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Helena Todorov,1,2,10 Margaux Prieux,3,4,10 Daphne Laubreton,3 Matteo Bouvier,4,5 Shaoying Wang,3

Simon de Bernard,6 Christophe Arpin,3 Robrecht Cannoodt,1,2,7 Wouter Saelens,1,2 Arnaud Bonnaffoux,5

Olivier Gandrillon,4,8 Fabien Crauste,9 Yvan Saeys,1,2 and Jacqueline Marvel3,11,*
SUMMARY

In this work, we studied the generation of memory precursor cells following an
acute infection by analyzing single-cell RNA-seq data that contained CD8 T cells
collected during the postinfection expansion phase. We used different tools to
reconstruct the developmental trajectory that CD8 T cells followed after activa-
tion. Cells that exhibited a memory precursor signature were identified and posi-
tioned on this trajectory. We found that these memory precursors are generated
continuously with increasing numbers arising over time. Similarly, expression of
genes associated with effector functions was also found to be raised in memory
precursors at later time points. The ability of cells to enter quiescence and differ-
entiate into memory cells was confirmed by BrdU pulse-chase experiment in vivo.
Analysis of cell counts indicates that the vast majority of memory cells are gener-
ated at later time points from cells that have extensively divided.
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INTRODUCTION

In mice, the number of naive CD8 T cells that are specific for a given epitope is relatively low, ranging from

100 to 1,000 cells (Obar et al., 2008; Haluszczak et al., 2009). Upon infection, these pathogen-specific CD8

T cells will be recruited and activated. This, under appropriate conditions, leads to their extensive prolifer-

ation and differentiation in a large (106–107 cells) population of effector CD8 T cells that display the capacity

to eliminate infected cells. The majority of effector cells will die by apoptosis, except for a smaller subset of

memory precursor (MP) cells that will further differentiate to give rise to a long-lived population of memory

cells (105–106 cells) that will provide protection upon subsequent infection (Murali-Krishna et al., 1998;

Crauste et al., 2017; Johnnidis et al., 2021, Pais Ferreira et al., 2020). Although these cells are mainly quies-

cent, they retain the capacity, upon re-exposure to pathogens, to expand and rapidly display effector func-

tions due to epigenetic modifications of genes involved in these processes (Fitzpatrick et al., 1999; Marcais

et al., 2006).

In order to better understand the properties of memory cells generated in different settings (Appay et al.,

2002), many studies have focused on defining CD8 T cell subsets, relying on a restricted number of surface

proteins (Sallusto et al., 1999; Hikono et al., 2007; Jameson andMasopust, 2009). These cell subsets include

central and effector memory cells, exhaustedmemory cells, or tissue resident memory cells. Over the years,

the study of these subsets has brought a wealth of knowledge on the responsiveness (Bouneaud et al.,

2005; Wherry et al., 2007; Hikono et al., 2007; Sallusto et al., 1999), homing (Masopust et al., 2001), and

self-renewal capacities (Graef et al., 2014; Gattinoni et al., 2012) of memory cells. The molecular pathways

sustaining their development have also been largely uncovered. Indeed, the involvement of numerous

transcription factors (Intlekofer et al., 2005; Omilusik et al., 2015; Mann and Kaech, 2019; Kaech and Cui,

2012) and epigenetic reprogramming factors (Pace et al., 2018) in the differentiation of different classes

of effector and/or memory cells has been described.

The lineage relationship between the different subsets of CD8 T cells (Bouneaud et al., 2005; Wherry et al.,

2003) and the stage at which activated CD8 T cells diverge from the effector fate to commit to the memory

lineage has been extensively studied, with many different experimental approaches leading to results sup-

porting alternative models (Kaech and Cui, 2012). A linear pathway, where memory cells are derived from

effector cells, is supported by early studies using genetic marking of memory cells (Jacob and Baltimore,
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1999). A linear model, where activated naive cells first differentiate into MP cells that give rise to effector

cells, has been suggested following in vivo fate mapping of single cells (Buchholz et al., 2013). These early

MP cells could correspond to the memory stem cells described in a restricted number of experimental sys-

tems (Gattinoni et al., 2012). Fate mapping experiments have highlighted the heterogeneity of effector

cells in terms of their functional capacities and their differentiation potential into memory cells (Joshi

et al., 2007; Wherry et al., 2007; Sarkar et al., 2008; Kalia et al., 2010). Hence, a new classification of effector

cells based on the expression of KLRG1 and CD127 has emerged with, on one side, short-lived effector cells

doomed to die at the end of the primary response and, on the other side, MP effector cells that maintain the

capacity to differentiate into memory cells (Joshi et al., 2007). In this model and in the first linear models,

memory cells are derived from cells that express fully developed effector functions and that have main-

tained the potential to differentiate into memory cells (Pace et al., 2018; Youngblood et al., 2017). In

contrast, a number of other studies have suggested a separation of MP cells at an earlier stage that pre-

cedes the differentiation into effector cells. Indeed, branching as early as following the first division has

been proposed based on single-cell transcriptome analysis (Arsenio et al., 2014; Kakaradov et al., 2017)

and would potentially result from an asymmetric division of antigen-triggered cells (Chang et al., 2007).

Although these models agree on the early commitment of activated naive CD8 T cells to the memory line-

age, there remains some debate about the existence of an early branching (Flossdorf et al., 2015;

Kretschmer et al., 2020; Kinjyo et al., 2015).

More recently, Crauste et al. (2017), based on the modeling of the generation of memory CD8 T cell counts,

demonstrated that the total pool of memory CD8 T cells couldmainly be generated by a linear pathway; the

majority of quiescent memory cells are generated following the transition of naive cells through an early

activation effector stage characterized by active cell cycling followed by a late quiescent effector stage

(Crauste et al., 2017). In this model, an early branching of memory cells was permitted, but it could not ac-

count for the generation of the full supply of memory cells.

Overall, functional studies of memory differentiation routes by genetic ablation or cell fate mapping

studies have led to the description of multiple possible pathways that lead to a diversity of effector/mem-

ory populations. They suggest that memory commitment could take place at several stages of the primary

immune response. However, some of these pathways might represent routes followed by only a few cells

that generate a minor fraction of the memory cell pool.

In order to uncover the different trajectories followed by naive CD8 T cells to differentiate into memory

cells, we have used new trajectory analysis tools that take into account the large amount of information

that is delivered by single-cell transcriptomics. Indeed, over the last decades, single-cell RNA sequencing

(scRNA-seq) has emerged as a powerful tool and allowed a great advance in the exploration of the hetero-

geneity of the immune system (Papalexi and Satija, 2018). We analyzed gene expression dynamics in CD8

T cells collected during the effector response to an acute infection with the lymphocytic choriomeningitis

Armstrong virus (LCMV-Arm), generated by (Yao et al., 2019) and (Kurd et al., 2020). We applied trajectory

inference on these datasets to identify trajectories leading to the generation of MP cells. Using cell-cycle

classification and RNA velocity algorithms, we show that the differentiation is driven by cell-cycle and im-

mune function genes. To identify the molecular regulatory mechanisms supporting the process, we then

performed a gene regulatory network (GRN) inference analysis, which allowed us to identify a cluster en-

riched in cells harboring transcription factors associated with MP cells. Using an MP gene signature, we

confirmed that this cluster was enriched in MP cells, although cells expressing that signature were also

found at multiple points along the trajectory. Finally, we used another pathogen infection and BrdU label-

ing to generalize and validate these results in vivo. Analysis of cell counts confirmed that memory cells are

generated continuously all along the trajectory. However, due to cellular expansion, the majority of

memory cells were derived from cells that had proliferated and acquired effector functions.
RESULTS

Trajectory inference of the CD8 T cell response to an acute infection

In order to gain insight into the differentiation dynamics of CD8 T cells in response to an acute infection

(LCMV-Arm), we performed trajectory inference on a scRNAseq dataset generated by Yao et al. (2019) us-

ing two recently published methods, Slingshot (Street et al., 2018) and TinGa (Todorov et al., 2020). This

dataset consists of measurements on 20,295 splenic CD8 T cells generated following LCMV-Arm acute

infection and isolated at two different time points (4.5 and 7 days postinfection [dpi]), in two separate
2 iScience 25, 104927, September 16, 2022



Figure 1. TinGa trajectory inference

(A–C) Visualization of the cells in a 2D space computed bymultidimensional scaling. (A) The cells were colored according to the two experimental time points

4.5 and 7 days post-LCMV-Armstrong infection. (B) The TinGa algorithm identifies a branching trajectory in the data, that is represented by a black line.

Milestones along the trajectory can be used to define subgroups of cells that are represented by different colors. They will be referred to as ‘‘clusters.’’ The

number of cells in each cluster is indicated. (C) The cells were classified into one of the cycling phases (either G1, S, or G2/M) using the Seurat package and

colored accordingly.

(D and E) The number of cells in the G1, S, and G2/M phases (D) and in the two experimental time points (E) are shown for each cluster.

See also Figures S1 and S2.
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replicates. We identified the 2,000 most highly variable genes in the dataset using variance modeling sta-

tistics from the Scran R package (Lun et al., 2016), on which we applied both trajectory inference methods.

Slingshot was shown to be very efficient in a study that comparedmore than 40 methods on a large number

of datasets (Saelens et al., 2019). TinGa is a new method for trajectory inference that showed comparable

results on simple trajectories and better results on complex trajectories than Slingshot (Todorov et al.,

2020). These two methods both share a first step in which the dimensions of the data are reduced, either

by principal component analysis for Slingshot or by multidimensional scaling (MDS) for TinGa. In the two

resulting representations of the data, the cells form a continuum from cells taken 4.5 dpi to cells taken 7

dpi (Figures 1A and S1A).

Slingshot first applies clustering to the data and then identifies transitions between these clusters. It

identified a linear trajectory starting among cells from day 4.5 postinfection (pi), transitioning through a

mix of cells from day 4.5–7 pi, and ending in a part of the data that was enriched in cells from day 7 pi (Fig-

ure S1B). The genes that varied the most along this trajectory are identified in Figure S1C. The linear Sling-

shot trajectory started in early activated cells, in which we identified an overexpression of Ybx1, Rps2, and

Rps8 genes involved in the initiation of transcription. The trajectory then transitioned through a state where

the cells seemed to be undergoing divisions (Tubb4b, Tuba1b, Ccna2, Cks1B genes) and ended in cells that

expressed genes associated with immune functions (such as Ccl5, Hcst, B2m, H2-D1). In comparison, the

trajectory identified by TinGa started similarly to the Slingshot trajectory, but then split into two branches

(Figure 1B). One small branch (identified by the number 3) corresponded to cells that were in a highly

cycling state, whereas the other longer branch ended, after several transitional states, in the effector

state described in the Slingshot trajectory (Figure S2A). Eight transitional states were identified along

the TinGa trajectory. For convenience, these eight transitional populations will be referred to as clusters

from now on.

Among the 40 genes that varied the most along the two trajectories defined by Slingshot and TinGa

(Figures S1C and S2A), 33 were commonly found in both trajectories. This suggests that, even though
iScience 25, 104927, September 16, 2022 3
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TinGa identified an extra small branch that Slingshot included in a linear trajectory, the genes that are

mainly driving cells along the two trajectories are similar. Interestingly, when we applied Slingshot

and TinGa to a reduced set of 1,300 highly variable genes, both methods recovered a branching

trajectory (Figures S1D and S2B). This indicates that the main trajectory uncovered is robust and that the

small branch identified differs only marginally from the neighboring cluster.
The inferred trajectories retrace an early-late-memory differentiation pathway

To further characterize the CD8 differentiation trajectory supported by the single cell transcriptomics data,

we used the trajectory obtained with TinGa, as it identified more transition points along the route and

hence might give a more refined definition of differentiation steps. As both the Slingshot and the TinGa

trajectories were clearly driven by cell-cycle-associated genes (Figures S1C and S2A), we used a classifier

from the Seurat R package (Tirosh et al., 2016) to allocate cells to the G1, S, or G2/M cell-cycle phases (Fig-

ure 1C). We identified clear cycling trends along the trajectory. Cells in clusters 2, 5, and 4 were mainly clas-

sified in the S phase (Figures 1C and 1D), whereas clusters 7 and 3 were de facto classified in the G2/M

phase (Figures 1C and 1D). Cluster 6 was clearly enriched in G1 cells, whereas cluster 8 contained almost

exclusively cells in G1 (Figures 1C and 1D). Hence, these results showed that the Tinga trajectory consisted

of a first cycling effector population that differentiated in a quiescent effector population. Interestingly,

TinGa identified three clusters enriched in cells positioned in the S phase (cluster 2, 5, and 4) and two clus-

ters enriched in cells positioned in the G2/M phase (cluster 7 and 3). These clusters, however, differed in

terms of sampling days, and the two clusters (3 and 4) positioned at a later pseudotime by TinGa contained

a larger fraction of cells sampled on day 7 compared with the earlier clusters with a similar cell-cycle posi-

tion. To identify the genes that were driving the trajectory of cells along these different clusters, we decided

to perform differential expression analyses. The cell cycle is directly related to the differentiation of CD8

T cells in response to infection; however, it influences the expression of so many genes that comparing cells

that are in different cell-cycle states would only show us differences between genes related to the cell cycle.

In order to unravel the genes that were driving the trajectory aside from the cell cycle inmore detail, we thus

decided to perform differential expression analyses between cells from the same cycle phase present in

each neighboring cluster along the trajectory (Table S1 and Figure S3A). This highlighted the slow transi-

tion from early activation markers (Xcl1, Srm) to effector functions (Ccl5, Id2, Gzma/b) and quiescence

(Btg1) (Figure S3A right panel).

To further define the dynamics of cell differentiation, we applied the scVelo algorithm (Bergen et al., 2020)

that defines RNA velocities. These were projected onto the TinGa embedding (Figure 2A). ScVelo retraced

two RNA trajectory dynamics (Figure 2B). The first suggests a circular trajectory that would fit with cells

going through the cell cycle. The second corresponds to a linear trajectory of differentiation leading

from clusters 5 and 7 to 8 and 3.

A similar dynamic was obtained using only the top 50 genes contributing to the scVelo’s dynamical model

(Figure S3B, Table S2) indicating that they were sufficient to recover the overall cell dynamics (Figure 2A).

Interestingly, the dynamics in cluster 3 suggests that these cells could either stop in the G1 phase of the cell

cycle and join those of cluster 8 or cycle again. Thus, the small branch identified by TinGa could correspond

to a transient state of proliferating cells. We then analyzed the molecular function associated with these 50

genes and found that they could be broadly classified into three categories (cell cycle, migration, and im-

mune function) (Table S2). To compare the contribution of these genes to the dynamic, the RNA velocities

associated with cell-cycle-/migration-related genes or immune function genes were calculated and pro-

jected onto the TinGa embedding (Figures 2C and 2D). The cell cycle and migration genes clearly defined

the first circular dynamics found at the start of the trajectory and also contributed to the differentiation pro-

cess (Figure 2C), whereas the immune genes recapitulated a linear trajectory going from cluster 2 to 8 (Fig-

ure 2D). By looking at individual gene dynamics, we found that genes act on different parts of the cell dif-

ferentiation trajectory. Genes such as Id2 have an early effect, with stronger contribution to the global

velocities in clusters 4, 5, and 7, whereas genes such as IL18r1 and Gimap6 start to act at later pseudotime

with stronger velocities in the final clusters of the trajectory (Figure S3C).

The trajectory inference based on single-cell transcriptomic data seems to recapitulate the two effector

compartments that we have previously described, i.e., a first set of early effector cells that are cycling fol-

lowed by a set of late effector cells that are quiescent and express increased levels of genes encoding im-

mune effector functions (Crauste et al., 2017).
4 iScience 25, 104927, September 16, 2022



Figure 2. Gene expression dynamics along the differentiation trajectories

RNA velocities are projected onto the TinGa embedding. The cells in the trajectory were colored according to their TinGa

milestones.

(A) Velocities were calculated using all genes. Numbers correspond to TinGa clusters.

(B) The RNA velocities show two distinct dynamics. In clusters 2, 5, and 7, cells are cycling (red arrow) but can commit to the

differentiation dynamic (blue arrows) by leaving clusters 5 and 7 to reach cluster 8.

(C and D) RNA velocities based only on cell cycle and migration (C) or immune-function-related (D) genes.

See also Figure S3 and Table S2.
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Gene regulatory interaction analysis reveals a memory-precursors-associated module

enriched in cluster 1

To further characterize the transitional stages defined along the TinGa trajectory, we identified regula-

tory interactions between transcription regulators and their target genes in the dataset using the

BRED tool (Cannoodt, 2019). We identified six main GRN-modules, which we defined as groups of target

genes gathered around a regulator (Figure 3A). As expected, based on previous results on the cell cycle,

three of these modules (Pcna, Hmgb2, Cenpf) were strongly enriched in genes involved in cell-cycle

regulation. The Ybx1 GRN-module contained two groups of genes: one coding for proteins involved

in RNA and protein synthesis metabolism that were upregulated in the cells from the cluster 2-5-7 branch

and the other for immune functions that were enriched in clusters 6 and 8 (Figure S4). Two GRN-modules

were composed essentially of genes associated with the immune response. The GRN module Spi1 was

expressed in very few cells along the trajectory (Figure S5). In contrast, the Tcf7/Id2/Phb2 GRN-module

contained genes coding for transcription factors and immune functions, associated with the differentia-

tion of CD8 T cells in memory cells. These genes were expressed in different clusters along the trajectory

(Figure S6). Interestingly, cluster 1 was enriched in cells that co-expressed genes from the Tcf7/Id2/Phb2

modules that were associated with an MP cell phenotype as defined by a number of studies (Yao et al.,

2019, Pais Ferreira et al., 2020; Jeannet et al., 2010; Yang et al., 2011; Zhou et al., 2010; Chen et al., 2019).

Indeed, they expressed Tcf7 and Id3, two transcription factors that were previously associated with an

MP potential (Yao et al., 2019, Pais Ferreira et al., 2020; Jeannet et al., 2010; Yang et al., 2011; Zhou

et al., 2010). Two target genes, Slamf6 and Tnfsf8, were found to be positively correlated with the pres-

ence of Tcf7 in the Tcf7/Id2/Phb2 module. In contrast, the Id2 transcription factor, which has previously

been associated with an effector fate (Omilusik et al., 2018), was repressed in these cells, as was the

effector-associated gene Gzmb (Figures 3B and S6).

In summary, cluster 1 seemed to contain an interesting set of cells in which effector functions were down-

regulated, whereas genes associated with a memory precursor signature were overexpressed. We thus

decided to further characterize the cells in cluster 1.
iScience 25, 104927, September 16, 2022 5



Figure 3. Gene regulatory interactions

(A) Gene regulatory network identified with BRED. In this GRN, regulatory processes are symbolized by arrows that are directed from transcription factors to

their target genes or to other transcription factors. The top 100 interactions per TinGa cluster are represented and are colored according to the cluster in

which they are occurring. The shape of the arrow indicated whether the interaction was an activation (->) or an inhibition (-|).

(B) Zoom on the Id2/Tcf7/Id3 module identified by BRED. Only the interactions occurring in cluster 1 in the TinGa trajectory are represented.

See also Figures S4–S6.
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TinGa identifies distinct clusters associated with a memory-precursor phenotype

Cluster 1 was mainly composed of cells from day 4.5 pi, a large fraction of which (36%) was classified as be-

ing in the G1 phase of the cell cycle (Figures 1D, 1E, and S7A). This contrasted with other clusters enriched

in cells from day 4.5 pi, such as clusters 2 and 5, that contained very few cells classified as being in G1

(Figures 1D and 1E).

To ascertain that cells in cluster 1 had been activated, we compared their transcriptome with the genes ex-

pressed in cluster 2 positioned at the beginning of the trajectory. Results in Figure S7B showed that the

cells in cluster 1 expressed an increased amount of genes coding for effector functions such as Ccl5 and
6 iScience 25, 104927, September 16, 2022



Figure 4. Memory precursor cell identification and characterization

(A and B) Memory precursor signature enrichment in each cluster along TinGa’s trajectory. The cells above the threshold represented as a dotted line are

considered as memory precursors. The percentage of cells with a memory precursor signature in each cluster is indicated. AUC: area under the curve. (B) The

cells with a memory precursor signature were represented on the TinGamap and colored according to the cluster they came from. The number of cells with a

memory precursor signature in each cluster is indicated.

(C) Distribution in the G1, S, and G2/M cell-cycle phases of cells with a memory precursor signature from clusters 1, 8, or all others.

(D) Triwise plot of the log fold-change expression of genes that were differentially expressed between the memory precursor cells found in cluster 1, 8, and

all other memory precursors. Only the genes that were differentially expressed with a p value < 0.05 are represented. The internal hexagon corresponds to a

log fold-change of 1, and the external hexagon corresponds to a log fold-change of 2.

See also Figures S7 and S8 and Table S3.
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Gzma compared with cluster 2, indicating that these cells had been activated as they had started to acquire

effector functions. Cells in cluster 1 also expressed interferon-induced genes such as Ifl27L2a, Ifl203, Ifl47

(colored in red in Figure S7B), indicating that these cells had responded to the pathogen-induced innate

response. We thus concluded that cluster 1 contained cells from day 4.5 pi that had been activated but

already displayed traits of quiescence.

Cluster 1 cells expressed increased amounts of Tcf7, Id3, and Ltb as compared with all other cells in the

trajectory, whereas Klrg1, a gene associated with terminal differentiation, was downregulated in these cells

(Figure S7C). This was in agreement with the activation of the Tcf7/Id2/Phb2 module containing genes

associated with an MP potential in these cells.

To confirm the MP genetic program of cells in cluster 1 and to identify all MP cells along the trajectory, we

performed a gene set enrichment analysis (GSEA) using the MP gene signature recently defined in Yao

et al. (2019) (Table S3 and Figure 4A). We identified 833 MP cells that were mainly localized in clusters 1

and 8 (Figures 4A and 4B). Unsurprisingly, cluster 1 was the most enriched in the MP signature, with 15%

of the cells presenting the signature. Cluster 8 also contained a significant fraction (9%) of MP cells.

However, the majority of MP cells were associated with cluster 8 that contained 3 times more MP cells

than cluster 1 (Figures 4B and 4C). The majority of MP in cluster 1 and 8 were associated with the G1 phase
iScience 25, 104927, September 16, 2022 7
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of the cell cycle compared with those in the other clusters that weremainly in S andG2/M phase (Figure 4C).

A second gene signature coming from P14 CD8 T cells expressing Tcf7 at the effector stage (referred to as

Tpcm) and published by Pais Ferreira et al. (Pais Ferreira et al., 2020) was used to validate these results

(Figures S7D and S7E). We found 456 Tpcm cells that were mainly associated with clusters 1 (about 7%)

and 8 (5.5%) in agreement with the previous results.

To determine the number of MP cells associated with secondary lymphoid organs that had effectively been

found on each sampling day, we recalculated the number of MP cells present in the spleen of animals at the

two experimental time points (see STAR Methods section). Based on the number of LCMV-Arm-specific

CD8 T cells present in the spleen on day 4.5 and 7 pi, we could estimate the number of cells with an MP

gene signature on these two days to be 3,850 and 643,000. This indicated that the number of MP cells

generated 4.5 days after infection is more than 150 times lower than the number of MP cells generated

7 days after infection, in agreement with values estimated in Crauste et al. (2017).

To investigate differences between MP cells generated at day 4.5 and at day 7 pi, we compared the gene

expression profiles of cluster 1 with that of cluster 8 MP cells respectively and with the profiles of MP from all

the other clusters (Figure 4D). Both clusters 1 and 8 MP cells showed a decreased expression of genes

driving the cell cycle compared with the other MP, in agreement with their position in G1 phase

(Figures 4C and 4D). Cluster 8 MP cells have an increased expression of genes coding for proteins involved

in effector functions (Gzmb, Ctla2, Ccl5) and cytokine response (Il7r, Il18r1, Ifngr1) compared with cluster 1

MP cells, indicating that, although they display an MP gene signature, they have also acquired effector cell

properties. This was in agreement with the data showing that effector cells could dedifferentiate into quies-

cent memory cells (Youngblood et al., 2017). Interestingly, cycling MP (i.e., MP from clusters other than 1

and 8) expressed genes coding for transcription factors (Zbtb32, Id3) or histone modifier (Ezh2) involved

in the regulation of the developmental switch between effector and MP cells, suggesting that cycling

MP are still oscillating between these two fates (Kakaradov et al., 2017; Shin et al., 2017; Yang et al., 2011).

To confirm the continuous generation of MP cells, we analyzed a second transcriptomic dataset generated

by Kurd et al. that contained cells sampled at multiple time points during the primary response (day 4, 5, 6,

7, and 10 post-LCMV infection). Highly variable genes expressed by the 9,614 cells were selected and TinGa

was applied (Figure S8A). The trajectory obtained is similar to the Yao et al.’s data (Yao et al., 2019), with the

first part of the trajectory being enriched in cycling cells (cluster 1, 3, 8, 6, and 4) that were sampled on day 4,

5, 6, and 7 pi. The second part contained quiescent cells sampled on day 6, 7, and 10 pi (Figures S8A–S8C).

Similarly, 574 MP cells were found by GSEA all along the TinGa trajectory (Figures S8D and S8E).

Overall, these results suggested that MP cells with different functional and differentiation statuses, from

activated cycling cells to quiescent effector cells, were present at different points along the trajectory.
In vivo validation of memory cell generation at different time points following activation of

CD8 T cells

Our in -silico analyses strongly suggest that CD8 T cells become quiescent and differentiate into memory

cells at different stages following activation in response to acute viral infection. To validate this result in vivo,

we used BrdU pulse-chase experiments. Indeed, these allow tracking cells that proliferate during the pulse

time and stop soon thereafter, thus maintaining their BrdU labeling in the memory phase. This way, we can

identify MP cells present at the time of pulse. We also wanted to extend the data to other experimental

systems, so we used vaccinia virus (VV) that induces a local acute infection in the lung when inoculated intra-

nasally. Thus, mice were infected intranasally with a VV harboring the NP68 epitope, and we followed the

activation of TCR transgenic F5 cells in secondary lymphoid organs (Crauste et al., 2017). Mice were given

one injection of BrdU on days 4, 7, or 11 pi, and BrdU labeling was analyzed after 24 h in the spleen and the

lymph nodes draining the lung and nasal cavity (Figures 5A and S9A).

Following VV infection, TCR transgenic F5 CD8 T cells increased in proportion and numbers over time in

both spleen and draining lymph nodes (dLN), with a peak 8 dpi (Figures 5B, 5C, and S9B). The percentage

of BrdU-labeled cells, representative of proliferating CD8 T cells, was maximal 5 dpi in the dLN and 8 dpi in

the spleen, reflecting the local initiation of the CD8 T cell immune response following intranasal infection

(Figures 5D, 5E, and S9C). The number of BrdU-labeled cells was maximal both in spleen and dLN 8 dpi and

started to decrease thereafter with a limited number of cycling cells detected at 12 dpi.
8 iScience 25, 104927, September 16, 2022



Figure 5. In vivo identification of memory precursors using BrdU labeling

(A) Naive CD45.1 F5 TCR-tg CD8 T cells were transferred to C57BL/6 congenic recipients (n = 5 per group) one day prior i.n. infection with VV-NP68. Mice

then received one BrdU injection (2 mg i.p.) on day 4 (Group1), day 7 (Group2), or day 11 (Group3). BrdU labeling was determined by flow cytometry on cells

collected 24 h after BrdU injection (pulse) or 39 days postinfection (chase).

(B–E) The percentages (B, D) and numbers (C, E) of total F5 CD44+ (B, C) and BrdU + F5 CD44+ (D, E) CD8 T cells were determined 24 h after BrdU injection

(pulse) in the indicated organs.

(F) Fraction of proliferating early effector (EE) cells in the indicated organs from day 4 to day 11 postinfection.

(G) Fraction of EE cells that differentiate into late effector (LE) cells in the indicated organs from day 4 to day 11 postinfection.

(H and I) The percentages (H) and numbers (I) of BrdU + F5 CD8 memory T cells originating from cells labeled on days 4, 7, or 11 pi was determined 39 days

after BrdU injection (chase) in the indicated organs.

(J) The proportion of BrdU positive memory cells originating fromMP labeled on days 4, 7, or 11 pi was determined as follows: the mean number of BrdU + F5

CD8 memory T cells at a given day was normalized to the sum of mean BrdU + F5 CD8 memory T cells numbers recovered on day 4, 7, and 11. Data are

represented as mean G SD and are representative of 3 independent experiments.

See also Figure S9.
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Using data from three independent experiments, we next estimated (see STAR Methods section) the frac-

tion of early effector cells that proliferate and differentiate into late effector cells (Crauste et al., 2017) on

days 4, 5, 7, and 11 pi. In agreement with the BrdU-labeling profile of total CD8 T cells, we found that the

fraction of proliferating effector cells peaks on days 4–5 before quickly decreasing both in dLN and spleen

(Figure 5F). This is in agreement with previous results (Crauste et al., 2017) obtained on blood samples. In

contrast, the fraction of cells that differentiate into quiescent effector cells are very low on days 4–5 pi,

increasing on day 7 pi with the highest fraction of cells being observed on day 11 pi, once proliferation

has drastically vanished, in both spleen and dLN (Figure 5G).

We thenmeasured the fraction and number of BrdU-labeled CD8 T cells in thememory phase (39 dpi) in order

to evaluate theMP cells present onday 4, 7, or 11 pi (Figures 5A, 5H, 5I, S9D, and S9E). Indeed, cells still labeled

after chase in the memory phase correspond to memory precursors having dropped out of proliferation soon

after labeling and survived the contractionphase.Aspredictedby the single-cell transcriptomicdata, we found
iScience 25, 104927, September 16, 2022 9
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thatmemory cells could derive fromactivated/effector cells at all investigated times. However, the largest frac-

tion of memory cells was derived from cells labeled on day 7 or later (Figure 5J). Importantly the few cells that

were labeled with BrdU between days 11 and 12 gave rise to a significant fraction of the memory cell pool in

agreement with increasing fraction of cells in differentiation (Figure 5G).

Finally, we compared protein expression of memory cells generated on day 4, 5, or day 7 pi. We thus per-

formed a BrdU chase experiment (Figure 6A) and measured the expression of proteins encoded by genes

that were differentially expressed in the single-cell transcriptomic dataset (Figures 4D, S10A, and S10B;

Table S4). We found that only CCL5, which was the most differentially expressed gene in late d7 MP cluster

8 (Figure 4D), was also expressed at a higher protein level by F5memory cells generated at 7 dpi (Figure 6B).

Two other proteins, CD127 (IL7R) and Ly6C, were not differentially expressed in the memory phase

(Figures S10A and S10B). The expression of CCL5 was also measured on endogenous antigen-induced

BrdU positive memory cells, identified based on their CD49d expression (Grau et al., 2018) (Figure S10C).

Similarly, we found a significant increase of CCL5 expression on BrdU + endogenous memory cells

generated at 7 dpi in the dLN and spleen (Figures 6C and 6D).

Overall, these results show that memory cells are generated continuously after activation. However, due to

cellular expansion, the majority of memory cells are generated late during the effector phase.
DISCUSSION

In this study, we have used trajectory inference tools to analyze the generation of memory precursor CD8

T cells during a primary response against an acute viral infection. A single-cell transcriptomic dataset (Yao

et al., 2019) generated at two time points during the primary response, was analyzed using two recently

developed trajectory inference algorithms (Slingshot [Street et al., 2018] and TinGa [Todorov et al.,

2020]). These tools allow modeling gradual transitions between cell states, as they tend to preserve the

local similarities between cells, thus predicting the likely differentiation path followed by cells activated

in vivo by the virus (Saelens et al., 2019). Trajectory inference tools have become essential, as they allow

to predict the fate of cells that have to be lysed to analyze their cellular content and/or transcriptome.

Although different dimensionality reduction and trajectory computation approaches were used, the

trajectories identified by both algorithms were driven by similar sets of genes and displayed a consistent

trajectory starting among cells from day 4.5 postinfection that were mainly cycling and ending among cells

from day 7 postinfection that were mainly quiescent. Importantly, there was a significant overlap between

cells collected on each day, as clusters in the middle of the trajectory contained cells from both time points.

This indicates that the differentiation process, although continuous, is heterogeneous in its duration, as for

example some cells exit the cell cycle at early time points or acquire effector functions more rapidly. This is

in agreement with experiments tracking the fate of single T cells in mice that have shown that the clonal size

of memory cells generated from a naive CD8+ T cell is heterogeneous (Buchholz et al., 2013; Gerlach et al.,

2013). The trajectory identified by TinGa wasmore refined, as it identified 8 transitional stages, one of which

(cluster 1) was strongly enriched in MP cells identified using a gene signature derived from Yao et al. (2019).

We also applied scVelo (Bergen et al., 2020), a method that uses the splicing state of transcripts to calculate

RNA velocities. The projection of RNA velocities on the TinGa-generated map evidenced two cellular behav-

iors with early cycling cells that remain on a circular trajectory and later cells that follow a linear path. These two

behaviors were associatedwith cell-cycle and immune function genes, respectively. Importantly, the linear tra-

jectory driven by the immune effector genes started in early (d4.5) cells underpinning cycling and quiescent

cells, thus reflecting the progressive expression of effector functions by activated CD8 T cells. These results

are in agreement with the two effector compartments previously described, namely the early cycling effector

cells and late quiescent effector cells expressing genes encoding immune effector functions, through which

most MP cells have to go to generate the full pool of memory CD8 T cells (Crauste et al., 2017).

We herein found that MP are present at all pseudo-times, with an enrichment in clusters 1 and 8. The ma-

jority of MP cells in clusters 1 and 8 were in the G1 phase of the cell cycle, suggesting that they were on their

way to become quiescent memory cells. We confirmed the continuous generation of MP cells on another

dataset from Kurd et al. (2020). Importantly, we estimate that the number of MP cells generated on day 7 pi

is around 100-fold higher than the number generated on day 4.5 pi. In vivo pulse-chase BrdU experiment

confirmed that CD8 T cells became quiescent memory cells at different stages of an acute infection and

that the differentiation rate of early effector cells increased over time. Overall, our data support a model
10 iScience 25, 104927, September 16, 2022



Figure 6. CCL5 expression by memory cells generated on day 4.5 or day 7 pi

(A) Naive CD45.1 F5 TCR-tg CD8 T cells were transferred to C57BL/6 congenic recipients (n = 5 per group) one day prior

i.n. infection with VV-NP68. Mice then received one BrdU injection (2 mg i.p.) on day 4.5 (Group1) or day 7 (Group2). BrdU

labeling was determined by flow cytometry on cells collected 25 days (chase) after infection.

(B) Flow cytometry plots and quantification of BrdU + F5 memory cells expressing CCL5 labeled on day 4.5 and 7 with

BrdU was assessed.

(C and D) Flow cytometry plots and quantification of CD44+ CD49d+ BrdU + endogenous memory cells expressing CCL5

labeled on day 4.5 and 7 with BrdU was assessed in the draining lymph node (C) and in the spleen (D). *p < 0.05 (Mann-

Whitney test). Data are represented as mean G SD and are representative of 2 independent experiments.

See also Figure S10 and Table S4.
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where MP cells are generated continuously over the duration of the expansion phase and beyond, with the

majority generated at the peak of the response. Memory precursors identified on day 7 (cluster 8) differ

from MP cells generated earlier in the response, mainly by their expression of genes coding for CD8

effector functions (Gzmb, Ccl5), and we confirm that CCL5 is expressed at higher protein level by memory
iScience 25, 104927, September 16, 2022 11
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cells generated at 7 dpi compared with cells generated at 4.5 dpi. This is in agreement with the gradual

acquisition of epigenetic modifications that lead to a poised transcriptional state of the effector molecule

loci in memory CD8 T cells (Dogra et al., 2016; Henning et al., 2018). Moreover, a recent paper by Bresser

et al. (Bresser et al., 2022) using an elegant ‘‘division recorder’’ accordingly demonstrate that memory cells

are derived from cells that have undergone a large number of divisions during the activation/effector

phase. They also show that among the TCM pool of memory cells, those that have performed more divi-

sions express more genes associated with effector functions (Bresser et al., 2022). Based on differential

gene expression, we searched for surface markers that could distinguish memory precursor CD8 T cells

generated early or late in the response. Unfortunately, we have been unable to identify such markers

that would have allowed us to compare the functions and self-renewal capacities of these cells.

The continuous generation of MP over the duration of the effector phase could be explained by the sus-

tained proliferation of MP generated early in the response. These cells would maintain self-renewing ca-

pacity while opening the chromatin at effector function gene loci. This would fit with the increased expres-

sion of mRNA coding for effector functions in MP identified on day 7. We estimate that cycling MP cells

represent only about 15% of all MP cells. Interestingly, these cells differ from quiescent memory precursors

by the expression of the transcription factors Zbtb32 and Ezh2, which encodes a catalytic subunit of the

polycomb repressive complex 2 (PRC2) (Gray et al., 2017). Zbtb32, which is transiently expressed during

the effector phase, has recently been shown to control the magnitude of effector cells and the generation

of memory cells (Shin et al., 2017). Epigenetic modification by Ezh2 controls the survival and cytokine pro-

duction of effector cells. Also, it would be involved in the developmental switch between terminal effector

cells andmemory cells by depositing H3K27me3 in T effector cells (Gray et al., 2017; Kakaradov et al., 2017).

Thus, proliferatingMP cells could represent bipotential cells that oscillate between two fates: the terminally

differentiated effector fate that is associated with the repression of the self-renewing capacity and the acti-

vation of effector function loci and the memory precursor fate that maintains the self-renewing capacity

while acquiring bivalent chromatin modification marks on gene encoding effector functions. This hypoth-

esis would be in line with a recent study by Pace et al. (2018) and Kinjyo et al. (2015) suggesting that cycling

cells may represent bipotent differentiation intermediates expressing both effector and stem/memory po-

tential. A similar differentiation pattern has recently been found in a hematopoietic stem cell differentiation

model (Moussy et al., 2017). Importantly in that model and similarly to our data, the number of divisions

performed by bipotent cells before arresting and stabilizing in one or the other fate is heterogeneous.

Such a continuous bivalent model could reconcile a number of previously proposed conflictingmodels that

positioned memory precursor cells at either early or late stages following activation (Arsenio et al., 2014;

Bouneaud et al., 2005; Buchholz et al., 2013; Flossdorf et al., 2015; Jacob and Baltimore, 1999; Kakaradov

et al., 2017) (Graphical abstract). Importantly, it could account for the diverse sizes of clones derived from a

single cell, observed in fate mapping experiments (Buchholz et al., 2013; Gerlach et al., 2013) while being in

agreement with the dynamical modeling of memory CD8 T cells generation (Crauste et al., 2017). Finally, it

would allow the deposition of epigenetic fingerprints on genes that encode effector functions and are

poised for rapid expression in memory cells.
Limitation of the study

This study mainly concerns memory CD8 T cells that transit through or reside within the spleen. The differ-

entiation of tissue-associated memory CD8 T cells was not addressed. Indeed, the in silico as well as the

in vivo data mainly focused on CD8 T cells sampled from the spleen or other lymphoid organs. This should

be the subject of future studies. Another limitation of the study results from using BrdU labeling to trace

memory CD8 T cell differentiation in vivo. This only allowed us to characterize the differentiation of cycling

memory precursor cells generated during the expansion phase of the primary response. However, our main

conclusions are supported by a recent study that could trace memory cell generation further into the

response (Bresser et al., 2022).
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Flossdorf, M., Rössler, J., Buchholz, V., Busch,
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Jeannet, G., Boudousquié, C., Gardiol, N., Kang,
J., Huelsken, J., andHeld,W. (2010). Essential role
of the Wnt pathway effector Tcf-1 for the estab-
lishment of functional CD8 T cell memory. Proc.
Natl. Acad. Sci. USA 107, 9777–9782. https://doi.
org/10.1073/pnas.0914127107.

Johnnidis, J.B., Muroyama, Y., Ngiow, S.F., Chen,
Z., Manne, S., Cai, Z., Song, S., Platt, J.M.,
Schenkel, J.M., Abdel-Hakeem, M., et al. (2021).
Inhibitory signaling sustains a distinct early
memory CD8+ T cell precursor that is resistant to
DNA damage. Sci. Immunol. 6, eabe3702.
https://doi.org/10.1126/sciimmunol.abe3702.

Joshi, N.S., Cui, W., Chandele, A., Lee, H.K., Urso,
D.R., Hagman, J., Gapin, L., and Kaech, S.M.
(2007). Inflammation directs memory precursor
and short-lived effector CD8(+) T cell fates via the
graded expression of T-bet transcription factor.
Immunity 27, 281–295. https://doi.org/10.1016/j.
immuni.2007.07.010.

Jubin, V., Ventre, E., Leverrier, Y., Djebali, S.,
Mayol, K., Tomkowiak, M., Mafille, J., Teixeira, M.,
Teoh, D.Y., Walzer, T., et al. (2012). T
inflammatory memory CD8 T cells participate to
antiviral response and generate secondary
memory cells with an advantage in XCL1
production. Immunol. Res. 52, 284–293. https://
doi.org/10.1007/s12026-012-8340-4.
Kaech, S.M., and Cui, W. (2012). Transcriptional
control of effector and memory CD8+ T cell
differentiation. Nat. Rev. Immunol. 12, 749–761.
https://doi.org/10.1038/nri3307.

Kakaradov, B., Arsenio, J., Widjaja, C.E., He, Z.,
Aigner, S., Metz, P.J., Yu, B., Wehrens, E.J.,
Lopez, J., Kim, S.H., et al. (2017). Early
transcriptional and epigenetic regulation of
CD8+T cell differentiation revealed by single-cell
RNA sequencing. Nat. Immunol. 18, 422–432.
https://doi.org/10.1038/ni.3688.

Kalia, V., Sarkar, S., Subramaniam, S., Haining,
W.N., Smith, K.A., and Ahmed, R. (2010).
Prolonged interleukin-2Ralpha expression on
virus-specific CD8+ T cells favors terminal-
effector differentiation in vivo. Immunity 32,
91–103. https://doi.org/10.1016/j.immuni.2009.
11.010.

Kinjyo, I., Qin, J., Tan, S.Y., Wellard, C.J., Mrass,
P., Ritchie, W., Doi, A., Cavanagh, L.L., Tomura,
M., Sakaue-Sawano, A., et al. (2015). Real-time
tracking of cell cycle progression during CD8+
effector and memory T-cell differentiation. Nat.
Commun. 6, 6301. https://doi.org/10.1038/
ncomms7301.

Kretschmer, L., Flossdorf, M., Mir, J., Cho, Y.L.,
Plambeck, M., Treise, I., Toska, A., Heinzel, S.,
Schiemann, M., Busch, D.H., and Buchholz, V.R.
(2020). Differential expansion of T central memory
precursor and effector subsets is regulated by
division speed. Nat. Commun. 11, 113. https://
doi.org/10.1038/s41467-019-13788-w.

Kurd, N.S., He, Z., Louis, T.L., Milner, J.J.,
Omilusik, K.D., Jin, W., Tsai, M.S., Widjaja, C.E.,
Kanbar, J.N., Olvera, J.G., et al. (2020). Early
precursors and molecular determinants of tissue-
resident memory CD8+T lymphocytes revealed
by single-cell RNA sequencing. Sci. Immunol. 15,
eaaz6894. https://doi.org/10.1126/sciimmunol.
aaz6894.

Lun, A.T.L., McCarthy, D.J., and Marioni, J.C.
(2016). A step-by-step workflow for low-level
analysis of single-cell RNA-seq data with
Bioconductor. F1000Res 5, 2122. https://doi.org/
10.12688/f1000research.9501.2.

Marcais, A., Coupet, C.A., Walzer, T., Tomkowiak,
M., Ghittoni, R., and Marvel, J. (2006). Cell-
autonomous CCL5 transcription by memory CD8
T cells is regulated by IL-4. J. Immunol. 177, 4451–
4457. https://doi.org/10.4049/jimmunol.177.7.
4451.

Mann, T.H., and Kaech, S.M. (2019). Tick-TOX, it’s
time for T cell exhaustion. Nat. Immunol. 20,
1092–1094. https://doi.org/10.1038/s41590-019-
0478-y.

Masopust, D., Vezys, V., Marzo, A.L., and
Lefrançois, L. (2001). Preferential localization of
effector memory cells in nonlymphoid tissue.
Science 291, 2413–2417. https://doi.org/10.1126/
science.1058867.

McCarthy, D.J., Campbell, K.R., Lun, A.T.L., and
Willis, Q.F. (2017). Scater: pre-processing, quality
control, normalisation and visualisation of single-
cell RNA-seq data in R. Bioinformatics 33, 1179–
1186. https://doi.org/10.1093/bioinformatics/
btw777.

Melsted, P., Booeshaghi, A.S., Liu, L., Gao, F., Lu,
L., Min, K.H., Da Veiga Beltrame, E., Hjorleifsson,

https://doi.org/10.1126/science.1139393
https://doi.org/10.1126/science.1139393
https://doi.org/10.1016/j.immuni.2019.09.013
https://doi.org/10.1016/j.immuni.2019.09.013
https://doi.org/10.1016/j.cels.2017.01.014
https://doi.org/10.1016/j.cels.2017.01.014
https://doi.org/10.1002/eji.201545550
https://doi.org/10.1002/eji.201545550
http://refhub.elsevier.com/S2589-0042(22)01199-3/sref13
http://refhub.elsevier.com/S2589-0042(22)01199-3/sref13
http://refhub.elsevier.com/S2589-0042(22)01199-3/sref13
http://refhub.elsevier.com/S2589-0042(22)01199-3/sref13
http://refhub.elsevier.com/S2589-0042(22)01199-3/sref13
https://doi.org/10.1038/ni.3235
https://doi.org/10.1038/ni.3235
https://doi.org/10.1038/nrc3322
https://doi.org/10.1126/science.1235487
https://doi.org/10.1016/j.immuni.2014.05.018
https://doi.org/10.4049/jimmunol.1701698
https://doi.org/10.4049/jimmunol.1701698
https://doi.org/10.1016/j.immuni.2017.03.012
https://doi.org/10.1016/j.immuni.2017.03.012
https://doi.org/10.1186/s13059-019-1874-1
https://doi.org/10.1084/jem.20081829
https://doi.org/10.1084/jem.20081829
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1038/nri.2017.146
https://doi.org/10.1038/nri.2017.146
https://doi.org/10.1084/jem.20070322
https://doi.org/10.1084/jem.20070322
https://doi.org/10.1038/ni1268
https://doi.org/10.1038/ni1268
https://doi.org/10.1038/21208
https://doi.org/10.1038/21208
https://doi.org/10.1016/j.immuni.2009.11.007
https://doi.org/10.1016/j.immuni.2009.11.007
https://doi.org/10.1073/pnas.0914127107
https://doi.org/10.1073/pnas.0914127107
https://doi.org/10.1126/sciimmunol.abe3702
https://doi.org/10.1016/j.immuni.2007.07.010
https://doi.org/10.1016/j.immuni.2007.07.010
https://doi.org/10.1007/s12026-012-8340-4
https://doi.org/10.1007/s12026-012-8340-4
https://doi.org/10.1038/nri3307
https://doi.org/10.1038/ni.3688
https://doi.org/10.1016/j.immuni.2009.11.010
https://doi.org/10.1016/j.immuni.2009.11.010
https://doi.org/10.1038/ncomms7301
https://doi.org/10.1038/ncomms7301
https://doi.org/10.1038/s41467-019-13788-w
https://doi.org/10.1038/s41467-019-13788-w
https://doi.org/10.1126/sciimmunol.aaz6894
https://doi.org/10.1126/sciimmunol.aaz6894
https://doi.org/10.12688/f1000research.9501.2
https://doi.org/10.12688/f1000research.9501.2
https://doi.org/10.4049/jimmunol.177.7.4451
https://doi.org/10.4049/jimmunol.177.7.4451
https://doi.org/10.1038/s41590-019-0478-y
https://doi.org/10.1038/s41590-019-0478-y
https://doi.org/10.1126/science.1058867
https://doi.org/10.1126/science.1058867
https://doi.org/10.1093/bioinformatics/btw777
https://doi.org/10.1093/bioinformatics/btw777


ll
OPEN ACCESS

iScience
Article
K.E., Gehring, J., and Pachter, L. (2021). Modular,
efficient and constant-memory single-cell RNA-
seq preprocessing. Nat. Biotechnol. 39, 813–818.
https://doi.org/10.1038/s41587-021-00870-2.

Moussy, A., Cosette, J., Parmentier, R., da Silva,
C., Corre, G., Richard, A., Gandrillon, O.,
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Antibodies

FITC anti-rat/mouse-Bcl-2 (clone BCL/10C4) Biolegend Cat#633504; RRID: AB_2028394

BUV395 anti-mouse CD8a (Clone 53–6.7) BD Bioscience Cat#563786; RRID: AB_2732919

PE anti-mouse CCL5 (clone 2E9) Biolegend Cat#149103; RRID: AB_2564405

BV605 anti-mouse/human CD44 (clone IM7) Biolegend Cat#103047; RRID: AB_2562451

BUV737 anti-mouse CD45.1 (clone A20) BD Biosciences Cat#564574; RRID: AB_2738850

BV650 anti-rat/mouse CD49a (clone Ha31/8) BD Biosciences Cat#740519; RRID: AB_2740235

PerCP-eFluor 710 anti-mouse CD49d (clone R1-2) eBiosciences Cat#46-0492-82; RRID: AB_11150051

BV510 anti-mouse CD62L (MEL-14) Biolegend Cat#104441; RRID: AB_2561537

BV421 anti-mouse CXCR3 (CXCR3-173) Biolegend Cat#126521; RRID: AB_2562205

Fixable Viability Dye eFluor 780 eBiosciences Cat#65-0865-14

Biotin anti-mouse Ly-6C (clone AL-21) BD Biosciences Cat#557359; RRID: AB_396663

Biotin anti-mouse Ly108 (clone 13G3-19D) eBiosciences cat#13-1508-82; RRID: AB_763614

PE-Cy7 anti-mouse CD127 (clone A7R34) eBiosciences Cat#25-1271-82; RRID: AB_469649

PerCP-eFluor 710 anti-mouse Ki67 eBiosciences Cat#46-5698-82; RRID: AB_11040981

FITC anti-mouse KLRG1 (clone 2F1) eBiosciences Cat#11-5893-82; RRID: AB_1311265

Streptavidin BUV496 BD Biosciences Cat#612961; RRID: AB_2869599

Bacterial and virus strains

VV-NP68 Dr. D.Y.-L. Teoh (Human Immunology

Unit, Institute of Molecular Medicine,

Oxford, U.K.)

Modified from the Western Reserve strain

Chemicals, peptides, and recombinant proteins

DMEM Thermofisher Cat#61965-026

Sodium pyruvate (100mM) Thermofisher Cat#11360-039

HEPES (1M) Thermofisher Cat#15630-056

Gentamicin (50mg/mL) Thermofisher Cat#15750-037

Beta-mercaptoethanol Thermofisher Cat#31350-010

DPBS Thermofisher Cat#14190-094

FBS BioWest Cat#S1810-500 (Lot#S13439S1810)

NaN3 (CAS# 26628-22-8) Sigma-Aldrich Cat#S2002-500 (Lot#MKBX7529V)

efluor780-coupled Fixable Viability Dye Invitrogen Cat#65-0865-18

NP68 (ASNENMDAM) Proteogenix N/A

BrdU Sigma Cat#B5002-100MG

BrdU eBiosciences Cat#00-4440-51A

Critical commercial assays

BrdU Staining Kit for Flow Cytometry APC eBiosciences Cat#8817-6600-42

Experimental models: Organisms/strains

Mouse : C57Bl6/J : C57BL/6J Charles River Strain code : 632

Mouse : F5 : B6/J-Tg(CD2-TcraF5,

CD2-TcrbF5)1Kio/Jmar

Prof. D. Kioussis (National Institute

of Medical Research, London, U.K.)

N/A

Software and algorithms

BDFACSDiva (v8.0) software BD Biosciences N/A
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Flowjo (v10.8.1) Flowjo software N/A

Prism (v9.3.1) Graphpad software N/A

Cell Ranger v3.1 10X genomics https://support.10xgenomics.com/

single-cell-gene-expression/software/

pipelines/latest/installation

Kallisto and Bustools Melsted et al., 2021 https://www.kallistobus.tools/kb_

usage/kb_usage/

Scater McCarthy et al., 2017 https://bioconductor.org/packages/

release/bioc/html/scater.html

Seurat v4 Hao et al., 2021 https://satijalab.org/seurat/

Scran Lun et al., 2016 https://bioconductor.org/packages/

release/bioc/html/scran.html

SingleR Aran et al., 2019 https://bioconductor.org/packages/SingleR/

TinGa (implemented in dynverse package) Todorov et al., 2020 https://dynverse.org

Slingshot (implemented in dynverse package) Street et al., 2018 https://dynverse.org

AUCell Aibar et al., 2017 https://bioconductor.org/packages/

release/bioc/html/AUCell.html

ScVelo Bergen et al., 2020 https://scvelo.readthedocs.io/

BRED Cannoodt, 2019 (PhD thesis) https://github.com/rcannood/bred

Cytoscape Cytoscape https://cytoscape.org

Other

D4.5 and D7 p.i. single-cell RNA-

sequencing on P14 cells

Yao et al., 2019 https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE119943

D0 to D90 p.i. single-cell RNA-

sequencing on P14 cells

Kurd et al., 2020 https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE131847
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Jacqueline Marvel ( jacqueline.marvel@inserm.fr).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d Accessions for publicly-available datasets used in this study are described in previous publications and in

the key resources table.

d This paper does not report original code. Code used to generate figures is available upon reasonable

request from the lead contact.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
METHOD DETAILS

Experimental procedures

Mice

C57BL/6J mice were purchased from the Charles River Laboratories. F5 TCR [B6/J-Tg(CD2-TcraF5,CD2-

TcrbF5) 1Kio/Jmar] transgenic mice were provided by Prof. D. Kioussis (National Institute of Medical

Research, London, U.K.) and backcrossed on CD45.1 C57BL/6 background (Jubin et al., 2012). Mice
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were bred or housed under specific pathogen free conditions in our animal facility (AniRA-PBES, Lyon,

France). All experiments were approved by our local ethics committee (CECCAPP, Lyon, France) and ac-

creditations have been obtained from governmental agencies.

BrdU labelling

Mice received 23 105 naive CD45.1 F5-Tg CD8 T cells by intravenous (i.v.) injection one day prior intranasal

(i.n.) infection with VV-NP68 (2 3 105 pfu under 20uL). Mice then received one intraperitoneal (i.p.) BrdU

injection (2 mg, Sigma). BrdU labelling was analysed 24h after BrdU administration or 25 and 39 days

post infection (dpi).

Cell analyses

Mice were sacrificed by cervical dislocation and spleen and draining lymph nodes (cervical andmediastinal)

were collected. Flow cytometry staining was performed on single-cell suspensions from each organ. Briefly,

cells were first incubated with efluor780-coupled Fixable Viability Dye (Thermo Scientific) for 20 min at 4�C
to label dead cells. Surface staining was then performed for 45 min at 4�C in PBS (TFS) supplemented with

1% FBS (BioWest) and 0.09% NaN3 (Sigma-Aldrich). Cells were then fixed and permeabilized in 96 wells

plates using 200 L of BrdU staining solution from the BrdU Staining Kit for Flow Cytometry APC

(ThermoScientific) according to manufacturer instructions. The following mAbs(clones) were used:

CD8(53.6.7), CD45.1 (A20) from BD Biosciences, CD44(IM7.8.1), Bcl2 (BCL/10C4) and CCL5 (2E9) from Bio-

legend and Ki67 (SolA15) and CD49days (R1-2) from Thermofischer Scientific. Samples were acquired on a

FACS LSR Fortessa (BD biosciences) and analyzed with FlowJo software (TreeStar).
Estimation of proliferation and differentiation rates of early effector CD8+ T cells

Neglecting CD8+ CD44+ effector cells death over the 24 h period between BrdU injection and sample

collection, we consider that early effector (CD44+ Bcl2- Ki67+, Crauste et al., 2017) CD8 T cells can either

proliferate or differentiate. Upon BrdU injection, proliferating cells incorporate BrdU, therefore early

effector cell proliferation rate can be approximated by the ratio: #CD44+ Bcl2- BrdU + cells/#CD44+

Bcl2- Ki67 + cells (which is equivalent to assuming a linear proliferation rate and that all proliferating cells

are BrdU+).

The number of BrdU + late effector (CD44+ Bcl2- Ki67-, Crauste eta l., 2017) cells one day after BrdU injec-

tion corresponds to the fraction of BrdU + early effector cells that have dropped out of cycle, i.e. the first

step in their differentiation, following BrdU injection. Hence, the differentiation rate of early effector cells

into late effector cells is approximated by the ratio: #CD44+ Bcl2- Ki67- BrdU + cells/#CD44+ Bcl2- BrdU +

cells.
In vivo memory precursor cell number calculation

The number of MP present in the spleen of animals at each time point was estimated for each cluster by

multiplying the number of cells recovered at this time point (given by the number of cells collected in

Yao et al. (2019)/by the percentage of cells in the given cluster (given by the TinGa analysis) and the per-

centage of MP cells among these (given by the GSEA analysis). Then the number of MP was summed for

all 8 clusters to yield the number of MP present in the spleen at a given time point.
Data preprocessing

Single-cell RNA-seq data preprocessing

Existing single cell data from Yao et al. (2019) were used (GEO, accession no. GSE119943). A feature-bar-

code matrix by replicate was generated using the Cell Ranger v.3.1 software (10X genomics) and only

effector CD8 T cells in acute infection sampled at day 4.5 and day 7 post infection were kept for the analysis.

The two replicates were pooled since no batch effect was observed. The cell filtering was made with the

scater package (McCarthy et al., 2017). Briefly, cells with a log-library size and a log-transformed number

of expressed genes that were more than 3 median absolute deviations below the median value were

excluded. The cells with less than 5% of mitochondrial counts were kept. These criteria were applied sepa-

rately on the cells from day 4.5 and day 7 leading to 20,295 cells that were kept in total. The data was then

normalised using the sctransform function in Seurat (Hafemeister and Satija, 2019) and variable genes were

selected based on variance modeling statistics from the modelGeneVar function in Scran (Lun et al., 2016).
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The log-normalised expression values of the 2,000 highly variable genes were used for downstream

analysis.

To validate our results, a second dataset from Kurd et al. (2020) were used (GEO, accession no. GSE131847).

Pre-processed count matrices of cells sampled at day 4, 5, 6, 7 and 10 (replicate 1 only) were pooled (9,614

total cells) and genes detected in less than 1% of the total cells were removed. The data was then normal-

ised using sctransform function and 1,573 highly variable genes were selected by setting the variable.fea-

tures.rv.th parameter to 1.3 (default value).

Cell type classification

The cells were automatically annotated and the cell type to which they best corresponded was defined us-

ing the SingleR R package (Aran et al., 2019). The labeled normalised expression values of 830 microarray

samples of pure mouse immune cells, generated by the Immunologic Genome Project (ImmGen), were

used as reference. Cells that were clearly identified as non-T cells (7 B cells, 2 dendritic cells, 3 fibroblasts,

25 macrophages and 62 monocytes) were removed before further analyses were applied.
Advanced analyses

Cell cycle assignment

The Seurat R package was used to classify cells into G1, S or G2/M phases. The classifier relies on a list of

genes from Tirosh et al. (2016), that contains markers of the G2/M and S phase. It attributes a class to each

cell with a certain probability, with the possibility to attribute the G1 class to cells for which the G2/M or S

scores were low.

Trajectory inference

Two recently published trajectory inference tools, Slingshot and TinGa, were used to identify a trajectory in

the data. The normalised data was first wrapped into a dataset object with the dynwrap R package. The

slingshot implementation in dynwrap, as found on the github/dynverse/dynwrap github PAGE, was

applied to the data using the default parameters. The TinGa implementation as found on the github/Hel-

ena-todd/TInGa repository was applied to the data using the default parameters. The dynplot R package

was then used for an easy visualisation of the resulting trajectories.

Generating heatmaps of gene expression along trajectories

We used the plot\_heatmap() function from the dynplot package to visualise the expression of specific

genes along the Slingshot and TinGa trajectories. We either used the function as a discovery tool to identify

the top n genes that varied the most along the trajectories, or we provided lists of genes associated with a

certain signature to see in which parts of the trajectories these genes were the most expressed.

Differential expression analysis

The transitional populations that were identified along the TinGa trajectory were used as clusters defining

similar cells. Differential expression analysis was performed between these clusters using the Seurat R

package. Wilcoxon rank sum tests were applied and genes were selected as differentially expressed if

the difference in the fraction of detection of the gene between the two compared groups of cells was

higher than 0.25, and if the log fold-change difference between the two groups was higher than 0.3. The

differentially expressed genes were then visualised using the triwise R package (Van de Laar et al., 2016)

and in a volcano plot that was generated manually in R with the ggplot2 R package.

Gene set enrichment analysis

Gene rankings were computed in cells using the AUCell R package. This allowed to identify cells that

showed specific gene signatures. The memory precursor signature published by Yao et al. (Yao et al.,

2019), consisting of a re-analysis of the data from Joshi et al. (Joshi et al., 2007) (GSE8678), was used. Of

the 122 genes described as associated with a memory-precursor signature, only 42 genes were present

in the 2,000 HVGs that we selected. We thus decided to use all genes available instead of restricting

ourselves to the 2,000 HVGs for this analysis (115 genes found). 833 cells out of the 20,196 studied acute

responding CD8 T cells were assigned to amemory precursor signature. The Tpcm signature from Pais Fer-

reira et al. (Pais Ferreira et al., 2020) was also tested. The signature consisted of 602 genes (576 genes
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expressed in Yao et al. dataset) differentially expressed in the effector-phase Tcf7GFPhi CD8 T cells versus

Tcf7GFP� P14 cells at day 8 post LCMVArmstrong infection (criteria: adjusted p value <0,05 and log2FC > 1).

Inferring the number of memory precursors in the spleen

The number of memory precursors in the spleen was calculated based on the percentage of memory pre-

cursors identified by gene set enrichment among total day 4.5 or day 7 cells and the average number of

CD8 T cells found in the spleen of mice on those same days (Number of MP on day x = % of MP among

single cell from day X * average total number of CD8 T cells in spleen on day X).

RNA velocity

Counts of spliced and unspliced abundances were obtained using the Kallisto and Bustools workflow

(Melsted et al., 2021). Raw fastq files were pseudo-aligned on Ensembl’sMusmusculus reference transcrip-

tome using release 97. Only cells which passed previously described preprocessing steps were kept. To

infer RNA velocities and predict cell-specific trajectories, scVelo version 0.2.3 (Bergen et al., 2020) was

used. As described in Bergen et al. (2020), velocities were estimated using the dynamical model and the

neighborhood graph was computed on the PCA representation using 50 components. The velocity graph

was computed with parameter n_neighbors set to 20. Other parameters were set to default values. Per-cell

MDS coordinates obtained in TinGa were imported into scVelo to project RNA velocities in the same

reduced embedding. The 50 genes best fitting scVelo’s model were selected and divided into Cell-Cycle,

Migration and Immune Functions categories according to their function. Finally, figures were obtained by

applying the velocity_embedding_stream function.

Gene regulatory network inference

The BRED R package was used to identify regulatory interactions between a list of transcription factors (that

was identified among the 2,000 HVGs using the database in the org.Mm.eg.db R package, and manually

curated), and the 2,000 target genes. The scaled importances corresponding to these interactions were

filtered, and the top 100 interactions corresponding to the 8 populations identified in the TinGa trajectory

were selected, resulting in a gene regulatory network containing 800 interactions. A layout of these inter-

actions was then generated using Cytoscape. In the resulting gene regulatory network, we define modules

as groups of target genes linked to one central transcription factor.
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