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The statistics of first-passage times of random walks to target sites has proved to play a key role in
determining the kinetics of space exploration in various contexts . In parallel, the number of distinct
sites visited by a random walker and related observables have been introduced to characterize the
geometry of space exploration. Here, we address the question of the joint distribution of the first-
passage time to a target and the number of distinct sites visited when the target is reached, which
fully quantifies the coupling between kinetics and geometry of search trajectories. Focusing on
1-dimensional systems, we present a general method and derive explicit expressions of this joint
distribution for several representative examples of Markovian search processes. In addition, we
obtain a general scaling form, which holds also for non Markovian processes and captures the
general dependence of the joint distribution on its space and time variables. We argue that the
joint distribution has important applications to various problems, such as a conditional form of the
Rosenstock trapping model, and the persistence properties of self-interacting random walks.

Quantifying the efficiency of space exploration by ran-
dom walkers is a key issue involved in a variety of sit-
uations. Applications range from reactive particles dif-
fusing in the presence of catalytic sites, living organisms
looking for resources, to robots cleaning or demining a
given area [1–3]. In this context, two important classes
of observables have been considered.

First, the statistics of first-passage times (FPTs) to
target sites of interest has proved to play a key role in
determining the kinetics of space exploration [4–6]. The
case of first-passage times in confined domains was found
to be particularly relevant to assess the efficiency of tar-
get search processes, and has lead to an important activ-
ity [7–10]. Related observables, such as the cover time of
a domain [11–13] or the occupation time of a sub domain
have also been considered in this context [14–17].

A second class of observables has been introduced to
characterize the geometry of the territory explored by
random walkers. In particular, the number of distinct
sites visited (or the so called Wiener sausage in a continu-
ous setting) by a random walker after n step, which quan-
tifies the overall territory swept by the random walker,
has been the focus of many studies with a broad range
of applications [1, 18–20]. Notable extensions include the
number of distinct sites visited by p independent walkers
[19], the case of fractal geometries [21, 22], or the case of
random stopping times [23–26].

Even if it is clear that both classes of observables are
coupled, so far kinetic and geometric properties of explo-
ration have been mainly discussed independently, with
the notable exception of [27]. Qualitatively, the first-
passage time to a target of a generic stochastic process
carries information about the territory visited before hit-
ting the target : large values of the first-passage time
imply large values of the visited territory. However, the
quantitative determination of this coupling is still lack-
ing.

Here, we address the question of the joint distribution
of the first-passage time to a target and the number of

distinct sites visited when the target is reached, which
fully quantifies this coupling and gives access to a refined
characterization of search trajectories. To the best of
our knowledge, this quantity has never been studied so
far. The joint law provides two conditional distributions,
which allow to answer quantitatively the following ques-
tions : (Q1) What is the territory visited by a random
walker knowing that it reached a target (and stopped or
exited the domain) after a given time? (Q2) How long
does it take a random walker to reach a target know-
ing that it has visited a given number of distinct sites
before? We anticipate that these quantities could have
applications in various situations where only partial in-
formation – either kinetic or geometric – on trajectories
is accessible.

Summary of the results. We tackle this general ques-
tion in the case of 1-dimensional processes, and deter-
mine the joint distribution σ(s, n|s0) of the FPT n at
the target site 0 and the number s of distinct sites vis-
ited by a random walker starting from s0 (see Fig. 1(a),
where x, t are the continuous counterparts of s, n)[52].
Our approach applies to general (space and time) dis-
crete or continuous random walkers, evolving in a semi
infinite or finite domain, and yields fully explicit expres-
sions of σ(s, n|s0) for several representative examples of
Markovian processes, such as simple symmetric and bi-
ased random walks, persistent random walks [1, 18] or
resetting random walks [28, 29], whose definitions are re-
called below. In addition, we derive a general scaling
form of σ(s, n|s0) in the large s, n regime, which holds
also for non Markovian processes and captures the gen-
eral dependence on s0, s, n. Several applications of these
central results are then discussed. First, we determine
the efficiency of a schematic catalytic reaction [30] by
deriving the probability that a diffusing particle has re-
acted in a domain with Poisson distributed targets be-
fore exiting the domain, knowing the exit time (see Fig.
1(b)). Second, we show that the knowledge of the joint
distribution σ(s, n|s0) for simple random walks is actu-
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FIG. 1: (a) Starting from x0, the random walker crosses 0 for
the first time at time t, having explored up to a distance x
from the origin. The joint law σ(x, t|x0) is the density prob-
ability function of such joint events. (b) Consider a random
searcher evolving in a (greyed out) domain, filled with Pois-
son distributed targets. Having as only information the time
t of exit from the domain, we display the probability Pt of
encounter with at least one target in terms of the rescaled
variable ρdw t in the case of a Brownian searcher of diffusion
coefficient D = 1/2. Numerical integration of the exact result
(13) (symbols) and asymptotic scaling form (15) (dashed line)
are shown.

ally required for determining first-passage properties of a
class of strongly non Markovian processes, namely self-
interacting random walks [31–35]. More precisely, with
the help of the joint distribution, we derive exactly the
full large time behavior of the FPT density of the so-
called self-attracting walk (SATW) [36], which has been
studied in the context of random search processes as a
prototypical example of processes with long-range mem-
ory [37–40] and has important applications in the theo-
retical description of the trajectories of living organisms
such as cells [41].

Discrete processes. We first consider the case of a
general Markovian discrete (in space and time) process,
which leaves no holes in its trajectory; in other words, the
set of visited sites is assumed to be at all times the finite
range Jsmin, smaxK defined by the min (smin) and max
(smax) values of the random walker’s positions. This last
hypothesis will hold for all processes presented in what
follows. Denoting by s0 > 0 the starting site, n the step
at which the walker reaches the target 0 for the first time
and s the number of distinct sites visited up to this ran-
dom stopping time, we derive a systematic procedure to
obtain the joint law σ(s, n|s0). In turn, this joint law
gives immediate access to the conditional probabilities
mentioned above, ie (i) the distribution of the number
s of distinct sites visited before reaching 0 knowing that
the random walker has reached 0 at step n :

Gsp(s|n, s0) =
σ(s, n|s0)∑∞

s′=s0
σ(s′, n|s0)

≡ σ(s, n|s0)

F0(n|s0)
, (1)

where F0(n|s0) is the usual FPT distribution to 0 and (ii)
the distribution of the FPT to 0 knowing that s distinct
sites have been visited before reaching 0 :

Gtm(n|s, s0) =
σ(s, n|s0)∑∞

n′=0 σ(s, n′|s0)
≡ σ(s, n|s0)

µ0(s|s0)
, (2)

where µ0(s|s0) is the distribution of the maximum s be-
fore reaching 0.

Let us denote F0,s(n|s0) the probability that the walker
reaches zero for the first time at step n, without ever
reaching s, and make a partition over the rightmost site s′

visited before reaching zero. Because the walker reaches 0
before s, one necessarily has s′ ∈ Js0, s− 1K, which yields

F0,s(n|s0) =
∑s−1
s′=s0

σ(s′, n|s0). Note that this relation
still holds for non Markovian processes. Equivalently, we
obtain the key relation

σ(s, n|s0) = F0,s+1(n|s0)− F0,s(n|s0) ≡ DsF0,s(n|s0),
(3)

which allows one to write the joint law σ explicitly in
terms of the quantity F0,s(n|s0).

We next provide a procedure based on backward equa-
tions to derive the probability F0,s(n|s0) in presence
of two absorbing sites 0 and s for a given Marko-
vian stochastic process. In this case, the propaga-
tor P (s, n|s0), ie the probability for the walker to be
at site s after n steps, obeys the backward equation
P (s, n+ 1|s0) = Ls0 [P (s, n|s0)] [1, 42], obtained by par-
titioning over the first step of the walk, where Ls0 is a
linear operator acting on s0. For instance, in the case of a
simple random walk, Ls0 [P (s, n|s0)] = 1

2P (s, n|s0 + 1) +
1
2P (s, n|s0−1). It is easily seen that F0,s(n|s0) obeys the
same backward equation for 0 < s0 < s and, introducing
the generating function F̃0,s(ξ|s0) =

∑∞
n=0 ξ

nF0,s(n|s0),
we obtain:

F̃0,s(ξ|s0) = ξLs0
[
F̃0,s(ξ|s0)

]
. (4)

Reminding that both 0 and s are absorbing boundaries,
we have that, for any n > 0, F0,s(n|0 or s) = 0 whereas
F0,s(0|0) = 1 and F0,s(0|s) = 0. In terms of generating
functions, we obtain the following boundary conditions:

F̃0,s(ξ|0) = 1 ; F̃0,s(ξ|s) = 0. (5)

Eq. (4), completed by (5), fully determines F̃0,s(ξ|s0).
Making use of (3), we then derive the generating function
of the joint law σ.

As an illustration, we obtain in the case of a simple
random walk (see supplementary material (SM))

σ̃(s, ξ|s0) =
r+ − r−
rs+ − rs−

rs0+ − r
s0
−

rs+1
+ − rs+1

−
(6)

where r± = 1
ξ (1 ±

√
1− ξ2). Further illustration is pro-

vided in SM, where explicit expressions of σ̃(s, ξ|s0) are
determined for the important examples of biased random
walks (for which a step is taken to the right with proba-
bility p, and to the left with probability 1−p), persistent
random walks (for which each step is taken identical to
the previous one with probability p) [43, 44] and reset-
ting random walks (for which at each step the walker
has a probability λ to jump back to its initial position)
[28, 29, 45, 46]. Finally, in each case, a series expansion
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with respect to ξ gives access to an exact determination
of σ(s, n|s0) (see SM for validation by numerical simula-
tions), which constitutes the main result of this section;
its physical implications are commented below (see dis-
cussion and applications).

Continuous space and time. This method is easily
adapted to continuous space and time (x, t) Markovian
processes. Defining F0,x(t|x0) as the probability density
to reach 0 before x at time t, the continuous counterpart
of Eq. (3) reads:

σ(x, t|x0) = DxF0,x(t|x0) (7)

where here Dx is the differential operator with re-
spect to x, and the Laplace transform F̃0,x(p|x0) =∫∞

0
e−ptF0,x(t|x0)dt satisfies the continuous counterpart

of Eq (4), (5) (see SM). As an explicit example, for Brow-
nian diffusion with diffusion coefficient D, it is found that
the joint law is given by

σ(x, t|x0) =
2Dπ

x3

∞∑
k=1

e−(kπ)2Dτk sin(kπx̃0)×

×
[
2(kπ)2Dτ − 2− kπx̃0

tan(kπx̃0)

]
,

(8)

where x̃0 = x0

x and τ = t
x2 . Explicit expressions of σ̃ for

other continuous Markov processes (biased diffusion and
continuous resetting) are presented in SM. Importantly,
it is also shown in SM that our approach can be further
extended to the case of continuous space but discrete
time processes, also known as jump processes, as well as
Markovian processes in confined domains.

General scaling form. Beyond the case of Markovian
processes, we now show that the joint law σ assumes a
general scaling form for symmetric processes, which holds
even in the non Markovian case and elucidates its depen-
dence on the parameters s, s0, n. Because we are inter-
ested only in the large time and space limit, we adopt
a continuous formalism and make use of the variables
x, x0, t. Extending an approach given in [47, 48], we de-
rive below a general scaling form for F0,x(t|x0), which
leads to the asymptotic behavior of σ(x, t, x0).

First, note that walkers reaching x before 0 do not con-
tribute to the probability F0,x(t|x0). Hence, for times

shorter than the typical time Ttyp ∝ xdw needed to
reach x (which defines the walk dimension dw of the pro-
cess), F0,x(t|x0) behaves as the first-passage time density
F0(t|x0) in a semi-infinite domain, with a single target in
0. We now assume that this quantity has an algebraic de-
cay with time for t→∞, quantified by the persistence ex-
ponent θ of the process: F0(t|x0) ∼ k(x0)t−(θ+1), where

k(x0) ∝ xdwθ0 for x0 � 1 [6]. Because almost all random
walkers have either reached 0 or x at times t� xdw , we
write

F0,x(t|x0) ∼ F0(t|x0)g(
t

xdw
) ∼ k(x0)t−(θ+1)g(

t

xdw
) (9)

where g is a smooth cut-off function with g(0) = 1 and
g(y) vanishes for large y. Finally, with the help of (7),
we obtain the general scaling form for the joint law in the
scaling limit defined by x → ∞, t → ∞ with τ = t/xdw

fixed :

σ(x, t|x0) ∼ h(x0)

xdw(θ+1)+1
f(τ) (10)

where, defining f1(τ) = −dwg′(τ)τ−θ and N =∫∞
0
f1(τ)dτ , we have h(x0) = k(x0)N and f = f1/N .

In addition, h(x0) ∝ xdwθ0 for x0 � 1, and f(τ) is a
normalized process dependent function.

Of note, integrating equation (10) over t recovers the
distribution of the maximum µ0(x|x0) = h(x0)x−(dwθ+1)

before reaching 0, in agreement with known results [47].
In turn, this provides a simple physical interpretation of
f(τ). Making use of (2), we obtain the conditional den-
sity Gtm(t|x, x0) ∼ 1

xdw
f(τ). Thus, f(τ) is the density

of the rescaled variable τ conditioned by the value of the
maximum x. In particular, we stress that f is indepen-
dent of x0.

The general relation (10) is confirmed in Fig 2 by nu-
merical simulations for representative examples of both
Markovian processes (simple random walks and Riemann
walks, ie discrete space and time Levy flights [1]), and
non Markovian processes (Fractional Brownian Motion
[49] and the Random Acceleration Process [50], see SM
for definitions). Indeed, we find that the conditional den-
sity of the FPT knowing the territory covered, which a
priori depends on the variables t, x, x0, can in fact be
rewritten as the distribution f(τ) of the single reduced
variable τ , as shown by the data collapse in the figure.
Next, thanks to the exact Eq. (2), and the exact scaling
of the distribution µ0 of the maximum reminded above
[47], this observed scaling of f directly confirms (10).

In the case of diffusive random walks, f(τ) can be de-
termined explicitly by taking x→∞ and t→∞ with τ
fixed in Eq. (8):

fBM (τ) = 2Dπ2
∞∑
k=1

e−(kπ)2Dτk2
[
2(kπ)2Dτ − 3

]
. (11)

Of note, this asymptotic conditional distribution holds
for any symmetric Markovian random walk satisfying the
central limit theorem.

Similarly (see SM), the other conditional distribution
defined in (1) can be written from (10) as Gsp(x|t, x0) ∼

1
t1/dw

φ(χ) where the density of the rescaled variable χ =

x/t1/dw is given in terms of f by :

φ(χ) =
χ−dw(θ+1)−1f(χ−dw)∫∞

0
u−dw(θ+1)−1f(u−dw)du

. (12)

The agreement of this result with numerical simulations
is shown in SM.
Discussion. The above results yield both exact ex-

pressions of the joint law for Markovian processes, and
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FIG. 2: Conditional distribution f(τ) of the rescaled variable
τ (see text). Distributions are drawn for fixed s (discrete
space) or x (continuous space) and collapse. A,B - Markovian
Processes ; C,D Non Markovian Processes. See SM for details
on simulations.

scaling forms for general non Markovian processes, and
have important implications. (i) The joint law, because
it gives access to all correlation functions 〈xntm〉, fully
quantifies the coupling between the kinetics of space ex-
ploration and the territory explored by a random walker.
This coupling manifests itself in the dependence of σ on
the rescaled variable τ = t/xdw . (ii) The joint law yields
the conditional distributions Gsp (see (1)) and Gtm (see
(2)), which provide new insights in the quantification of
space exploration, and in particular explicit answers to
the questions Q1, Q2 raised in introduction. Below, we
further illustrate the importance of the joint law and turn
to examples of applications of our results.

Application – Conditional Rosenstock problem. The
above results provide as a by product an explicit solu-
tion to a conditional version of the celebrated Rosenstock
problem [1, 30]. We consider a reactive diffusing particle
that enters a 1-dimensional chemical reactor at x0 and
leaves it at 0. The reactor contains Poisson distributed
catalytic point-like sites of density ρ, which trigger a reac-
tion upon encounter with the reactive particle (see Fig.1
(b)). The efficiency of such schematic catalytic reaction
can be quantified by the probability Pt that the reactive
particle has reacted with a catalytic site before exiting
the domain, knowing the exit time t. This is readily ob-
tained as

Pt =

∫ ∞
0

(1− e−ρx)Gsp(x|t, x0)dx. (13)

The determination of Pt thus requires Gsp, and therefore
the joint law. Making use of the general scaling (10), we
obtain the large time scaling behaviour :

Pt ∼
t→∞

∫ ∞
0

(1− e−ρt
1/dwu)φ(u)du; (14)

this shows that Pt is asymptotically a function of the re-
duced variable ρt1/dw only, with Pt ∝ ρt1/dw for ρt1/dw →

0. Equation (14) provides, thanks to (12), an explicit
determination of Pt for all processes for which σ (and
thus f) is known, and in particular elucidates its depen-
dence on the exit time t from the domain (see Fig.1(b)).
On the example of Brownian motion, one obtains (for
x2

0/D � t� 1/(Dρ2)):

Pt ∼
√
πρ(Dt)

1
2 . (15)

Application –Self-interacting walkers. Next, we show
that the joint law can be needed to obtain the first-
passage time distribution. This is the case of self-
interacting random walks, which are defined generically
as random walks whose jump probabilities at time n de-
pend on the full set of visited sites at earlier times n′ < n.
We focus on the example of the 1d self-attracting walk
(SATW) [36], which has been studied in the context of
random search processes as a prototypical example of
process with long-range memory, and has recently proved
to be relevant to describe the dynamics of motile cells
[41]. At each time step, if both its neighboring sites
have already been visited, the random walker hops on
either of them with probability 1/2. However, if one of
them has never been visited, it is chosen with probabil-
ity β. Note that this can either be an attractive effect
(β < 1/2) or a repulsive one (β > 1/2). Since the dynam-
ics of the walk is completely determined by the location
of unvisited sites, the determination of the first-passage
time distribution requires the knowledge of all times at
which unvisited sites have been discovered. Denoting
here F0,s(n|s0) the probability to reach s before 0 for the
first time at step n, knowing that the sites J1, s−1K have
already been visited, the generating function of σ(s, n|1)
can be written as :

σ̃(s, ξ|1) =
ξ

2

(
s∏

s′=3

F̃0,s′(ξ|s′ − 1)

)
F̃0,s+1(ξ|s) (16)

Solving for F̃0,s(ξ|s0) yields an explicit expression of
σ̃ (see SM). For large s and n, with τ = n

s2 fixed,

this yields σ(s, n|s0) = h(s0)s−
1−β
β −3fSATW (τ) where

h(1) = Γ(−2+2/β)
Γ(−1+1/β)

(1−β)
β and h(s0) ∝ s

1−β
β

0 for large s0

[53]. Finally, the conditional distribution fSATW is de-
fined by its strikingly simple Laplace transform:

f̃SATW (p) =

∫ ∞
0

e−pufSATW (u)du =

( √
2p

sinh(
√

2p)

) 1
β

.

(17)
The FPT distribution is finally deduced from σ(s, n|1)
and yields the following exact asymptotics (see SM):

F0(n|s0 = 1) ∼
n→∞

Γ( 2
β − 1)

Γ( 1
2β −

1
2 )

2−
1+β
2β n−

1−β
2β −1. (18)

While the n decay is in agreement with the recent deter-
mination of the persistent exponent of the SATW relying
on a different approach [51], this formalism based on the
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joint law gives access to the explicit expression of the
prefactor for this strongly non Markovian process.

Conclusion. We have proposed a general method to
derive explicit expressions of the joint distribution of the
first-passage time to a target and the number of distinct
sites visited when the target is reached for 1d random
walks. This method yields explicit expressions for several
representative examples of Markovian search processes.
Furthermore, we showed that the dependence of the joint

distribution on its space and time variables is captured by
a general scaling form, which holds even for non Marko-
vian processes. We argue that the joint distribution could
have applications in various situations where only partial
information – either kinetic or geometric – on trajectories
is accessible ; in addition, it appears to be a useful tech-
nical tool that for instance can give access to persistence
properties of self interacting random walks.
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