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3Sorbonne Université, CNRS, Physicochimie des Electrolytes et
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We develop a general method to calculate the exact time dependence of the cumulants of the
position of a tracer particle in a dense lattice gas of hardcore particles. More precisely, we calculate
the cumulant generating function associated with the position of a tagged particle at arbitrary time,
and at leading order in the density of vacancies on the lattice. In particular, our approach gives
access to the short-time dynamics of the cumulants of the tracer position – a regime in which few
results are known. The generality of our approach is demonstrated by showing that it goes beyond
the case of a symmetric 1D random walk, and covers the important situations of (i) a biased tracer;
(ii) comb-like structures; and (iii) d-dimensional situations.

Introduction.— Understanding and characterising
tracer diffusion in crowded environments is central in
numerous biological and physical contexts. In living sys-
tems, the interplay between the diffusion of tracer par-
ticles (fuelled by thermal fluctuations, active processes,
or chemical reactions) and complex environments (which
generally hinder their motion) controls many biological
processes [1]. Quantifying tracer diffusion can also be
used as a mean to probe the mechanical and rheologi-
cal properties of different systems, such as colloidal sus-
pensions or complex fluids, through passive and active
microrheology [2–4].

These examples, in which the statistical properties of
tracer particles are controlled by the interactions with
their environment, are the motivation for a whole field
of theoretical research. Among the different routes that
were employed to characterise the statistics of diffusing
particles in crowded environments, lattice gases of hard-
core particles that jump at exponentially distributed times
(often referred to as exclusion processes) have been the
subject of many studies, and have become central models
of statistical mechanics [5, 6]. In particular, such models
were widely employed to compute the diffusion coefficient
of a tracer particle. In dimension 2 or greater, different
mean-field-like approximations were designed to estimate
the diffusion coefficient of the tracer as the function of the
density of the bath [7–9]. In the case of one-dimensional
systems, one can mention recent achievements which re-
sulted in the derivation of exact results concerning tracer
properties, including the calculation of its large devia-
tions [10–13], and of bath-tracers correlations [14, 15].

However, these results, whether exact or approximate,
are generally valid only in the long-time limit, because
their derivation relies on hydrodynamic limits or large
deviations approaches [10–15]. A notable exception is
provided in the dense limit by the approach by Brummel-
huis and Hilhorst [16, 17], later extended to the case of
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FIG. 1. For each of the considered geometries (1D (a), comb
(b), 2D (c)), the continuous-time random walks of the par-
ticles are mirrored by the random walks of the vacancies
(brown squares). The latter perform continuous-time nearest-
neighbor symmetric random walks.

a biased tracer [18–21]. However, we stress that this ap-
proach is intrinsically discrete in time. Even though the
real continuous-time description of exclusion processes,
where particles jump at exponential times as defined
above, is retrieved in the long-time limit, this approach
fails to predict the dynamics of the tracer at short and
intermediate times. So far, the only available results at
arbitrary time concern the first cumulants in the low-
density regime with immobile bath particles [22, 23], the
high-density regime for a symmetric tracer in 1D [14], or
the 1D situation at arbitrary density, but under a formu-
lation that does not allow the derivation of fully explicit
results [24]. Finally, a general quantitative description of
the dynamics of the tracer for arbitrary time is lacking.

In this Letter, we fill this gap and calculate the ex-
act and complete time dependence of the cumulants of
a tracer particle in a dense lattice gas. We develop a
general methodology which covers the important cases
of (i) a biased tracer; (ii) comb-like structures; and (iii)
d-dimensional situations. These results fully quantify the
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dynamics of tracer particles in exclusion processes, which
are paradigmatic models of statistical mechanics.

Model and outline of the calculations.— We consider
a lattice populated by particles at a density ρ between 0
and 1, which are initially positioned uniformly at random
on the lattice, with the restriction that there can only be
one particle per site. We adopt the usual dynamics of
exclusion processes, which evolve in continuous-time, and
we assume that each particle has an exponential clock of
time constant τ = 1. When the clocks ticks, each particle
chooses to jump on one of its z neighboring sites with
probability 1/z. If the arrival site is empty, the jump is
done. Otherwise, if the arrival site is occupied, the jump
is canceled. Note that, in 1D, this process corresponds to
the celebrated Symmetric Exclusion Process or SEP [5,
6].

The tagged particle (TP) is initially at the origin
x(0) = 0 and we study its displacement with time x(t) =
(x1(t), . . . , xd(t)). We define the cumulant-generating
function (CGF) ψ(k, t) ≡ ln〈eik·x(t)〉. We will consider
the cumulants of the position projected onto one direc-
tion of the lattice, say direction 1 (x1(t) = x(t) · e1):

κn(t) =
1

in

(
∂nψ(k, t)

∂k1
n

)

k=0

. (1)

Our goal here is the determination of the cumulant-
generating function ψ(k, t) and the cumulants κn(t) in
the high-density limit ρ → 1, and for arbitrary time
t. We will define their rescaled high-density limit as
κ̄n = limρ→1 κn/(1 − ρ), where ρ0 = 1 − ρ is the den-
sity of vacancies on the lattice.

From a single vacancy to the dense regime.— Rely-
ing on the derivation that was originally proposed in a
discrete-time description [16, 17], we start by consider-
ing a system of finite size N in which all the sites are
occupied except M of them (Fig. 1). We call these
empty sites vacancies, and their fraction is denoted by
ρ0 = M/N = 1 − ρ. Now, in the high-density limit
(ρ0 = M/N → 0), we note that the vacancies per-
form independent random walks and interact indepen-
dently with the TP. We neglect events of order O(ρ2

0) in
which two vacancies interact with each other, compared
to events of order O(ρ0) in which one vacancy interacts
with the TP. This gives exact results at linear order in
the density of vacancies ρ0. We call p1(x|y, t) the proba-
bility that, in a system with a single vacancy initially at
y, the TP has reached site x at time t knowing that it
started from the origin. In Fourier space, the probability
to find the tracer at a given location given that the vacan-
cies were initially at positions y1, . . . ,yM can be written
as a product of single-vacancy propagators p1 (see Sec-
tion I in Supplemental Material (SM) [25]). Averaging
over the initial positions of the vacancies and taking the
thermodynamic limit of M,N → ∞ with fixed ρ0, the

cumulant-generating function reads

lim
ρ0→0

ψ(k, t)

ρ0
=
∑

y 6=0

(p̃1(k|y, t)− 1) , (2)

where we use the following convention for Fourier trans-
forms f̃(k) =

∑
x eik·xf(x). Let us emphasize the mean-

ing of Eq. (2): the full probability law of a TP at high
density is encoded in a much simpler quantity, namely
the propagator of the tracer in a system where there is
only one vacancy. This expression is the continuous-time
counterpart of the discrete-time approach [16, 17].

Using standard techniques from the theory of random
walks on lattices [26], the single-vacancy propagators
p1(x|y, t) can be expressed in terms of first-passage time
densities associated with the random walk performed by
a vacancy on the considered lattice, namely f(0|y, t), the
probability for the vacancy to reach the origin for the
first time at time t knowing that it started from site y,
and f∗(0|eµ|y, t), the same quantity but conditioned on
the fact that the vacancy was at site eµ before its last
jump. The relation between these quantities is obtained
by counting the interactions between the vacancy and the
tracer up to time t.

For clarity we consider separately: (i) the situation
where the lattice is tree-like, i.e. the situation where
there is a single minimum-length path linking two ar-
bitrary sites of the lattice (this will cover the case of
one-dimensional and comb-like lattices); (ii) the situa-
tion where the lattice is looped, i.e. the situation where
there is more than one minimum-length path linking two
arbitrary sites of the lattice (this will cover the case of
lattices of dimension 2 and higher).

Tree-like lattices.— We first consider tree-like lattices
as shown in Figs. 1(a) and 1(b). We show in SM (Sec-
tion II of [25]) that, on these geometries, the single-
vacancy propagator is simply related to the FPT den-
sities through the relation

ˆ̃p1(k|y, u) =
1

u

[
1 +

(
eiµk − 1

) 1− f̂−µ(u)

1− f̂1(u)f̂−1(u)
f̂(0|y, u)

]
,

(3)

where we introduce the shorthand notation f̂ν(u) =

f̂(0|eν , u). One can use this expression into Eq. (2) to
obtain the cumulant-generating function at high density
in terms of first-passage quantities of a single vacancy.
The last step consists in studying the random walk of a
single vacancy to compute f̂(0|y, u).

We first apply this formalism to the case of a 1D lattice
(Fig. 1(a)). We consider the general situation of a bi-
ased tracer which jumps with probability p+ to the right
and p− to the left. A vacancy then performs a nearest-
neighbor random walk, which is symmetric far away from
the tracer and perturbed in its vicinity. Considering a
vacancy starting from site y and partitioning over the
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FIG. 2. Time dependence of the odd (left) and even (right)
cumulants of a TP in 1D (ρ0 = 0.02) for different values of the
bias (from blue to red: s = 0, 0.2, 0.5, 0.8, 1). Symbols are
the results from numerical simulations (see Section IX of [25]
for details). The black lines are the predictions from Eqs. (6)
and (7), the gray lines are the asymptotic regimes at short
and large times.

instant of first visit to site µ = sgn(y), it is straightfor-

ward to show that f̂y(u) = f̂UB
|y|−1(u)f̂µ(u) [25], where we

introduced the following notation for the Laplace trans-
form: ϕ̂(u) =

∫∞
0

e−utϕ(t)dt, the shorthand notation
fy(t) = f(0|y, t), and where the superscript UB denotes
the FPT density of the vacancy to the origin when the
tracer is unbiased. We finally get (Section III in [25]):

f̂y(u) =
1 + µs

1 + µsα
α|y|, (4)

where α = 1+u−
√
u(2 + u) and where s = p+−p− is the

bias. Inserting the first-passage quantities computed in
Eq. (4) into the expression of the propagator with a single
vacancy [Eq. (3)], and then back into the expression of
the cumulant-generating function [Eq. (2)], we obtain,
after Laplace inversion:

lim
ρ0→0

ψ(k, t)

ρ0
= te−t[I0(t)+I1(t)](cos k−1+is sin k), (5)

where I0 and I1 are modified Bessel functions of the first
kind [27]. In the unbiased case s = 0, we retrieve previous
results for a symmetric tracer in the SEP [14]. The first
implication is that we have the full time-dependence of
the even and odd cumulants,

κ̄2n(t) = te−t[I0(t) + I1(t)], (6)

κ̄2n+1(t) = ste−t[I0(t) + I1(t)]. (7)

At short time, we find that the cumulants obey κ̄2n(t) ∼ t
and κ̄2n+1(t) ∼ st. This means in particular that the
fluctuations of the tracer are diffusive, and that the
displacement of a biased TP κ1 is ballistic. At large
time, we retrieve the known expressions [10, 19, 28]:
κ̄2n(t) ∼

√
2t/π and κ̄2n+1(t) ∼ s

√
2t/π. At all times,

the results from Eqs. (6) and (7) are in perfect agreement
with numerical simulations and shown on Fig. 2.

We further illustrate the generality of our method by
considering the important case of a comb lattice, a lat-
tice made of a line, called the backbone, on which other
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FIG. 3. Cumulants of the position of a tracer constrained
to move on the backbone of a comb lattice (left) and on a
2D lattice (right). Vacancy density ρ0 = 0.01. The sym-
bols correspond to the results from numerical simulations,
the solid line is obtained from the inversion of the expres-
sion in Laplace domain [Eq. (9) and (15)] using the Stehfest
algorithm. The short-time (dashed line) and long-time (dash-
dotted line) asymptotics are given in the text.

lines, called the teeth, are connected (Fig. 1(b)). This
structure has been widely used to describe diffusion on
percolation clusters [29]. From now on and for simplic-
ity, we restrict ourselves to the case of a symmetric tracer
constrained to move on the backbone of the lattice. Re-
lying on the same methodology as before, the density of
first-passage time to the origin of a vacancy starting from
site (y1, y2) reads (Section IV of [25])

f̂(0, 0|y1, y2;u) =

{
f̂1(f̂‖)|y1|−1f̂⊥α|y2|−1 if y2 6= 0,

f̂1(f̂‖)|y1|−1 if y2 = 0.

(8)

where we introduced the shorthand notations f̂µ =

f̂(0, 0|µ, 0, u), f̂‖ = f̂(1, 0|2, 0, u) and f̂⊥ = f̂(1, 0|1, 1, u),
which can all be easily expressed in terms of α (Section
IV in [25]). Introducing Eq. (8) into Eq. (3), we finally
obtain

lim
ρ0→0

ψ(k, u)

ρ0
= K̂(u)(cos k − 1), (9)

with K̂(u) = (2− α)(α2 − α+ 2)/{u(α− 1)

× [u(2− α) + β − 4α+ 6][u(α− 2) + β + 2α− 2]},

where β =
√

[(2 + u)α− 2u− 2][(3 + u)α− 2u− 4].
While odd cumulants are null (for symmetry reasons, and
as can be seen from Eq. (9)), all the even cumulants are
equal, and given by ˆ̄κeven(u) = K̂(u). We deduce, after
Laplace inversion, the short-time and long-time expan-

sions: K(t) ∼
t→0

t and K(t) ∼
t→∞

23/4

3Γ(3/4) t
3/4. Note that

the long-time limit in the case of a symmetric tracer cor-
responds to the result we derived in discrete time [30].
For arbitrary time, we invert the cumulants numerically
using the Stehfest algorithm. Numerical simulations are
in perfect agreement with our analytical results (Fig. 3).
Note that it is known that the two limits t → ∞ and
ρ0 → 0 do not commute, which mirrors the existence of
a subtle ultimate diffusive regime [30], that we do not
intend to describe here.
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Looped lattices.— We finally consider the key situation
of d-dimensional lattices. Note that the geometry can be
general, each of the spatial directions of the lattice being
either be infinite or finite with periodic boundary condi-
tions, in such a way that the lattice remains translation-
invariant. The CGF of the position of a symmetric tracer
now reads (Section V in [25])

lim
ρ0→0

ψ̂(k, u)

ρ0
= −

d∑

j=1

∆̂(k|ej , u)f̂ ′j(u), (10)

where we defined f ′ν(t) =
∑

y 6=0 f
∗(0|eν |y; t) and

∆̂(k|ej , u) =
2(1− cos qj)

u
− 1

u

∑

µ,ν

[
1− e−ik·eν ]

×
{

[I−T]−1
}
ν,µ

eik·eµ
∑

ε=±1

e−εiqj f̂∗(0|eµ|εej , u), (11)

where I is the identity of size 2d and the matrix T has
the entries Tµ,ν = eik·eν f̂∗(0|eν | − eµ;u) .

The final step of the calculation consists in determining
the conditional FPT f∗ in terms of well-known quanti-
ties, namely the propagators associated to a discrete-time
random walk on a lattice. The starting point of this cal-
culation is the following relation, which consists in parti-
tioning the random walk performed by the vacancy over
the time of first visits to the origin:

∫ t

0

dt0
χ(t0)

2d
p(eµ|y, t− t0) =

∫ t

0

dt0f
∗(0|eµ|y, t0)Ψ(t− t0)

+

∫ t

0

dt0

∫ t−t0

0

dt1
1

2d
χ(t− t0 − t1)f(0|y, t0)p(eµ|0, t1),

(12)

where Ψ(t) = 1 −
∫ t

0
dt′ χ(t′) is the probability that the

walker did not move during a time t. It is then straigh-
forward to express the conditional FPTs f∗ in terms
of the continuous-time occupation probabilities p(r|r0, t)
(probability to find a vacancy at site r at time t knowing
that it started from site r0). Finally, relying on the re-
lation between the propagators p and their discrete-time

counterpart P
(n)
r (probability to find the walker at site

r after n steps knowing that it started from the origin)
[26], we get the relations (Section VI in [25])

f̂∗(0|eµ|y, u) =
χ̂

2d

[
P̂eµ−y(χ̂)− P̂y(χ̂)P̂eµ(χ̂)

P̂0(χ̂(u))

]
,(13)

f̂ ′µ(u) =
1

2d

χ̂

1− χ̂

[
1− P̂eµ(χ̂)

P̂0(χ̂)

]
, (14)

where P̂r(ξ) =
∑∞
n=0 P

(n)
r ξn is the generating function

associated to the discrete-time propagator P
(n)
r .

In summary, the cumulant generating function of the
tracer position is fully determined in terms of the gener-
ating functions P̂ associated to a discrete-time random

walk on the considered lattice. Indeed, the expression
of the CGF given in Eq. (10) simply involve f ′ and
∆. The former is related to the generating functions
P̂ through Eq. (14). The latter is related to the con-
ditional first-passage densities f∗(0|eµ|y, t) through Eq.
(11), which are themselves related to the generating func-
tions P̂ through Eq. (13). This result holds for any
translation-invariant lattice, in arbitrary space dimen-
sion.

Applying this procedure to the case of a 2D lattice,
and making use of the symmetries of the system, one
can show that the CGF is expressed in terms of only
three first-passage time densities, namely f∗(0|e1|e1, u),
f∗(0|e1|−e1, u) and f∗(0|e1|e2, u). These quantities are
themselves expressed in terms of the discrete-time prop-
agators P̂ (Section VII in [25]), which are simply given
by Fourier integrals. As an example, we get the following
expression of the second cumulant

lim
ρ0→0

κ̂2(u)

ρ0
=

1

2u

χ̂(u)

1− χ̂(u)

2− χ̂(u)g(χ̂(u))

2 + χ̂(u)g(χ̂(u))
(15)

where g(ξ) = [P̂0(ξ) − P2e1
(ξ)]/2 and is given by the

integral quantity [17, 26]

g(ξ) =
1

(2π)2

∫ π

−π
dq1

∫ π

−π
dq2

sin2 q1

1− ξ
2 (cos q1 + cos q2)

.

(16)
An explicit expression of g(ξ) in terms of elliptic inte-
grals, as well as its asymptotic expansions when ξ → 0
and ξ → 1, is given in [25] (Section VIII). This yields in
particular the following asymptotics for the second cu-
mulant in Laplace domain : κ̂2(t) ∼

t→0
t/2 and κ̂2(t) ∼

t→∞
t/[2(π− 1)]. The expression given in Eq. (15) can be in-
verted back numerically into the time domain. The out-
put of this inversion, together with numerical simulations
and the short-time and long-time asymptotics, are repre-
sented on Fig. 3. The fluctuations of the tracer position
go from one diffusive regime to another, and one observes
that the long-time diffusion coefficient is approximately
half the short-time diffusion coefficient.
Conclusion.— In this Letter, we presented a new

methodology to compute the full and exact time depen-
dence of the position of a tracer particle in a dense lat-
tice gas. We demonstrated the generality of this method
by considering different geometries (1D, comb-like, d-
dimensional), and obtaining fully explicit expressions (ei-
ther in Laplace domain or in time domain) for the cu-
mulants of the tracer position. These results unveil the
transient time regimes that precede the long-time asymp-
totics which are usually the only results that can be ob-
tained from the standard approaches, such as hydrody-
namic limits, large deviations, or discrete-time vacancy
mediated diffusion. Although the method presented here
holds in the dense limit, our results constitute a signifi-
cant step in the description of the full time dynamics of
tracer particles in exclusion processes.
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I. FROM A SINGLE VACANCY TO THE DENSE REGIME

In this Section, we derive Eq. (2) from the main text.

Let us consider a system of finite size N in which all the sites are occupied except M of them (Fig. 1). We call
these empty sites vacancies, and their fraction is denoted by ρ0 = M/N = 1− ρ. The high-density regime of the SEP
corresponds to ρ→ 1. Instead of looking at the motion of the particles, one can equivalently study the motion of the
vacancies. The later perform (a priori correlated) random walks on the lattice.

The tracer is initially at the origin, and its displacement at time t is x(t). This displacement can be said to be
generated by the random walks of the vacancies: the tracer moves by exchanging its position with that of a neighboring
vacancy. We number the vacancies and call xj(t) the displacement of the TP generated by the j-th vacancy. We have
x(t) = x1(t) + . . .xM (t).

The initial positions of the vacancies are called yj . P (x|y1, . . . ,yM , t) is the probability of a displacement x at
time t knowing the initial positions of the vacancies. Similarly, P(x1, . . . ,xM |y1, . . . ,yM , t) is the probability that up
to time t vacancies induced displacements {xj} of the TP knowing their initial positions (see Fig. 1). By definition,

P (x|{yj}, t) =
∑

y1,...,yM

δx,x1+···+xMP(x1, . . . ,xM |y1, . . . ,yM , t). (S1)
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Now, in the high density limit (ρ0 = M/N → 0), we assume that the vacancies perform independent random walks
and interact independently with the TP. We neglect event of order O(ρ20) in which two vacancies interact with each
other, compared to events of order O(ρ0) in which one vacancy interacts with the TP. This gives exact results at
linear order in the density of vacancies ρ0. We call p1(x|y, t) the probability that, in a system with a single vacancy
initially at y, the TP has displacement x at time t. Our assumption leads to

P(x1, . . . ,xM |y1, . . . ,yM , t) ∼
ρ0→0

M∏

j=1

p1(xj |yj , t) (S2)

with ρ0 = 1− ρ. Eq. (S1) now gives

P (x|y1, . . . ,yM , t) ∼
ρ0→0

∑

x1,...,xM

δx,x1+···+xM

M∏

j=1

p1(xj |yj , t). (S3)

We define the Fourier transform f̃(k) =
∑∞

x=−∞ eik·xf(x) and obtain

P̃ (k|y1, . . . ,yM , t) ∼
ρ0→0

M∏

j=1

p̃1(k|yj , t). (S4)

We consider an initial condition in which the vacancies have equal probability to be on any site (except the origin).
This corresponds to an equilibrated system and is known in the literature as annealed initial conditions. It can be
opposed to the case of an initial frozen repartition of vacancies on the lattice, usually refered to as quenched initial
conditions. Note that the choice of the type of initial conditions, annealed or quenched, can have a dramatic effect
on the statistics of the position of the tracer, as studied recently in 1D geometries [S1–S4].

The cumulant-generating function of x(t) is the logarithm of the average of P̃ (k|y1, . . . ,yM , t),

ψ(k, t) = ln P̃ (k, t), (S5)

where

P̃ (k, t) ≡ 1

(N − 1)M

∑

y1,...,yM 6=0

P̃ (k|y1, . . . ,yM , t). (S6)

In the limit ρ0 → 0, we obtain

P̃ (k, t) ∼
ρ0→0


 1

N − 1

∑

y 6=0

p̃1(k|y, t)



M

=


1 +

1

N − 1

∑

y 6=0

(p̃1(k|y, t)− 1)



M

. (S7)

We consider the large-size limit M,N → ∞ with ρ0 = M/N = 1 − ρ constant. We obtain an expression for the

propagator P̃ (k, t) in the high-density limit:

P̃ (k, t) ∼ exp


ρ0

∑

y 6=0

(p̃1(k|y, t)− 1)


 , (S8)

and for the cumulant-generating function:

lim
ρ0→0

ψ(k, t)

ρ0
=
∑

y 6=0

(p̃1(k|y, t)− 1) , (S9)

which coincides with Eq. (2) from the main text.

II. SINGLE-VACANCY PROPAGATOR

A. General relations

Here, we show how to express the single-vacancy propagator p1(x|y, t) in terms of first-passage time (FPT) densities
associated to the random walks performed by the vacancies. In this section, we consider that there is only one vacancy
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on the lattice, initially at site y. Let f(0|y, t) be the probability that the vacancy arrives at the origin for the first time
at t, and f∗(0|eν |y, t) be the probability that the vacancy arrives at the origin for the first time at t, knowing that it
was at site eν right before reaching the origin. For simplicity, we will use the notation e−µ = −eµ (µ ∈ {±1, . . . ,±d}).
The propagator p1(x|y, t) can be decomposed over the first passage of the vacancy on the origin:

p1(x|y, t) = δx,0

(
1−

∫ t

0

dτ f(0|y, t)
)

+
∑

ν

∫ t

0

dτ p1(x− eν | − eν , t)f
∗(0|eν |y, τ) (S10)

where the sum runs over all the directions ν ∈ {±1, . . . ,±d}. One remarks that the same procedure can be applied
to the total number n of arrivals of the vacancy at the origin before time t:

p1(x|y, t) =δy,0

(
1−

∫ t

0

dτ f(0|y, t)
)

+

∞∑

n=1

∫ ∞

0

dt1 . . . dtn

∫ t

0

dτ δ

(
t−

n∑

i=1

ti − τ
)

×
∑

ν1

· · ·
∑

νp

δeν1+···+eνp ,x

(
1−

∫ τ

0

dτ ′ f(0| − eνp , t)

)

× f∗(0|eνp | − eνp−1 , tn) . . . f∗(0|eν2 | − eν1 , t2)f∗(0|eν1 |y, t2). (S11)

These equations relate the single-vacancy propagator p1 to the first-passage time densities f and f∗.

B. The case of tree-like lattices

In this Section, we derive Eq. (3) from the main text.

We first consider the case of tree-like lattices. In those specific geometries, when there is one vacancy on the lattice
starting from site y (y = y1 in 1D or y = (y1, y2) on a comb), the tracer can only reach two sites: 0 and ±e1
(depending on whether the vacancy is initially at the right or at the left of the tracer). This implies:

f∗(0|eµ|y, t) =

{
f(0|y, t) if eµ belongs to the shortest path from y to 0,

0 otherwise.
(S12)

Eq. (S10) is then rewritten

p1(x|y, t) = δy,0

(
1−

∫ t

0

dτ f(0|y, t)
)

+

∫ t

0

dτ p1(x− µ| − eµ, t)f(0|y, τ), (S13)

where µ ≡ sgn(y1). Using the same simplification, Eq. (S11) now reads

p1(y|eν , t) =

∞∑

n=0

δy,ν[1−(−1)n+1]

∫ ∞

0

dt1 . . . dtn

∫ ∞

0

dτδ

(
t−

n∑

i=1

ti − τ
)

× (1− f(0|(−1)neν , τ)) f(0|(−1)n−1eν , τ) . . . f(0| − eν , t2)f(0|eν , t1). (S14)

We define the Fourier-transform in space and Laplace transform in time by

ˆ̃p1(k|y, u) ≡
∞∑

Y=−∞
eikx

∫ ∞

0

dt e−utp1(x|y, t). (S15)

Applying it to Eqs. (S13) and (S14), we obtain

ˆ̃p1(k|y, u) =
1

u
+

[
ˆ̃p1(k| − eµ, u)eiµk − 1

u

]
f̂(0|y, u), (S16)

ˆ̃p1(k|eν , u) =
1

u

[
1− f̂ν(u)

]
+ eiνkf̂ν(u)

[
1− f̂−ν(u)

]

1− f̂1(u)f̂−1(u)
, (S17)
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where we introduce the shorthand notation f̂ν(u) = f(0|eν , u). We combine the two equations and obtain the
propagator of the displacement of the TP in term of the first passage probabilities of the vacancy,

ˆ̃p1(k|y, u) =
1

u

[
1 +

(
eiµk − 1

) 1− f̂−µ(u)

1− f̂1(u)f̂−1(u)
f̂(0|y, u)

]
, (S18)

which corresponds to Eq. (3) from the main text.

III. FPT DENSITIES IN 1D

In this Section, we derive Eq. (4) from the main text.

We consider a SEP with only one vacancy and a TP initially at the origin and consider the random walk performed
by this unique vacancy. The vacancy is surrounded by two particles with exponential clocks with ticking probability
χ(t) = e−t and its Laplace transform

χ̂(u) =
1

1 + u
. (S19)

Except when it is next to the biased TP, the vacancy thus perform a symmetric Montroll-Weiss walk [S7] with a
distribution of jumping times given by χ(t). When the TP is not biased, the walk becomes symmetric for all sites.
We first study this situation before accounting for defective sites next to the TP.

a. Unbiased TP Let us call fUB
y (t) the probability of first passage at the origin at time t of a vacancy initially

at y, assuming that the TP is not biased (p±1 = 1/2, s = 0). The Montroll-Weiss walk (in continuous time) of the
vacancy is linked to the associated discrete-time random walk by the formula [Ref. [S7], Eq. (5.46)]

f̂UB
y (u) = F̂y(χ̂(u)), (S20)

where χ̂ is given by Eq. (S19), and F̂y(ξ) =
∑∞
t=0 ξ

tFy(t) is the discrete Laplace transform of the probability of first
passage at the origin of the discrete-time walk starting from y. It is known to be given [Ref. [S7], Eq. (3.135)] by

F̂y(ξ) = α|y| with α = ξ−1
(

1−
√

1− ξ2
)

. At the end of the day, we obtain the following expression for the first

passage probability that we study:

f̂UB
y (u) = α|y|, (S21)

α = 1 + u−
√
u(2 + u). (S22)

One notes that α is a solution of the equation α2 − 2(1 + u)α+ 1 = 0, this leads to the non trivial relation

1 + u =
1 + α2

2α
=

1

2

(
α+ α−1

)
. (S23)

Now that we have the expression for an unbiased TP, we turn to the case of a biased TP.

b. Biased TP We consider a unique vacancy on the site ν = ±1, next to a biased TP. Two events can happen,
either the TP jumps on site ν or the particle on site 2ν jumps on site ν. The first event is governed by an exponential
law of rate (inverse time) pν , while the second is associated to an exponential clock of rate 1/2. The motion of
the vacancy is thus governed by the exponential law of rate (pν + 1/2), χV (t) = (pν + 1/2)e−(pν+1/2)t. When such
a jump of the vacancy occurs, there is a probability pν/(pν + 1/2) that it is done in the direction of the TP, and
(1/2)/(pν + 1/2) that it is done in the opposite direction.

We call fν(t) the probability of first passage of the vacancy at the origin, knowing that it starts from site ν. Either
it is due to the first jump of the vacancy at time t, or the vacancy jumps on site 2ν at time t0 < t, comes back to site
ν by a unbiased random walk at time t0 + t1 and then arrives at the origin. This leads us to the relation,

fν(t) = pνe
−(pν+1/2)t +

∫ t

0

dt0
1

2
e−(pν+1/2)t0

∫ t−t0

0

dt1f
UB
1 (t1)fν(t− t0 − t1). (S24)
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We compute the Laplace transform of this equation and remember that f̂UB
ν (u) = α with α given by Eq. (S22).

Moreover, 1 + u and α are linked by Eq. (S23). We end up with

f̂ν(u) =
pν

u+ pν + 1/2− α/2 =
α(1 + νs)

1 + νsα
(S25)

where s is the bias. In particular, as expected, if pν = 1/2, f̂ν(u) = f̂UB
ν (u) = α.

Finally, considering a vacancy starting from site y and decomposing over the first visit to site µ = sgn(y), we obtain

fy(t) =

∫ t

0

dt0f
UB
|y|−1(t0)fµ(t− t0), (S26)

and, in Laplace domain,

f̂y(u) = f̂UB
|y|−1(u)f̂µ(u) =

1 + µs

1 + µsα
α|y|, (S27)

which corresponds to Eq. (4) in the main text.

IV. FPT ON A COMB

In this Section, we derive Eq. (9) from the main text.

We consider the comb lattice represented on Fig. 1(b). The backbone of the lattice is the x1-axis, and to each node
of the backbone a one-dimensional lattice is connected and extends infinitely in directions ±x2 (called teeth). Bath
particles jump to each neighbouring site with rate 1/4 when they are on the backbone, and with rate 1/2 when they
are on the teeth. The tracer is constrained to move on the backbone and therefore jumps with rate 1/2 to the right
or to the left. Its position is denoted by x(t) and the associated generating function is ψ(k, t) = ln

〈
eikx(t)

〉
.

Starting from Eq. (2), we write

lim
ρ→1

ψ(k, t)

1− ρ =
∑

(y1,y2)6=(0,0)

(p̃y1,y2(k, t)− 1) , (S28)

where the sum runs over all the sites different from the origin (all possible starting points of the vacancies). The
quantity py1,y2(x, t) is the probability that the tracer reaches site x at time t due to its interactions with a single
vacancy that starts from site (y1, y2). Following the derivation in Section II, the Fourier-Laplace transform of the

single-vacancy propagator is related to the FPT densities f̂ through [Eq. (3)]

ˆ̃py1,y2(k, u) =
1

u

[
1 + (eiµk − 1)

1− f̂−µ(u)

1− f̂1(u)f̂−1(u)
f̂(0, 0|y1, y2;u)

]
=

1

u

[
1 +

eiµk − 1

1 + f̂1(u)
f̂(0, 0|y1, y2;u)

]
, (S29)

where f(0, 0|y1, y2, t) is the probability for a vacancy to reach the origin for the first time at time t starting from site

(y1, y2). We also define f̂µ(u) = f̂(0, 0|µ, 0, u). We used the symmetry relation f̂1 = f̂−1 to obtain the second equality
in Eq. (S29).

Because of the tree-like structure of the lattice, there is a single path linking site (y1, y2) to the origin (0, 0). This
property ensures the relation [S9]

f(0, 0|y1, y2; t) =

∫ t

0

dτ f(0, 0|y′1, y′2, τ)f(y′1, y
′
2|y1, y2, t− τ), (S30)

or, in Laplace space,

f̂(0, 0|y1, y2;u) = f̂(0, 0|y′1, y′2, u)f̂(y′1, y
′
2|y1, y2, u). (S31)

This relation holds for any site (y′1, y
′
2) belonging to the bath linking (y1, y2) and (0, 0). Using the path decomposition

(y1, y2) → (y1, sgn(y2)) → (y1, 0) → (sgn(y1), 0) → (0, 0), we write

f̂(0, 0|y1, y2;u) =

{
f̂1(u)[f̂(1, 0|2, 0, u)]|y1|−1f̂(1, 0|1, 1, u)[f̂(1, 1|1, 2, u)]|y2|−1 if y2 6= 0,

f̂1(u)[f̂(1, 0|2, 0, u)]|y1|−1 if y2 = 0.
(S32)
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For simplicity, we introduce the following notations:

f̂(1, 0|2, 0, u) = f̂‖ (S33)

f̂(1, 0|1, 1, u) = f̂⊥ (S34)

We note that f̂(1, 1|2, 1, u), which denotes the FPT density between two neighboring site of a tooth of the comb is
nothing but the FPT density between two neighboring site of a 1D lattice, and is given by

f̂(1, 1|2, 1, u) = α = 1 + u−
√
u(2 + u) (S35)

Finally, using the expressions of the first-passage densities [Eq. (S32)], the single-vacancy propagator [Eq. (S29)] and
of the cumulant generating function [Eq. (S28)] yields the following expression of the latter in Laplace domain:

lim
ρ→1

ψ(k, u)

1− ρ =
1

u

1

1 + f̂1(u)

∑

ε=±1

∞∑

y2=−∞

∞∑

y1=1

(eiεk − 1)f̂(0, 0|εy1, y2;u) (S36)

and eventually

lim
ρ→1

ψ(k, u)

1− ρ =
1

u

1

1− f̂‖(u)

(
1 +

2f̂⊥(u)

1− α(u)

)
f̂1(u)

1 + f̂1(u)
· 2(cos k − 1). (S37)

The last step of the calculation is to compute the quantities f̂±1, f̂‖ and f̂⊥:

• Calculation of f̂1

Here, we follow the arguments that lead to the derivation of Eq. (S24). Considering a vacancy initially located
at site (±1, 0) (on the backbone and right next to the tracer) and partitioning over the first jump performed
by the vacancy which can either be directed towards the tracer (with rate 1/2) on the backbone and in the
direction opposite to that of the tracer (with rate 1/4), or sideways on the tooth of the comb (with rate 2×1/2),
one writes

f1(t) =
1

2
e−7t/4 +

∫ t

0

dt0
1

4
e−7t/4

∫ t−t0

0

dt1 fµ(t− t0 − t1)fUB
‖ (t1)

+2

∫ t

0

dt0
1

2
e−7t/4

∫ t−t0

0

dt1 fµ(t− t0 − t1)fUB
‖ (t1) (S38)

where f‖ is defined in Eq. (S33). Taking the Laplace transform of this equation, one gets

f̂1(u) =
1/2

u+ 7
4 − 1

4 f̂‖ − f̂⊥
. (S39)

• Calculation of f̂‖

In order to calculate f̂‖ = f̂(1, 0|2, 0, u), we consider a vacancy starting from site (2, 0) and, partitioning over
the first jump performed by the vacancy which can either on the backbone (with rate 2 × 1/4) or sideways on
the tooth of the comb (with rate 2× 1/2), we get

f‖(t) =
1

4
e−3t/2 +

∫ t

0

dt0
1

4
e−3t/2

∫ t−t0

0

dt1 f‖(t− t0 − t1)f‖(t1)

+2

∫ t

0

dt0
1

2
e−3t/2

∫ t−t0

0

dt1 f‖(t− t0 − t1)f⊥(t1). (S40)

In Laplace space, one gets the equation satisfied by f̂‖(u):

f̂‖(u)2 − 4

[
u+

3

2
− f̂⊥(u)

]
f̂‖(u) + 1 = 0. (S41)

Choosing the solution satisfying the short-time condition limu→∞ f̂‖(u) = 0, we get

f̂‖(u) = 2

(
u+

3

2
− f̂⊥(u)

)
−
√

4

(
u+

3

2
− f̂⊥(u)

)2

− 1 (S42)
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• Calculation of f̂⊥

Finally, in order to calculate f̂⊥ = f̂(1, 0|1, 1, u), we consider a vacancy starting from site (1, 1) and, partitioning
over the first jump performed by the vacancy which can either be away from the backbone (with rate 1/2) or
to the backbone (with rate 1/4), we get

f⊥(t) =
1

4
e−3t/4 +

∫ t

0

dt0
1

2
e−3t/4

∫ t−t0

0

dt1 f⊥(t− t0 − t1)f1D(t1), (S43)

where f1D is the FPT density of a vacancy between two neighboring sites of a one-dimensional lattice (its Laplace
transform is denoted by α(u) in the main text). In Laplace space, we get

f̂⊥ =
1

4u+ 3− 2α(u)
=

α

2− α (S44)

Eq. (S37), together with the expressions of f̂‖, f̂‖, and f̂1 above, leads after some algebra to Eq. (9) of the main
text.

V. LOOPED LATTICES : EXPRESSION OF THE CGF IN TERMS OF THE CONDITIONAL FPT f∗

In this Section, we derive Eq. (10) from the main text.

We now turn to the case of d-dimensional lattices. We start from Eq. (S7), which relates the propagator of the
tracer position to the single-vacancy propagators in Fourier space p̃1(k|y, t):

P̃ (k, t) '


1 +

1

N − 1

∑

y 6=0

(p̃1(k|y, t)− 1)



M

. (S45)

Using the Fourier transform of Eq. (S62), which relate the single-vacancy propagators of the random walk of a tracer
starting from an arbitrary point y and from a site located at the vicinity of the tracer eν , we find the relation

p̃1(k|y, t) = 1−
∫ t

0

dτ f(0|y, t) +
∑

ν

∫ t

0

dτ f∗(0|eν |y; τ)eiqν p̃1(k| − eν ; t− τ). (S46)

Replacing p̃1(k|y, t) in Eq. (S45) by this expression, and using the relation f(0|y; t) =
∑
ν f
∗(0|eν |y; t), one gets

P̃ (k, t) =


1− 1

N − 1

∑

ν

∫ t

0

dτ [1− eiqν p̃1(keν ; t− τ)]
∑

y 6=0

f∗(0|eν |y; τ)



M

. (S47)

Using the equivalence between directions ±eν , defining (for j = 1, . . . , d)

∆(k|ej , t) = 2− eiqj p̃1(k| − ej ; t)− e−iqj p̃1(k|ej ; t), (S48)

and taking the thermodynamics limit (M,N →∞ with fixed ρ = M/N), one gets

P̃ (k, t) = exp


−ρ

d∑

j=1

∫ t

0

dτ ∆(k|ej , t− τ)f ′ν(τ)


 . (S49)

where we defined

f ′ν(t) =
∑

y 6=0

f∗(0|eν |y; t). (S50)

In Laplace domain, the CGF then reads:

lim
ρ0→0

ψ̂(k, u)

ρ0
= −

d∑

j=1

∆̂(k|ej , u)f̂ ′j(u). (S51)
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The last step of the calculation consists in expressing ∆̂(k|ej , u) in terms of the conditional FPT densities f∗(0|eν |eµ, t).
Taking the Fourier-Laplace transform of Eq. (S11), we get

ˆ̃p1(k|y;u) =
1

u

(
1 +

∑

µ

Vµ(k;u)f∗(0|eµ|y;u)

)
. (S52)

where we defined

Vµ(k;u) ≡
∑

ν

[
1− e−ik·eν

] {
[I−T(k;u)]−1

}
ν,µ

eik·eµ . (S53)

I is the identity of size 2d and the matrix T(k;u) has the entries [T(k;u)]µ,ν defined by

[T(k;u)]ν,µ = eik·eν f̂∗(0|eν | − eµ;u) =

∫ ∞

0

dt f∗t (0|eν | − eµ, t)e
−ut. (S54)

Taking the Laplace transform of Eq. (S48), and using the expression of ˆ̃p1 [Eq. (S52)] yields

∆̂(k|ej , u) =
2(1− cos qj)

u
− 1

u

∑

µ

Vµ(k, u)[eiqj f̂∗(0|eµ| − ej , u) + e−iqj f̂∗(0|eµ|ej , u)] (S55)

. We then have an expression of the CGF in terms of the conditional first-passage densities f∗ (Eq. (10) from the
main text).

VI. CONDITIONAL FPT DENSITIES f∗ ON A LOOPED LATTICE

In this Section, we derive Eqs. (13) and (14) from the main text.

Taking the Laplace transform of this Eq. (12) in the main text, using the renewal equation f̂(y|0, u) =

p̂(y|0, u)/p̂(0|0, u) (valid for y 6= 0 [S7]), and using Ψ̂(u) = (1− χ̂(u))/u, we get

f̂∗(0|eµ|y, u) =
1

2d

uχ̂(u)

1− χ̂(u)

[
p̂(eµ − y|0, u)− p̂(y|0, u)p̂(eµ|0, u)

p̂(0|0, u)

]
(S56)

where p(r|r0; t) is the propagator associated to a simple random walk on the considered lattice (probability to find a
walker at site r at time t knowing that it started from site r0 at time t = 0), and we used the translational invariance
of the lattice (i.e. p(r|r0; t) = p(r − r0|0; t) for any two sites r and r0).

The Laplace transform of the continuous-time propagator can be related to the generating function P̂ (r|r0; ξ) =∑∞
n=0 Pn(r|r0)ξn associated to the discrete-time propagator Pn(r|r0) (probability to find the walker at site r after n

steps knowing that it started from site r0) through the relation [S7]:

p̂(r|r0, u) =
1− χ̂(u)

u
P̂ (r|r0; χ̂(u)), (S57)

which yields

f̂∗(0|eµ|y, u) =
χ̂(u)

2d

[
P̂ (eµ − y|0; χ̂(u))− P̂ (y|0; χ̂(u))P̂ (eµ|0; χ̂(u))

P̂ (0|0; χ̂(u))

]
., (S58)

which coincides with Eq. (13) in the main text.

We finally compute f̂ ′µ(u), defined in Eq. (S50). To this end, we must use the normalisation condition
∑

r Pn(r|r0) =
1, which reads, in terms of the generating function associated to Pn:

∑

r

P̂ (r|r0, ξ) =
1

1− ξ . (S59)

With Eq. (13), we get the simple expression

f̂ ′µ(u) =
1

2d

χ̂(u)

1− χ̂(u)

[
1− P̂ (eµ|0, χ̂(u))

P̂ (0|0, χ̂(u))

]
. (S60)

which is Eq. (14) in the main text.
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VII. APPLICATION TO A 2D LATTICE

In this Section, we give the expression of the CGF of the tracer particle on a 2D lattice.

We now consider the example of the infinite 2D lattice. Making use of the symmetries of this lattice, one can show
that the matrix T(k;u) (defined in Eq. (S54)) takes the simple form

T(k;u) =




eik1a(u) eik1a(u) eik1c(u) eik1c(u)
e−ik1a(u) e−ik1a(u) e−ik1c(u) e−ik1c(u)
eik2c(u) eik2c(u) eik2b(u) eik2a(u)

e−ik2c(u) e−ik2c(u) e−ik2a(u) e−ik2b(u)


 (S61)

where we introduce shorthand notations for the following conditional FPT densities, which are determined in terms
of the generating functions P̂ using Eq. (13):

a(u) = f∗(0|e1|e1, u) =
χ̂(u)

4

[
P̂ (0|0; χ̂(u))− P̂ (e1|0; χ̂(u))2

P̂ (0|0; χ̂(u))

]
, (S62)

b(u) = f∗(0|e1| − e1, u) =
χ̂(u)

4

[
P̂ (2e1|0; χ̂(u))− P̂ (e1|0; χ̂(u))2

P̂ (0|0; χ̂(u))

]
, (S63)

c(u) = f∗(0|e1|e2, u) =
χ̂(u)

4

[
P̂ (e1 + e2|0; χ̂(u))− P̂ (e1|0; χ̂(u))2

P̂ (0|0; χ̂(u))

]
. (S64)

Since we are only interested in the cumulants of the position projected onto one direction of the lattice, we only
consider the dependence of the CGF on the component k1 and set k2 = 0 for simplicity. Using Eq. (10) (together
with Eqs. (S50) and (S55) yields the following expression of the CGF in terms of the conditional FPT densities:

lim
ρ0→0

ψ̂(k1, k2 = 0, u)

ρ0
=

1

2u

χ̂(u)

1− χ̂(u)

(1− cos k1)(a− b− 1)[(a+ b− 1)2 − 4c2]

[2b(a+ b− 1)− 4c2] cos k1 + (a+ b− 1)(a2 − b2 − 1)− 4(a− b)c2 . (S65)

Finally, the CGF is only expressed in terms of 4 distinct propagators: P̂ (0|0; ξ), P̂ (e1|0; ξ), P̂ (2e1|0; ξ) and P̂ (e1 +
e2|0; ξ). There exists relations between these propagators [S5, S6], as well as explicit expressions of them in terms of
integrals, that eventually allow a fully explicit determination of the CGF.

VIII. EXPLICIT EXPRESSION OF g(ξ) IN TERMS OF ELLIPTIC INTEGRALS

The function g, defined in Eq. (16) of the main text as

g(ξ) ≡ 1

2
[P̂ (0|0; ξ)− P̂ (2e1|0; ξ)] =

1

(2π)2

∫ π

−π
dq1

∫ π

−π
dq2

sin2 q1

1− ξ
2 (cos q1 + cos q2)

. (S66)

can be expressed in terms of elliptic integrals:

g(ξ) =
4

ξ2
+

4

πξ2
√

1− ξ2

[
(1− ξ)K

(
iξ√

1− ξ2

)
− (1− ξ2)E

(
iξ√

1− ξ2

)
− 2Π

(
ξ

ξ − 1
,

iξ√
1− ξ2

)]
, (S67)

where we use the following expressions for the elliptic integrals:

K(k) =

∫ 1

0

dt√
1− t2

√
1− k2t2

; E(k) =

∫ 1

0

dt

√
1− k2t2√
1− t2

; Π(ν, k) =

∫ 1

0

dt

(1− νt2)
√

1− t2
√

1− k2t2
.

(S68)
The asymptotic expansions of g(ξ) read

g(ξ) =
ξ→1

(
2− 4

π

)
+

2

π
(1− ξ) ln(1− ξ) +O(1− ξ), (S69)

g(ξ) =
ξ→0

1

2
+

3

32
ξ2 +O

(
ξ3
)
. (S70)
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FIG. S1. (a) Symmetric Exclusion Process (SEP) with a biased TP. The bath particles jump on neighboring site with rate
1/2, whereas the jump rates of the TP are p±1 = (1± s)/2 where s is the bias. (b) Tracer diffusing on a crowded comb lattice.
Particles jump on neighboring sites with rate 1/4 (resp. 1/2) when they are on the backbone (resp. the teeth) of the comb. The
tracer is constrained to move on the backbone of the lattice. (c) Tracer diffusion on a crowded 2D lattice. The bath particles
and the tracer jump on each neighboring site with rate 1/4.

IX. NUMERICAL SIMULATIONS

The simulations of the SEP are performed on a periodic ring of size N , with M = ρN particles at average density
ρ. In Fig. 2, N = 2000 and M = 1960 (ρ0 = 0.02). The particles are initially placed uniformly at random. The jumps
of the particles are implemented as follow. One first picks a particle uniformly at random. Then a direction (left or
right) is chosen according to probabilities 1/2 and 1/2 for bath particles; p1 and p−1 = 1 − p1 for the tracer. If the
chosen particle has no neighbor in that direction, the jump is performed, otherwise it is rejected. In both cases, the
time of the simulation is incremented by a random number picked from an exponential distribution of rate N . We
keep track of the particle initially at the origin (the tracer) and compute the moments of its displacement, averaging
over 2 · 106 simulations.

The simulations of the comb and of the 2D lattice (Fig. 3) are performed in a similar way. Starting from a uniform
random configuration, particles are chosen uniformly at random and try to jump to neighboring sites with probabilities
described on Fig. S1. Hard-core exclusion is enforced. In both cases (comb and 2D lattice), we use a periodic grid of
size 100× 100 with 9900 particles (ρ0 = 0.01) and average over 4 · 106 simulations.

[S1] P. L. Krapivsky, K. Mallick, and T. Sadhu, Physical Review Letters 113, 078101 (2014).
[S2] P. L. Krapivsky, K. Mallick, and T. Sadhu, Journal of Statistical Physics 160, 885 (2015).
[S3] T. Sadhu and B. Derrida, J. Stat. Mech. , P09008 (2015), arXiv:arXiv:1505.04572v1.
[S4] A. Poncet, O. Benichou, and P. Illien, Physical Review E 103, L040103 (2021), arXiv:2012.06490.
[S5] M. J. A. M. Brummelhuis and H. J. Hilhorst, J. Stat. Phys. 53, 249 (1988).
[S6] M. J. A. M. Brummelhuis and H. J. Hilhorst, Physica A 156, 575 (1989).
[S7] B. D. Hughes, Random Walks and Random Environments: Random walks, Volume 1 (Oxford University Press, Oxford,

1995).
[S8] O. Bénichou, P. Illien, G. Oshanin, A. Sarracino, and R. Voituriez, Physical Review Letters 115, 220601 (2015).
[S9] W. Woess, Random Walks on Infinite Graphs and Groups (Cambridge University Press, 2000) p. 334.


