
HAL Id: hal-03842974
https://hal.science/hal-03842974

Submitted on 21 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Aladin Lite v3: Behind the Scenes of a Major Overhaul
Matthieu Baumann, Thomas Boch, François-Xavier Pineau, Pierre Fernique,

Caroline Bot, Mark Allen

To cite this version:
Matthieu Baumann, Thomas Boch, François-Xavier Pineau, Pierre Fernique, Caroline Bot, et al..
Aladin Lite v3: Behind the Scenes of a Major Overhaul. Astronomical Data Analysis Software and
Systems XXX. ASP Conference Series, Nov 2020, virtual conference, Spain. pp.7. �hal-03842974�

https://hal.science/hal-03842974
https://hal.archives-ouvertes.fr


Aladin Lite v3: behind the scenes of a major overhaul

Matthieu Baumann1 and Thomas Boch1

1Université de Strasbourg, CNRS, Observatoire astronomique de Strasbourg,

Strasbourg, France; matthieu.baumann@astro.unistra.fr

thomas.boch@astro.unistra.fr

Abstract. Since its first version in 2013, Aladin Lite has gained significant traction
and usage as an HiPS viewer running in the browser. Designed to be easy to embed,
it is now used in more than fifty websites and portals in the professional astronomy
community. Aladin Lite has been adopted as the sky visualisation component of popular
applications: ESA Sky, ESO Science Archive or ALMA Science Archive.

We present a major overhaul of Aladin Lite taking advantage of the GPU with
WebGL, and which responds to requests of users, developers and integrators in a con-
text where browser-based applications and science analysis platforms are increasingly
important.

While keeping the strengths of the original code, Aladin version 3 will introduce
several new features: support of multiple projections (Aitoff, Mollweide, Orthographic,
Mercator), support of FITS tiles, display of FITS images, heatmaps visualisation of
catalogue data, improved rendering pipeline and coordinates grids. We will give an
overview on the architecture used to develop these new functionalities, based on ex-
isting Rust code transpiled to WebAssembly, a portable high-performance low-level
bytecode for the web supported in all modern browsers. We will also outline the tech-
nical challenges and limitations we encountered. Short video footage sequences will
demonstrate the existing prototype throughout the presentation.

These improvements have been partially supported by the ESCAPE project and
will also benefit to ipyaladin, the widget enabling the usage of Aladin Lite in Jupyter
notebooks.

1. Features details

1.1. Multiple Screen Projections

The support of multiple screen projections, especially all sky ones have been imple-
mented. This includes Hammer-Aitoff, Arc, Gnomonic (i.e. TAN), Mercator and Moll-
weide projections. These projections are not rendered tile by tile as in many sky/map
viewers, instead it uses a ray-tracing-like approach. Each pixel colour is computed in-
dependently from its surrounding neighbours. This condition of independence makes
the use of GPUs very adapted. For each pixel of the screen, the algorithm follows:

1. Unproject the screen pixel coordinates to get its world position with respect to
the projection chosen. P−1(sx, sy) = (wx,wy,wz)

T

2. Compute the HEALPix cell index hi where the world position is located. δx δy
offset positions within the cell are also computed.

1



2 Baumann and Boch

Figure 1. Aladin Lite with all its new coming features

3. Retrieve the good tile texture based on the HEALPix cell index hi computed
during the previous step.

4. Within the tile texture, get the pixel colour located at δx δy inside the texture.

1.2. Blending of Multiple Image Surveys

Aladin Lite, like Aladin desktop, renders image surveys formatted by the HiPS (Hierar-
chical image Progressive Survey) standard (Fernique et al. 2017). The coming overhaul
of Aladin Lite enables the rendering of FITS tile HiPSes thanks to a basic FITS parser
implemented in Rust using the nom crate. The support of FITS tiles is a great improve-
ment, allowing the user to see much more dynamic in those images than given in any
compressed ones (JPG, PNG, ...).

On top of that, thanks to WebGL and as the tile textures are available from the
GPU, it is possible to change the screen pixels in real-time. Common operations are in
order:

1. cutout parameters tuning (fig 2), allowing to see more background, change the
contrast/luminosity.

2. transfer function correction of the raw values giving grayscale pixel values (fig
3).

3. color mapping of the grayscale pixel values (fig 4).

Finally, as image surveys are often given per frequency bands, one is now able to blend
multiple surveys on the client and in real time!

1.3. Up to 1 Million Rows Catalogue Rendering

GPUs are very efficient for doing repetitive rendering tasks. Common APIs such as
OpenGL, WebGL and more recently WebGPU feature "instancing" techniques boosting



Aladin Lite v3 3

Figure 2. Effect of cutout parameters. Left: Too much background Center: Good
balance Right: Higher details at the center of galaxy but less brightness

Figure 3. Transfer function effect on the raw values. Left: H : x → x Center:

H : x→
sinh−1(10×x)

3
Right: H : x→

ln(1000×x+1)

ln(1000)

Figure 4. Grayscale values mapped to a colormap. Left: Rainbow Center: Red
Temperature Right: Constant green

the performance of rendering a specific mesh at different locations. This is very adapted
for rendering simple primitives a thousand times such as simple catalogue sources. The
catalogue rendering implements the following features:

• Catalogue sources downloaded through an async JavaScript TAP query.

• HEALPix index array built from the position array, allowing fast and cache-
resident retrievals of the sources lying in the field of view (Górski et al. 2005).

• Heat-map visualisation of the sources making visible high density spots.



4 Baumann and Boch

Figure 5. APOGEE catalogue sources heat-map, 183232 sources

2. Rust, WebAssembly and WebGL

The Rust system programming language has been chosen for this project. Rust is a
compiled, garbage collector free language. In that sense, it is similar to C++ but re-
lies heavily on the RAII principle which is part of the Rust compiler. Ownership and
borrowing rules have been added to the Rust compiler, making Rust its very unique sig-
nature. The compilation phase will hence prevent you from e.g. returning a reference
to a resource owned by the current function, ...

On top of that, Rust can be compiled to Web-Assembly, a portable bytecode de-
signed for high performance applications. Web-Assembly standard is part of the W3C
making it reliable for developing applications for the long term support.

The wasm_bindgen crate makes the interfacing with the JavaScript sandbox pos-
sible. From Rust, one can export functions/classes to JavaScript, manipulate the DOM
and access the WebGL API.

The WebGL API makes available your GPU from the browser. It offers an API
similar to OpenGL and is supported by 98-99% of user’s browsers.

Acknowledgments. This work has been partly supported by the ESCAPE project
(the European Science Cluster of Astronomy & Particle Physics ESFRI Research In-
frastructures) that has received funding from the European Union’s Horizon 2020 re-
search and innovation programme under the Grant Agreement n. 824064.

References

Fernique, P., Allen, M., Boch, T., Donaldson, T., Durand, D., Ebisawa, K., Michel, L., Sal-
gado, J., & Stoehr, F. 2017, HiPS - Hierarchical Progressive Survey Version 1.0, IVOA
Recommendation 19 May 2017. 1708.09704

Górski, K. M., Hivon, E., Banday, A. J., Wandelt, B. D., Hansen, F. K., Reinecke, M., &
Bartelmann, M. 2005, ApJ, 622, 759. astro-ph/0409513


