

Characteristics and risk factors for poor outcome in patients with systemic vasculitis involving the gastrointestinal tract

Ségolène Gendreau, Raphaël Porcher, Benjamin Thoreau, Romain Paule, François Maurier, Tiphaine Goulenok, Laure Frumholtz, Charlotte Bernigaud, Saskia Ingen-Housz-Oro, Arsène Mekinian, et al.

▶ To cite this version:

Ségolène Gendreau, Raphaël Porcher, Benjamin Thoreau, Romain Paule, François Maurier, et al.. Characteristics and risk factors for poor outcome in patients with systemic vasculitis involving the gastrointestinal tract. Seminars in Arthritis and Rheumatism, 2021, 51 (2), pp.436-441. 10.1016/j.semarthrit.2021.03.002. hal-03842906

HAL Id: hal-03842906 https://hal.science/hal-03842906v1

Submitted on 22 Mar 2023 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Version of Record: https://www.sciencedirect.com/science/article/pii/S0049017221000329 Manuscript_c5f4abdf935b64d715d78090786443ae

1 Characteristics and Risk Factors for Poor Outcome in Patients with

2 Systemic Vasculitis Involving the Gastrointestinal Tract.

4	Ségolène Gendreau ¹ , MD, Raphael Porcher ² , MD, PhD, Benjamin Thoreau ¹ , MD, Romain
5	Paule ³ , MD, François Maurier ⁴ , MD, Tiphaine Goulenok ⁵ , MD, Laure Frumholtz ⁶ , MD,
6	Charlotte Bernigaud ⁷ , MD, Saskia Ingen-Housz-Oro ⁷ , MD, Arsène Mekinian ⁸ , MD, PhD,
7	Alexandra Audemard-Verger ⁹ , MD, Antoine Gaillet ¹⁰ , MD, Laurent Perard ¹¹ , MD, Maxime
8	Samson ¹² , MD, Romain Sonneville ¹⁰ , MD, PhD, Jean-Benoît Arlet ¹³ , MD, PhD, Adrien
9	Mirouse ¹⁴ , MD, Jean-Emmanuel Kahn ¹⁵ , MD, PhD, Julien Charpentier ¹⁶ , MD, Éric
10	Hachulla ¹⁷ , MD, PhD, Aurélie Hummel ¹⁸ , MD, Thomas Pires ¹⁹ , MD, Pierre-Louis Carron ²⁰ ,
11	MD, Cécile-Audrey Durel ²¹ , MD, Wendy Jourde ¹⁹ , MD, Xavier Puechal ¹ , MD, PhD, Jean-
12	Christophe Lega ²¹ , MD, PhD, Françoise Sarrot-Reynauld ²² , MD, Nathalie Tieulie ²³ , MD,
13	Elisabeth Diot ⁹ , MD, Loïc Guillevin ¹ , MD, PhD, Benjamin Terrier ¹ , MD, PhD, on behalf of
14	the French Vasculitis Study Group.
15	
16	¹ Department of Internal Medicine, Hôpital Cochin, AP-HP, Paris, France
17	² Centre de Recherche Épidémiologie et Statistique Sorbonne Paris Cité, Hôtel-Dieu, Paris,
18	France
19	³ Department of Internal Medicine, Hôpital Foch, Suresnes, France
20	⁴ Department of Internal Medicine, Hôpital Sainte-Blandine De Metz, Metz, France
21	⁵ Department of Internal Medicine, Hôpital Bichat - Claude-Bernard, AP-HP, Paris, France
22	⁶ Department of Dermatology, Hôpital Saint-Louis, AP-HP, Paris, France
23	⁷ Department of Dermatology, Hôpital Henri Mondor, AP-HP, Créteil, France
24	⁸ Department of Internal Medicine, Hôpital Saint-Antoine, AP-HP, Paris, France
25	⁹ Department of Internal Medicine and Clinical Immunology, CHRU Tours, Tours, France
26	¹⁰ Intensive-care unit, Hôpital Bichat-Claude-Bernard, AP-HP, Paris, France
27	¹¹ Department of Internal Medicine, Centre Hospitalier Saint Joseph Saint Luc, Lyon, France
28	¹² Department of Clinical Immunology and Internal Medicine, CHU de Dijon, Dijon, France
29	¹³ Department of Internal Medicine, Hôpital européen Georges Pompidou, AP-HP, Paris,
30	France
31	¹⁴ Intensive care unit, Hôpital Saint-Louis, AP-HP, France
32	¹⁵ Department of Internal Medicine, Hôpital Ambroise Paré, AP-HP, Boulogne, France
33	¹⁶ Intensive care unit, Hôpital Cochin, AP-HP, Paris, France

34	¹⁷ Department of Internal Medicine and Clinical Immunology, Hôpital Claude Huriez,, Lille,		
35	France		
36	¹⁸ Department of Nephrology, Hôpital Necker, AP-HP, Paris, France		
37	¹⁹ Department of Internal Medicine, CHU Bordeaux, Bordeaux, France		
38	²⁰ Department of Nephrology, Hôpital Nord - CHU Grenoble, Grenoble, France		
39	²¹ Department of Internal Medicine, Hôpital Edouard Herriot, CHU Lyon, Lyon, France		
40	²² Department of Internal Medicine, Hôpital Nord - CHU Grenoble, Grenoble, France		
41	²³ Department of Internal Medicine, Hôpital de Nice, Nice, France		
42			
43	Correspondence: Pr. Benjamin Terrier, Department of Internal Medicine, Hôpital Cochin, 27,		
44	rue du Faubourg Saint-Jacques, 75679 Paris Cedex 14, France. Phone: +33 (0)1 58 41 14 61;		
45	Fax: +33 (0)1 58 41 14 50; E-mail: benjamin.terrier@aphp.fr, Orcid ID:		
46	https://orcid.org/0000-0001-6612-7336		
47			
48	Manuscript word count: 2,586 words		
49			
50	Declarations of interest: none		
51	Declaration of funding interests: This research did not receive any specific grant from		
52	funding agencies in the public, commercial, or not-for-profit sectors.		
53			
54	Abbreviations:_GI: gastrointestinal; ICU: intensive care unit; FFS: Five Factors Score; PAN:		
55	polyarteritis nodosa; MPA: microscopic polyangiitis; GPA: granulomatosis with polyangiitis;		
56	EGPA: eosinophilic granulomatosis with polyangiitis; GCA: giant-cell arteritis; IgAV: IgA		
57	vasculitis; CryoVas: cryoglobulinemia vasculitis; CT: computed tomography; SAPS:		

simplified acute-physiology score; CRP: C-reactive protein; AAV: ANCA-associated
vasculitides; LDH: lactate dehydrogenase.

60 Authorship Statement

Dr Gendreau, and Pr Terrier: Conceptualization; Data curation; Formal analysis;
Investigation; Writing - original draft; Writing - review & editing.

- Dr Gendreau, Pr Terrier, Dr Porcher : Methodology; Analysis and interpretation of data
- Dr Thoreau, Dr Paule, Dr Maurier, Dr Goulenok, Dr Frumholtz, Dr Bernigaud, Dr Ingen-
- 65 Housz-Oro, Pr Mekinian, Dr Audemard-Verger, Dr Gaillet, Dr Perard, Dr Samson, Pr
- 66 Sonneville, Pr Arlet, Dr Mirouse, Pr Kahn, Dr Charpentier, Pr Hachulla, Dr Hummel, Dr

67 Pires, Dr Carron, Dr Durel, Dr Jourde, Pr Lega, Dr Sarrot-Reynauld, Dr Tieulie, Dr Diot, Pr

- 68 Guillevin: Design of the study; Data curation; Writing review & editing.
- 69 All authors approved the final version of the article, including the authorship list.
- 70

72 Abstract

Background: Gastrointestinal (GI) involvement was described to be a poor prognostic factor
in systemic necrotizing vasculitis. Its prognostic significance may vary according to clinical
presentation and vasculitis subtype.

Aims: This study investigated risk-factors associated to poor outcome in GI-involvement ofvasculitis.

78 Methods: Patients with systemic vasculitis as defined by the 2012 Chapel Hill Consensus 79 Conference and presenting with GI involvement were retrospectively included. Baseline 80 characteristics, treatments and outcome were recorded. Primary endpoint was a composite of 81 admission to intensive care unit (ICU), emergency surgical procedure, or death.

Results: Two hundred and thirteen patients were included. Vasculitis were distributed as 82 follows: 41% IgA vasculitis, 27% ANCA-associated vasculitis, 17% polyarteritis nodosa 83 (PAN), and 15% other vasculitis. Eighty-three (39%) patients fulfilled the composite primary 84 endpoint within 6 months. Predictive factors associated with the primary endpoint included 85 PAN subtype (OR 3.08, 95% CI 1.29-7.34), performance status (OR 1.40, 1.05-1.87), use of 86 morphine (OR 2.51, 0.87-7.24), abdominal guarding (OR 3.08, 1.01-9.37), ileus (OR 2.29, 87 0.98-5.32), melena (OR 2.74, 1.17-6.42), increased leukocytes (per G/L, OR 1.05, 1.00-1.10), 88 low hemoglobin (per g/dL, OR 0.80, 0.71-0.91) and increased CRP (log mg/L, OR 1.21, 0.94-89 1.56). A risk prediction model for the achievement of primary endpoint had a very good 90 91 performance [C-statistics 0.853 (0.810 to 0.895], and for overall survival as well.

92 Conclusions: Vasculitis presenting with GI involvement have a poor outcome in more than
93 one third of cases. An easy-to-use risk prediction model had a very good performance to
94 predict the admission to ICU, emergency surgical procedure, or death.

95

96 Keywords: Risk Factors; Systemic Vasculitis; Gastrointestinal Tract; intestinal ischemia;

97 <u>1. Introduction</u>

98 Systemic vasculitis are inflammatory diseases of the blood vessel wall, defined in the 99 2012 revised Chapel Hill Consensus Conference according to the size and the type of 100 involved vessels[1]. Gastrointestinal (GI) involvement may occur with a frequency ranging 101 from 10 to 50% according to the type of vasculitis. While its presentation is often nonspecific, 102 GI involvement represents a severe and life-threatening condition, which requires an early and 103 immediate management to decrease morbidity and mortality [2]. Severe GI involvement is 104 identified as a poor prognostic factor in the Five Factors Score (FFS)[3].

A previous study from our group described in 2005 the GI involvement in necrotizing systemic vasculitides[4]. Amongst 62 patients, factors associated with death were peritonitis (hazard ratio [HR] = 4.3, p < 0.01), bowel perforation (HR = 5.7, p < 0.01), intestinal occlusion (HR = 5.5, p < 0.01), and intestinal ischemia (HR = 4.1, p < 0.01). However, this study did not include other vasculitis subtype, and the admission to intensive care unit (ICU) or surgery were not analyzed whereas they represent more frequent outcomes.

111 Since GI involvement remains a life-threatening condition despite the significant 112 improvement of vasculitis management, we investigated GI involvement in the current era to 113 identify prognostic factors for the admission to the ICU, surgery or death, and develop a risk 114 prediction model to assist the therapeutic decision.

115

116 **<u>2. Material and methods</u>**

117 **2.1 Inclusion criteria**

We retrospectively included patients with systemic vasculitides diagnosed between January 2006 and May 2019 according to the 2012 Chapel Hill Consensus Conference [1], and presenting with GI involvement. Systemic vasculitides included including polyarteritis nodosa (PAN), microscopic polyangiitis (MPA), granulomatosis with polyangiitis (GPA), eosinophilic granulomatosis with polyangiitis (EGPA), giant-cell arteritis (GCA), Takayasu
disease, Behçet disease, IgA vasculitis (IgAV), cryoglobulinemia vasculitis (CryoVas) and
hypocomplementemic urticarial vasculitis.

Cases fulfilling inclusion criteria were selected from the French Vasculitis Study Group 125 (FVSG) database in one hand., and also by contacting all vasculitis practitioners registered 126 within the FVSG network for additional cases in the other hand [12].Patients were from 127 centers in France and Belgium, including internal medicine, intensive care unit, nephrology, 128 rheumatology and dermatology departments. GI involvement was defined as follows: GI 129 symptom associated with radiologic or endoscopic findings[5-7] consistent with intra-130 abdominal vasculitis, or GI manifestations[8-11] present at vasculitis' diagnosis or relapse 131 and responding to specific immunomodulatory agents. GI involvement could occur at 132 vasculitis onset or during a relapse. Patients were excluded if GI involvement could not be 133 explained by vasculitis itself. 134

This study was conducted in compliance with the Good Clinical Practice protocol and the
Declaration of Helsinki principles and was approved by the local ethics committee
Institutional Review Board from Cochin Hospital, Paris (CLEP Decision N°: AAA-202008036).

139 **2.2 Data collection**

Each physician fulfilled a standardized case report form for submission of cases. 140 Medical files were reviewed for gender, age, past medical history (cirrhosis, embolic or pro-141 thrombotic diseases, cancer, previous history of gastric ulcer, or anticoagulation or antiplatelet 142 therapy), vasculitis presentation at diagnosis and during relapse (weight, size, fever, asthenia, 143 arthralgia, weight loss >10%, cutaneous, ear, nose and throat, ocular, pulmonary, renal, 144 neurological and cardiac manifestations). Gastrointestinal symptoms included abdominal pain, 145 abdominal guarding, nausea or vomiting, diarrhea, ileus, hematemesis, melena or rectal 146 bleeding. GI manifestations were assessed on clinical examination at admission and during 147

hospital stay. GI involvement was defined on computed tomography (CT) scan or any other
imaging performed, or endoscopic evaluation. Inflammation of the bowel wall was defined by
colitis, gastritis, or any GI parietal abnormalities described as such on either imaging or
endoscopic procedure. Inflammation of digestive arteries were assessed on CT scan or
angiography. Two prognostic scores were collected from medical files, *i.e.* performance status
[13] at admission and simplified acute-physiology score (SAPS) [14] assessed during the first
24 hours of hospital admission.

Biological data included C-reactive protein (CRP), serum levels of IgA for IgAV, and ANCA serotype for ANCA-associated vasculitides (AAV). Standard biology was also recorded on admission (leukocytes, neutrophils, lymphocytes, hemoglobin level, fibrinogen, lactate dehydrogenase (LDH) and albumin levels, liver function tests). Radiological and endoscopic features were recorded according to previous studies[5–7], and GI biopsies were provided when performed.

glucocorticoids, 161 Treatment of vasculitis included immunosuppressive and/or immunomodulatory drugs[15], and symptomatic treatments. Interventional endoscopy or 162 radiology, surgery, antibiotic therapy, transfusion therapy, and antiplatelet or anticoagulation 163 therapy were recorded. Each case report form was reviewed by SG and BT. The data 164 underlying this article cannot be shared publicly, for the privacy of individuals that 165 participated in the study. The data will be shared on reasonable request to the corresponding 166 167 author.

168 **2.3 Outcome**

The primary endpoint was a composite of admission to ICU, emergency surgical procedure, or death within 6 months from hospital admission. Secondary endpoints were the description of the spectrum of systemic vasculitis and their presentation, the characteristics associated with GI involvement, and the overall prognosis of GI involvement. Refractory vasculitis was defined by a disease uncontrolled by standard treatment[16].

Data are reported as numbers and percentages for categorical data and mean and standard 175 deviation (SD) or median and interguartile range (IQR) for quantitative data, except otherwise 176 stated. Extensive informations on statistical analysis are indicated in the Supplementary 177 material. Missing baseline data were handled through multiple imputations. We used logistic 178 regression, and three strategies were adopted for model development with the imputed data. 179 Model performance was evaluated both by the concordance (c) statistic, as a measure of 180 discrimination, and the calibration curve. The c statistic quantifies how well the model 181 discriminates between patients dying and those surviving, and can be viewed as the extension 182 of the area under the receiver operating characteristics (ROC) curve for survival data[17]. It 183 varies between 0.5 and 1.0, where 1.0 indicates perfect discrimination. The calibration curve 184 contrasts observed versus predicted probabilities of event to evaluate the accuracy of model 185 predictions. The slope of the calibration curve is a measure of optimism of model predictions. 186 A receiver-operating characteristics (ROC) curve was also used to illustrate the ability of the 187 model to discriminate between patients with and without occurrence of the outcome. Last, 188 decision curve analysis (DCA) was used to assess the incremental value of the risk prediction 189 model for medical decision making. Since prognostic models derived from multivariable 190 regression with variable selection are prone to overestimate regression coefficients, internal 191 validation of our model was carried out using bootstrap. The final model was presented with 192 193 odds ratios obtained after shrinkage and their 95% confidence intervals (95% CI), and a nomogram to allow an easier calculation of the prediction score. All tests were two-sided. 194 Analyses were performed using the R statistical software version 3.6.1[18]. 195

196

198 <u>3. Results</u>

199 **3.1 Patients' characteristics**

A total of 213 patients (66% male, median age 50 years) were included from 31 centers. Baseline characteristics are presented in **Tables 1 and 2**. Eighty-seven (40.8%) patients had IgAV, 36 had PAN (16.9%) and 58 patients presented AAV (27.2%). Other vasculitis included GCA CryoVas, Takayasu arteritis, Kawasaki disease, Behçet disease, or unclassified vasculitis.

207 in the 213 patients.

Characteristics	Overall population (n=213)		
Age (year) – median (range)	51 (14 to 94)		
Female gender, No. (%)	72 (33.8)		
Type of vasculitis, No. (%)			
IgA vasculitis	87 (40.8)		
PAN	36 (16.9)		
GPA	30 (14.1)		
EGPA	15 (7.0)		
Microscopic polyangiitis	13 (6.1)		
Cryoglobulinemia	10 (4.7)		
Others	22 (10.3)		
GI involvement at diagnosis, No. (%)	164 (77.0)		
BMI, median [IQR], kg/m ²	23.2 (20.2 to 27.5) (n=190)		
Constitutional symptoms, No. (%)			
Asthenia	134 (62.9)		
Arthralgia	82 (38.5)		
Weight loss	65 (30.5)		
Fever	46 (21.6)		
Myalgia	27 (12.7)		
Arthritis	26 (12.2)		
Other organ involvement, No. (%)			
Skin involvement	125 (58.7)		
Renal involvement	97 (45.5)		
Head and neck	42 (19.7)		
Pulmonary involvement	39 (18.3)		
Peripheral neurological	39 (18.3)		
Central neurological	18 (8.5)		
Heart involvement	16 (7.5)		
Eye involvement	12 (5.6)		

208 Data are presented as median (interquartile range, 25th-75th percentiles) or number

209 (percentage); EGPA: Eosinophilic granulomatosis with polyangiitis; GPA: Granulomatosis

210 with polyangiitis; PAN: Polyarteritis nodosa; GI: gastro-intestinal.

Characteristics	Overall population	Ν
Previous GI symptoms, No. (%)	83 (39.0)	213
Parameters on admission, median [IQR]		190
Systolic blood pressure (mmHg)	129 (115 to 144)	
Diastolic blood pressure (mmHg)	75 (65 to 84)	
Peripheral oxygen saturation (%)	98 (97 to 100)	
Body temperature (°C)	37.0 (36.7 to 37.2)	
Heart rate (bpm)	86 (75 to 101)	
Performance status, No. (%)		204
PS 0	33 (16.2)	
PS 1-2	123 (60.3)	
PS 3-4	48 (23.5)	
GI manifestations, No. (%)		213
Abdominal pain	189 (88.7)	
Diarrhea	62 (29.1)	
Rectal bleeding	53 (24.9)	
Nausea/vomiting	52 (24.4)	
Melena	32 (15.0)	
Ileus	28 (13.1)	
Guarding or peritonism	26 (12.2)	
Hematemesis	11 (5.2)	
SAPS-II score, median [IQR]	18 (13 to 24)	194
Biological data, median [IQR]		
White blood cell count (G/L)	12.0 (8.7 to 16.5)	183
Neutrophil count(G/L)	8.5 (5.9 to 12.1)	142
Lymphocyte count (G/L)	1.5 (1.0 to 2.2)	124
Hemoglobin (g/dL)	11.6 (9.4 to 13.8)	186
Creatinine, µmol/L	79.0 (62.0 to 119.5)	174
C-reactive protein (mg/L)	59.1 (18.6 to 115.0)	183
Fibrinogen (g/L)	4.8 (4.0 to 6.0)	97
Lactate dehydrogenase (UI/L)	256.0 (179.2 to 409.8)	96
Albumin (g/L)	30.5 (23.9 to 38.0)	114
HCO ₃ ⁻ (mmol/L)	24.8 (22.0 to 26.4)	132
GI involvement, No. (%)		213
Inflammation of the bowel wall	144 (71.6)	
Peritonitis	21 (10.4)	
Bowel wall hematoma	12 (6.0)	
Splenic or hepatic infarction	10 (4.9)	
Cholecystitis	6 (3.0)	
Pancreatitis	5 (2.5)	
Invagination	2 (1.0)	
Appendicitis	1 (0.5)	

Table 2. Characteristics of GI manifestations on hospital admission in the 213 patients.

213 Data are presented as median [25th-75th percentiles] or number (percentage); SAPS-II:

214 Simplified Acute Physiology Score. N: number of observations available.

216 **3.2 Clinical manifestations**

On hospital admission, 65/213 (30.5%) had weight loss >10% and 46/213 (21.6%) 217 presented with fever. Clinical and biological presentation are summarized in Table 1. Main 218 219 organ involvement included cutaneous (58.7%), renal (45.5%), neurological (26.8%), pulmonary (18.3%) and heart involvement (7.5%). GI manifestations and diagnoses are 220 reported in Table 2. Briefly, GI manifestations occurred at vasculitis diagnosis in 164/213 221 (77%) patients, and 83/213 (39%) experienced previous transient GI manifestations before 222 diagnosis. Clinical presentation included abdominal pain in 88.7%, requiring morphine in 223 224 10.3%, GI bleeding in 34.7% with hematemesis (11/213, 5.2%), melena (32/213, 15%) and/or rectal bleeding (53/213, 24.9%), diarrhea in 29.1%, nausea or vomiting in 24.4%, ileus in 225 13.1%, abdominal guarding in 9.4% or peritonism in 2.8%. Amongst patients with GI 226 227 bleedings, median hemoglobin was 10.9 g/dL [IQR 8.5-13.0], and 32.9% (24/73) received red blood cell transfusion. 228

Endoscopic procedures were performed in 112 (53.3%) patients, showing evidence of mucosal alterations in 81 (72.3%). Other investigations included CT scan in 81%, ultrasonography in 11.4%, angiography in 5.7%, and 76 (35.7%) patients had either endoscopic or surgical biopsy.

Overall, final diagnoses for GI involvement are summarized in **Table 2**, and included inflammation of the bowel wall in 71.6%, intestinal ischemia in 16.5% (ischemic colitis in 9% and ischemic small bowel disease in 7.5%), peritonitis in 10.4%, bowel perforation in 10.9% (involving the small intestine in 8%, large bowel in 3% and the stomach in 2%). Abnormal digestive arteries were noted in 40 (20%) patients.

238

239 **3.3 Treatments and outcomes**

Among the 213 patients, 192 (91%) received glucocorticoids (including pulses of methylprednisolone in 52.9%), with an initial median dose of 1.0 mg/kg/day (IQR 0.9-1.0),

- and 140 (66.4%) immunosuppressive or immunomodulatory drugs (cyclophosphamide in
 45.2%, rituximab in 16.2%, therapeutic plasma exchange in 13.8%) (Table 3).
- The primary endpoint, *i.e.* admission to ICU, surgery and/or death within 6 months, was achieved in 83 (39%) patients (**Table 3**), including ICU admission in 31.9%, surgery in 19.7%, and death in 8.5%. Among the patients admitted to the ICU, 40.3% underwent mechanical ventilation (intubation for surgical purposes were not considered), 33.8% had shock requiring amines, 26.5% had renal replacement therapy and 1.5% required extracorporeal membrane oxygenation. Other interventions included interventional endoscopy (4.7%) and radiology (3.3%). Finally, 18.6% patients received transfusion.
- 251

Table 3. Treatment, outcome and follow-up of GI manifestations of vasculitis in the 213
patients.

Characteristics	Overall population	Ν
Composite outcome achieved , No. (%)	83 (39.0)	213
ICU admission	68 (31.9)	
Surgery	42 (19.7)	
Death	18 (8.5)	
Treatments and supportive care, No. (%)		
Initiation of immunosuppressive therapy	201 (95.3)	211
Glucocorticoids	192 (91)	
Pulses of methylprednisolone	111 (57.8)	
Cyclophosphamide	95 (45.2)	
Rituximab	34 (16.2)	
Therapeutic plasma exchange	29 (13.8)	
Interventional endoscopy	10 (4.7)	212
Interventional radiology	7 (3.3)	212
Red blood cell transfusion	39 (18.6)	210
Status at 6-month follow-up, No. (%)		
Refractory disease	17 (10.1)	169
Persistent GI symptoms	26 (15.4)	169
Stomia during episode	24 (11.4)	213
Definitive stomia	5 (22.7)	
Vasculitis relapse	40 (23.4)	170
GI relapse	17 (10.0)	170

254 Data are presented as median [25th-75th percentiles] or number (percentage); ICU: intensive-

care unit; GI: gastro-intestinal. N: number of observations available.

257

3.4 Risk factors for poor outcome

In univariate analysis, the following factors were associated with the achievement of the primary endpoint: diagnosis of PAN, age, fever, neurological or cardiac manifestations, requirement for morphine, abdominal guarding, ileus, melena, peritonitis, low oxygen saturation, high CRP, increased leukocytes, low hemoglobin level, and a high SAPSII score.

We next aimed to define a risk prediction model. The final model retained the type of 262 vasculitis, performance status, use of morphine, abdominal guarding, ileus, melena, white 263 blood cell count, hemoglobin and CRP (Table 4). A nomogram described the scoring system 264 based on these characteristics was set up, with each item being associated to points according 265 to its value (Figure 1). The sum of point was associated with the predicted probability of 266 admission to the ICU, surgery or death during the first 6 months (see Supplementary Figure 267 1). C statistics for this model was 0.853 (0.810 to 0.895) (see Supplementary Figure 2 and 268 3). The net benefice of intervention according to the scoring system was strongly in favor of 269 using the risk-prediction model over a treat-none strategy (see Supplementary Figure 4). 270

During follow-up (median 24 months, IQR [10-59]), 25 (11.7%) patients died. Overall survival was associated with the prediction score, with a C statistic of 0.735 (95% CI: 0.648 to 0.822). Overall survival was markedly different between the three tertiles of predicted probabilities (**Figure 2**). Finally, 26/168 (15.4%) patients had persistent abdominal symptoms after treatment, mainly abdominal pain in 57.7% and diarrhea in 34.6%. Vasculitis flares at 6months occurred in 23.4% during follow-up, including GI flares in 10.0% (**Table 3**).

Variable	Full multivariable model		Final model	
variable	OR (95%CI)	Р	OR (95%CI)	Р
PAN	3.82 (0.99 to 14.8)	0.05	3.08 (1.29 to 7.34)	0.01
Non-IgA, non-PAN vasculitis	3.23 (1.07 to 9.69)	0.04	2.14 (1.05 to 4.36)	0.04
Female	0.88 (0.37 to 2.12)	0.8	-	-
Age (per year)	1.00 (0.98 to 1.03)	0.7	-	-
Fever	1.02 (0.40 to 2.64)	0.97	-	-
Weight loss	0.84 (0.35 to 2.06)	0.7	-	-
Performance status (per score point)	1.60 (1.05 to 2.45)	0.03	1.40 (1.05 to 1.87)	0.02
Use of morphine	3.36 (0.78 to 14.5)	0.1	2.51 (0.87 to 7.24)	0.09
Guarding	5.07 (1.03 to 24.9)	0.05	3.08 (1.01 to 9.37)	0.05
Ileus	3.15 (0.93 to 10.7)	0.07	2.29 (0.98 to 5.32)	0.05
Melena	4.61 (1.33 to 16.0)	0.02	2.74 (1.17 to 6.42)	0.02
White blood cell count (per G/L)	1.08 (1.00 to 1.16)	0.06	1.05 (1.00 to 1.10)	0.07
Hemoglobin (per g/dL)	0.74 (0.62 to 0.88)	<0.001	0.80 (0.71 to 0.91)	<0.001
C-reactive protein (mg/dL, as log)	1.07 (0.97 to 1.18)	0.2	1.21 (0.94 to 1.56)	0.1
Inflammation of the bowel wall	1.17 (0.51 to 2.70)	0.7	-	-
Inflammation of digestive arteries	1.95 (0.73 to 5.21)	0.2	-	-

278 Table 4. Associations between baseline factors and primary outcome (ICU admission,

279 surgery for worsening or death within 6 months).

280 Odds ratios are pooled over the 30 imputed datasets. Odds ratios for the final model are

shrinked by the calibration slope (0.73). PAN: Polyarteritis nodosa.

Figure 1: Nomogram to predict the risk for ICU admission, surgery for worsening or

284 death within 6 months.

The nomogram conveys the result of the risk prediction model by allowing the calculation of the estimated probability of death according to patient characteristics. For each characteristic on the figure, locate the value of the axis and draw a straight line up to the point's axis on the top of the figure, to determine how many points the patient should receive. Sum the points received for all characteristics, and locate this number of the total point's axis. Draw a straight line down from the total points to the predicted probability axis.

Figure 2. Overall survival according to the risk prediction model.

- 294 The risk prediction model if divided into three approximately evenly sized groups. The x-axis
- corresponds to time, in months.

296

299 <u>4. Discussion</u>

In this study, 83/213 (39%) patients with systemic vasculitis involving the GI tract had a poor outcome, defined as the admission to the ICU, surgery and/or death. We therefore analyzed risk factors for poor outcome and identified a prognostic role of the type of vasculitis, baseline performance status, abdominal pain requiring morphine, abdominal guarding, ileus, melena, leukocyte count, hemoglobin and CRP levels. These features enabled the development of a scoring system that accurately quantify the predicted risk for a poor outcome.

Although the 5-year survival rate in systemic necrotizing vasculitides significantly 307 increased between 1990 and the last decade[2], GI complications remain the third cause of 308 vasculitis-related death, after multi-organ failure and pulmonary complication[3]. However, 309 the definition of severe GI involvement remains unclear and GI manifestations and its severity 310 311 may differ between vasculitis subtypes, variable that was not included in previous prognostic studies. In our study, the primary endpoint was achieved in 18/87 patients (21%) in IgAV, 312 28/57 patients (48%) in AAV and 24/36 patients (67%) in PAN. These results are in 313 314 accordance with previous data in IgAV[19], where GI involvement was noted in 48%, but severe manifestations requiring transfusion, surgery or leading to death were noted in only 315 11%. In contrast, in PAN, AAV and rheumatoid arthritis-associated vasculitis[4], death was 316 more frequently reported, occurring in 26% of patients with GI manifestations, with 317 peritonitis, bowel perforation, intestinal occlusion and intestinal ischemia being significantly 318 associated with this outcome[4]. The clinical factors that we evidenced in our study (i.e. 319 abdominal pain requiring morphine, abdominal guarding, ileus, melena) are strongly 320 suggestive of these severe complications, and are more easily applicable in daily practice. 321 Also, prognostic factor as performance status, associated with our primary endpoint, is an 322 easy and reliable tool to identify patients' fragility. Of note, age >65 years was not 323

324 significantly associated with the primary endpoint in our study. We could assume that the 325 wild range of age in our study population and the adjustment with vasculitis subtype and GI 326 manifestations could be an explanation.

We aimed to develop a scoring system to estimate the risk of poor outcome in patients 327 with GI involvement. Main objectives were to better identify patients at high-risk of clinical 328 deterioration, and eventually to improve patient management by considering aggressive 329 therapeutic strategies in the most severe patients, since infections were shown to account for 330 30% of deaths in the ICU[20]. Initiating aggressive treatments could be difficult in patients at 331 risk of clinical deterioration, but delayed initiation of cyclophosphamide was associated with 332 an increased risk of death in this severe population[20]. Overall, we think that clinical and 333 biological items from our risk prediction model accurately and early identify patients prone to 334 clinical deterioration, and thus who should benefit from early assessment by the intensivists 335 and preemptive admission to the ICU. The score we developed is easy to calculate within the 336 first 24 hours of admission to orientate high-risk patients, and it could also alleviate the use of 337 aggressive treatments in patients at lower risk, such as non-severe IgAV patients in which the 338 use of immunosuppressive agents for GI involvement is not clearly established. 339

Our study has some limitations. The retrospective design over a long time period 340 341 could be associated with a lack of homogeneity into supportive care and treatments used. However, glucocorticoids, cyclophosphamide and rituximab were the most frequently used 342 343 treatments, which still represent the standard of care for such patients [19,21]. Also, because of the retrospective design, although large and multicentric, our findings and especially our score 344 should be validated prospectively and on a different cohort of patients. Vasculitis were mainly 345 represented by IgAV, AAV and PAN, and other vasculitis were lacking (large vessels 346 vasculitis, cryoglobulinemia vasculitis, Behcet disease), explaining why our data should be 347 interpreted cautiously in these vasculitis types. Of the 213 participants of the study, definitive 348 information was missing for 3 who were discharged alive from hospital, and lost to follow-up 349 at one month (n=2) or three months (n=1): we considered those 3 patients did not experience 350

the outcome at 6 months, as it would be most unlikely that those patients would have experienced for the outcome without the team caring for their vasculitis being notified. Finally, since this retrospective study was based on reported cases, we cannot exclude an overestimation of severe cases and poor outcomes in the different vasculitis subtypes, due to memory biases.

356

357 <u>5. Conclusions</u>

In conclusion, systemic vasculitis involving the GI tract still have a poor outcome in more than one third of cases, mainly in case of PAN. Routinely evaluated clinical and biological parameters on admission are associated with a poor outcome and can be included in a score that accurately predict the risk for admission to the ICU, surgery and/or death. These risk factors assessed during the first hours could help the physicians to manage vasculitis patients with GI involvement and should be validated in a prospective study.

364

365 Acknowledgments:

366 Dr Agard, Pr Amiot, Dr Armengol, Dr Berezne, Dr Catano, Dr Chaix, Dr Cohen, Dr Contis,
367 Dr Deligny, Dr Direz, Dr Ebbo, Dr Eblé, Pr Faguer, Dr Le Guenno, Dr Georgin-Lavialle, Pr
368 Hamidou, Dr Laurant-Noël, Dr Moyon, Dr Rouvière, Dr Smets, Pr Vandergheynst
369 contributed to data collection.

370

371

373 **<u>References</u>**

- Jennette JC, Falk RJ, Bacon PA, Basu N, Cid MC, Ferrario F, et al. 2012 Revised
 International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis
 Rheum 2013;65:1–11. https://doi.org/10.1002/art.37715.
- Jardel S, Puéchal X, Le Quellec A, Pagnoux C, Hamidou M, Maurier F, et al. Mortality
 in systemic necrotizing vasculitides: A retrospective analysis of the French Vasculitis
 Study Group registry. Autoimmun Rev 2018;17:653–9.
- 380 https://doi.org/10.1016/j.autrev.2018.01.022.
- 381 [3] Guillevin L, Pagnoux C, Seror R, Mahr A, Mouthon L, Le Toumelin P, et al. The Five382 Factor Score revisited: assessment of prognoses of systemic necrotizing vasculitides
 383 based on the French Vasculitis Study Group (FVSG) cohort. Medicine (Baltimore)
 384 2011;90:19–27. https://doi.org/10.1097/MD.0b013e318205a4c6.
- Pagnoux C, Mahr A, Cohen P, Guillevin L. Presentation and outcome of gastrointestinal
 involvement in systemic necrotizing vasculitides: analysis of 62 patients with
 polyarteritis nodosa, microscopic polyangiitis, Wegener granulomatosis, Churg-Strauss
 syndrome, or rheumatoid arthritis-associated vasculitis. Medicine (Baltimore)
 2005;84:115–28.
- Hokama A, Kishimoto K, Ihama Y, Kobashigawa C, Nakamoto M, Hirata T, et al.
 Endoscopic and radiographic features of gastrointestinal involvement in vasculitis.
 World J Gastrointest Endosc 2012;4:50–6. https://doi.org/10.4253/wjge.v4.i3.50.
- 393 [6] Gong EJ, Kim DH, Chun JH, Ahn JY, Choi K-S, Jung KW, et al. Endoscopic Findings
 394 of Upper Gastrointestinal Involvement in Primary Vasculitis. Gut Liver 2016;10:542–8.
 395 https://doi.org/10.5009/gnl15198.
- Ha HK, Lee SH, Rha SE, Kim J-H, Byun JY, Lim HK, et al. Radiologic Features of
 Vasculitis Involving the Gastrointestinal Tract. RadioGraphics 2000;20:779–94.
 https://doi.org/10.1148/radiographics.20.3.g00mc02779.
- [8] Levine S, Hellmann D, Stone J. Gastrointestinal involvement in polyarteritis nodosa
 (1986-2000): presentation and outcomes in 24 patients. Am J Med 2002.
- 401 [9] Babian M, Nasef S, Soloway G. Gastrointestinal Infarction as a Manifestation of
 402 Rheumatoid Vasculitis. Am J Gastroenterol 1998;93:119–20.
 403 https://doi.org/10.1111/j.1572-0241.1998.119_c.x.
- 404 [10] Bayraktar Y, Ozaslan E, Van Thiel DH. Gastrointestinal manifestations of Behcet's
 405 disease. J Clin Gastroenterol 2000;30:144–54.
- 406 [11] Guillevin L, Lhote F, Gallais V, Jarrousse B, Royer I, Gayraud M, et al. Gastrointestinal
 407 tract involvement in polyarteritis nodosa and Churg-Strauss syndrome. Ann Med Interne
 408 (Paris) 1995;146:260–7.
- 409 [12] Groupe Français d'Étude des Vascularites n.d. https://www.vascularites.org/ (accessed
 410 January 15, 2020).
- [13] West H (Jack), Jin JO. Performance Status in Patients With Cancer. JAMA Oncol
 2015;1:998–998. https://doi.org/10.1001/jamaoncol.2015.3113.
- [14] Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS
 II) based on a European/North American multicenter study. JAMA 1993;270:2957–63.
- [15] Yates M, Watts RA, Bajema IM, Cid MC, Crestani B, Hauser T, et al. EULAR/ERAEDTA recommendations for the management of ANCA-associated vasculitis. Ann
 Rheum Dis 2016;75:1583–94. https://doi.org/10.1136/annrheumdis-2016-209133.
- 418 [16] Rutgers A, Kallenberg CGM. Refractory vasculitis. Autoimmun Rev 2011;10:702–6.
 419 https://doi.org/10.1016/j.autrev.2011.04.024.
- [17] Harrell FE, Lee KL, Mark DB. Tutorial in biostatistics multivariable prognostic models:
 issues in developing models, evaluating assumptions and adequacy, and measuring and
 reducing errors. Stat Med 1996:361–387. https://doi.org/null.

- 423 [18] R Core Team. R: A Language and Environment for Statistical Computing. Vienna: R
 424 Foundation for Statistical Computing; 2019.
- [19] Pillebout E, Thervet E, Hill G, Alberti C, Vanhille P, Nochy D. Henoch-Schönlein
 Purpura in Adults: Outcome and Prognostic Factors. J Am Soc Nephrol 2002;13:1271–8.
 https://doi.org/10.1097/01.ASN.0000013883.99976.22.
- [20] Kimmoun A, Baux E, Das V, Terzi N, Talec P, Asfar P, et al. Outcomes of patients
 admitted to intensive care units for acute manifestation of small-vessel vasculitis: a
 multicenter, retrospective study. Crit Care 2016;20. https://doi.org/10.1186/s13054-0161189-5.
- 432 [21] Stone JH, Merkel PA, Spiera R, Seo P, Langford CA, Hoffman GS, et al. Rituximab
- 433 versus Cyclophosphamide for ANCA-Associated Vasculitis. N Engl J Med
- 434 2010;363:221–32. https://doi.org/10.1056/NEJMoa0909905.
- 435

Factors associated with complicated outcome

PAN subtype	Increased leukocytes
Performance status	Low hemoglobin
Use of morphine	Increased CRP
Abdominal guarding	
lleus	
Melena	

Predicted probability

Intensive care unit admission Emergency surgical procedure Death

