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Self-interacting random walks are endowed with long range memory effects that emerge from the
interaction of the random walker at time t with the territory that it has visited at earlier times t′ < t.
This class of non Markovian random walks has applications in a broad range of examples, ranging
from insects to living cells, where a random walker modifies locally its environment – leaving behind
footprints along its path, and in turn responds to its own footprints. Because of their inherent
non Markovian nature, the exploration properties of self-interacting random walks have remained
elusive. Here we show that long range memory effects can have deep consequences on the dynamics
of generic self-interacting random walks ; they can induce aging and non trivial persistence and
transience exponents, which we determine quantitatively, in both infinite and confined geometries.
Based on this analysis, we quantify the search kinetics of self-interacting random walkers and show
that the distribution of the first-passage time (FPT) to a target site in a confined domain takes
universal scaling forms in the large domain size limit, which we characterize quantitatively. We
argue that memory abilities induced by attractive self-interactions provide a decisive advantage
for local space exploration, while repulsive self-interactions can significantly accelerate the global
exploration of large domains.

I. INTRODUCTION

Random walk theory provides a natural framework to
model transport processes at all scales. Beyond the his-
torical examples provided by particle transport in simple
fluids at the molecular and supramolecular scales [1–3],
it has also proved more recently to powerfully describe
the dynamics of more complex, passive or active, larger
scale systems – ranging from polymers, molecular mo-
tors or self-propelled colloids to cells or animals, whose
dynamics take place in potentially complex environments
[4–10]. In the latter case, the coupling of the internal de-
grees of freedom of the random walker to those of the en-
vironment generically leads to complex correlations and
require a non Markovian description of the evolution over
time of the position X(t) of the random walker. Taking
into account such memory effects remains a theoretical
challenge even if several examples of model systems have
been analyzed [11–18].

In this paper we focus on a broad class of such
non Markovian random walkers, where memory effects
emerge from the interaction of the random walker at
time t with the territory that it has visited at earlier
times t′ < t [19–27]. This class of self-interacting random
walks has clear applications in a broad range of examples
where a random walker modifies locally its environment
– leaving behind footprints along its path, and in turn
responds to its own footprints [28, 29]. Such behaviours
have been reported for ants depositing pheromones along
their path [30], larger territorial animals [31], and have
been identified quantitatively in the case of living cells

that chemically modify and remodel the extra-cellular
matrix [32, 33].

More precisely, self-interacting random walks can be
defined as nearest neighbor random walks on a d-
dimensional lattice, for which the probability to jump
to a neighboring site i at time t is proportional to a
weight function w(ni) that depends on the number of pre-
vious visits ni of the random walker to site i up to time
t (see Fig.1). Writing w(n) = e−V (n), the process has
the following clear interpretation : upon visiting site i,
the random walker deposits a signal that in turn modifies
the local energy landscape V experienced by the walker.
Of note, in contrast to autochemotactic or autophoretic
systems [34, 35], the deposited signal is assumed to be
static and permanent, but not diffusive, which leads as
we argue below to long lived memory effects. To cover
a broad spectrum of possible behaviours, we will con-
sider both attractive (V decreasing) and repulsive (V
increasing) self-interacting random walks, with effective
potentials ranging from linear (V (n) = βn) to bounded
(V (n) = βH(n)), where H(n) denotes the Heaviside
function [22, 24–27, 36].

Despite their relevance in various contexts, the prop-
erties of self-interacting random walks remain poorly un-
derstood, even if significant results have been obtained in
the mathematical [22, 24, 27, 37] and physical communi-
ties [19–21, 23, 25, 26, 28, 29, 38–41]. This stems from the
strongly non Markovian nature of self-interacting random
walks, whose dynamics depends on the set of number of
visits (or local times) {ni}i∈Zd at all sites i of the lattice
at time t, and therefore on the full trajectory {X(t′)}t′≤t
of the random walker up to time t. This dependence leads
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Figure 1. Aging and first-passage times for self-interacting
random walks in infinite space and in confined domains. Ex-
amples of 2d self-interacting trajectories (TSAW model, see
text) a. The random path from t = 0 to T generates the local
energy landscape V ((x, y), t) (proportional to the total num-
ber of visits to (x, y) until t), plotted along the vertical axis
z. This dynamics can lead to long range memory effects and
aging at all time scales : the trajectory after T plotted in c.
explicitly depends on the full territory visited by the walker
until T . In confined domains b., the statistics of visits to a
given site is radically modified by confinement : the dynamics
of self-interacting random walks is thus geometry dependent.
d. In this article, we aim at quantifying space exploration
and search kinetics of confined self-interacting random walks.

to memory effects at all time scales, which can have im-
portant consequences depending on the potential V (n)
and space dimension d, such as anomalous diffusion –
defined as the anomalous scaling of the mean squared
displacement (MSD) :

〈X2(t)〉 ∝
t→∞

t2/dw (1)

with the walk dimension dw 6= 2, or aging – that can be
defined as the dependence of increments

∆2(T, t) ≡ 〈(X(T + t)−X(T ))2〉 ≡ 2D(T, t)t2/dw (2)

on the observation time T , where D(T, t) is the effective
time dependent diffusion coefficient. As we recapitulate
below, the analytical determination of dw remains a theo-
retical challenge ; so far it has been obtained analytically
or numerically for different examples of V (n) and d, but
even its numerical determination remains debated for at-
tractive linear V (n) for d = 2. In turn, the aging proper-
ties of ∆2(T, t) have not been studied until recently [40]
and will be analyzed in this paper.

A central question that arises in random walk theory
is the quantification of space exploration by a random
walker [42–45]. Beyond the MSD and increments of the
position, which provide a first quantification of the dy-
namics of spreading in space, several observables have
been proposed to quantify space exploration. Among

those, the first-passage time (FPT) and its distribution
have proved to play a key role [17, 42, 43, 46–51]. Indeed,
beyond being a prominent technical tool of random walk
theory that gives access to various observables, it quan-
tifies the kinetics of general target search problems at all
time scales, and as such has a broad range of applica-
tions from diffusion limited reactions to animal foraging
behaviour.

In infinite space, the first-passage statistics to a tar-
get follow two very distinct behaviours depending on the
so-called type of the random walk [2]. In the compact
or recurrent case, the survival probability S(t), i.e. the
probability that the target has not been found until time
t typically vanishes at long time scales as

S(t) ∝
t→∞

t−θ, (3)

where θ is the persistence exponent, which has been the
focus of numerous studies [52]. In the non compact or
transient case, the survival probability admits a non zero
large time limit, which defines the hitting probability Π
[2, 42] according to S →

t→∞
1 − Π. In turn, the hitting

probability is expected to decrease with the distance r
from the starting position of the random walk and the
target radius a according to

Π ∝
r→∞

(a/r)ψ. (4)

The corresponding transience exponent ψ was recently
introduced in [50, 53] and parallels the persistence expo-
nent of recurrent processes. In spite of their pivotal role
in quantifying first-passage properties of random walks,
determining analytically the exponents θ, ψ for general
non Markovian, aging processes remains a theoretical
challenge [52, 54]. In particular, they remain unknown
analytically for most examples of self-interacting pro-
cesses, with the exception of [40] ; they will be analyzed
numerically and analytically in this paper.

In the case of geometrically confined spaces, which is
relevant to most of practical situations where the space
accessible to the random walker is ultimately bounded,
space exploration is known to be radically different. In
particular, a target is eventually found with probabil-
ity one for both compact and non compact processes,
and the broad tails of the FPT distribution are generally
suppressed [47, 48, 50, 55]. FPT statistics in confine-
ment has been the subject of intense activity over the
last decade, and general results have been obtained for
general scale-invariant Markovian processes [47, 55] or
Gaussian non Markovian processes [17]. Notably, more
recently a universal scaling form of the FPT distribution
was derived in the limit of large confining volume for a
class of scale-invariant non Markovian processes that dis-
play power law aging [50] ; importantly, the scaling of the
FPT distribution in confinement was found in this case
to be fully determined asymptotically by the exponents
dw, θ, ψ (in addition to the space dimension d), which
are all defined in infinite space and independent of the
geometric confinement.
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Quantifying space exploration of self-interacting ran-
dom walks in confined geometry brings in this context a
new conceptual challenge. Indeed, qualitatively it is ex-
pected that geometric confinement will modify the statis-
tics of the numbers of visits {ni} at the sites i of the con-
fined domain over time and thus the effective potential
V (ni) experienced by the walker, thereby impacting the
very dynamics of the process, as compared to that in infi-
nite space. This can be illustrated by the simple example
of the normal random walk for d = 3 : in infinite space,
the mean number of visits 〈ni〉 to any site i converges to
a finite value for t → ∞, whereas it diverges as 〈ni〉 ∝ t
in a confined domain. In the case of self-interacting ran-
dom walks, the kinetics of space exploration thus directly
feeds-back to the dynamics of the process in a geometry
dependent manner, which suggests that key intrinsic fea-
tures of the dynamics, such as increments (quantified by
D(T, t) and dw), persistence and transience exponents
dw, df could in fact be different in confined and infinite
geometries. This in particular makes earlier approaches
to determine FPT statistics inapplicable, and calls for
new theoretical tools to quantify the space exploration
of confined self-interacting random walks ; this is at the
core of this paper.

Our findings can be summarized as follows. We show
that universal scaling forms of the FPT distributions of
general self-interacting random walks in confinement can
be derived in the large volume limit, by generalizing the
approach introduced in [50]. Because of the intrinsic ag-
ing properties of self-interacting random walks, differ-
ent cases emerge depending on the preparation proto-
col. For "fresh" initial conditions, for which the random
walker starts the search for a target in a domain that has
never been explored, we find that the exponents dw, θ, ψ
that determine the FPT distribution are generally iden-
tical to those defined in infinite space : in other words,
the FPT distribution in confinement can be asymptoti-
cally predicted from the knowledge of he process in in-
finite space only. This is quite remarkable because, as
we show, geometric confinement ultimately deeply modi-
fies the dynamics of the process and can even change the
corresponding exponents dw,c, θc, ψc defined in confine-
ment. In contrast, for aged initial conditions, for which
the random walker has been extensively wandering in the
domain before the search starts, the exponents that de-
termine the FPT distribution are those defined in con-
finement dw,c, θc, ψc , and can thus be different from the
classical infinite space exponents dw, θ, ψ. In that case,
the process in confinement must therefore be character-
ized to determine the FPT distribution. In all cases,
scaling functions are not universal and are process de-
pendent. This analysis is made possible by a system-
atic quantitative characterization of the aging properties
(quantified by D(T, t) and dw) and exponents θ or ψ of
self-interacting random walks in both confined and infi-
nite geometries, which highlights the impact of geomet-
ric confinement on their dynamics. Finally, this paper
thus proposes a unified, quantitative analysis of aging,

exploration and FPT statistics of self-interacting random
walks in confined and infinite geometries.

The paper is organized as follows. First, we briefly
define the main classes of attractive and repelling self-
interacting walks and recall their walk dimension dw
when it is known. In particular we provide a general
criterion for attractive walks that leads to bounded ex-
ploration (dw = ∞), or to the regime of strong attrac-
tion (θ =∞, to be defined below) ; in this case the FPT
problem in confinement is trivially equivalent in the large
volume limit to the problem in infinite space. Second, we
characterize quantitatively the increments and their ag-
ing behavior, as well as the persistence and transience
exponents θ, ψ in both confined and infinite geometries.
Third, based on this analysis, we derive the asymptotic
FPT distribution in confinement for both compact and
non compact self-interacting random walks for fresh ini-
tial conditions. Last, we discuss the impact of aging on
FPT statistics by analyzing the case of aged initial con-
ditions, which allows us to assess the impact of memory
effects on target search kinetics of self-interacting random
walks.

II. DEFINITIONS AND MAIN CLASSES OF
SELF-INTERACTING RANDOM WALKS

As stated above, self-interacting random walks can
be defined as nearest neighbor random walks on a d-
dimensional lattice, for which the probability to jump to
a neighboring site i at time t is proportional to a weight
function w(ni) that depends on the number of previous
visits ni of the random walker to site i up to time t. De-
noting w(n) = e−V (n), the process has the following clear
interpretation : upon visiting site i, the random walker
deposits a signal that in turn modifies the local energy
landscape V experienced by the walker. Different classes
of random walks are obtained depending on the choice of
weight function w(n) ; we remind below the main known
results concerning the MSD of these processes.

A. The True Self Avoiding Walk (TSAW) :
w(n) ∝ e−βn

In this model [19, 22, 56, 57] the effective potential
V (n) depends linearly on the local time n. For β < 0 the
interaction is attractive, and leads (almost surely), as
we show below, to the complete trapping of the random
walker on a finite set of sites for all d, and thus formally
to dw =∞:

〈X(t)2〉 →
t→∞

C, (5)

where C is a d dependent constant. For β > 0 the
interaction is repulsive and the random walker qualita-
tively avoids its own path. It has been shown that this
leads to the following scaling of the MSD for t → ∞
[19, 38, 56, 57]:
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• d = 1 : 〈X(t)2〉 ∝ t
4
3 , dw = 3

2

• d = 2 : 〈X(t)2〉 ∝ t ln(t)α, dw = 2, α ≈ 0.5

• d = 3 : 〈X(t)2〉 ∝ t, dw = 2

Of note, the scaling of the MSD is thus anomalous (su-
perdiffusive) for d ≤ 2 because of self-repulsion, while it
is diffusive for d > 2.

B. The Sub-Exponential Self Repelling Walk
(SESRW) : w(n) ∝ e−βn

k

This model [21, 22, 58] extends the TSAW to effec-
tive potentials V (n) that depend sublinearly on the local
time n: V (n) = βnk with 0 < k < 1. Similarly to the
TSAW, in the attractive case (β < 0), the random walker
is (almost surely) trapped for all d, and thus dw = ∞.
For β > 0, the effect of self avoidance is clearly weaker
than for the the TSAW ; it has however been shown to
still lead to superdiffusion for d = 1 [21, 58]. This can be
summarized as follows :

• d = 1 : 〈X(t)2〉 ∝ t
2(1+k)
(2+k) , dw = 2+k

1+k

• d = 2 : 〈X(t)2〉 ∝ t ln(t)αk , dw = 2, αk ≥ 0

• d = 3 : 〈X(t)2〉 ∝ t, dw = 2

C. The self attractive random walk (SATW) :
w(n) ∝ e−βH(n)

In this model [23–27, 59, 60], the effect of self in-
teraction is assumed to saturate with the number of
visits, so that the effective potential V (n) is bounded for
n → ∞. For the sake of simplicity, it is assumed in the
SATW model that V (n) = βH(n), with H(0) = 0 and
H(n ≥ 1) = 1. Note that the SATW can thus be seen
as the k → 0 limit of the SESRW defined above. For
β > 0, self-avoidance is insufficient to modify the scaling
of the MSD, which remain diffusive for all d :

〈X(t)2〉 ∝ t, dw = 2. (6)

In the attractive case β < 0, the random walker is never
trapped. For d = 1 the MSD satisfies [23, 59] :

〈X(t)2〉 ∝ t, dw = 2, (7)

while for d = 3 different behaviors emerge depending on
the value of the parameter β

• |β| < |βc| : 〈X(t)2〉 ∝ t, dw = 2

• |β| > |βc| : 〈X(t)2〉 ∝ t1/2, dw = 4.

For d = 2, the scaling of the MSD is still debated [25, 26];
while the existence of a subdiffusive regime with dw = 3
is consistently observed numerically, the existence of a
transition for a critical value β′c 6= 0 to a diffusive regime
with dw = 2 for |β| < |β′c| has been proposed, but was
later questioned in [25].

Figure 2. General properties of attractive self-interacting
random walks. a. Example of trapped trajectory performed
by a 1d attractive TSAW random walker (blue), compared to
a diffusive trajectory of a 1d attractive SATW random walker
(red). b. For d > 1, the SATW is subdiffusive for |β| > |βc|
(blue sample trajectory), and diffusive for |β| < |βc| (green
sample trajectory). Here d = 3 and thus |βc| 6= 0 [25]. c.
Aging of the increments for the subdiffusive SATW (dw = 3
for d = 2) normalized by the expected subdiffusive scaling
at long times. Each curve corresponds to a fixed value of
T . Note that the increments are diffusive for t � T . d. In
the subdiffusive regime, the SATW performs an extremely
compact exploration of space : the survival probability S(t)
decays faster than any powerlaw (θ =∞).

III. ATTRACTIVE SELF-INTERACTING
RANDOM WALKS: TRAPPING AND

SUBDIFFUSION

Qualitatively, attractive self-interacting random walks
are attracted by their own path. Strikingly, this can lead
to the full trapping of the walker within a finite set of sites
in the t → ∞ limit, and therefore to a bounded MSD.
This effect was demonstrated mathematically [27, 61] for
1–dimensional attractive self-interacting random walks
and later generalized to arbitrary d [36, 62–64] : more
precisely, these results state that if

∑∞
n=1 w(n)−1 = ∞

the random walker is free and will visit infinitely many
sites of the lattice (note that the limit case w(n) ∝
1/n must be discussed independently). Conversely, for∑∞
n=1 w(n)−1 <∞, the random walker visits only a finite

set of sites and the MSD is bounded (see Supplementary
Information SI). This yields immediately that attractive
TSAW and SESRW lead to the full trapping of the ran-
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dom walker and to a bounded MSD for all d (see Fig.2 ).
Among the classes of attractive self-interacting random
walks introduced above, the only case that leads to a non
trivial exploration of space is thus the SATW, for which
the MSD diverges for t → ∞ (see Fig.2). Despite the
diverging MSD, the effect of attractive self interactions
can still have important consequences on the dynamics
of space exploration; in particular, for d = 2 and d = 3
(for |β| > |βc|) the process is subdiffusive [25] and we
find that the survival probability S(t) in infinite space
decays faster than any power-law, so that θ = ∞ (see
Fig.2 and SI). In this case, determining the FPT distri-
bution starting at a distance r from the target F (t, r, R)
in confined domains of volume V ∝ Rd is straightfor-
ward in the large volume limit because all moments of
F (t, r, R) have a finite limit, so that:

F (t, r, R) ∼
t→∞

−dS
dt
. (8)

F (t, r, R) is thus asymptotically independent of R. Defin-
ing the rescaled variable η = t/rdw , a scaling argument
finally indicates that its asymptotic distribution can be
simply written:

F̄ (η, r,R) = h(η) (9)

where h is an undetermined scaling function. In the rest
of this paper, we thus focus on diffusive attractive and
all repulsive self-interacting random walks, for which de-
termining the FPT distribution F (t, r, R) in confined do-
mains is non trivial.

IV. IMPACT OF CONFINEMENT ON
INCREMENTS, θ, ψ

In this section, we characterize quantitatively the ex-
ploration properties of diffusive attractive self-interacting
random walks and repulsive self-interacting random
walks. We focus on the following observables : incre-
ments, and survival probability characterized by θ (for
compact processes) and ψ (for non compact processes)
in both infinite and confined geometries. We show nu-
merically and provide heuristic arguments to justify that
geometric confinement can deeply and non locally mod-
ify the dynamics of the process, beyond imposing locally
reflecting boundary conditions. As can be expected, it
is useful to analyse separately compact and non com-
pact processes. While this property is known to impact
many properties of random walks, it is expected to play
a prominent role in the case of self-interacting random
walks, whose dynamics is controlled by the number of
visits n at each site.

A. Compact (recurrent) processes

The compact case is exemplified by the 1d (repulsive)
TSAW, the 1d (repulsive) SERW and the 1d (attractive

or repulsive) SATW. In the compact case, the mean num-
ber of visits 〈ni〉 to a given site diverges with time T by
definition even in infinite space. The local energy land-
scape V (ni) experienced by the random walker therefore
depends on the observation time T at all time scales. We
argue below that this leads to aging of the increments in
infinite space at all time scales, ie a dependence on T of
the effective diffusion coefficient D(T, t) defined in (2) for
all T . In a confined domain, the dynamics of the random
walk starting typically from the bulk is not modified by
confinement up to an observation time T ∼ Rdw , where
R is the typical linear size of the domain; in this regime
we therefore expect the increments to be identical in both
confined and infinite geometries (note that for the same
reason, in confined domains the analysis of increments is
restricted to t � Rdw). For T & Rdw , confinement does
modify the statistics of visits to a given site; however the
number of visits to a given site still diverges with time T ,
even if the explicit dependence on T is different in con-
finement and in infinite space. Aging of the increments
is thus expected in confinement as well.

To make this analysis quantitative, it is useful to write
V (ni) as a Taylor series:

V (ni) = V (n̄) +
∑
p≥1

V (p)(n̄)
(δni)

p

p!
, (10)

where n̄ denotes the number of visites to a given site av-
eraged over a spatial scale l � T 1/dw and ni = n̄ + δni.
The very definition of the dynamics of self-interacting
random walks shows that it depends only on the spatial
fluctuations of V ; increments are thus independent of
the site independent contribution V (n̄) for t . ldw � T .
In the case of the SATW and the SESRW, one has
V (p)(n̄) ∝ n̄k−p by definition (we remind that for the
SESRW V ∝ nk, where k → 0 yields the SATW) ; in ad-
dition, a mean field argument (see SI) yields the scaling
δni ∝ n̄(1−k)/2. This shows that in the regime 1� t� T
all site dependent terms V (p)(n̄)(δni)

p/p! for p ≥ 1 ap-
pearing in (10) vanish in the limit T → ∞ in both
confined and infinite geometries because n̄ → ∞. Self-
interactions are thus eventually negligible in this limit:
the SATW and the SESRW are equivalent to a simple
random walk and one has identically ∆2(T, t) ∼ t in
both confined and infinite geometries. In the case of
the TSAW, one has V ′(n̄) = β and V (p)(n̄) = 0 for
p > 1, independently of n̄. Using in addition the fact
that the spatial fluctuations δni reach a steady state in
the limit n̄ → ∞ (see [39] and SI), this shows that in
the regime 1 � t � T the dynamics of increments is
identical in both confined and infinite cases ; it can be
shown to satisfy ∆2(T, t) ∝ t2/dw . Last, in the regime
1 � T � t, one recovers the scaling of the MSD in all
cases : ∆2(T, t) ∝ t2/dw .

These results can be recapitulated for all examples by
the following scaling forms, which are identical in con-
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fined and infinite geometries :

1� t� T : ∆2(T, t) ∼ 2D<(t)t2/dw

1� T � t : ∆2(T, t) ∼ 2D>t
2/dw , (11)

where the constant D> and function D<(t) are process
dependent. Numerical simulations confirm this analysis
in all examples of compact self-interacting random walks
(see Fig.3) : increments display aging (as seen by a de-
pendence of ∆2 on the observation time T ), and their
dynamics is found to be the same in infinite space and
in confined domains in both regimes t, T � Rdw and
T & Rdw , t� Rdw .

In contrast to the dynamics of increments, we now ar-
gue that the persistence exponent θ can be modified by
confinement. Following [65], we introduce here the per-
sistence exponent θc in confinement that can be defined
by

S(t|T ) ∝ t−θc (12)

for T � Rdw and 1 � t � Rdw , where S(t|T ) denotes
the (survival) probability that the random walker has
not reached the target between T and T + t. It is known
that θ depends on the dynamics of increments at all time
scales [52], and not only on their long time asymptotics.
The exponents θ and θc can thus be different, as was
earlier found in [65] for models of fluctuating interfaces,
because θ involves the dynamics of increments at all time
scales T, t, while the definition of θc only involves the time
scales t � Rdw and T � Rdw . This is straightforwardly
confirmed in the case of the 1d SATW. It is clear that
for T � Rdw , the confined SATW is equivalent to a
simple random walk (in this regime all sites have been
visited and V (ni) = β for all sites), so that θc = 1/2; in
contrast, it was shown recently that in infinite space one
has θ = e−β/2 [40]. In the case of the SERW, the above
analysis shows that in the regime T � 1, the process is
also equivalent to a simple random walk, so that θc = 1/2
; in contrast, we find numerically θ 6= θc. Note however
that it is found numerically that θc ≈ θ ≈ 1 − 1/dw for
the TSAW for all β > 0.

B. Non compact (transient) processes

The non compact case is exemplified by the 3d (repul-
sive) TSAW, the 3d (repulsive) SERW and the 3d (diffu-
sive attractive or repulsive) SATW. In the non compact
case, in infinite space, a random walker visits only a frac-
tion of sites, and ultimately only makes on average a finite
number of visits to a given site i. The local energy land-
scape V (ni) therefore reaches a stationary state at large
observation time T , so that aging, if any, is expected to
be transient : D(T, t) is asymptotically independent of
T for T � 1. This is indeed observed numerically in all
examples of non compact self-interacting random walks:
increments display weak aging at short time scales t, and
cross-over to diffusive increments with numerically close

diffusion coefficients at larger t for all observation times
T (see Fig.4). The effect of sel-interaction is thus moder-
ate for non compact self-interacting random walks, which
are all eventually diffusive. This can be heuristically jus-
tified as follows: at time t, the typical volume covered
scales as td/dw , while the number of visited sites scales as
t, so that the local fraction of sites where the local energy
landscape is non zero eventually vanishes for t → ∞ as
t1−d/dw . Self interactions are thus negligible in the large
time limit for non compact processes, which are diffusive
in this limit (note however that the diffusion coefficient
is non trivial and depends on the small t dynamics).

The case of confined geometries is radically different
for non compact processes, because confinement leads to
a divergence of the number of visits to a given site, and
has thus important consequences at time scales T & Rdw .
In this regime, the above reasoning developed after (10)
for compact processes in fact applies also to confined non
compact processes, because the locally averaged number
of visits n̄ diverges in both cases. In particular, this yields
similarly that in the regime 1 � t � T both the non
compact SATW and the non compact SESRW are equiv-
alent to a simple random walk, so that ∆2(T, t) ∼ t. In
the case of the confined non compact TSAW, one finds
numerically (see also [19, 37] and SI for an heuristic ar-
gument) that the spatial fluctuations δni reach a steady
state in the limit T → ∞. This, together with (10),
allows us to conclude that in this limit increments are
similar (scaling wise) to the infinite space case and thus
diffusive and independent of T (see SI).

Finally, for all confined non compact self-interacting
random walks, these results can be recapitulated as fol-
lows for R� 1:

T . Rdw : ∆2(T, t) ∼
T�1

2D<(t)t, D<(t) →
t�1

D<

T & Rdw : ∆2(T, t) ∼
t�1

2D>(T )t, D>(T ) →
T�1

D>(13)

where D<, D> are constants. The first regime T . Rdw

is the same in confined and infinite geometries, while the
second regime T & Rdw is controlled by geometric con-
finement. Numerical simulations confirm this analysis
in all examples of non compact self-interacting random
walks (see Fig.4) : increments, even if always asymptot-
ically diffusive, are found numerically in all examples to
be quantitatively different for confined and non confined
non compact self-interacting random walks.

Last, for the sake of completeness, we note that sim-
ilarly to the persistence exponent in the compact case
(see (12)), the transience exponent ψc can be defined in
confinement according to :

S(t|T ) ∝
a→0

(a
r

)ψc

(14)

for T � Rdw and adw � t� Rdw . While, in principle ψc
can be different from its infinite space counterpart ψ, our
above analysis showed that all examples of non compact
self-interacting processes that we analysed are diffusive
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Figure 3. aging and first-passage properties for compact self-interacting random walks in infinite space and in confined ge-
ometries. aging of the increments for the 1d TSAW (a.), the 1d SATW (b.) and the 1d SESRW (c.) in both infinite space
and confined domains (increments are normalized by the expected scaling for T � t). The dynamic is found to be identical in
infinite space (triangle) and in confined domains (stars) in both regimes t, T � Rdw and T & Rdw , t � Rdw . The TSAW is
superdiffusive at all times scales and displays aging ; the SATW is diffusive at all times scales and displays aging. In contrast,
the SESRW is diffusive for T � t, but superdiffusive for t � T with dw = (2 + k)/(k + 1). Persistence exponents in infinite
space (θ) and in confined domains (θc) for the 1d TSAW (d.), the 1d SESRW (e.) and for the 1d SATW (f.). The persistence
exponent is modified by confinement for the SATW and the SESRW models, but is found numerically to be unchanged for the
TSAW.

and independent of T for t � 1 in the limit T → ∞
in both confined and non confined cases; this suggests
that ψ = ψc = 1, which is consistent with our numerical
simulations (see Fig.4).

To summarize this section, we have showed quantita-
tively that geometric confinement can deeply and non
locally modify the dynamics of self-interacting random
walks, beyond imposing locally reflecting boundary con-
ditions. In the compact case, increments remain un-
changed (in the regime t� Rdw) in confined and uncon-
fined geometries, but the persistence exponent can be
modified. In the non compact case, increments remain
asymptotically diffusive in both cases, but their dynam-
ics is quantitatively modified by geometric confinement ;
in turn, it is found that the transience exponent is un-
changed.

V. FPT DISTRIBUTION IN CONFINED
DOMAINS

The above analysis of increments and exponents θ and
ψ shows that these observables can be impacted by con-
finement. Turning to the analysis of FPT properties of
self-interacting random walks in confinement, one there-
fore needs to develop a new methodology. Indeed, so far,

available methods to determine FPT statistics in con-
finement [50] rely implicitly on the hypothesis that incre-
ments and exponents θ and ψ, which are the key quan-
tities defining the universality classes of FPT statistics
in confinement, are not modified by confinement. Below,
we extend the method developed originally in [50] to the
case of self-interacting random walks by taking explicitly
into account the impact of confinement on the dynam-
ics. In this section, we consider the case of "fresh" initial
conditions : at t = 0 the random walker, confined in a
domain of volume V = Rd with reflecting walls, starts at
a distance r from the target of radius a, and the num-
ber of visits to all sites i of the domain is set to ni = 0.
As stated in introduction, we focus on diffusive attractive
and repulsive self-interacting random-walks, and consider
separately the cases of compact processes (for which the
survival probability S(t) has a power-law decay in infinite
space) and non compact processes ; the case of marginal
exploration (2d processes with dw = 2) is discussed in SI.

A. Compact (recurrent) case

We sketch in this section the derivation of the
asymptotic FPT distribution F (t, r, R) for compact self-
interacting random walks in the large volume limit R→
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Figure 4. Aging and first-passage properties for non-compact self-interacting random walks in infinite space and in confined
geometries. Aging of the increments for the 3d TSAW (a.), the 3d SESRW (b.) and the 3d SATW (c.) in infinite space
(increments are normalized by the expected diffusive scaling at long times). Of note, the increments are stationary at timescales
T � 1. In contrast, in confined geometries, aging occurs at longer time scales & Rd, for the TSAW (d.), the SESRW (e.) and
the SATW (f.) (increments are normalized by the expected diffusive scaling at long times). g. For non-compact random walks
(here the 3d diffusive SATW), the survival probability tends for t → ∞ to a non-zero value 1 − Π, which defines the hitting
probability that depends on the initial distance to the target r and the target radius a. Hitting probability and transience
exponent in infinite space (h.) and in confined domains (i.). Numerical simulations (symbols) and power law fits (plain lines).
Our numerical results indicate ψ = ψc = 1 for the TSAW, the SESRW and the SATW, in agreement with the asymptotic
diffusive behaviour of non compact self-interacting random walks.

∞. For compact processes the FPT distribution is inde-
pendent of the target linear size a for r � a ; we focus
on this regime below. Following [50], F (t, r, R) can be
written as a partition over trajectories that either hit the
reflecting boundary before the target (with probability
π(r,R) and conditional FPT distribution to the target
Fb(t, r, R)) or hit the target before the boundary (with
probability π(r,R) and conditional FPT distribution to
the target Ft(t, r, R)):

F (t, r, R) = πFb(t, r, R) + (1− π)Ft(t, r, R). (15)

Importantly, the weight 1− π of trajectories that hit the
target first can be expressed in the limit R→∞ (with r
fixed) in terms of the FPT distribution in infinite space

F∞(t, r) :

π(r,R) ∝
R�r

∫ ∞
Rdw

F∞(t, r)dt, (16)

which expresses the fact that most trajectories that hit
the target before the boundary yield a FPT smaller than
the timescale Rdw . Making use of the definition of θ for
processes in infinite space, we then obtain from dimen-
sional analysis

F∞(t, r) ∝ rdwθ

tθ+1
(17)

in the regime 1� t� Rdw , which yields from (16):

π(r,R) ∝
R�r

( r
R

)dwθ
. (18)
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We stress that here the persistence exponent θ is defined
in infinite space, and not in confined geometry. Next, the
above argument leading to (16) also implies that

Ft(t, r, R) ∝ Θ(t/Rdw)F∞(t, r) ∝ Θ(t/Rdw)
rdwθ

tθ+1
, (19)

where Θ denotes a step function with Θ(x� 1) = 1 and
Θ(x � 1) = 0. At this stage, the conditional FPT dis-
tribution Fb(t, r, R) remains to be determined. By def-
inition, this quantity involves trajectories that interact
with the domain boundary. However, our analysis above
shows that the increments of compact processes are iden-
tical in confined and infinite geometries. In the limit
R → ∞ with r fixed, Fb(t, r, R) can thus depend only
on the time scales t and Rdw ; dimensional analysis then
yields the following scaling form:

Fb(t, r, R) ∼ g(t/Rdw)/t, (20)

where g is an undetermined function that depends on the
process. Finally, it is convenient to introduce the rescaled
variable η = t/Rdw , and write, from (15),(18),(19) ,(20)
its asymptotic distribution for R → ∞ for η > 0 with r
fixed :

F̄ (η, r,R) =
( r
R

)dwθ
h(η) (21)

where h is an undetermined function that depends on the
process. Finally, this explicitly captures the dependence
of the FPT distribution on the geometrical parameters
r,R, and therefore of all its moments (when they exist).
In particular, the mean FPT can be readily derived and
satisfies:

〈T 〉 ∝ Rdw(1−θ)rdwθ. (22)

The mean FPT thus scales non linearly with the con-
fining volume V ∼ Rd (because one has θ 6= 1 − d/dw)
for SESRW and SATW, as was found for other exam-
ples of aging processes ; notably, this scaling is linear for
the TSAW. Strikingly, the asymptotic form of the FPT
distribution (21) is comparable to that obtained in [50],
and can be determined solely from the knowledge of dw, θ,
which are defined in infinite space. This holds even if the
dynamics of the process is ultimately impacted by the ge-
ometric confinement, as we have shown above – this result
is in particular independent of the persistence exponent
in confinement θc. Fig.5 shows an excellent quantitative
agreement between numerical simulations and this ana-
lytical result. The data collapse of the properly rescaled
FPT distribution shows that our approach fully captures
its dependence on both r and R for all examples of com-
pact self-interacting random walks that we have studied.

B. Non compact (transient) case

We now turn to the non-compact case. As opposed to
the compact case, in the regime r � a that we consider

Figure 5. Asymptotic FPT distribution of compact self-
interacting random walks in confined domains for fresh initial
conditions. Here S(t) is the survival probability of the ran-
dom walker, whose scaling with geometrical parameters is de-
duced from (21). The collapse of numerical simulations after
rescaling for different values of geometric parameters captures
the dependence of the FPT distribution on the geometric pa-
rameters r,R. Simulations are performed in 1D boxes of size
R with reflecting boundary conditions. a. 1D TSAW with
dw = 3/2 (independent of β). b. 1d SESRW with β = 0.5
and k = 0.5. 1d repulsive SATW with (1 + e−β)−1 = 0.7 ( c.)
and (1 + e−β)−1 = 0.4 (d.).

below, the FPT distribution depends on a. Following
[50], we call excursion a fraction of trajectory that starts
from the sphere S of radius R/2 centered on the target,
next hits the boundary and eventually returns to S. The
FPT distribution can then be written as a partition over
the number n of excursions before the first-passage to the
target, where we introduce Φn(t) as the corresponding
conditional FPT distribution :

F (t, a, r, R) = p0Φ0(t) + (1− p0)

∞∑
n=1

Φn(t)P (n). (23)

Here p0 ∼ (a/r)ψ is the probability to hit the target
before the boundary starting from r, and P (n) the prob-
ability that the target is reached for the first time during
the nth excursion. This can be written

P (n) = pn

n−1∏
k=1

(1− pk) (24)

where pk is the probability that the target is found dur-
ing the kth excursion, knowing that is has not been found
before. Our analysis of increments and transience ex-
ponents ψ,ψc above (see (13)) shows that, in confine-
ment, non compact self-interacting random walks are dif-
fusive for t � 1 in both regimes T � Rdw (with diffu-
sion coefficient D<) and T � Rdw (with diffusion coef-
ficient D>). We thus denote by Dn ≡ D> + δDn the
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effective diffusion coefficient during the nth excursion,
which verifies |δDn| ≤ |D< − D>| and δDn → 0 for
n � 1. In addition, one has ψc = ψ. We can thus write
pk ∼ (C> + δCk)(a/R)ψ, where δCk → 0 for k � 1.
Note that here we have implicitly assumed (and checked
numerically, see SI) that the conditional probability pk
behaves as the unconditional probability that the target
is found during the kth excursion. Last, a scaling argu-
ment (see SI) shows that

Φn(t) =
1

t
φ(t/tn), (25)

where tn is the typical time elapsed before the nth excur-
sion, which verifies

tn = Rdw
n−1∑
k=1

1

Dk
. (26)

Finally, taking the R → ∞ limit in (23) with r, a fixed,
one finds that the rescaled variable η = t/Rd admits
asymptotically the following distribution for η 6= 0 (see
SI):

F̄ (η, r,R) =

(
1− C

( a
R

)ψ)
h(η) (27)

where h is an undetermined process dependent scaling
function – not necessarily exponential – and C a process
dependent constant. Similarly to the compact case, this
explicitly captures the dependence of the FPT distribu-
tion on the geometrical parameters r,R, and therefore
of all its moments (when they exist). In particular, the
mean FPT is given by :

〈T 〉 ∼ Rd

aψ

(
1− C

( a
R

)ψ)
. (28)

In contrast to the compact case, the mean FPT thus
scales linearly with the confining volume V ∼ Rd. Re-
markably, the asymptotic form of the FPT distribution
(21) is comparable to that obtained in [50] in absence of
power-law aging, and can be determined solely from the
knowledge of dw, ψ, which are defined in infinite space.
This holds even if the dynamics of the process is impacted
by the geometric confinement, as we have shown above.
However, geometric confinement does not change the dif-
fusive scaling of non compact self-interacting walks ; (27)
shows that this is sufficient to preserve the dependence
on r,R of the FPT distribution in confinement. Fig.6
shows an excellent quantitative agreement between nu-
merical simulations and this analytical result. The data
collapse of the properly rescaled FPT distribution shows
that our approach fully captures its dependence on both
r and R for all examples of non compact self-interacting
random walks that we have studied.

VI. AGED INITIAL CONDITIONS

In this section, we analyse the impact of initial con-
ditions on the FPT statistics of confined self-interacting

Figure 6. Asymptotic FPT distribution of non compact self-
interacting random walks in confined domains for fresh initial
conditions. Here S(t) is the survival probability of the random
walker, whose scaling with geometrical parameters is deduced
from (27). The collapse of numerical simulations after rescal-
ing for different values of the geometrical parameters captures
the dependence of the FPT distribution on r,R. Simulations
are performed in 3d boxes of size R with reflecting boundary
conditions and the constant C is measured numerically. a. 3d
TSAW with β = 1.0. b. 3d SESRW with β = 1.0 and k = 0.5.
3d SATW repulsive with β = 3.0 (c) and with β = −1.0 (d).

random walks. As we have shown above, the dynam-
ics of self-interacting random walks display aging prop-
erties, which can depend on geometric confinement. In
other words, the dynamics is different if the random walk
starts at T = 0 (fresh initial conditions studied above, for
which the number of visits to any site i of the domain is
set to ni = 0) or at T � Rdw (aged initial conditions,
for which ni � 1). We show that the FPT distribu-
tion can be readily obtained for aged initial conditions by
adapting the approach developed above for fresh initial
conditions, and highlight the impact of initial conditions.

A. Compact (recurrent) case

For aged initial conditions, because T � Rdw , the only
relevant regime is t � T . In this regime we have found
the following behaviour of the increments:

∆2(T, t) ∼ 2D<(t)t2/dw ∝ t2/dw,c (29)

where the effective walk dimension dw,c can be differ-
ent from dw (see SESRW in Fig.3). The relevant per-
sistent exponent is clearly θc in this regime. All steps
leading to the derivation of the FPT distribution (see
previous section) can then be reproduced. It is found
that the rescaled variable η = t/Rdw,c is asymptotically
distributed according to :

F̄c(η, r,R) =
( r
R

)dw,cθc
hc(η) (30)
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where hc is an undetermined function that depends on
the process. Initial conditions can thus deeply impact
the FPT distribution, and even its scaling form : they
can modify the walk dimension dw,c, the persistence ex-
ponent θc, and the scaling function hc. This result is
confirmed by numerical simulations (see Fig.7). For the
SATW, one has θc 6= θ and dw,c = dw = 2 while for the
SESRW one has θc 6= θ and dw,c 6= dw ; the scaling of
the FPT distribution is thus modified by initial condi-
tions for these processes. In contrast, for the TSAW one
has θc = θ and dw,c = dw and the scaling of the FPT
distribution is not modified by initial conditions.

B. Non compact (transient) case

In the regime T � Rdw and 1 � t � T , we have
found the following diffusive scaling of increments for non
compact self-interacting random walks:

∆2(T, t) ∼
t�1

2D>t. (31)

In addition, we have shown that ψc = ψ. All steps lead-
ing to the derivation of the FPT distribution (see pre-
vious section) can then be straightforwardly reproduced.
It is found that

F̄c(η, r,R) =

(
1− C

( a
R

)ψ)
hc(η) (32)

where η = t/Rd and hc is an undetermined function that
depends on the process. In the case of non compact self-
interacting random walks, initial conditions thus do not
modify the scaling of the FPT distribution ; they how-
ever can change the scaling function hc. This result is
confirmed by numerical simulations (see Fig.7).

VII. DISCUSSION AND CONCLUSION

A. Summary of the results

Our joint analytical and numerical analysis shows fi-
nally that long range memory effects can have deep con-
sequences on the dynamics of generic self-interacting ran-
dom walks ; they can induce aging (quantified by D(T, t)
and dw) and non trivial persistence and transience ex-
ponents θ and ψ, which we characterized quantitatively.
In striking contrast with other non Markovian processes,
we have shown that geometric confinement can strongly
modify the dynamic properties of self-interacting random
walks, beyond imposing locally reflecting boundary con-
ditions : the dynamics of increments can be modified (in
the non compact case), as well as persistent exponents
(in the compact case).

Based on this systematic quantitative analysis, we have
shown that universal scaling forms of the FPT distribu-
tions of general self-interacting random walks in confine-
ment can be derived in the large volume limit, by general-
izing the approach introduced in [50]. For "fresh" initial

conditions, we find that the FPT distribution in confine-
ment can be asymptotically predicted from the knowl-
edge of the process in infinite space only (via the infinite
space exponents dw, θ, ψ) : geometric confinement ulti-
mately does modify the dynamics of the process and even
changes the corresponding exponents dw,c, θc, ψc defined
in confinement, but this occurs only at timescales larger
than the typical FPT, and thus only mildly impacts the
FPT statistics. In contrast, for aged initial conditions the
exponents that determine the FPT distribution are those
defined in confinement dw,c, θc, ψc , and can thus be dif-
ferent from the classical infinite space exponents dw, θ, ψ.
In that case, the process in confinement must therefore
be characterized to determine the FPT distribution.

B. Search efficiency of self-interacting random
walkers

These results allow us to assess the efficiency of space
exploration of self-interacting random walks, and in par-
ticular to discuss the impact of memory effects on target
search kinetics.

In infinite space, attractive self-interactions (β < 0)
can have drastic consequences on space exploration : for
bounded effective interaction potentials V (n) (SATW),
the random walk is subdiffusive for d = 2, 3 and |β| >
|β|c and characterised by θ = ∞, so that all moments
of the FPT to a target are finite. In this case memory
effects thus give a decisive advantage to attractive SATW
(|β| > |β|c) as compared to normal random walks (β = 0)
or repulsive self-interacting walks (β > 0).

In confined domains, the discussion is very different. If
no prior information on the target position is available,
the relevant observable to quantify the search kinetics is
the position averaged mean FPT ¯〈T 〉. For compact pro-
cesses, our results yield ¯〈T 〉 ∝ Rdw . Search kinetics is
thus enhanced by lowering dw, which amounts to max-
imising the scaling of the MSD with time. In that case,
memory effects give a decisive advantage to repulsive 1d
TSAW and 1d SESRW, which both show a superdiffu-
sive exponent dw < 2 for all values of β > 0. For non
compact processes, we obtained ¯〈T 〉 ∝ Rd, which is con-
sistent with the large time diffusive limit of non compact
(repulsive or attractive) self-interacting random walks.
The scaling of ¯〈T 〉 with R is thus independent of mem-
ory effects, which however modify the effective diffusion
coefficient and are thus favorable in the repulsive case.

If the starting distance r from the target is known, the
full FPT distribution is needed to analyse the search ki-
netics. For compact processes, our results (21) show that
the set of trajectories that hit the target can be decom-
posed into a set of fast trajectories, with timescale ∝ rdw
and weight 1 − α(r/R)dwθ (where α is a constant), and
a set of slow trajectories that typically hit the domain
boundaries before the target, with timescale ∝ Rdw and
weight ∝ (r/R)dwθ. The exponents dw, θ thus appear as
key parameters that control the respective weight of fast
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Figure 7. Asymptotic FPT distribution of self-interacting random walks in confined domains for aged initial conditions. The
search process starts at t = 0, but the random walker is assumed to have explored the domain from t = −T to t = 0. S(t) is
the survival probability of the random walker at time t. The scaling of S(t) with geometrical parameters is deduced from (30)
and (32), for compact and non-compact processes respectively. The collapse of numerical simulations after rescaling captures
the dependence of the FPT distribution on geometrical parameters. Simulations are performed in 1d and 3d boxes of size R
with reflecting boundary conditions for fixed r and a. Compact cases : a. 1d TSAW with β = 1.0; b. 1d SESRW with β = 1.0
and k = 0.5. The FPT distribution of the simple random walk is added for comparison (dashed curve); c. 1d SATW repulsive
with β = 3.0 Non-compact cases : d. 3d TSAW with β = 1.0; e. 3d SESRW with β = 1.0 and k = 0.5; f. 3d SATW with
β = 1.0.

and slow trajectories, as well as the typical timescale of
slow trajectories. For random processes with stationary
increments, it has been proposed that both exponents are
not independent and satisfy θ = 1−d/dw [50, 52, 66] ; in
that case, increasing the weight of direct, fast trajecto-
ries by increasing dw comes at the cost of increasing the
timescale of indirect trajectories. This is also the case of
the 1d repulsive TSAW, for which we found numerically
θ = 1 − d/dw. In the case of the 1d SESRW and the 1d
SATW however, we found that dw and θ are independent,
with a dependence of θ only on the coupling parameter
β. This shows that repulsive self-interactions can be fa-
vorable for large starting distances because they diminish
the timescale of indirect trajectories by lowering dw (1d
TSAW and 1d SESRW) ; they however in all cases reduce
the weight of direct trajectories and are thus detrimen-
tal at short distances. In turn, attractive interactions
(SATW) are detrimental for d = 2, 3 because they in-
crease the timescale of indirect trajectories by increasing
dw (subdiffusive SATW), while they preserve the diffu-
sive scaling for d = 1 ; they can however significantly

increase the weight of direct trajectories by increasing θ
(d = 1, 2, 3), and are thus favorable at short distances.
Finally, in the non compact case, our results (27) show
that the FPT statistics is characterized by the single time
scale Rd as long as r � a. As in the case of the position
averaged mean FPT, memory effects modify only the ef-
fective diffusion coefficient ; they are thus favorable in
the repulsive case, but do not impact scaling properties
of the FPT distribution.

Finally, this analysis shows that memory effects in-
duced self-interactions can have a deep impact on space
exploration, as quantified by various observables. Quali-
tatively, attractive self-interactions have dramatic effects
and can lead to subdiffusion with compact exploration,
which is favorable for local exploration, and even to self-
trapping. Repulsive self-interactions have important ef-
fects for compact random walks, for which they modify
the walk dimension dw and thus the scaling of the posi-
tion averaged mean FPT with the size of the confining
domain ; this is thus favorable for global exploration of
confined domains with no prior informations on the tar-
get position.
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