t0:tm), im(µ̃Mt0:tm)
)
Zm+1, (1.18)

we require in addition the following Hölder continuity assumption: the coefficient functions b, σ

are γ-Hölder in t, 0 < γ ≤ 1, uniformly in x, α, ν and (µt)t∈[0,T ], i.e. there exists L > 0 s.t.

∀ t, s ∈ [0, T ], ∀x ∈ R
d, ∀ ν ∈ Pp(R

d), ∀α ∈ C
(
[0, T ],Rd

)
and ∀(µt)t∈[0,T ] ∈ C

(
[0, T ],Pp(R

d)
)
,

∣∣∣b(t, x, ν, α, (µt)t∈[0,T ])− b(s, x, ν, α, (µt)t∈[0,T ])
∣∣∣

≤ L
(
1 + |x|+Wp(ν, δ0) + ‖α‖sup + sup

t∈[0,T ]
Wp(µt, δ0)

)
|t− s|γ ,

∣∣∣∣∣∣σ(t, x, ν, α, (µt)t∈[0,T ])− σ(s, x, ν, α, (µt)t∈[0,T ])
∣∣∣∣∣∣

≤ L
(
1 + |x|+Wp(ν, δ0) + ‖α‖sup + sup

t∈[0,T ]
Wp(µt, δ0)

)
|t− s|γ .

This extension is particularly useful in the case where the equation investigated is of the form

dXt = b(t,Xt, µ·∧t)dt+ σ(t,Xt, µ·∧t)dBt or dXt = b(t,X·∧t, µt)dt+ σ(t,X·∧t, µt)dBt

in which case the corresponding assumptions are weaker than Assumptions (I) and (II).

1.3 Strategy and plan of the paper

The strategy to establish the well-posedness (Section 3) is largely inspired from Bouleau

[Bou88], see also [Liu19, Chapter 5] where the second author derived similar results for the

classical McKean-Vlasov equation (without path-dependency), and Lacker [Lac18]. While the

norms used in this method are more involved than in earlier works, the main idea of the proof
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is reminiscent of the one of Sznitman [Szn91] based on earlier work by Dobrushin [Dob70]. By

considering appropriate trajectorial spaces, and by introducing norms depending on well-chosen

parameters, we are able to perform a classical fixed-point argument. We introduce first the space

Hp,C,T :=
{
Y ∈ Lp

C([0,T ],Rd)
(Ω,F , (Ft)t∈[0,T ],P) s.t. Y is (Ft)t∈[0,T ] − adapted.

}
,

that we endow with a suitable norm ‖ · ‖p,C,T with parameter C > 0, so that ‖Y ‖p,C,T → 0

when C → ∞ for all Y ∈ Hp,C,T . Then, we identify every probability measure on C([0, T ],Rd)

admitting p moments with a continuous map from [0, T ] to Pp(R
d). The main argument is then

to endow the Banach product space Hp,C,T × C([0, T ],Pp(R
d)) with a suitable distance, denoted

dH×P and to show that, roughly, the map

ΦC : Hp,C,T × C([0, T ],Pp(R
d)) → Hp,C,T × C([0, T ],Pp(R

d)) (1.19)

(Y, (νt)t∈[0,T ]) 7→
((
X0 +

∫ t

0
b(s, Y·∧s, ν·∧s)ds +

∫ t

0
σ(s, Y·∧s, ν·∧s)dBs

)
t∈[0,T ]

︸ ︷︷ ︸
=:Φ

(1)
C

(
Y,(νt)t∈[0,T ]

)
, ι
(
P
Φ

(1)
C

(Y,(νt)t∈[0,T ])

))

is Lipschitz continuous, with a Lipschitz constant strictly smaller than one for C large enough,

turning ΦC into a contraction mapping. Here ι
(
P
Φ

(1)
C

(Y,(νt)t∈[0,T ])

)
in (1.19) denotes the marginal

distributions of Φ
(1)
C

(
Y, (νt)t∈[0,T ]

)
. This allows to perform a fixed-point argument to obtain the

well-posedness of (1.4).

Section 4 is devoted to the study of the convergence of the interpolated Euler scheme. We

start by giving the definition of the theoretical continuous extension (‹Xt)t∈[0,T ] of (‹Xtm)0≤m≤M

in (1.12). The objective of Section 4 is to prove the convergence of ‹X = (‹Xt)t∈[0,T ] to the

unique solution X in Lp-norm, which directly implies Theorem 4. To do this, we first study the

properties of the interpolator im and link the uniform norm of the interpolated process and the

interpolated marginal distributions with the underlying collection of points. In a second part,

we prove that the sup norm of (‹Xt)t∈[0,T ] is bounded in Lp and study the Lp-norm of a specific

modulus of continuity of (‹Xt)t∈[0,T ] adapted to our temporal discretization. The proof relies on a

combination of functional inequalities with Lévy’s modulus of continuity theorem for the control

of the diffusive component. The use of the latter is the key point limiting our rate of convergence

in the final result. Finally, we obtain Theorem 4 and Corollary 5 by combining the properties

of the interpolated Euler scheme and its continuous extension with our assumptions on the drift

and diffusion coefficients.

1.4 Notations

We place ourselves in a filtered probability space (Ω,F , (Ft)t≥0,P) satisfying the usual con-

dition. The law of any random variable X is denoted by PX = P ◦ X−1. Sometimes we write

X ∼ µ to indicate that X has distribution µ. In the whole paper, (Bt)t∈[0,T ] denotes a (Ft)t∈[0,T ]

Brownian motion valued in R
q, q ∈ N

∗. We denote by N (0, Iq) the R
q standard normal distribu-

tion, where Iq is the q× q identity matrix. The Lp norm is denoted ‖ · ‖p for p ∈ (0,∞]. We write

| · | for the Euclidean norm on R
d, δx for the Dirac measure at x, |||·||| for the operator norm on

Md,q(R), the space of matrices of dimensions (d, q). We recall that, for A ∈ Md,q(R),

|||A||| := sup
z∈Rq,|z|≤1

∣∣Az
∣∣.
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We write (E, ‖ · ‖E) for the Banach space E endowed with the norm ‖ · ‖E . Let P(E) denote

the set of probability distributions on E, while Pp(E) denotes the set of probability distributions

with p-th finite moment. We write supp(µ) for the support of a probability distribution µ. The

Wasserstein distance on Pp(R
d) is denoted by Wp, defined by (1.5). We shall use repeatedly the

space of Rd-valued continuous applications, denoted C([0, T ],Rd), that is,

C
(
[0, T ],Rd

)
:=

{
α = (αt)t∈[0,T ] such that t ∈ [0, T ] 7→ αt is continuous

}
.

We endow this space with the supremum norm ‖α‖sup = supt∈[0,T ] |αt|. The projection πt :

C([0, T ],Rd) → R
d is defined by πt(α) = αt for all (αt)t∈[0,T ] ∈ C([0, T ],Rd).

A handful of further spaces will be introduce throughout the text, that we gather here for

clarity. The space Lp
C([0,T ],Rd)

(Ω,F ,P) is the Lp-space of random variables defined on (Ω,F ,P)
with values in C([0, T ],Rd). We endow this space with the norm ‖ · ‖p,C,T defined in (3.1). We

further consider the space Hp,C,T of (Ft)t≥0-adapted processes in Lp
C([0,T ],Rd)

(Ω,F ,P), and the

space Pp(C([0, T ],Rd)) of probability distributions µ on C([0, T ],Rd) such that

∫

C([0,T ],Rd)
‖ξ‖psup µ(dξ) <∞.

The Wasserstein distance on Pp(C([0, T ],Rd)) is denoted Wp, see (3.4). For any two probability

distributions µ, ν, the set of all probability distributions with marginals µ and ν is denoted

Π(µ, ν). We also introduce C
(
[0, T ],Pp(R

d)
)
the space of probability distributions (µt)t∈[0,T ] such

that t ∈ [0, T ] 7→ µt ∈ Pp(R
d) is continuous with respect to the distance Wp (see (1.5)). We

endow this space with the distance

dp

(
(µt)t∈[0,T ], (νt)t∈[0,T ]

)
:= sup

t∈[0,T ]
Wp(µt, νt).

We also use the distance dH×P defined on Hp,C,T × C
(
[0, T ],Pp(R

d)
)
in (3.12). At last, the

application ι is key to the fixed-point argument performed in Section 3, and sends elements from

Pp(C([0, T ],Rd)) to C
(
[0, T ],Pp(R

d)
)
by ι(µ) = (µt)t∈[0,T ], see Lemma 11.

2 Applications

2.1 The mean-field Jansen-Rit model for multi-population neural networks

We consider the mean-field equations arising from Jansen and Rit’s model [JR95], in the

form of the equations given by Faugeras-Touboul-Cessac [FTC09]. This model includes three

different neurons population and is used to get a deeper understanding of cortical signals, more

specifically of the emergence of oscillations in the electrical activity of the brain registered by

an electroencephalogram after a stimulation of a sensory pathway. The three populations are

organised as follows: the pyramidal population, thereafter numbered 1, the excitatory feedback

population, indexed by 2, and the inhibitory interneuron population, indexed by 3. More details

on the model can be find in [FTC09], see in particular Figure 2 for a graphical representation.

At the level of the particle system, given a number Nj ∈ N
∗ of neurons in population j, the

equations for the potential of the neuron i in population j takes the following form

Vj,i(t) = Vj,i(0) +

∫ t

0
gj(t− s)

( 3∑

k=1

Nk∑

ℓ=1

J̄j,kS
(
Vk,ℓ(s)

)
+ Ij(s)

)
ds+

∫ t

0
fj(s)dW

j,i
s , (2.1)
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where, for t > 0, gj(t) = Kje
− t
τj represents the so-called g-shape of the postsynaptic potentials

of population j, ensuring a modulation of the exchanges with time, while Jk,j is the strength of

the potsynaptic potentials elicited by neurons from population j on neurons of population k. We

assume that

K1 = K2 > 0, K3 > 0, τ1 = τ2 > 0, τ3 > 0, J̄i,j =
Ji,j
Nj

with

J =

Ñ
0 J1,2 J1,3
J2,1 0 0

J3,1 0 0

é

where J1,2, J1,3, J2,1 and J3,1 are non-zero constants.

The functions Ij , fj from R+ to R are assumed to be Lipschitz. Finally, the Brownian motions

(W i,j
t )t≥0 for {(i, j) : i ∈ {1, 2, 3}, j ∈ {1, . . . , Ni}} are assumed to be mutually independent, and

the function S is given on R by

S(v) =
vm

1 + er(v0−v)
,

with r > 0 and 0 < v0 < vm.

As the number of particles in each population grows to infinity, it is natural to expect the

system to be described by the following system of three McKean-Vlasov equations. Write µjt for

the distribution of the potential of population j ∈ {1, 2, 3} at time t > 0. The mean-field limit of

(2.1) is given by the system

V̄j(t)= V̄j(0)+

∫ t

0
gj(t− s)

3∑

k=1

∫

R

Jj,kS(x)µ
k
s(dx) ds+

∫ t

0
gj(t− s)Ij(s)ds+

∫ t

0
fj(s)dW

j
s , (2.2)

where (W 1,W 2,W 3) are three independent Brownian motions.

One can see clearly from the assumptions made on (2.1) that (2.2) fits our framework:

Proposition 7. Under the previous hypotheses on gj , J , S, Ij and fj, j ∈ {1, 2, 3} the system

(2.2) satisfies Assumptions (I) and (II).

This provides an additional proof of well-posedness on finite time [0, T ] for any T > 0 for

the model with V̄j(0) = 0 for all j ∈ {1, 2, 3} as treated in [FTC09]. In addition, Proposition 7

induces a moment propagation result, in the sense that if V̄j(0) ∈ Lp, p ≥ 2 for j ∈ {1, 2, 3}, then
V̄j(t) ∈ Lp at all time t ∈ [0, T ].

While the numerics of the limiting equation are investigated in [FTC09], the fact that (2.2)

satisfies Assumption (II) provides a different path towards the simulation of the corresponding

dynamics. In particular our interpolated Euler scheme is a first step towards the numerical

investigation not only of the limiting equation, but also of the particle system and its convergence.

For models of neuron masses, one key aspect is the understanding of the steady states and of

their dependency with regards to the parameters of the system. As the parameters values change,

different qualitative behaviors might appear, thus a bifurcation analysis must be conducted to

get a clear picture of the possible outcomes. A numerical study of (2.2) and of the corresponding

particle system could shed a new light on this matter: the non-Markovian property of the limiting

equation could lead to new behaviors compared to classical model for neuron masses, see Faugeras

[FTC09].
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2.2 A regularized equation for the 2-dimensional parabolic-parabolic Keller-

Segel model

In [Tom21], Tomašević provides a stochastic interpretation, based on earlier work of Talay-

Tomašević [TT20], of the parabolic-parabolic Keller-Segel model via a stochastic representation

which falls into the framework of (1.17). In particular, the drift of the corresponding process

depends on the past of its law. The Keller-Segel equation describes the time evolution of the

density ρt of a cell population, and of the concentration ct of a chemical attractant. The term

parabolic-parabolic refers to the fact that the chemical attractant itself is not constant in time,

as opposed to alternative Keller-Segel models which involve time-dependency solely for the cell

population. We refer to Horstmann [Hor03, Hor04] for a review of the standard Keller-Segel

model and its variations.

In the study of the stochastic representation, Tomašević introduced a regularized problem,

[Tom21, Equation (3.6)] on which we will focus. Let T > 0 be fixed. The equation, set in

[0, T ]× R
2, takes the following form

{
dXǫ

t = bǫ0(t,X
ǫ
t ) + χ

∫ t
0

[
e−λ(t−s)

(
Kǫ

t−s ∗ µǫs
)
(Xǫ

t )ds
]
dt+ dWt,

µǫs = PXǫ
s
,

(2.3)

where ǫ > 0 is the regularization parameter, λ, χ are positive constants, and

bǫ0(t, x) := χe−λt(∇c0 ∗ gǫt)(x), gǫt(x) :=
1

2π(t+ ǫ)
e−

|x|2
2t , Kǫ

t (x) := − x

2π(t+ ǫ)2
e−

|x|2
2t ,

where c0 belongs to H1(R2), the usual Sobolev space.

The equation (2.3) is key to the argument in [Tom21] because drift and density estimates can

be obtained for the regularized process, those being uniform in the regularization parameter ǫ

when a condition on the size of χ is fulfilled.

A proof of well-posedness in L1(Rd) for the problem (2.3) is provided in [Tom21, Theorem

A.1] with the initial condition that X0 is an F0-measurable random variable, where (Ft)t≥0 is

the filtration associated to the Brownian motion (Wt)t≥0. A straightforward application of our

result gives a similar well-posedness in the Lp framework for p ≥ 2, implying also propagation of

moments in finite time.

Proposition 8. Let p ≥ 2. Assume that T > 0 and X0 ∈ Lp. Then there exists a unique process

(Xt)t≥0 solving (2.3) continuous in time such that ‖ sups∈[0,T ] |Xs|‖p <∞.

The proof of Proposition 8, as well as the following Proposition 9, is postponed to Appendix A.

We now turn to the issue of simulating the Keller-Segel parabolic-parabolic equation in dimension

2. As noticed in [Tom21], the existence of the particle system corresponding to the nonregularized

particle system and its propagation of chaos is a difficult problem, tackled with the introduction

of a Markovian (enriched) particle system in [FT22]. This gives a first approach to the simulation

of the problem via the particle system.

As a first step towards a different approach, based on a direct Euler scheme for a non-

markovian particle system associated to the regularized path-dependent equation thanks to the

process from Definition 3, we prove that the interpolated Euler scheme corresponding to (2.3)

converges, in Lp norm, to the desired solution, in the case where c0 also belongs to W 1,∞(Rd).

Proposition 9. Assume that c0 ∈ H1(Rd) ∩ W 1,∞(Rd). Let (Xt)t∈[0,T ] be the unique strong

solution to (2.3) given by Proposition 8. Let (‹XM
tm)0≤m≤M be the interpolated Euler scheme

defined by (1.18). Then, for M large enough, for some C̃ > 0 independent of M , for h = T
M , we

10



have
∥∥∥∥∥ sup
0≤m≤M

∣∣∣Xtm − ‹XM
tm

∣∣∣
∥∥∥∥∥
p

≤ C̃
(
hγ +

(
h| ln(h)

∣∣)12
)
.

3 Strong well-posedness

In this section, we prove Theorem 1, following the strategy sketched in Section 1.3. Assump-

tion (I) is supposed to hold throughout the rest of this paper.

Let Lp

C
(
[0,T ],Rd

)(Ω,F ,P) denote the space of C
(
[0, T ],Rd

)
-valued r.v. Y = (Yt)t∈[0,T ] having

an Lp-norm ‖Y ‖p :=
[
E ‖Y ‖psup

]1/p
=

[
E supt∈[0,T ] |Yt|p

]1/p
< +∞. For a fixed constant C > 0,

we define another norm ‖·‖p,C,T on Lp

C
(
[0,T ],Rd

)(Ω,F ,P) by

‖Y ‖p,C,T := sup
t∈[0,T ]

e−Ct
∥∥∥ sup
0≤s≤t

|Ys|
∥∥∥
p
. (3.1)

It is obvious that ‖·‖p,C,T and ‖·‖p are equivalent since

∀Y ∈ Lp

C
(
[0,T ],Rd

)(Ω,F ,P), e−CT ‖Y ‖p ≤ ‖Y ‖p,C,T ≤ ‖Y ‖p . (3.2)

We define

Hp,C,T :=
{
Y ∈ Lp

C
(
[0,T ],Rd

)(Ω,F , (Ft)t∈[0,T ],P) s.t. Y is (Ft)t∈[0,T ] − adapted.
}
. (3.3)

The next lemma shows that Hp,C,T endowed with the norm ‖·‖p,C,T is a Banach space. For

simplicity we skip its proof, which can be found in [Liu19, Lemma 5.1.1].

Lemma 10. The space Hp,C,T equipped with ‖·‖p,C,T is a complete space.

For any random variable Y ∈ Lp

C
(
[0,T ],Rd

)(Ω,F ,P), its probability distribution PY naturally

lies in

Pp

(
C([0, T ],Rd)

)

:=

®
µ probability distribution on C([0, T ],Rd) s.t.

∫

C([0,T ],Rd)
‖α‖psup µ(dα) < +∞

´
.

We also define an Lp-Wasserstein distance Wp on Pp

(
C([0, T ],Rd)

)
by

∀µ, ν ∈ Pp

(
C([0, T ],Rd)

)
,

Wp(µ, ν) :=
[

inf
π∈Π(µ,ν)

∫

C([0,T ],Rd)×C([0,T ],Rd)
‖x− y‖psup π(dx, dy)

] 1
p
, (3.4)

where Π(µ, ν) denote the set of probability measures on C([0, T ],Rd)×C([0, T ],Rd) with respective

marginals µ and ν. The space Pp

(
C([0, T ],Rd)

)
equipped with Wp is complete and separable since(

C([0, T ],Rd), ‖·‖sup
)
is a Polish space (see [Bol08]).

Let us consider now

C
(
[0, T ],Pp(R

d)
)
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:=
{
(µt)t∈[0,T ] s.t. t 7→ µt is a continuous application from [0, T ] to

(
Pp(R

d),Wp

)}

equipped with the distance

dp
(
(µt)t∈[0,T ], (νt)t∈[0,T ]

)
:= sup

t∈[0,T ]
Wp(µt, νt). (3.5)

As
(
Pp(R

d),Wp

)
is a complete space (see [Bol08]), C

(
[0, T ],Pp(R

d)
)
equipped with the uniform

distance dp is also a complete space.

For any t ∈ [0, T ], we define πt : C
(
[0, T ],Rd

)
→ R

d by α 7→ πt(α) = αt. The following lemma,

and its proof, can be found in [Liu19, Lemma 5.1.2].

Lemma 11. The application ι : Pp

(
C([0, T ],Rd)

)
→ C

(
[0, T ],Pp(R

d)
)
defined by

µ 7→ ι(µ) = (µ ◦ π−1
t )t∈[0,T ] = (µt)t∈[0,T ]

is well-defined.

Lemma 12. Under Assumption (I), the coefficient functions b and σ have a linear growth in

α and (µt)t∈[0,T ] in the sense that there exists a constant Cb,σ,L,T s.t. for every t ∈ [0, T ], α ∈
C
(
[0, T ],Rd

)
, (µt)t∈[0,T ] ∈ C

(
[0, T ],Pp(R

d)
)
,

∣∣b(t, α, (µt)t∈[0,T ])
∣∣ ∨

∣∣∣∣∣∣σ(t, α, (µt)t∈[0,T ])
∣∣∣∣∣∣ ≤ Cb,σ,L,T

(
1 + ‖α‖sup + sup

t∈[0,T ]
Wp(µt, δ0)

)
. (3.6)

Proof of Lemma 12. Let δ0,[0,T ] ∈ C
(
[0, T ],Pp(R

d)
)
be such that ∀t ∈ [0, T ], δ0,[0,T ](t) = δ0 and

let 0 ∈ C
(
[0, T ],Rd

)
be such that ∀t ∈ [0, T ], 0(t) = 0. Then

∣∣∣b
(
t, α, (µt)t∈[0,T ]

)∣∣∣−
∣∣∣b
(
t,0, δ0,[0,T ]

)∣∣∣ ≤
∣∣∣b
(
t, α, (µt)t∈[0,T ]

)
− b

(
t,0, δ0,[0,T ]

)∣∣∣

≤ L
(
‖α− 0‖sup + dp

(
(µt)t∈[0,T ], δ0,[0,T ]

))
= L

(
‖α‖sup + sup

t∈[0,T ]
Wp(µt, δ0)

)
.

Consequently,

∣∣∣b
(
t, α, (µt)t∈[0,T ]

)∣∣∣ ≤
(

sup
t∈[0,T ]

∣∣b
(
t,0, δ0,[0,T ]

)∣∣ ∨ L
)(

‖α‖sup + sup
t∈[0,T ]

Wp(µt, δ0) + 1
)
. (3.7)

Similarly, we have

∣∣∣∣∣∣σ
(
t, α, (µt)t∈[0,T ]

)∣∣∣∣∣∣ ≤
(

sup
t∈[0,T ]

∣∣∣∣∣∣σ
(
t,0, δ0,[0,T ]

)∣∣∣∣∣∣ ∨ L
)(

‖α‖sup + sup
t∈[0,T ]

Wp(µt, δ0) + 1
)

(3.8)

so that one can take Cb,σ,L,T := sup
t∈[0,T ]

∣∣b
(
t,0, δ0,[0,T ]

)∣∣ ∨ sup
t∈[0,T ]

∣∣∣∣∣∣σ
(
t,0, δ0,[0,T ]

)∣∣∣∣∣∣ ∨ L to obtain

(3.6).

Before proving that the McKean-Vlasov equation (1.4) has a unique strong solution under

Assumption (I), we first recall two important technical tools used throughout the proof: the

generalized Minkowski Inequality and the Burkölder-Davis-Gundy Inequality. For the proof of

these two inequalities, we refer to [Pag18, Section 7.8] among other references.

Lemma 13 (The Generalized Minkowski Inequality). For any (bi-measurable) process X =
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(Xt)t≥0, for every p ∈ [1,∞) and for every T ∈ [0,+∞],

∥∥∥∥∥

∫ T

0
Xtdt

∥∥∥∥∥
p

≤
∫ T

0
‖Xt‖p dt.

Lemma 14 (Burkölder-Davis-Gundy Inequality (continuous time)). For every p ∈ (0,+∞),

there exists two real constants cBDG
p > 0 and CBDG

p > 0 such that, for every continuous local

martingale (Xt)t∈[0,T ] null at 0, denoting (〈X〉t)t∈[0,T ] its total variation process,

cBDG
p

∥∥∥
»

〈X〉T
∥∥∥
p
≤

∥∥∥∥∥ sup
t∈[0,T ]

|Xt|
∥∥∥∥∥
p

≤ CBDG
p

∥∥∥
»

〈X〉T
∥∥∥
p
.

Note that under Assumption (I), t → σ(t,X·∧t, µ·∧t) is adapted and continuous, hence pro-

gressively measurable. Recall also that p ≥ 2. A direct application of those two inequalities

provides the following lemma.

Lemma 15. Let (Bt)t∈[0,T ] be a (Ft)t∈[0,T ] standard Brownian motion, and (Ht)t∈[0,T ] be an

(Ft)t∈[0,T ] progressively measurable process having values in Md,q(R) such that
∫ T
0 |||Ht|||2dt <∞,

P-a.s.. Then, for all t ∈ [0, T ],

∥∥∥∥∥ sup
s∈[0,t]

∣∣∣
∫ s

0
HudBu

∣∣∣
∥∥∥∥∥
p

≤ CBDG
d,p

[ ∫ t

0

∥∥∥|||Hu|||
∥∥∥
2

p
du

] 1
2
.

Proof. Notice first that it follows from Lemma 14 that
∫ ·
0HsdBs is a d-dimensional local martin-

gale satisfying ∥∥∥∥∥ sup
s∈[0,t]

∣∣∣∣
∫ s

0
HudBu

∣∣∣∣

∥∥∥∥∥
p

≤ CBDG
d,p

∥∥∥∥∥

 ∫ t

0
|||Hu|||2du

∥∥∥∥∥
p

. (3.9)

Applying this, and using that when U ≥ 0,
∥∥√U

∥∥
p
=

∥∥U
∥∥
1
2
p
2

, we obtain

∥∥∥ sup
s∈[0,t]

∣∣∣
∫ s

0
HudBu

∣∣∣
∥∥∥
p
≤ CBDG

d,p

∥∥∥∥
∫ t

0
|||Hu|||2du

∥∥∥∥

1
2

p
2

≤ CBDG
d,p

[ ∫ t

0

∥∥∥|||Hu|||2
∥∥∥p
2

du
]1
2

where we used Minkowski’s inequality (recall that p ≥ 2) to obtain the last inequality. The proof

follows by noticing that ‖|U |2‖p
2
= ‖U‖2p.

Lemma 16. Under Assumption (I), for any
(
X, (µt)t∈[0,T ]

)
,
(
Y, (νt)t∈[0,T ]

)
in the space Hp,C,T ×

C
(
[0, T ],Pp(R

d)
)
and for any t ∈ [0, T ], one has

∥∥∥∥∥ sup
s∈[0,t]

∣∣∣∣
∫ s

0

[
b(u,X·∧u, µ·∧u)− b(u, Y·∧u, ν·∧u)

]
du

∣∣∣∣

∥∥∥∥∥
p

≤ L

∫ t

0

[∥∥∥ sup
s∈[0,u]

|Xs − Ys|
∥∥∥
p
+ sup

s∈[0,u]
Wp(µs, νs)

]
du,

and
∥∥∥∥∥ sup
s∈[0,t]

∣∣∣∣
∫ s

0

[
σ(u,X·∧u, µ·∧u)− σ(u, Y·∧u, ν·∧u)

]
dBu

∣∣∣∣

∥∥∥∥∥
p
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≤ Cd,p,L

{∫ t

0

[∥∥∥ sup
s∈[0,u]

|Xs − Ys|
∥∥∥
2

p
+ sup

s∈[0,u]
W2

p (µs, νs)
]
du

} 1
2
,

where Cd,p,L is a positive constant only depending on d, p, L.

Proof. For any
(
X, (µt)t∈[0,T ]

)
,
(
Y, (νt)t∈[0,T ]

)
∈ Hp,C,T × C

(
[0, T ],Pp(R

d)
)
, for any t ∈ [0, T ], we

have
∥∥∥∥∥ sup
s∈[0,t]

∣∣∣∣
∫ s

0

[
b(u,X·∧u, µ·∧u)− b(u, Y·∧u, ν·∧u)

]
du

∣∣∣∣

∥∥∥∥∥
p

≤
∥∥∥∥
∫ t

0

∣∣b(u,X·∧u, µ·∧u)− b(u, Y·∧u, ν·∧u)
∣∣du

∥∥∥∥
p

≤
∫ t

0
‖b(u,X·∧u, µ·∧u)− b(u, Y·∧u, ν·∧u)‖p du (by Lemma 13)

≤
∫ t

0

∥∥∥L
[
‖X·∧u − Y·∧u‖sup + dp

(
(µv∧u)v∈[0,T ], (νv∧u)v∈[0,T ]

)]∥∥∥
p
du

≤
∫ t

0

∥∥∥L
[

sup
s∈[0,u]

|Xs − Ys|+ sup
s∈[0,u]

Wp(µs, νs)
]∥∥∥

p
du

(by Assumption (I) and by definitions (1.2) and (1.3)) (3.10)

≤ L

∫ t

0

[∥∥∥ sup
s∈[0,u]

|Xs − Ys|
∥∥∥
p
+ sup

s∈[0,u]
Wp(µs, νs)

]
du

and, by applying Lemma 15,

∥∥∥∥∥ sup
s∈[0,t]

∣∣∣∣
∫ s

0

[
σ(u,X·∧u, µ·∧u)− σ(u, Y·∧u, ν·∧u)

]
dBu

∣∣∣∣

∥∥∥∥∥
p

≤ CBDG
d,p

[ ∫ t

0

∥∥|||σ(u,X·∧u, µ·∧u)− σ(u, Y·∧u, ν·∧u)|||
∥∥2
p
du

] 1
2
.

By Assumption (I) and by definition of α·∧u and µ·∧u in (1.2) and (1.3), we get

∥∥∥∥∥ sup
s∈[0,t]

∣∣∣∣
∫ s

0

[
σ(u,X·∧u, µ·∧u)− σ(u, Y·∧u, ν·∧u)

]
dBu

∣∣∣∣

∥∥∥∥∥
p

≤ CBDG
d,p

[ ∫ t

0

∥∥∥L
[

sup
s∈[0,u]

|Xs − Ys|+ sup
s∈[0,u]

Wp(µs, νs)
]∥∥∥

2

p
du

] 1
2

≤ CBDG
d,p L

[ ∫ t

0

[∥∥∥ sup
s∈[0,u]

|Xs − Ys|
∥∥∥
p
+ sup

s∈[0,u]
Wp(µs, νs)

]2
du

] 1
2

≤
√
2CBDG

d,p L
{∫ t

0

[∥∥∥ sup
s∈[0,u]

|Xs − Ys|
∥∥∥
2

p
+ sup

s∈[0,u]
W2

p (µs, νs)
]
du

} 1
2
.

The conclusion follows by letting Cd,p,L =
√
2CBDG

d,p L.

The idea of our proof of well-posedness follows from Feyel’s approach, originally developped

for the existence and uniqueness of a strong solution to the SDE dXt = b(Xt)dt+ σ(Xt)dBt, see

[Bou88, Section 7].

We define a distance dp,C,T on C([0, T ],Pp(R
d)) as follows:

∀(µt)t∈[0,T ], (νt)t∈[0,T ] ∈ C([0, T ],Pp(R
d)),
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dp,C,T

(
(µt)t∈[0,T ], (νt)t∈[0,T ]

)
:= sup

t∈[0,T ]
e−CtWp(µt, νt). (3.11)

We also define a distance dH×P on Hp,C,T × C([0, T ],Pp(R
d)) as follows:

∀
(
X, (µt)t∈[0,T ]

)
,
(
Y, (νt)t∈[0,T ]

)
∈ Hp,C,T × C

(
[0, T ],Pp(R

d)
)
,

dH×P
((
X, (µt)t∈[0,T ]

)
,
(
Y, (νt)t∈[0,T ]

))
= ‖X − Y ‖p,C,T + sup

t∈[0,T ]
e−CtWp(µt, νt). (3.12)

Recall that X0 ∈ Lp(Rd) is given by Assumption (I). We define an application1

ΦC : Hp,C,T × C
(
[0, T ],Pp(R

d)
)
→ Hp,C,T × C

(
[0, T ],Pp(R

d)
)

by

∀ (Y, (νt)t∈[0,T ]) ∈ Hp,C,T × C
(
[0, T ],Pp(R

d)
)
,

ΦC(Y, (νt)t∈[0,T ])

=
((
X0 +

∫ t

0
b(s, Y·∧s, ν·∧s)ds +

∫ t

0
σ(s, Y·∧s, ν·∧s)dBs

)
t∈[0,T ]

︸ ︷︷ ︸
=:Φ

(1)
C

(Y,(νt)t∈[0,T ])

, ι(P
Φ

(1)
C

(Y,(νt)t∈[0,T ])
)
)
.

The application ΦC has the following properties.

Proposition 17. (i) Under Assumption (I), the map ΦC is well-defined, and there holds

∥∥∥ sup
s∈[0,t]

∣∣Φ(1)
C (Y, ι(PY ))s

∣∣
∥∥∥
p
≤ ‖X0‖p + Cb,σ,L,T (2T + CBDG

d,p

√
2T ) + 2Cb,σ,L,T

∫ t

0

∥∥∥ sup
s∈[0,u]

∣∣Ys
∣∣
∥∥∥
p
du

+ 2
√
2CBDG

d,p Cb,σ,L,T

(∫ t

0

∥∥∥ sup
s∈[0,u]

∣∣Ys
∣∣
∥∥∥
2

p
du

) 1
2
. (3.13)

(ii) Under Assumption (I), ΦC is Lipschitz continuous in the sense that: for any
(
X, ι(PX )

)

and
(
Y, ι(PY )

)
in Hp,C,T × C

(
[0, T ],Pp(R

d)
)
,

dH×P
(
ΦC

(
X, ι(PX )

)
,ΦC

(
Y, ι(PY )

))
≤

(K1

C
+
K2√
C

)
dH×P

((
X, ι(PX )

)
,
(
Y, ι(PY )

))
,

where K1, K2 are real positive constants which do not depend on the constant C.

Proof. (i) It follows from Lemma 11 that for every Y ∈ Hp,C,T , ι(PY ) ∈ C
(
[0, T ],Pp(R

d)
)
.

Let ν = PY . We only need to prove Φ
(1)
C

(
Y, ι(ν)

)
∈ Hp,C,T . For any t ∈ [0, T ],

∥∥∥∥∥ sup
s∈[0,t]

∣∣∣Φ(1)
C

(
Y, ι(ν)

)
s

∣∣∣
∥∥∥∥∥
p

=

∥∥∥∥∥ sup
s∈[0,t]

∣∣X0 +

∫ s

0
b(u, Y·∧u, ν·∧u)du+

∫ s

0
σ(u, Y·∧u, ν·∧u)dBu

∣∣
∥∥∥∥∥
p

≤
∥∥∥∥∥|X0|+

∫ t

0

∣∣b(u, Y·∧u, ν·∧u)
∣∣du+ sup

s∈[0,t]

∣∣∣
∫ s

0
σ(u, Y·∧u, ν·∧u)dBu

∣∣∣
∥∥∥∥∥
p

≤ ‖X0‖p +
∥∥∥∥
∫ t

0

∣∣b(u, Y·∧u, ν·∧u)
∣∣du

∥∥∥∥
p

+

∥∥∥∥∥ sup
s∈[0,t]

∣∣∣
∫ s

0
σ(u, Y·∧u, ν·∧u)dBu

∣∣∣
∥∥∥∥∥
p

. (3.14)

1The C in the subscript of ΦC is the same constant C as in (Hp,C,T , ‖·‖p,C,T
). We carry this notation throughout

this section.
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Owing to Assumption (I), we have ‖X0‖p < +∞. For the second part of (3.14), it follows

from Lemma 12 that

∥∥∥∥
∫ t

0
b(u, Y·∧u, ν·∧u)du

∥∥∥∥
p

≤
∫ t

0
‖b(u, Y·∧u, ν·∧u)‖p du

≤
∫ t

0

∥∥∥Cb,σ,L,T

(
1 + ‖Y·∧u‖sup + sup

s∈[0,T ]
Wp(νs∧u, δ0)

)∥∥∥
p
du

≤
∫ t

0
Cb,σ,L,T

(
1 +

∥∥∥ sup
s∈[0,T ]

|Ys∧u|
∥∥∥
p
+ sup

s∈[0,T ]

∥∥Ys∧u
∥∥
p

)
du

≤ 2Cb,σ,L,T

∫ t

0

(
1 +

∥∥∥ sup
s∈[0,T ]

|Ys∧u|
∥∥∥
p

)
du

≤ 2Cb,σ,L,T

∫ t

0

(
1 +

∥∥∥ sup
s∈[0,u]

|Ys|
∥∥∥
p

)
du (3.15)

where we used that sups∈[0,T ]

∥∥Ys∧u
∥∥
p
≤

∥∥∥ sups∈[0,T ] |Ys∧u|
∥∥∥
p
and

∥∥∥ sup
s∈[0,T ]

|Ys∧u|
∥∥∥
p
=

∥∥∥ sup
s∈[0,u]

|Ys|
∥∥∥
p
.

By definition of ‖ · ‖p,C,T , we deduce

∥∥∥∥
∫ t

0
b(u, Y·∧u, ν·∧u)du

∥∥∥∥
p

≤ 2Cb,σ,L,T

∫ t

0

(
1 + eCT ‖Y ‖p,C,T

)
du < +∞,

where we used (3.2) in the following way

∥∥∥ sup
s∈[0,u]

|Ys|
∥∥∥
p
≤

∥∥∥ sup
s∈[0,T ]

|Ys|
∥∥∥
p
≤ eCT ‖Y ‖p,C,T < +∞. (3.16)

On the other hand, by using Lemma 15,

∥∥∥∥∥ sup
s∈[0,t]

∣∣∣
∫ s

0
σ(u, Y·∧u, ν·∧u)dBu

∣∣∣
∥∥∥∥∥
p

≤ CBDG
d,p

[ ∫ t

0

∥∥|||σ(u, Y·∧u, ν·∧u)|||
∥∥2
p
du

] 1
2
.

As before, we then invoke Lemma 12 to obtain

∥∥∥∥∥ sup
s∈[0,t]

∣∣∣
∫ s

0
σ(u, Y·∧u, ν·∧u)dBu

∣∣∣
∥∥∥∥∥
p

≤ CBDG
d,p

{∫ t

0

∥∥∥Cb,σ,L,T

(
1 + ‖Y·∧u‖sup + sup

s∈[0,T ]
Wp(νs∧u, δ0)

)∥∥∥
2

p
du

} 1
2

≤ CBDG
d,p Cb,σ,L,T

{∫ t

0

[
1 +

∥∥∥ sup
s∈[0,T ]

|Ys∧u|
∥∥∥
p
+ sup

s∈[0,T ]
Wp(νs∧u, δ0)

]2
du

} 1
2

≤ CBDG
d,p Cb,σ,L,T

{∫ t

0

[
1 +

∥∥∥ sup
s∈[0,T ]

|Ys∧u|
∥∥∥
p
+ sup

s∈[0,T ]

∥∥Ys∧u
∥∥
p

]2
du

} 1
2

≤ CBDG
d,p Cb,σ,L,T

{∫ t

0

[
1 + 2

∥∥∥ sup
s∈[0,T ]

|Ys∧u|
∥∥∥
p

]2
du

} 1
2
,

where we used again the convex inequality sups∈[0,T ]

∥∥Ys∧u
∥∥
p
≤

∥∥∥ sups∈[0,T ] |Ys∧u|
∥∥∥
p
. Using again
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∥∥∥ sups∈[0,T ] |Ys∧u|
∥∥∥
p
=

∥∥∥ sups∈[0,u] |Ys|
∥∥∥
p
, we get

∥∥∥∥∥ sup
s∈[0,t]

∣∣∣
∫ s

0
σ(u, Y·∧u, ν·∧u)dBu

∣∣∣
∥∥∥∥∥
p

≤ CBDG
d,p Cb,σ,L,T

{
2T + 8

∫ t

0

∥∥∥ sup
s∈[0,u]

|Ys|
∥∥∥
2

p
du

} 1
2

≤ CBDG
d,p Cb,σ,L,T

(√
2T + 2

√
2
{∫ t

0

∥∥∥ sup
s∈[0,u]

|Ys|
∥∥∥
2

p
du

} 1
2
)

(3.17)

< +∞,

where the last inequality of the above formula is due to (3.16), and where we used
√
a+ b ≤√

a+
√
b for a, b ≥ 0.

Hence for every t ∈ [0, T ],
∥∥∥ sup
s∈[0,t]

∣∣Φ(1)
C

(
Y, ι(ν)

)
s

∣∣
∥∥∥
p
< +∞, which directly implies

∥∥∥Φ(1)
C

(
Y, ι(ν)

)∥∥∥
p,C,T

= sup
t∈[0,T ]

e−Ct

∥∥∥∥∥ sup
s∈[0,t]

∣∣∣Φ(1)
C

(
Y, ι(ν)

)
s

∣∣∣
∥∥∥∥∥
p

< +∞.

Thus Φ
(1)
C

(
Y, ι(ν)

)
∈ Hp,C,T . The inequality (3.13) follows by injecting (3.15) and (3.17) into

(3.14).

(ii) We split the proof of this inequality into three steps.

Step 1. We first prove that for any X,Y ∈ Hp,C,T , dp,C,T

(
ι(PX), ι(PY )

)
≤ ‖X − Y ‖p,C,T . In

fact

dp,C,T

(
ι(PX), ι(PY )

)
= sup

t∈[0,T ]
e−CtWp(PX ◦ π−1

t , PY ◦ π−1
t ) ≤ sup

t∈[0,T ]
e−Ct ‖Xt − Yt‖p

≤ sup
t∈[0,T ]

e−Ct

∥∥∥∥∥ sup
s∈[0,t]

|Xs − Ys|
∥∥∥∥∥
p

= ‖X − Y ‖p,C,T .

Step 2. We prove that Φ
(1)
C is Lipschitz continuous, in the sense that

∥∥∥Φ(1)
C

(
X, ι(µ)

)
− Φ

(1)
C

(
Y, ι(ν)

)∥∥∥
p,C,T

≤
(2L
C

+
Cd,p,L√
C

)
‖X − Y ‖p,C,T , (3.18)

where Cd,p,L > 0 is the constant given by Lemma 16 and is independent of the parameter C of

the application ΦC . For any X,Y ∈ Hp,C,T , set µ = PX and ν = PY . Then

∥∥∥Φ(1)
C

(
X, ι(µ)

)
− Φ

(1)
C

(
Y, ι(ν)

)∥∥∥
p,C,T

=

∥∥∥∥
∫ ·

0

(
b(u,X·∧u, µ·∧u)− b(u, Y·∧u, ν·∧u)

)
du+

∫ ·

0

(
σ(u,X·∧u, µ·∧u)− σ(u, Y·∧u, ν·∧u)

)
dBu

∥∥∥∥
p,C,T

≤
∥∥∥∥
∫ ·

0

(
b(u,X·∧u, µ·∧u)− b(u, Y·∧u, ν·∧u)

)
du

∥∥∥∥
p,C,T

+

∥∥∥∥
∫ ·

0

(
σ(u,X·∧u, µ·∧u)− σ(u, Y·∧u, ν·∧u)

)
dBu

∥∥∥∥
p,C,T

= sup
t∈[0,T ]

e−Ct

∥∥∥∥∥ sup
s∈[0,t]

∣∣∣∣
∫ s

0

[
b(u,X·∧u, µ·∧u)− b(u, Y·∧u, ν·∧u)

]
du

∣∣∣∣

∥∥∥∥∥
p

(3.19)
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+ sup
t∈[0,T ]

e−Ct

∥∥∥∥∥ sup
s∈[0,t]

∣∣∣∣
∫ s

0

[
σ(u,X·∧u, µ·∧u)− σ(u, Y·∧u, ν·∧u)

]
dBu

∣∣∣∣

∥∥∥∥∥
p

.

We treat the two terms in (3.19) separately. Owing to Lemma 16, we first have

sup
t∈[0,T ]

e−Ct

∥∥∥∥∥ sup
s∈[0,t]

∣∣∣∣
∫ s

0

[
b(u,X·∧u, µ·∧u)− b(u, Y·∧u, ν·∧u)

]
du

∣∣∣∣

∥∥∥∥∥
p

≤ L sup
t∈[0,T ]

e−Ct

∫ t

0

[∥∥∥ sup
s∈[0,u]

|Xs − Ys|
∥∥∥
p
+ sup

s∈[0,u]
Wp(µs, νs)

]
du

≤ L sup
t∈[0,T ]

e−Ct

∫ t

0

[∥∥∥ sup
s∈[0,u]

|Xs − Ys|
∥∥∥
p
+ sup

s∈[0,u]

∥∥Xs − Ys
∥∥
p

]
du

(since Wp(µs, νs) ≤ ‖Xs − Ys‖p)

≤ 2L sup
t∈[0,T ]

e−Ct

∫ t

0
eCu

(
e−Cu

∥∥∥ sup
s∈[0,u]

|Xs − Ys|
∥∥∥
p

)
du

≤ 2L sup
t∈[0,T ]

e−Ct

∫ t

0
eCudu ‖X − Y ‖p,C,T (by the definition of ‖·‖p,C,T in (3.1) )

= 2L sup
t∈[0,T ]

e−Ct e
Ct − 1

C
‖X − Y ‖p,C,T

≤ 2L

C
‖X − Y ‖p,C,T .

On the other hand

sup
t∈[0,T ]

e−Ct

∥∥∥∥∥ sup
s∈[0,t]

∣∣∣∣
∫ s

0

[
σ(u,X·∧u, µ·∧u)− σ(u, Y·∧u, ν·∧u)

]
dBu

∣∣∣∣

∥∥∥∥∥
p

≤ sup
t∈[0,T ]

e−CtCd,p,L

{∫ t

0

[∥∥∥ sup
s∈[0,u]

|Xs − Ys|
∥∥∥
2

p
+ sup

s∈[0,u]
W2

p(µs, νs)
]
du

} 1
2

(by Lemma 16)

≤ sup
t∈[0,T ]

e−CtCd,p,L

{∫ t

0

[∥∥∥ sup
s∈[0,u]

|Xs − Ys|
∥∥∥
2

p
+ sup

s∈[0,u]

∥∥Xs − Ys
∥∥2
p

]
du

} 1
2

≤
√
2Cd,p,L sup

t∈[0,T ]
e−Ct

{∫ t

0
e2Cu

(
e−Cu

∥∥∥ sup
s∈[0,u]

|Xs − Ys|
∥∥∥
p

)2
du

} 1
2

≤
√
2Cd,p,L

∥∥X − Y
∥∥
p,C,T

sup
t∈[0,T ]

e−Ct
{∫ t

0
e2Cudu

} 1
2

≤
√
2Cd,p,L ‖X − Y ‖p,C,T sup

t∈[0,T ]
e−Ct

[e2Ct − 1

2C

] 1
2

≤ Cd,p,L√
C

‖X − Y ‖p,C,T ,

since supt∈[0,T ] e
−Ct

[
e2Ct−1

2C

] 1
2 ≤ 1√

2C
. Injecting those two results in (3.19), we obtain (3.18).

Step 3. We combine the results of the previous two steps to conclude. We have, from the

definition of dH×P (3.12),

dH×P
(
ΦC

(
X, ι(µ)

)
,ΦC

(
Y, ι(ν)

))

=
∥∥∥Φ(1)

C

(
X, ι(µ)

)
− Φ

(1)
C

(
Y, ι(ν)

)∥∥∥
p,C,T

+ dp,C,T

(
P
Φ

(1)
C

(X,ι(µ))
, P

Φ
(1)
C

(Y, ι(ν))

)
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and using Step 1, and (3.18),

dH×P
(
ΦC

(
X, ι(µ)

)
,ΦC

(
Y, ι(ν)

))
≤ 2

(2L
C

+
Cd,p,L√
C

)
‖X − Y ‖p,C,T

≤ 2
(2L
C

+
Cd,p,L√
C

)
dH×P

(
(X,µ), (Y, ν)

)
.

The proof follows by letting K1 = 4L and K2 = 2Cd,p,L.

To obtain the precise description of the upper bound of ‖ sups∈[0,T ] |Xs|‖p, we will need the

following version of Gronwall’s lemma. We refer to [Pag18, Lemma 7.3] for a proof (among many

others).

Lemma 18 (“À la Gronwall” Lemma). Let f : [0, T ] → R+ be a Borel, locally bounded and non-

decreasing function and let ψ : [0, T ] → R+ be a non-negative non-decreasing function satisfying

∀t ∈ [0, T ], f(t) ≤ A

∫ t

0
f(s)ds+B

Å∫ t

0
f2(s)ds

ã 1
2

+ ψ(t),

where A,B are two positive real constants. Then, for any t ∈ [0, T ],

f(t) ≤ 2e(2A+B2)tψ(t).

Proposition 17 directly implies the existence and uniqueness of a strong solution of the

McKean-Vlasov equation (1.4) as shown below.

Proof of Theorem 1. Proposition 17 implies that ΦC is a Lipschitz continuous function. Thus,

FC := ΦC

(
Hp,C,T × C

(
[0, T ],Pp(R

d)
))

is a closed set in Hp,C,T × C
(
[0, T ],Pp(R

d)
)
. Moreover,

for a large enough constant C, we have
(
K1
C + K2√

C

)
< 1, so that ΦC is a contraction mapping.

Therefore, ΦC has a unique fixed point
(
H, ι(PH )

)
∈ FC ⊂ Hp,C,T × C

(
[0, T ],Pp(R

d)
)
and this

process H is the unique strong solution of the McKean-Vlasov equation (1.4).

We turn to the proof of (1.8). Let (X,PX ) be the unique strong solution of (1.4). Then,

Φ
(1)
C (X, ι(PX )) = X since X is a fixed point of the application ΦC . Therefore, (3.13) takes the

following form

∥∥∥ sup
s∈[0,t]

∣∣Xs

∣∣
∥∥∥
p
≤ ‖X0‖p + Cb,σ,L,T (2T + CBDG

d,p

√
2T ) + 2Cb,σ,L,T

∫ t

0

∥∥∥ sup
s∈[0,u]

∣∣Xs

∣∣
∥∥∥
p
du

+ 2
√
2CBDG

d,p Cb,σ,L,T

(∫ t

0

∥∥∥ sup
s∈[0,u]

∣∣Xs

∣∣
∥∥∥
2

p
du

) 1
2
.

We let f(t) :=
∥∥∥ sups∈[0,t]

∣∣Xs

∣∣
∥∥∥
p
, and apply Lemma 18 to get

∥∥∥ sup
s∈[0,t]

∣∣Xs

∣∣
∥∥∥
p
≤ Cp,d,b,σ,L,T e

Cp,d,b,σ,L,T t(1 + ‖X0‖p),

with the constant Cp,d,b,σ,L,T > 0 defined by

Cp,d,b,σ,L,T =
(
4Cb,σ,L,T + 8(CBDG

d,p Cb,σ,L,T )
2
)
∨ 2

(
1 ∨ Cb,σ,L,TT +

√
2T CBDG

d,p Cb,σ,L,T

)
. (3.20)

The conclusion follows by choosing t = T and Γ = Cp,d,b,σ,L,Te
Cp,d,b,σ,L,T T .
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4 Interpolated Euler scheme and associated convergences

This section is devoted to the proof of Theorem 4. For this purpose, we first define the

associated theoretical continuous Euler scheme (‹XM
t )t∈[0,T ] of (‹XM

tm)0≤m≤M from (1.12). We use

the same temporal discretization as Definition 3: let M ∈ N
∗, h = T

M . For every m = 0, ...,M ,

we set tm = mh. As the size of the discretization parameter M will sometimes play a role, we

write (‹XM
t )t≥0 when we wish to emphasize the dependency of the process in M and omit this

superscript when it is clear from context.

Definition 19. Given a Brownian motion (Bt)t∈[0,T ], X0 ∈ Lp(Rd) and the discretize scheme

(‹XM
t0:tM

) with the associated probability distributions (µ̃Mt0:tm) from Definition 3, using the same

notations bm, σm as in (1.13), we define the continuous Euler scheme, (‹XM
t )t∈[0,T ] by setting, for

all t ∈ (tm, tm+1],

® ‹XM
0 = X0,
‹XM
t = ‹XM

tm + (t− tm) bm(tm, ‹XM
t0:tm , µ̃

M
t0:tm) + σm (tm, ‹XM

t0:tm , µ̃
M
t0:tm)(Bt −Btm).

(4.1)

According to the definition of bm and σm in (1.13), the continuous Euler scheme (4.1) writes,

for t ∈ (tm, tm+1], m ∈ {0, . . . ,M − 1},

‹XM
t = ‹XM

tm +(t− tm) b
(
tm, im

(‹XM
t0:tm

)
, im

(
µ̃Mt0:tm

))
+σm

(
tm, im

(‹XM
t0:tm

)
, im

(
µ̃Mt0:tm

))(
Bt−Btm

)
.

In order to compare this with equation (1.4), we write, for all t ∈ [0, T ], µ̃Mt for the distribution

of ‹XM
t , and for all m ∈ {0, . . . ,M − 1} we set

t := tm, [t] := m if t ∈ [tm, tm+1). (4.2)

With this at hand, the process (‹XM
t )t∈[0,T ] satisfies

‹XM
t = ‹XM

0 +

∫ t

0
b
(
s, i[s]

(‹XM
t0:t[s]

)
, i[s]

(
µ̃Mt0:t[s]

))
ds+

∫ t

0
σ
(
s, i[s]

(‹XM
t0:t[s]

)
, i[s]

(
µ̃Mt0:t[s]

))
dBs. (4.3)

Theorem 4 is a direct result of the following proposition.

Proposition 20. Under Assumptions (I) and (II), for (Bt)t∈[0,T ] an R
q-valued Brownian motion,

for (Xt)t∈[0,T ] the unique strong solution to (1.4) given by Theorem 1, for (‹XM
t )t∈[0,T ] the Euler

scheme from Definition 19 with parameter M large enough, for h = T
M , one has,

∥∥∥∥∥ sup
t∈[0,T ]

∣∣∣Xt − ‹XM
t

∣∣∣
∥∥∥∥∥
p

≤ C̃
(
hγ +

(
h| ln(h)

∣∣)12
)
, (4.4)

where C̃ > 0 is a constant depending on L, p, d, ‖X0‖p , T and γ.

This section is organized as follows. Section 4.1 shows several preliminary results for the

interpolator im that will be used for the proof of Proposition 20. Section 4.2 gathers several

properties of the process (‹XM
t )t≥0 from Definition 19. Finally, in Section 4.3, we prove Proposition

20, Theorem 4 and Corollary 5.

Remark 21. We might define the classical continuous Euler scheme (X̄t)t≥0 by setting

1. X̄0 = X0;
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2. for all m ∈ {0, . . . ,M − 1}, t ∈ (tm, tm+1]

X̄t = X̄tm + (t− tm) b(tm, X̄·∧tm , µ̄·∧tm) + σ(tm, X̄·∧tm , µ̄·∧tm) (Bt −Btm).

The convergence of this non-implementable continuous Euler scheme towards the solution of (1.4)

can then be proved using similar arguments as those developed in this section.

4.1 Preliminary results

We gather several properties that will be used for the proof of Proposition 20. For two

probability measures µ, ν ∈ Pp(R
d) and for λ ∈ [0, 1], we define λµ+ (1− λ)ν by

∀B ∈ B
(
R
d
)
,

(
λµ+ (1− λ)ν

)
(B) := λµ(B) + (1− λ)ν(B). (4.5)

It is easy to check that λµ+ (1− λ)ν ∈ Pp(R
d).

Lemma 22. Let µ, ν ∈ Pp(R
d) with p ≥ 1.

(a) The application τ : λ ∈ [0, 1] 7→ τ(λ) = λµ + (1 − λ)ν ∈ Pp(R
d) is 1

p -Hölder continuous with

respect to the Wasserstein distance Wp. Moreover, for every λ1, λ2 ∈ [0, 1], we have

Wp

(
τ(λ1), τ(λ2)

)
≤ |λ1 − λ2|

1
pWp(µ, ν).

(b) Let δ0 denote the Dirac measure on 0 ∈ R
d. Then

sup
λ∈[0,1]

Wp

(
τ(λ), δ0

)
≤ Wp(µ, δ0) ∨Wp(ν, δ0).

Remark that Lemma 22 implies that the interpolator im defined by (1.10) and (1.11) is well

defined.

Proof of Lemma 22. Let X,Y be such that PX = µ, PY = ν and consider another random

variable U having uniform distribution on [0, 1], independent of (X,Y ). One can easily check

that for all λ ∈ [0, 1],

1{U≤λ}X + 1{U>λ}Y ∼ τ(λ).

(a) Let λ1, λ2 ∈ [0, 1]. We assume without loss of generality that λ1 < λ2. We have

W p
p

(
τ(λ1), τ(λ2)

)

≤ E

[∣∣∣1{U≤λ1}X + 1{U>λ1}Y − 1{U≤λ2}X − 1{U>λ2}Y
∣∣∣
p]

= E

[∣∣∣− 1{λ1<U≤λ2}X + 1{λ1<U≤λ2}Y
∣∣∣
p]

= E
[
1{λ1<U≤λ2}

∣∣X − Y
∣∣p] = P (λ1 < U ≤ λ2)E

[∣∣X − Y
∣∣p] (as U ⊥⊥ (X,Y ))

= (λ2 − λ1)E [|X − Y |p]. (4.6)

Taking the infimum over (X,Y ) ∈ Π(µ, ν), we find

Wp

(
τ(λ1), τ(λ2)

)
≤ (λ2 − λ1)

1
pWp(µ, ν),

where Wp(µ, ν) is finite since µ, ν ∈ Pp(R
d). This concludes the proof of (a).
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(b) For every fixed λ ∈ [0, 1],

W p
p

(
τ(λ), δ0

)
= E

[∣∣X1{U≤λ} + Y 1{U>λ}
∣∣p
]

= E

[∣∣X1{U≤λ} + Y 1{U>λ}
∣∣p
1{U≤λ}

]
+ E

[∣∣X1{U≤λ} + Y 1{U>λ}
∣∣p
1{U>λ}

]

= E

[∣∣X
∣∣p
1{U≤λ}

]
+ E

[∣∣Y
∣∣p
1{U>λ}

]
= λE

[
|X|p

]
+ (1− λ)E

[
|Y |p

]

≤ λWp
p (µ, δ0) + (1− λ)Wp

p (ν, δ0) ≤ Wp
p (µ, δ0) ∨Wp

p (ν, δ0).

Then we can conclude since the previous inequality is true for every λ ∈ [0, 1].

Lemma 23 (Properties of the interpolator im). Let m ∈ {1, ...,M}.

(a) For every x0:m ∈ (Rd)m+1, ‖im(x0:m)‖sup = sup0≤k≤m |xk|.

(b) For every µ0:m ∈
(
Pp(R

d)
)m+1

, supt∈[0,T ]Wp

(
im(µ0:m)t, δ0

)
= sup0≤k≤mWp(µk, δ0).

Proof of Lemma 23. (a) First, it is obvious that sup0≤k≤m |xk| ≤
∥∥im(x0:m)

∥∥
sup

by the definition

of im. For every k ∈ {0, ...,m − 1}, for every t ∈ [tk, tk+1], we have

∣∣im(x0:m)t
∣∣ ≤ |xk| ∨ |xk+1| ≤ sup

0≤k≤m
|xk| (4.7)

and for every t ∈ [tm, T ], we have
∣∣im(x0:m)t

∣∣ = xm ≤ sup0≤k≤m |xk|. Then we can conclude

sup0≤k≤m |xk| =
∥∥im(x0:m)

∥∥
sup

.

(b) First, it is obvious that supt∈[0,T ]Wp

(
im(µ0:m)t, δ0

)
≥ sup0≤k≤mWp(µk, δ0) by the definition

of im. For every k ∈ {0, ...,m − 1}, we have

sup
t∈[tk ,tk+1]

Wp

(
im(µ0:m)t, δ0

)
≤ Wp(µk, δ0) ∨Wp(µk+1, δ0) (by Lemma 22-(b))

≤ sup
0≤k≤m

Wp(µk, δ0)

and

sup
t∈[tm,T ]

Wp

(
im(µ0:m)t, δ0

)
= Wp(µm, δ0) ≤ sup

0≤k≤m
Wp(µk, δ0).

Then we can conclude that supt∈[0,T ]Wp

(
im(µ0:m)t, δ0

)
= sup0≤k≤mWp(µk, δ0).

4.2 Properties of the discretization scheme

We gather here several properties of the process (‹XM
t )t≥0 from Definition 19.

Proposition 24. For all M ∈ N
∗, write (‹XM

t )t∈[0,T ] for the process from Definition 19 with

parameter M . Then under Assumptions (I), we have

(a) For every M ∈ N
∗,
∥∥ supt∈[0,T ]

∣∣‹XM
t

∣∣∥∥
p
≤ Γ

(
1 + ‖X0‖p

)
with the same constant Γ from The-

orem 1.

(b) There exists a constant κ depending on L, b, σ, ‖X0‖p , p, d, T such that for M ∈ N
∗ large

enough, there holds

∥∥∥∥∥ sup
0≤m≤M−1

sup
v∈[tm,tm+1]

∣∣∣‹XM
v − ‹XM

tm

∣∣∣
∥∥∥∥∥
p

≤ κ
(
h
∣∣ ln(h)

∣∣) 1
2 .
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Proposition 24 directly implies the following result.

Corollary 25. Under Assumptions (I), we have, for a large enough time discretization number

M ∈ N
∗,

∥∥∥∥
∥∥∥‹XM − iM

(‹XM
t0:tM

)∥∥∥
sup

∥∥∥∥
p

≤ 2κ
(
h
∣∣ ln(h)

∣∣) 1
2

and dp

(
(µ̃t)t∈[0,T ], iM

(
µ̃t0:tM

))
≤ 3κ

(
h
∣∣ ln(h)

∣∣) 1
2 . (4.8)

Proof of Corollary 25. Let M be fixed and large enough. We drop the superscript in ‹XM for

simplicity. It is obvious that

∥∥∥‹X − iM
(‹Xt0:tM

)∥∥∥
sup

= sup
0≤m≤M−1

sup
t∈[tm,tm+1]

∣∣∣‹Xt − iM
(‹Xt0:tM

)
t

∣∣∣

≤ sup
0≤m≤M−1

sup
t∈[tm,tm+1]

[∣∣∣‹Xt − ‹Xtm

∣∣∣+
∣∣∣iM

(‹Xt0:tM

)
t
− ‹Xtm

∣∣∣
]

≤ sup
0≤m≤M−1

sup
t∈[tm,tm+1]

[∣∣∣‹Xt − ‹Xtm

∣∣∣+
∣∣∣‹Xtm+1 − ‹Xtm

∣∣∣
]

≤ 2 sup
0≤m≤M−1

sup
t∈[tm,tm+1]

∣∣∣‹Xt − ‹Xtm

∣∣∣. (4.9)

Then we conclude by applying Proposition 24-(b).

Consider now random variables (Um) 0≤m≤M i.i.d. having the uniform distribution on [0,1] and

independent of the process (‹Xt)t∈[0,T ]. For every m ∈ {0, ...,M − 1} and for every t ∈ [tm, tm+1],

1{Um> t−tm
h }‹Xtm + 1{Um≤ t−tm

h }‹Xtm+1 ∼ iM (‹Xt0:tM )t.

Then

dp

(
(µ̃t)t∈[0,T ], iM

(
µ̃t0:tM

))
= sup

t∈[0,T ]
Wp

(
µ̃t, iM

(
µ̃t0:tM

)
t

)

= sup
0≤m≤M−1

sup
t∈[tm,tm+1]

Wp

(
µ̃t, iM

(
µ̃t0:tM

)
t

)

≤ sup
0≤m≤M−1

sup
t∈[tm,tm+1]

∥∥∥‹Xt − 1{Um> t−tm
h }‹Xtm − 1{Um≤ t−tm

h }‹Xtm+1

∥∥∥
p

≤ sup
0≤m≤M−1

sup
t∈[tm,tm+1]

(∥∥∥(‹Xt − ‹Xtm)1{Um> t−tm
h }

∥∥∥
p
+

∥∥∥(‹Xt − ‹Xtm+1)1{Um≤ t−tm
h }

∥∥∥
p

)

≤ 3 sup
0≤m≤M−1

sup
t∈[tm,tm+1]

∥∥∥‹Xt − ‹Xtm

∥∥∥
p
≤ 3κ

(
h
∣∣ ln(h)

∣∣) 1
2 , (4.10)

where the last inequality comes from Proposition 24-(b).

Proof of Proposition 24. (a) Step 1. In this first step, we prove that for every fixed M ∈ N
∗

∥∥∥ sup
0≤k≤M

∣∣ ‹Xtk

∣∣
∥∥∥
p
< +∞ (4.11)

by induction. First, ‖‹Xt0‖p = ‖X0‖p < +∞ by Assumption (I). Now assume that, for some l ≥ 0,∥∥∥ sup0≤k≤l |‹Xtk |
∥∥∥
p
< +∞. It follows that

∥∥∥ sup
0≤k≤l+1

∣∣‹Xtk

∣∣
∥∥∥
p
≤

∥∥∥ sup
0≤k≤l

∣∣‹Xtk

∣∣+
(∣∣‹Xtl+1

∣∣− sup
0≤k≤l

∣∣‹Xtk

∣∣
)

+

∥∥∥
p
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≤
∥∥∥ sup
0≤k≤l

∣∣‹Xtk

∣∣
∥∥∥
p
+

∥∥∥
(∣∣‹Xtl+1

∣∣− sup
0≤k≤l

∣∣‹Xtk

∣∣
)

+

∥∥∥
p

(by the Minkowski inequality)

≤
∥∥∥ sup
0≤k≤l

∣∣‹Xtk

∣∣
∥∥∥
p
+

∥∥∥
(∣∣‹Xtl+1

∣∣−
∣∣‹Xtl

∣∣
)

+

∥∥∥
p
≤

∥∥∥ sup
0≤k≤l

∣∣‹Xtk

∣∣
∥∥∥
p
+
∥∥∥
∣∣∣
∣∣‹Xtl+1

∣∣−
∣∣‹Xtl

∣∣
∣∣∣
∥∥∥
p

≤
∥∥∥ sup
0≤k≤l

∣∣‹Xtk

∣∣
∥∥∥
p
+

∥∥∥‹Xtl+1
− ‹Xtl

∥∥∥
p
. (4.12)

Moreover,

∥∥∥‹Xtl+1
− ‹Xtl

∥∥∥
p
=

∥∥∥h bl(tl, ‹Xt0:tl , µ̃t0:tl) +
√
hσl(tl, ‹Xt0:tl , µ̃t0:tl)Zl+1

∥∥∥
p

≤ h
∥∥∥b
(
tl, il

(‹Xt0:tl), il
(
µ̃t0:tl

))∥∥∥
p
+

√
h
∥∥∥
∣∣∣
∣∣∣
∣∣∣σ
(
tl, il

(‹Xt0:tl), il
(
µ̃t0:tl

))∣∣∣
∣∣∣
∣∣∣
∥∥∥
p

∥∥∥Zl+1

∥∥∥
p

(by the definition of bl and σl in Definition 2 and as Zl+1 ⊥⊥ σ(Ftl))

≤
(
h+

√
hCp,q

)∥∥∥Cb,σ,L,T

(
1 +

∥∥il
(‹Xt0:tl)

∥∥
sup

+ sup
t∈[0,T ]

Wp

(
il
(
µ̃t0:tl

)
t
, δ0

))∥∥∥
p
,

where we used Lemma 12, where Cp,q = ‖Zl+1‖p < +∞ as Zl+1 ∼ N (0, Iq) is a constant depending

only on p and q. We now invoke Lemma 23 to obtain

∥∥∥‹Xtl+1
− ‹Xtl

∥∥∥
p
≤

(
h+

√
hCp,q

)∥∥∥Cb,σ,L,T

(
1 + sup

0≤k≤l

∣∣‹Xtk

∣∣+ sup
0≤k≤l

Wp

(
µ̃tk , δ0

))∥∥∥
p

(4.13)

≤ Cb,σ,L,T

(
h+

√
hCp,q

)(
1 +

∥∥∥ sup
0≤k≤l

∣∣‹Xtk

∣∣
∥∥∥
p
+ sup

0≤k≤l

∥∥‹Xtk

∥∥
p

)

≤ Cb,σ,L,T

(
h+

√
hCp,q

)(
1 + 2

∥∥∥ sup
0≤k≤l

∣∣‹Xtk

∣∣
∥∥∥
p

)

< +∞ (4.14)

where we used the induction hypothesis to obtain the last inequality. Thus
∥∥∥ sup0≤k≤l+1

∣∣‹Xtk

∣∣
∥∥∥
p
<

+∞ which concludes the proof of (4.11) by induction.

Step 2. We prove that
∥∥∥ supt∈[0,T ]

∣∣‹Xt

∣∣
∥∥∥
p
< +∞. First, by (4.3) we get for every t ∈ [0, T ],

∥∥∥ sup
u∈[0,t]

|‹Xu|
∥∥∥
p

=
∥∥∥ sup

u∈[0,t]

∣∣∣X0 +

∫ u

0
b
(
s, i[s]

(‹Xt0:t[s]

)
, i[s]

(
µ̃t0:t[s]

) )
ds (4.15)

+

∫ u

0
σ
(
s, i[s]

(‹Xt0:t[s]

)
, i[s]

(
µ̃t0:t[s]

))
dBs

∣∣∣
∥∥∥
p

≤ ‖X0‖p +
∥∥∥
∫ t

0

∣∣∣ b
(
s, i[s]

(‹Xt0:t[s]

)
, i[s]

(
µ̃t0:t[s]

) )∣∣∣ ds
∥∥∥
p

+
∥∥∥ sup

u∈[0,t]

∣∣∣
∫ u

0
σ
(
s, i[s]

(‹Xt0:t[s]

)
, i[s]

(
µ̃t0:t[s]

))
dBs

∣∣∣
∥∥∥
p
, (4.16)

where we used Minkowski’s inequality to obtain the second inequality. The second term in (4.15)

can be upper bounded as follows: using Lemma 13,

∥∥∥
∫ t

0

∣∣∣ b
(
s, i[s]

(‹Xt0:t[s]

)
, i[s]

(
µ̃t0:t[s]

) )∣∣∣ ds
∥∥∥
p
≤

∫ t

0

∥∥∥ b
(
s, i[s]

(‹Xt0:t[s]

)
, i[s]

(
µ̃t0:t[s]

))∥∥∥
p
ds

≤
∫ t

0

∥∥∥Cb,σ,L,T

(
1 +

∥∥i[s]
(‹Xt0:t[s]

)∥∥
sup

+ sup
u∈[0,T ]

Wp

(
i[s]

(
µ̃t0:t[s]

)
u
, δ0

))∥∥∥
p
ds
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=

∫ t

0

∥∥∥Cb,σ,L,T

(
1 + sup

0≤k≤[s]

∣∣‹Xtk

∣∣+ sup
0≤k≤[s]

Wp

(
µ̃tk , δ0

))∥∥∥
p
ds

=

∫ t

0
Cb,σ,L,T

(
1 + 2

∥∥∥ sup
0≤k≤[s]

∣∣‹Xtk

∣∣
∥∥∥
p

)
ds

≤ T Cb,σ,L,T + 2Cb,σ,L,T

∫ t

0

∥∥∥ sup
0≤k≤[s]

∣∣‹Xtk

∣∣
∥∥∥
p
ds (4.17)

which is finite by (4.11). We used Lemma 12 to obtain the second inequality, and Lemma 23 to

deduce the next equality.

Moreover, combining Lemmas 15 and 12, the third term in (4.15) can be upper bounded as

follows

∥∥∥ sup
u∈[0,t]

∣∣∣
∫ u

0
σ
(
s, i[s]

(‹Xt0:t[s]

)
, i[s]

(
µ̃t0:t[s]

))
dBs

∣∣∣
∥∥∥
p

≤ CBDG
d,p

{∫ t

0

∥∥∥Cb,σ,L,T

(
1 + ‖i[s]

(‹Xt0:t[s]

)
‖sup + sup

u∈[0,T ]
Wp

(
i[s]

(
µ̃t0:t[s]

)
u
, δ0

))∥∥∥
2

p
ds
} 1

2

= CBDG
d,p

{∫ t

0

∥∥∥Cb,σ,L,T

(
1 + sup

0≤k≤[s]

∣∣‹Xtk

∣∣+ sup
0≤k≤[s]

Wp

(
µ̃tk , δ0

))∥∥∥
2

p
ds
} 1

2

≤
√
2T CBDG

d,p Cb,σ,L,T + 2CBDG
d,p Cb,σ,L,T

{∫ t

0

∥∥∥ sup
0≤k≤[s]

∣∣‹Xtk

∣∣
∥∥∥
2

p
ds
} 1

2
(4.18)

which is again finite by (4.11). We used again Lemma 23 to get the third line. We conclude that∥∥∥ supt∈[0,T ]

∣∣‹Xt

∣∣
∥∥∥
p
< +∞.

Step 3. We conclude the proof of (a). Using that

∥∥∥ sup
0≤k≤[s]

∣∣‹Xtk

∣∣
∥∥∥
2

p
≤

∥∥∥ sup
u∈[0,s]

∣∣‹Xu

∣∣
∥∥∥
2

p

by the definition of [s], see (4.2), the inequalities (4.15), (4.17) and (4.18) in the previous step

imply that for every t ∈ [0, T ]

∥∥∥ sup
u∈[0,t]

|‹Xu|
∥∥∥
p

≤ ‖X0‖p + T Cb,σ,L,T + 2Cb,σ,L,T

∫ t

0

∥∥∥ sup
u∈[0,s]

|‹Xu|
∥∥∥
p
ds

+
√
2T CBDG

d,p Cb,σ,L,T + 2CBDG
d,p Cb,σ,L,T

{∫ t

0

∥∥∥ sup
u∈[0,s]

|‹Xu|
∥∥∥
2

p
ds
} 1

2
.

Hence, by applying Lemma 18 with f(t) :=
∥∥∥ sup

u∈[0,t]
|‹Xu|

∥∥∥
p
, we obtain

∥∥∥ sup
u∈[0,t]

|‹Xu|
∥∥∥
p
≤ Cp,d,b,σ,L,Te

Cp,d,b,σ,L,T t(1 + ‖X0‖p)

with the constant Cp,d,b,σ,L,T > 0 defined by (3.20). Then

∥∥∥ sup
u∈[0,T ]

|‹Xu|
∥∥∥
p
≤ Cp,d,b,σ,L,T e

Cp,d,b,σ,L,T T (1 + ‖X0‖p),
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and we conclude by recognizing Γ = Cp,d,b,σ,L,T e
Cp,d,b,σ,L,TT from Theorem 1.

(b) By hypothesis, M is large enough so that h = T
M ≤ 1

2 . We have

∥∥∥∥∥ sup
0≤m≤M−1

sup
v∈[tm,tm+1]

∣∣∣‹Xv − ‹Xtm

∣∣∣
∥∥∥∥∥
p

≤
∥∥∥∥∥ sup
0≤m≤M−1

sup
v∈[tm,tm+1]

∣∣∣(v − tm) bm(tm, ‹Xt0:tm , µ̃t0:tm) + σm(tm, ‹Xt0:tm , µ̃t0:tm)(Bv −Btm)
∣∣∣
∥∥∥∥∥
p

≤
∥∥∥∥∥ sup
0≤m≤M−1

sup
v∈[tm,tm+1]

[∣∣∣(v − tm) bm(tm, ‹Xt0:tm , µ̃t0:tm)
∣∣∣+

∣∣∣σm(tm, ‹Xt0:tm, µ̃t0:tm)(Bv −Btm)
∣∣∣
]∥∥∥∥∥

p

≤
∥∥∥∥∥ sup
0≤m≤M−1

ñ
h
∣∣∣bm(tm, ‹Xt0:tm , µ̃t0:tm)

∣∣∣+
∣∣∣
∣∣∣
∣∣∣σm(tm, ‹Xt0:tm , µ̃t0:tm)

∣∣∣
∣∣∣
∣∣∣ sup
v∈[tm,tm+1]

∣∣∣Bv −Btm

∣∣∣
ô∥∥∥∥∥

p

≤ h

∥∥∥∥∥ sup
0≤m≤M−1

∣∣∣bm(tm, ‹Xt0:tm , µ̃t0:tm)
∣∣∣
∥∥∥∥∥
p

+

∥∥∥∥∥ sup
0≤m≤M−1

ñ∣∣∣
∣∣∣
∣∣∣σm(tm, ‹Xt0:tm , µ̃t0:tm)

∣∣∣
∣∣∣
∣∣∣ sup
v∈[tm,tm+1]

∣∣∣Bv −Btm

∣∣∣
ô∥∥∥∥∥

p

where we used that |tm+1 − tm| = h and Minkowski’s inequality. We now apply Lévy’s modulus

of continuity theorem, see e.g. [CR81, Theorem 1.1.1] to handle the Brownian component in the

last inequality: there exists M0 ≥ 0 such that for M ≥M0,

∥∥∥∥∥ sup
0≤m≤M−1

sup
v∈[tm,tm+1]

∣∣∣‹Xv − ‹Xtm

∣∣∣
∥∥∥∥∥
p

≤ h

∥∥∥∥∥ sup
0≤m≤M−1

∣∣∣bm(tm, ‹Xt0:tm , µ̃t0:tm)
∣∣∣
∥∥∥∥∥
p

+ 2
(
h
∣∣ ln(h)

∣∣) 1
2

∥∥∥∥∥ sup
0≤m≤M−1

∣∣∣
∣∣∣
∣∣∣ σm(tm, ‹Xt0:tm , µ̃t0:tm)

∣∣∣
∣∣∣
∣∣∣
∥∥∥∥∥
p

.

We now treat the two terms on the right-hand-side of this inequality. First, by definition of bm,

∥∥∥∥∥ sup
0≤m≤M−1

∣∣∣bm(tm, ‹Xt0:tm , µ̃t0:tm)
∣∣∣
∥∥∥∥∥
p

=

∥∥∥∥∥ sup
0≤m≤M−1

∣∣∣b
(
tm, im

(‹Xt0:tm

)
, im

(
µ̃t0:tm

))∣∣∣
∥∥∥∥∥
p

≤
∥∥∥∥∥ sup
0≤m≤M−1

Cb,σ,L,T

(
1 +

∥∥im
(‹Xt0:tm

)∥∥
sup

+ sup
u∈[0,T ]

Wp

(
im

(
µ̃t0:tm

)
u
, δ0

))∥∥∥∥∥
p

(by Lemma 12)

≤
∥∥∥∥∥ sup
0≤m≤M−1

Cb,σ,L,T

(
1 + sup

0≤k≤m
|‹Xk|+ sup

0≤k≤m
Wp

(
µ̃tk , δ0

) )
∥∥∥∥∥
p

(by Lemma 23)

≤
∥∥∥∥∥Cb,σ,L,T

(
1 + sup

0≤k≤M
|‹Xk|+ sup

0≤k≤M
Wp

(
µ̃tk , δ0

) )
∥∥∥∥∥
p

≤ Cb,σ,L,T

(
1 + 2

∥∥∥ sup
0≤k≤M

|‹Xk|
∥∥∥
p

)
≤ Cb,σ,L,T

(
1 + 2Γ(1 + ‖X0‖p)

)
< +∞. (4.19)

Let C⋆ := Cb,σ,L,T

(
1 + 2Γ(1 + ‖X0‖p)

)
, where we recall that Γ is given in Theorem 1. By a
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similar computation, we obtain

∥∥∥∥∥ sup
0≤m≤M−1

∣∣∣
∣∣∣
∣∣∣ σm(tm, ‹Xt0:tm , µ̃t0:tm)

∣∣∣
∣∣∣
∣∣∣
∥∥∥∥∥
p

≤ C⋆.

Then, using that for h ∈ [0, 12 ], h ≤ (h| ln(h)|)
1
2 ,

∥∥∥∥∥ sup
0≤m≤M−1

sup
v∈[tm,tm+1]

∣∣∣‹Xv − ‹Xtm

∣∣∣
∥∥∥∥∥
p

≤ 3C⋆

(
h
∣∣ ln(h)

∣∣) 1
2 (4.20)

and we can conclude by letting κ := 3C⋆.

4.3 Proof of Proposition 20, Theorem 4 and Corollary 5

Before turning to the proof of Proposition 20, we briefly prove Theorem 4 and Corollary 5,

which are two easy consequences of Proposition 20.

Proof of Theorem 4. The proof is straightforward since

∥∥∥∥∥ sup
0≤m≤M

∣∣∣Xtm − ‹XM
tm

∣∣∣
∥∥∥∥∥
p

≤
∥∥∥∥∥ sup
t∈[0,T ]

∣∣∣Xt − ‹XM
t

∣∣∣
∥∥∥∥∥
p

by the definition of
(‹XM

tm

)
0≤m≤M

and
(‹XM

t

)
t∈[0,T ]

in Definition 3 and Definition 19.

Proof of Corollary 5. Corollary 25 implies that
∥∥ ∥∥“X − ‹X∥∥

sup

∥∥
p
≤ 2κ

(
h
∣∣ ln(h)

∣∣) 1
2 . Then the

result is a direct application of Theorem 4.

Proof of Proposition 20. For every s ∈ [0, T ], we have

Xs − ‹Xs =

∫ s

0

[
b(u,X·∧u, µ·∧u)− b

(
u, i[u]

(‹Xt0:t[u]

)
, i[u]

(
µ̃t0:t[u]

) )]
du

+

∫ s

0

[
σ(u,X·∧u, µ·∧u)− σ

(
u, i[u]

(‹Xt0:t[u]

)
, i[u]

(
µ̃t0:t[u]

) )]
dBu,

and we set

f(t) :=

∥∥∥∥∥ sup
s∈[0,t]

∣∣∣Xs − ‹Xs

∣∣∣
∥∥∥∥∥
p

.

It follows from Proposition 24-(a) that ‹X = (‹Xt)t∈[0,T ] ∈ Lp
C([0,T ],Rd)

(Ω,F ,P). Consequently,

µ̃ ∈ Pp

(
C([0, T ],Rd)

)
and ι(µ̃) = (µ̃t)t∈[0,T ] ∈ C

(
[0, T ],Pp(R

d)
)
by applying Lemma 11. Hence,

f(t) =

∥∥∥∥∥ sup
s∈[0,t]

∣∣∣Xs − ‹Xs

∣∣∣
∥∥∥∥∥
p

≤
∥∥∥
∫ t

0

∣∣∣b(s,X·∧s, µ·∧s)− b
(
s, i[s]

(‹Xt0:t[s]

)
, i[s]

(
µ̃t0:t[s]

) )∣∣∣ ds

+ sup
s∈[0,t]

∣∣∣∣
∫ s

0

[
σ(u,X·∧u, µ·∧u)− σ

(
u, i[u]

(‹Xt0:t[u]

)
, i[u]

(
µ̃t0:t[u]

) )]
dBu

∣∣∣∣
∥∥∥
p

≤
∫ t

0

∥∥∥b(s,X·∧s, µ·∧s)− b
(
s, i[s]

(‹Xt0:t[s]

)
, i[s]

(
µ̃t0:t[s]

) )∥∥∥
p
ds
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+ CBDG
d,p

[ ∫ t

0

∥∥∥
∣∣∣
∣∣∣
∣∣∣σ(s,X·∧s, µ·∧s)− σ

(
u, i[u]

(‹Xt0:t[u]

)
, i[u]

(
µ̃t0:t[u]

) )∣∣∣
∣∣∣
∣∣∣
∥∥∥
2

p
ds
]1

2
(4.21)

using Lemma 15. The first term in (4.21) can be upper bounded by

∫ t

0

∥∥∥b(s,X·∧s, µ·∧s)− b
(
s, i[s]

(‹Xt0:t[s]

)
, i[s]

(
µ̃t0:t[s]

) )∥∥∥
p
ds

≤
∫ t

0
‖b(s,X·∧s, µ·∧s)− b(s,X·∧s, µ·∧s)‖p ds

+

∫ t

0

∥∥∥b(s,X·∧s, µ·∧s)− b
(
s, i[s]

(‹Xt0:t[s]

)
, i[s]

(
µ̃t0:t[s]

) )∥∥∥
p
ds. (4.22)

For the first term in (4.22), we use Assumption (II) to obtain

∫ t

0
‖b(s,X·∧s, µ·∧s)− b(s,X·∧s, µ·∧s)‖p ds

≤
∫ t

0
L
∥∥∥1 + ‖X·∧s‖sup + sup

u∈[0,T ]
Wp(µu∧s, δ0)

∥∥∥
p
|s− s|γds

≤
(
LT + 2LT‖ sup

t∈[0,T ]
|Xt|‖p

)
hγ

≤ hγ2LTΓ(1 + ‖X0‖p), (4.23)

where we used (1.8) to obtain the last inequality. For the second term of (4.22), we have

∫ t

0

∥∥∥b(s,X·∧s, µ·∧s)− b
(
s, i[s]

(‹Xt0:t[s]

)
, i[s]

(
µ̃t0:t[s]

) )∥∥∥
p
ds

≤
∫ t

0

∥∥∥ L
[∥∥X·∧s − i[s]

(‹Xt0:t[s]

)∥∥
sup

+ dp

(
(µv∧s)v∈[0,T ], i[s]

(
µ̃t0:t[s]

))]∥∥∥
p
ds

≤ L

∫ t

0

∥∥∥
∥∥X·∧s − i[s]

(‹Xt0:t[s]

)∥∥
sup

∥∥∥
p
ds+ L

∫ t

0
dp

(
(µv∧s)v∈[0,T ], i[s]

(
µ̃t0:t[s]

))
ds

≤ L

∫ t

0

∥∥∥
∥∥X·∧s − ‹X·∧s

∥∥
sup

∥∥∥
p
ds+ L

∫ t

0

∥∥∥
∥∥‹X·∧s − i[s]

(‹Xt0:t[s]

)∥∥
sup

∥∥∥
p
ds

+ L

∫ t

0
dp

(
(µv∧s)v∈[0,T ], (µ̃v∧s)v∈[0,T ]

)
ds+ L

∫ t

0
dp

(
(µ̃v∧s)v∈[0,T ], i[s]

(
µ̃t0:t[s]

))
ds

≤ L

∫ t

0

∥∥∥ sup
v∈[0,s]

|Xv − ‹Xv |
∥∥∥
p
ds+2LTκ

(
h
∣∣ ln(h)

∣∣)12

+L

∫ t

0
sup

v∈[0,s]
Wp(µv, µ̃v)ds+3LTκ

(
h
∣∣ ln(h)

∣∣)12

≤ L

∫ t

0
f(s)ds+ LT 5κ

(
h
∣∣ ln(h)

∣∣)12 + L

∫ t

0
sup

v∈[0,s]

∥∥Xv − ‹Xv

∥∥
p
ds

≤ 2L

∫ t

0
f(s)ds+ 5LTκ

(
h
∣∣ ln(h)

∣∣)12 , (4.24)

where we used Corollary 25 to obtain the fourth inequality. Now we consider the second term of

(4.21). It follows by applying Lemma 15 and norm inequalities that

CBDG
d,p

[ ∫ t

0

∥∥∥
∣∣∣
∣∣∣
∣∣∣σ(s,X·∧s, µ·∧s)− σ

(
s, i[s]

(‹Xt0:t[u]

)
, i[s]

(
µ̃t0:t[u]

) )∣∣∣
∣∣∣
∣∣∣
∥∥∥
2

p
ds
] 1

2
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≤
√
2CBDG

d,p

[ ∫ t

0

∥∥∥|||σ(s,X·∧s, µ·∧s)− σ(s,X·∧s, µ·∧s)|||
∥∥∥
2

p
ds
] 1

2

+
√
2CBDG

d,p

[ ∫ t

0

∥∥∥
∣∣∣
∣∣∣
∣∣∣σ(s,X·∧s, µ·∧s)− σ

(
s, i[s]

(‹Xt0:t[s]

)
, i[s]

(
µ̃t0:t[s]

) )∣∣∣
∣∣∣
∣∣∣
∥∥∥
2

p
ds
]1

2
. (4.25)

For the first term in (4.25), we use the same argument as the one giving (4.23) to get

[ ∫ t

0

∥∥∥|||σ(s,X·∧s, µ·∧s)− σ(s,X·∧s, µ·∧s)|||
∥∥∥
2

p
ds
] 1

2 ≤ hγ
(√

2T + 2
√
TΓ2(1 + ‖X0‖p)

)
(4.26)

for some constant Γ2 > 0 depending explicitely on κ from (1.8) and the constants of Lemma 13

and Assumptions (I) and (II). The second term of (4.25) can be upper bounded as follows

√
2CBDG

d,p

[ ∫ t

0

∥∥∥
∣∣∣
∣∣∣
∣∣∣σ(s,X·∧s, µ·∧s)− σ

(
s, i[s]

(‹Xt0:t[s]

)
, i[s]

(
µ̃t0:t[s]

) )∣∣∣
∣∣∣
∣∣∣
∥∥∥
2

p
ds
]1

2

≤
√
2CBDG

d,p

[ ∫ t

0

∥∥∥L
[∥∥X·∧s − i[s]

(‹Xt0:t[s]

)∥∥
sup

+ dp

(
(µv∧s)v∈[0,T ], i[s]

(
µ̃t0:t[s]

))]∥∥∥
2

p
ds
] 1

2

≤ 2LCBDG
d,p

[ ∫ t

0

∥∥∥
∥∥X·∧s − i[s]

(‹Xt0:t[s]

)∥∥
sup

∥∥∥
2

p
ds
]1

2

+ 2LCBDG
d,p

[ ∫ t

0
dp

(
(µv∧s)v∈[0,T ], i[s]

(
µ̃t0:t[s]

))2
ds
] 1

2

≤ 2
√
2LCBDG

d,p

[ ∫ t

0

∥∥∥
∥∥X·∧s − ‹X·∧s

∥∥
sup

∥∥∥
2

p
ds
]1

2

+ 2
√
2LCBDG

d,p

[ ∫ t

0

∥∥∥
∥∥‹X·∧s − i[s]

(‹Xt0:t[s]

)∥∥
sup

∥∥∥
2

p
ds
] 1

2

+ 2
√
2LCBDG

d,p

[ ∫ t

0
dp

(
(µv∧s)v∈[0,T ], (µ̃v∧s)v∈[0,T ]

)2
ds
] 1

2

+ 2
√
2LCBDG

d,p

[ ∫ t

0
dp

(
(µ̃v∧s)v∈[0,T ], i[s]

(
µ̃t0:t[s]

))2
ds
] 1

2

≤ 4
√
2LCBDG

d,p

[ ∫ t

0
f(s)2ds

] 1
2
+ 2

√
2LCBDG

d,p

√
T 5κ

(
h
∣∣ ln(h)

∣∣)12 (4.27)

by a similar reasoning as the one leading to (4.24). Bringing those inequalities together, we find

f(t) ≤L 2hγ TΓ (1 + ‖X0‖p) + 2L

∫ t

0
f(s)ds+ 5LTκ

(
h
∣∣ ln(h)

∣∣)12

+ hγ
(√

2T + 2
√
T Γ2(1 + ‖X0‖p)

)
+ 4

√
2LCBDG

d,p

[ ∫ t

0
f(s)2ds

]1
2

+ 10
√
2LCBDG

d,p

√
T κ

(
h
∣∣ ln(h)

∣∣)12 . (4.28)

The conclusion follows by applying Lemma 18.
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A Proofs for Subsection 2.2

We provide in this appendix the proofs of the results from Subsection 2.2.

Proof of Proposition 8. It suffices to show that Assumption (I) is satisfied. Since the diffusion

matrix is the identity, we only need to focus on the drift coefficient. We recall from [Tom21, Proof

of Proposition 3.9] that there exists Cǫ > 0 such that for all t ∈ [0, T ] and x, y ∈ R
2,

|bǫ0(t, x)− bǫ0(t, y)|+ |Kǫ
t (x)−Kǫ

t (y)| ≤ Cǫ|x− y|, (A.1)

where for t = 0, we consider the natural extension of bǫ0 and Kǫ
t , namely,

bǫ0(0, x) = 0 and Kǫ
0(x) = 0. (A.2)

Using this, one sees easily that bǫ0 satisfy the Lipschitz condition in the sense of Assumption (I),

the continuity in time being straightforward from its definition. The continuity in time of the

second drift term

A(t, x, (µs)s∈[0,T ]) := χ

∫ t

0
e−λ(t−s)

[ ∫

Rd

Kǫ
t−s(x− y)µs(dy)

]
ds,

is deduced from the form of Kǫ
t (x). We focus now on the Lipschitz condition for this term.

We have, for all t ∈ [0, T ], x1, x2 ∈ R
d and (µt)t∈[0,T ], (νt)t∈[0,T ] in C([0, T ],Pp(R

d)), by triangle

inequality,

∣∣∣A(t, x1, (µs)s∈[0,T ])−A(t, x2, (νs)s∈[0,T ])
∣∣∣

≤ χ
∣∣∣
∫ t

0
e−λ(t−s)

[ ∫

Rd

(
Kǫ

t−s(x1 − y)−Kǫ
t−s(x2 − y)

)
µs(dy)

]∣∣∣ds

+ χ
∣∣∣
∫ t

0
e−λ(t−s)

∫

Rd

Kǫ
t−s(x2 − y)

(
µs − νs

)
(dy)

∣∣∣ds

:= B1
t +B2

t ,

the last equality standing for definitions of B1
t and B2

t . Using Jensen’s inequality and (A.1), we

obtain

B1
t ≤ χ

λ
Cǫ|x1 − x2|(1 − e−λt) ≤ χ

λ
Cǫ|x1 − x2|.

For the second term, we recall the dual representation of the Wasserstein distance W1 (see e.g.

[Edw11], [Vil09, Remark 6.5]), namely, for every µ, ν ∈ P1(R
d),

W1(µ, ν) = sup
{∫

Rd

ϕdµ −
∫

Rd

ϕdν
∣∣∣ ϕ : Rd → R Lipschitz continuous

with Lipschitz constant [ϕ]Lip ≤ 1
}

and the fact that for every µ, ν ∈ Pp(R
d), p ≥ 1, W1(µ, ν) ≤ Wp(µ, ν) (see e.g. [Vil09, Remark

6.6]). This implies

B2
t ≤ χ

∫ t

0
e−λ(t−s)CǫWp(µs, νs)ds ≤

χ

λ
Cǫ dp

(
(µs)s∈[0,T ], (νs)s∈[0,T ]

)
,

which concludes the proof that the drift coefficient satisfies Assumption (I), and the proposition

follows by applying Theorem 1.
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Proof of Proposition 9. We treat the two terms of the drift separately. Again from [Tom21, Proof

of Proposition 3.9], there exists Cǫ > 0 such that for all t ∈ [0, T ], x ∈ R
d,

∣∣Kǫ
t (x)

∣∣ ≤ Cǫ, (A.3)

where for t = 0, we consider the same extension of Kǫ
t as in (A.2).

Step 1: Term involving bǫ0. Note that, for t ∈ [0, T ], x ∈ R
d,

bǫ0(t, x) = χe−λt

∫

Rd

∇c0(y) 1
t+ǫ

1
2πe

−|x−y|2
2t dy.

Hence

∂tb
ǫ
0(t, x) = −λbǫ0(t, x)− χe−λt

∫

Rd

∇c0(y) 1
(t+ǫ)2

1
2πe

−|x−y|2
2t dy

− χe−λt

∫

Rd

∇c0(y) 1
t+ǫ

|x−y|2
4πt2

e−
|x−y|2

2t dy.

From (A.3), the only singularity at t = 0 is on the last term on the right-hand side, and easily

handled by considering the change of variable y → (x − y)/
√
t from R

2 to R
2. Using that

c0 ∈ H1(Rd) ∩W 1,∞(Rd), we deduce that for all t ≥ 0, x ∈ R
d,

|∂tbǫ0(t, x)| ≤ C

for some constant C > 0 independent of t.

Step 2: Term in A. With the same notations as before, we consider, for 0 ≤ u ≤ t, x ∈ R
d,

(µt)t∈[0,T ] ∈ C
(
[0, T ],Pp(R

d)
)
,

A
(
t, x, (µs)0≤s≤T

)
−A

(
u, x, (µs)0≤s≤T

)

= χ
{∫ t

u
e−λ(t−s)

∫

Rd

Kǫ
t−s(x− y)µs(dy)ds (A.4)

+

∫ u

0

[
e−λ(t−s)

∫

Rd

Kǫ
t−s(x− y)µs(dy)− e−λ(u−s)

∫

Rd

Kǫ
u−s(x− y)µs(dy)

]
ds.

}

Using (A.3) leads to

∣∣∣
∫ t

u
e−λ(t−s)

∫

Rd

Kǫ
t−s(x− y)µs(dy)ds

∣∣∣ ≤ C2|t− u|

for some constant C2 > 0. For the second term on the right-hand-side of (A.4), we notice that

the function defined for t ≥ 0, x ∈ R
d

g(t, x) = e−λt x
(t+ǫ)2 e

−|x|2
2t

is such that

∂tg(t, x) =
(
− λ− 2

(t+ǫ)

)
g(t, x) − e−λt x|x|2

2t2(t+ǫ)2
e−

|x|2
2t

so that ∣∣∂tg(t, x)
∣∣ ≤ C2

hence g is Lipschitz in time. We conclude that Assumption (II) holds with γ = 1, and applying

Theorem 4, the result follows.
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