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Abstract

Purpose

Observational studies using routinely collected data are faced with a number of potential

shortcomings that can bias their results. Many methods rely on controlling for measured and

unmeasured confounders. In this work, we investigate the use of instrumental variables (IV)

and quasi-trial analysis to control for unmeasured confounders in the context of a study

based on the retrospective Epidemiological Strategy and Medical Economics (ESME)

database, which compared overall survival (OS) with paclitaxel plus bevacizumab or pacli-

taxel alone as first-line treatment in patients with HER2-negative metastatic breast cancer

(MBC).

Patients and methods

Causal interpretations and estimates can be made from observation data using IV and

quasi-trial analysis. Quasi-trial analysis has the same conceptual basis as IV, however,

instead of using IV in the analysis, a “superficial” or “pseudo” randomized trial is used in a

Cox model. For instance, in a multicenter trial, instead of using the treatment variable,

quasi-trial analysis can consider the treatment preference in each center, which can

be informative, and then comparisons of results between centers or clinicians can be

informative.

Results

In the original analysis, the OS adjusted for major factors was significantly longer with pacli-

taxel and bevacizumab than with paclitaxel alone. Using the center-treatment preference as

an instrument yielded to concordant results. For the quasi-trial analysis, a Cox model was
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used, adjusted on all factors initially used. The results consolidate those obtained with a con-

ventional multivariate Cox model.

Conclusion

Unmeasured confounding is a major concern in observational studies, and IV or quasi-trial

analysis can be helpful to complement analysis of studies of this nature.

Introduction

The goal of comparative clinical research studies is to compare treatment efficacy on a speci-

fied outcome; when an effect is found, it is crucial to be able to conclude on the causal effect of

the treatment. Randomized controlled trials (RCTs) are the gold standard for identifying the

causal impact of a treatment because randomization ensures that the patients’ baseline charac-

teristics are well balanced between groups, by considering measurable or non-measurable

variables. However, RCTs are not always feasible due to logistical or ethical constraints. Obser-

vational studies using routinely collected data (RCD) can provide an alternative source of data

and play an important role in comparing the efficacy of pharmaceutical products and other

healthcare interventions. These studies can complement RCTs by providing additional data

from the real-life setting. However, a major challenge is the validity of RCD due to potential

bias. Indeed, potential issues with RCD include lack of assignment, i.e. selection bias, causing

imbalance between treatment groups with regard to prognostic factors, and lack of control,

e.g. measurement errors, omitted variables or lack of measurement of all confounders. Con-

founders are variables that influence both the treatment assignment and the outcome. Some of

the methods used to control the impact of confounders on the assessment of treatment effect

include propensity scores, regression and matching [1–3]. These methods only control for

measured confounders and do not control unmeasured confounders. Methods such as instru-

mental variables (IVs) [4–6] and quasi-trials [7] can be used to address the issue of unmea-

sured confounders. An instrumental variable has three key characteristics: i) it is highly

correlated with treatment, ii) it only affects the outcome through treatment, and iii) it is not

associated with unmeasured confounders after controlling for measured confounders. Pro-

vided these assumptions hold, cause-and-effect interpretations and estimates can be drawn

based on analysis of RCD using IVs [7]. Different techniques are possible to analyze the IVs [2,

7, 8]: in this paper, we will present the two-stage residual inclusion (2SRI) approach. Concern-

ing the quasi-trial method, the basic idea is to replace the treatment variable by a variable that

creates a “pseudo” randomized trial (8). The Quasi-random methods (quasi = almost, but not

completely random) used to allocate subjects to different arms of the trial (to receive the study

medicine, or placebo, for example) using a method of allocation that is not truly random. This

method has been rarely used in oncology context. The idea behind the quasi-randomized or

pseudo-randomized trial is that the treatment or % treatment prescribed may vary from center

to center and the results may also differ. For instance, in a multicenter trial, the treatment pref-

erence in each center can be informative, and then comparison of the results between centers

or clinicians can be informative. A shared frailty model with random effects is used to account

for the fact that patients were clustered within centers and that the treatment could vary

between centers [9]. The shared frailty model is a random effects model where the frailties, i.e.

latent multiplicative effects on the hazard function, are shared among the individuals of a
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center and are randomly distributed across the centers. The techniques used for IV or quasi-

trial analyses are described in the Methods section.

This work was conducted on a retrospective database established in 2014 by the R&D

Department of Unicancer, the national academic network of French Comprehensive Cancer

Centers (FCCCs). They created the Epidemiological Strategy and Medical Economics (ESME)

Research program to centralize real-world patient data in oncology. The program’s first project

concerns the construction of a comprehensive database on patients with metastatic breast can-

cer (MBC), called the ESME MBC Database, using data obtained from the 18 FCCCs [10].

Among the outcomes studied, the ESME MBC Database (NCT03275311) has looked at Overall

Survival (OS) in patients with HER2-negative MBC treated with first-line paclitaxel-based che-

motherapy, with or without bevacizumab [11], referred to as the “Beva+Pacli/Pacli analysis” in

this paper. OS adjusted for major prognostic factors, using multivariate Cox model, was signif-

icantly longer in the paclitaxel with bevacizumab group compared to the paclitaxel group [haz-

ard ratio (HR) 0.672, 95% confidence interval (CI) 0.601–0.752; median survival time 27.7

versus 19.8 months]. The results were consistent in both supportive analyses, using a propen-

sity score for adjustment or using a matching factor for nested case-control analysis. OS in

patients receiving paclitaxel + bevacizumab was exactly as expected from clinical trials. How-

ever, the treatment effect estimate was discrepant with the results obtained in three earlier

randomized comparative phase III trials, which led the FDA to withdraw approval for bevaci-

zumab in this indication [12, 13]. Many factors could have contributed to this discrepancy,

especially the fact that a majority of patients treated with paclitaxel alone benefited from the

experimental treatment after progression (cross-over), leading to under-estimation of OS in

the RCT, which was not the case in the real-life setting. Another factor could be the difficulty

of extrapolating results from real-world cohorts due to the lack of randomization, as patients

who are treated in real-life situations have highly differing and heterogeneous characteristics

not found in the eligibility criteria in RCTs, and to the inability of the statistical methods used

to control the eventual presence of bias related to unmeasured or imperfectly measured con-

founders [14].

Although unmeasured confounders are a major concern in observational studies in oncol-

ogy, IV or quasi-trial analyses are rarely used. Our aim here is to present both the IV and

quasi-trial methods, and to illustrate their use in the ESME MBC Database.

Materials and methods

Materials

The Beva+Pacli/Pacli study was a retrospective, registry-based study including 3426 patients,

2127 receiving paclitaxel and bevacizumab, and 1299 receiving paclitaxel as first-line chemo-

therapy. Details on the study have been previously reported [11]. The original analysis of OS

was primarily based on a multivariable Cox model adjusted for major prognostic factors. The

factors used for the adjustment were: time between metastatic diagnosis and index date, period

of care, Scarff-Bloom and Richardson (SBR) grade III, age, triple-negative breast cancer status,

type of metastases (visceral versus non visceral), number of sites, time between initial diagnosis

and diagnosis of metastasis, and initial management (adjuvant chemotherapy and/or adjuvant

endocrine therapy). It showed that OS was significantly longer with paclitaxel and bevacizu-

mab compared to paclitaxel (hazard ratio [HR] 0.672, 95% confidence interval [CI] 0.601–

0.752; median survival time 27.7 versus 19.8 months). Moreover, consistent results were

obtained in the supportive analyses using a propensity score as adjustment variable and pro-

pensity score matching [3]. Note that neither of these approaches exactly estimated the same

treatment effect. Propensity score matching aims at estimating a marginal hazard ratio
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(average treatment effect) in a given population, whereas the other methods estimate a condi-

tional hazard ratio in the entire population [15, 16].

The patient records were fully anonymized before access to information. The Unicancer

Institute review board approves the study.

Statistical methods

In this work, we consider that the variable of interest is treatment; the response variable or the

outcome is OS.

Two approaches will be presented: i) instrumental variables (IVs) [5, 6, 17, 18], and ii)

quasi-trial analysis [7].

An application will be presented at the end of each approach using the Beva+Pacli/Pacli

study.

Instrumental variables analysis

The basic idea of IV approach is to use an additional variable, called an “instrumental variable”

or simply an “instrument”. As shown in Fig 1, a valid IV must satisfy three assumptions.

Firstly, it has a causal effect on treatment, i.e. the IV causes a change in treatment assignment.

This assumption can be confirmed by measuring the association between the IV and treat-

ment. Secondly, it does not independently affect the response variable, i.e. the IV does not

directly impact the response variable, but only through its impact on the treatment. This is

called exclusion restriction (ER). For instance, in many clinical problems, there are other treat-

ments that could be used alongside the treatment under study. If a proposed IV is associated

Fig 1. Assumptions of Instrument variable.

https://doi.org/10.1371/journal.pone.0255017.g001
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with these concomitant treatments and they causally affect the outcome, then the ER would be

violated. Thus, exploring the association between the proposed IV and concomitant treat-

ments can help determine whether the ER is violated [17]. Thirdly, the IV is not associated

with measured or unmeasured patient health status (Fig 1). For instance, if a measured con-

founder is only a proxy for a true confounder, then an association between the IV and this

measured confounder suggests that there will be an association between the IV and the unmea-

sured part of the true confounder [17]. To assess the third assumption for the IV (Fig 1), we

checked the imbalance of measured covariates across levels of the IV as well as their associa-

tion. The association between IVs and measured covariates was obtained using a chi-square

test or analysis of variance (ANOVA).

To summarize, the inherent idea of IV is to remove any variation in the treatment that

is not related to unmeasured covariates and to use it to estimate the casual effect of the

treatment.

Two main approaches have been proposed to conduct IV analyses: two-stage predictor sub-

stitution (2SPS) and two-stage residual inclusion (2SRI) [5, 6]. Under the 2SPS approach, the

first stage model yields the predicted value of treatment as a function of an instrument and

covariates, and in the second stage model for the outcome, this predicted value replaces the

observed value of treatment as a covariate. Under the 2SRI approach, the first stage is the

same, however the residual term of the first stage regression is included in the second stage

regression, retaining the observed treatment as a covariate. Both 2SPS and 2SRI yield consis-

tent estimates for linear models [5], however, recent work has shown that the approaches lead

to inconsistent estimates for nonlinear models, in particular the Cox model [17–19]. Martinez-

Camblor et al. showed that instrumenting an endogenous treatment induces an unmeasured

covariate, referred to as an individual frailty in survival analysis, which if not accounted for

leads to bias [4]. They proposed a new and more adequate procedure for the Cox model using

2SRI with an individual frailty, denoted as 2SRI-frailty. In this approach, the Cox model is

introduced with an individual frailty term in the second-stage estimation, as shown in the

equations below.

Let p be the probability to receive the Beva+Pacli treatment, and the variables X, XT, and Z

refer to the measured confounders, the treatment, and the IV, respectively.

logit pð Þ ¼ aþ bXX þ g Z

We then compute the residuals R̂ These residuals contain all the information about the

unmeasured variables related to the treatment assignment and unrelated, and also contain

white noise corresponding to a random factor affecting an individual’s treatment selection,

which can be handled by specifying an individual frailty in the Cox model:

l tð Þ ¼ �l0 tð Þexp aþ bIVXT þ bXX þ bR R̂
� �

;

where ϕ is the individual frailty term, and βIV is the treatment effect estimated using the IV

approach. We assumed that the frailty term ϕ was disturbed according to a Gamma

distribution.

Following these recommendations, the 2SRI-frailty is applied to the Beva+Pacli/Pacli analy-

sis. The Cox model used in the original paper by Delaloge et al. was adjusted on pre-chemo

period, period of care and SBR grade III, and was stratified on age, triple negative status,

metastasis type, number of metastasis site, time of metastatic disease, adjuvant chemotherapy

and hormone therapy. The same covariates were used for the 2SRI-frailty.
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Application

To analyze the Beva+Pacli/Pacli data, we used two different candidate IVs. First we used the

activity level of the FCCC (denoted as IV1), in three strata as presented in the ESME dataset,

i.e. reference strata< to 500 patients per center, between 500 and 800 patients per center,

and> 800 patients per center. These three strata were available in the database, with the

patient repartition, in each stratum, equal to 16%, 32%, and 52%, respectively. Secondly, we

used the treatment preference in the center (denoted as IV2), treated as a continuous variable,

as presented in the ESME dataset.

Intuitively, both IVs are expected to affect the treatment assignment, and should not be

influenced by the data on a particular patient. The choice of these variables is based on the nat-

ural variation in medical practice at each IV level [17]. As previously stated, it is important to

check that these variables have a direct effect on the treatment using statistical tests. For the

second feature of the IV assumptions (ER is violated), we checked the association between the

proposed IV and concomitant treatments. To assess the third feature of the IV assumptions

(see Fig 1), we checked the imbalance of measured covariates across levels of the IV as well as

their association. The association between the IVs and measured covariates was obtained

using a chi-square test or ANOVA.

Quasi-trial analysis

As with IV estimation, the idea of quasi-trial analysis is to create a “superficial” or “pseudo”

randomized trial using variables that control for the bias inherent in nonrandomized compari-

sons [7]. For instance, the treatment preference in center can be considered. Indeed, compari-

sons of results between centers can be informative since it is likely that differing preferences

exist in practice. Although it shares some conceptual similarities with IV analysis, analysis of

this variable in the Cox model differs from that in the IV approach. For the quasi-trial analysis

in the Cox model, we replaced the treatment variable by considering the center-specific per-

centage of patients treated with Beva+Pacli. This model compares the HR of a hypothetical

patient treated at a center in which all patients were treated with Beva+Pacli with an identical

patient treated at a center in which no patients were treated with Beva+Pacli. However, in

practice, it is impossible to expect 100% Beva+Pacli in all centers. A shared frailty model with

center-specific random effects was used to account for the fact that patients were clustered

within centers and the percentage of the treatment Beva+Pacli could vary between centers, as

lij tð Þ ¼ �jl0 tð Þexp aþ bTXT þ bXXij

� �
;

where ϕj represents the frailty term shared for all patients i in each center j, and βT is the effect

treatment. We assumed that the frailty term ϕ is distributed according to a gamma distribu-

tion. In this case, the shared frailty model is then a random effects model where the frailties

(latent multiplicative effects on the hazard function) are shared among the individuals of a cen-

ter and are randomly distributed across the centers. The adjusted HR was calculated for class

>50%, which included centers with a preference for the treatment Beva+Pacli above 50%. The

class (�50%) is the reference group used in a Cox regression model, adjusted on all significant

baseline factors used in the original analysis [11].

A measurement error linear regression model was fitted between the treatment classes and

the adjusted HR, with allowance for the estimation errors in both. The simulation extrapola-

tion (SIMEX) method was used to ensure convergence of the model. The SIMEX method

reduces the bias induced by measurement error by establishing a relationship between mea-

surement error–induced bias and the variance of the error. The SIMEX model is considered to
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be a relevant tool for correcting effect estimates in the presence of additive measurement error

on the explicative variable (here, the percentage of patients with treatment in each center). As

this model is not applied with only two classes, we have proposed to measure errors using

three classes of reintroduction of Beva+Pacli: i) class 1: ≦50%, ii) class 2: [50–66], and class 3:

≧66%. OS curves were estimated by reintroduction class (using the two classes of interest:

�50% versus�50%) both as Kaplan-Meier estimated curves and as Cox model predicted

curves.

Application

To analyze the Beva+Pacli/Pacli data, the treatment preference by center has been used. In

fact, it is recommended to use a variable that depends partly on physician preference, which

suggests the possibility that individual physicians could be used as the basis of a natural experi-

ment. This variable reflects the preference for certain treatment options in different centers. It

was grouped into two classes of percentages of patients treated with Beva+Pacli (�50% versus

�50%).

Results

Instrumental variables analysis

To assess the first feature of the assumptions for IV (Fig 1), we proposed to use a univariate

logistic model where the treatment was explained by the candidate IV1. There was a significant

association between this IV1 and the treatment. The global Wald test was significant (p-

value = 0.0014). Using a multivariate logistic model adjusted on prognostic covariates as used

in the Beva+Pacli/Pacli analysis, the Wald test corresponding to the IV1 remained significant

with a global p-value of 0.0014. In addition, a Cramer V test was used to assess the intensity

between the IV1 and the treatment, and the p-value was 0.05, showing a weak association.

The imbalance of measured covariates was studied across each level of IV1. The distribution

of variables was not balanced across the different strata of the IV for all covariates. The covari-

ates for which the imbalance was not respected are shown in Table 1. This suggests that there

may be residual confounding due to these covariates. The association between the IV and mea-

sured prognostic covariates was not statistically significant (p-value>0.05) for period of care,

age class, triple-negative breast cancer status, number of sites class, and type of metastases (vis-

ceral versus non visceral). Using the 2SRI-frailty method with IV1, the OS adjusted for major

prognostic measured and non-measured factors was longer in the paclitaxel and bevacizumab

group compared with paclitaxel [hazard ratio (HR) 0.90, 95% confidence interval (CI) [0.22–

3.73].

For the treatment preference in center, the Wald test corresponding to the IV2 was signifi-

cant with a global p-value<0.0001, in univariate and multivariate logistic models adjusted on

Table 1. Imbalance between measured covariates and IV1.

Covariates

IV1

Number of patients

at each stratum

Period of care

(classes)

Time between

metastatic diagnosis

and index date

(months)

2008–2010 2011–2013 <2 [2–6] >6

<500 561 240 321 424 73 64

[500–800] 1093 436 657 708 190 195

>800 1772 689 1083 1265 301 206

https://doi.org/10.1371/journal.pone.0255017.t001

PLOS ONE Addressing the issue of bias in observational studies

PLOS ONE | https://doi.org/10.1371/journal.pone.0255017 September 15, 2021 7 / 13

https://doi.org/10.1371/journal.pone.0255017.t001
https://doi.org/10.1371/journal.pone.0255017


prognostic covariates. Using the 2SRI-frailty method with IV2, the OS adjusted for major

prognostic measured and non-measured factors was longer in the paclitaxel and bevacizumab

group compared with paclitaxel [hazard ratio (HR) 0.65, 95% confidence interval (CI) [0.39–

1.08]. The HR was similar to that obtained in the Beva+Pacli/pacli analysis, which was 0.67

with a 95% CI of 0.60–0.75.

The association between the IV and measured prognostic covariates was not statistically sig-

nificant (with p-value>0.05) for time between metastatic diagnosis and index date, SBR grade

III, triple-negative breast cancer status, type of metastases (visceral versus non visceral), num-

ber of sites, and initial management (adjuvant chemotherapy and/or adjuvant endocrine

therapy).

We applied the 2SRI-frailty method by including both candidate IVs. Using multivariate

logistic model adjusted on prognostic covariates and both IVs, the Wald test corresponding to

IV1 was non-significant (p-value 0.88), and significant for the IV2 with a p-value<0.0001.

Using the 2SRI-frailty method with both IV, OS adjusted for major prognostic measured and

non-measured factors was significantly longer in the paclitaxel and bevacizumab group com-

pared with paclitaxel [hazard ratio (HR) 0.56, 95% confidence interval (CI) [0.33–0.94]. The

results were close to those obtained using only IV2 in the model.

Quasi-trial analysis

The treatment preference, computed in each center, varied from 45.5% to 81.3%, with a mean

of 62.1% and a median of 59.0%. The shared frailty model with center-specific random effects

was fitted using the same baseline factors plus the treatment preference, computed in each cen-

ter. The treatment preference had a significant association with OS (HR = 0.18, 95%CI = 0.04–

0.75). This model indicated that a hypothetical patient treated at a center in which all patients

were treated with Beva+Pacli would have a significantly reduced risk of death by approxi-

mately 82 per cent compared with an identical patient treated at a center in which no patients

were treated with Beva+Pacli. As this case is not possible in practice, we proposed to consider

the percentage of patients with Beva+Pacli in two classes�50% versus>50%.

Median survival time was 18.7 months in centers in which the percentage of treatment

was�50%, and 26 months in centers in which the percentage of treatment was>50% (see

Table 2).

We compared naïve regression and the Simex model to quantify potential measurement

errors related to adjusted HR and the percentage of patients treated. As mentioned previously,

since this approach is not applicable for a variable with two classes (�50% vs>50%), we pro-

posed to measure the error using three classes of the percentage of patients treated, i.e.�50%;

[50%-66%] and�66%. The HR was 0.71 and 0.75 in the classes [50%-66%] and�66%, respec-

tively. The class�50% was the reference group. The two HR were similar. The Simex model

applied to these data yielded results similar to those with the naïve model. This made no allow-

ance for the fact that the percentage of patients treated with Beva+Pacli and the HR were both

estimated with error.

The Cox model adjusted on all predicted factors (listed in the final model) and including

the percentage of patients treated in two classes was considered. The HR was 0.74, with a 95%

CI of 0.65–0.84.

Table 2. Median survival and HR for centers grouped by % of patients treated.

Patients on Beva+Pacli (%) Patients on Beva+Pacli (mean %) Centers (N) Patients (N) Median survival (months) OS HR 95% CI

�50 47.1 4 435 18.7 1 Reference

>50 64.3 15 2991 26.1 0.74 0.65 0.84

https://doi.org/10.1371/journal.pone.0255017.t002
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Conclusions and discussion

Evaluating treatment efficacy and identifying the causal relationship between exposure and

disease course are the objectives of many clinical studies or field clinical research. Despite the

fact that IV or quasi-trial analyses are rarely used in oncology, these methods provide a rela-

tively simple way to analyze OS in studies where unmeasured confounders are present. This

type of analysis requires the use of a valid IV, which can be difficult in practice for two main

reasons. First, it may be difficult to find an IV in the database of the study concerned since all

major confounding covariates are often collected and, secondly, in practice, it may be difficult

to check the various assumptions for the validity of an IV [17–22].

Concerning the first point, the difficulty resides in finding an IV collected in the data. Use

of various IVs has been recommended depending on the context [17, 18]. For instance, it was

recommended to use “distance to specialty care provider” when comparing two treatments

where one is provided only by specialized care providers and the other only by general provid-

ers. Preference-based IVs are recommended if variations in medical practice patterns at the

geographic, hospital or physician level are available and collected in the data. Such variations

can dictate how drugs or medical procedures are used. In our application, both IVs, the activity

level of FCCC and the treatment preference by center, were preference-based as reported in

the database, and were expected to affect the treatment assignment. As the treatment prefer-

ence, the activity of the FCCC can affect the treatment assignment. In fact, we can expect that

large centers will be more likely to follow innovations and prescribe new treatments. So, this

variable reflects the preference for certain center options according to the different centers.

Concerning the IV assumptions, if assumptions ii) and iii) (Fig 1) do not hold, an IV anal-

ysis can yield a biased estimate of the treatment effect. One way to jointly test hypotheses (i)

and (ii) is to find a sub-population in which the relationship between the IV and treatment is

broken, and then check whether or not the proposed IV is associated with the outcome. If

this is the case, it means the IV is associated with unmeasured confounders or directly with

the outcome through variables other than treatment [17]. These assumptions could not how-

ever be readily or entirely be tested with our data. For instance, to check the second feature

of the IV assumptions, concomitant treatment to chemotherapy were not reported in our

application, so they could not be taken into account in the analysis. This is a limitation of our

analysis, and was also a limitation of the original Beva+Pacli/Pacli study. However, it is rec-

ommended to examine the relationship between the IV and the measured patient character-

istics [17, 18]. Another critical issue is the strength of the relationship between the IV and

treatment. The more strongly an IV is related to treatment, the more efficient the estimator

will be, i.e. the smaller the standard error. The magnitude of the bias also depends on the

strength of the association between the IV and treatment, with weaker IVs yielding more

biased estimates [17, 18].

In addition to checking the validity of the IV, unmeasured confounding can be a major

concern in investigator choices. In our application, treatment was intentionally chosen by phy-

sicians and potentially by patients, however there is often substantial unmeasured confounding

from unmeasured indications or severity. As discussed by Baiocchi et al., an IV analysis can

therefore be helpful for this kind of study. When an IV is available, even if it is not perfectly

valid, an IV analysis or a sequence of IV analyses with various IVs can provide very helpful

information about treatment effect [17, 22]. For studies in which unmeasured confounding is

not a major concern and no strong IV is available, the authors advise investigators to consider

IV analyses as secondary or sensitivity analyses.

IV analysis of survival data is also not straightforward. “Classical” methods (2SPS/2SRI)

have been challenged, and specific approaches have recently been proposed. The Martinez-
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Cambor approach is applied to estimate an HR, which is the same measure of treatment effect

as in the original data analysis. However, this does not mean that other approaches to IV analy-

sis of survival data could not be useful for analysis of the Beva+Pacli /Pacli study. Results with

the IV1 were not concordant with those obtained in the Beva+Pacli /Pacli analysis, with a large

confidence interval. The Cramer V test showed a weak association between treatment and

IV1. Baiocchi et al. have demonstrated that when the IV is weak, even if it is a valid IV, treat-

ment effect estimates based on IV methods have some limitations, such as large variance even

with large samples, which can lead to bias in treatment effect estimates [17, 22]. We note that

an IV is considered to be strong if it has a strong impact on treatment choice and a weak IV if

it only has a slight impact. Results with the IV2 were consistent with those obtained in the

Beva+Pacli /Pacli analysis, with an HR of 0.65 and a 95% CI of 0.39–1.08. The HR is close to

the one obtained previously, i.e. 0.67, with a 95%CI of 0.60–0.75. Results are summarized in

Table 3. Obtaining consistent results may be due to the fact as the major confounders in breast

cancer are becoming well known and not as many unmeasured (major) confounders as that.

The quasi-trial analysis is a second way to treat unmeasured confounders in RCD. Its use

requires finding a variable that depends partly on physician preference, which suggests the

possibility that individual physicians could be used as the basis of a natural experiment. Treat-

ment preference by center was considered. This variable reflects the preference for certain

treatment options in different centers, and was grouped into two classes of percentages of

patients treated with Beva+Pacli. We noted that the HR was associated with the treatment pref-

erence by center, and therefore can reflect the treatment effect because if the treatment prefer-

ence in the center is higher than 50%, the probability of treating a patient with Beva+Pacli is

high. This result is concordant with the result in the initial Beva+Pacli/Pacli analysis, showing

a significant effect (see Table 3).

We note that the different analyses accounted for baseline confounding, not time-depen-

dent confounding. Indeed, in the Beva+Pacli trial, the patients are allocated to the Pacli or

Beva+Pacli arm for their first line treatment, and all characteristics are measured and taken at

baseline (not varying across time). However, in some context taking onto account time-depen-

dent confounding can be an issue. Recently, the residual inclusion methods have been adapted

to additive hazard models for censored survival data by taking into account time-dependent

covariate effects [23].

In fact, initially the two-stage least squares method, where the first stage consists of a linear

model for the confounded exposure given the IV and other observed covariates, accounted for

time-independent covariates in semi-parametric additive hazard model developed by Li et al.

[24]. Then, a similar 2SLS method for continuous instruments was proposed by Tchetgen et al.

[25] for the non-parametric additive hazard model of Aalen [26], where all covariate effects are

allowed to be time dependent. Brueckner et al. have demonstrated that the 2SRI method avoids

Table 3. OS HR, and 95% CI for the different approaches using Beva+PAcli database.

OS HR 95% CI

Multivariate Cox model (original paper by Delaloge et al.) 0.67 0.60–0.75

Instrument variable (using IV1�) 0.90 0.22–3.73

Instrument variable (using IV2��) 0.65 0.39–1.08

Instrument variable (using both IV1 and IV2) 0.56 0.33–0.94

Quasi-trial approach (IV2) 0.74 0.65–0.84

�: IV1: the activity level of the FCCC.

��: IV2: treatment preference by center.

https://doi.org/10.1371/journal.pone.0255017.t003
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the bias of 2SLS when censoring depends on the exposure and when the first stage is a non-lin-

ear model through a simulation study [27]. In this analysis, we focused on the construction of

the IC and how it can be considered using a proportional hazards model, the application of

semi-parametric additive models with time-dependent variables for the Quasi-trial approach

will be the topic for a further paper.

Finally, large RCTs are critical to addressing treatment efficacy, as well as clinical questions

on major patient outcomes such as survival, however real-world data from robust RCD pro-

vide valuable data that complement RCTs. Taking into account that unmeasured confounding

is a major concern in RCD, an IV or quasi-trial analysis can be helpful to complement this

kind of study. While the IV method is widely used with observational data in econometrics, its

application in oncology data is rare. The quasi-trial analysis has, to our knowledge, been pro-

posed in only one case in oncology [7]. This paper shows how the two methods can be applied

in practice in oncology, and presents their limitations. No comparison between the two meth-

ods was made, however, assessing different analytic approaches to removing the effects of bias

in observational studies, such as multivariable model risk adjustment, propensity score risk

adjustment and propensity-based matching will be the topic of further research using simula-

tion studies.
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