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In this article we study the presence of multiple critical points in the usual topology optimization formulation of the classical inverse scattering problem. We consider a very simple example of the two-dimensional problem: the scatterer is a disk composed of a homogeneous material that is within a homogeneous medium of different material properties. The example considers the most favorable conditions for solving the inverse problem: measurements are taken on a whole circle surrounding the scatterer, for incident plane waves coming from all directions. In addition, these measurements have no error. However, in the case of medium frequencies (wavelengths from one-third to one scatterer diameter), we show that multiple critical points exist when we consider the optimality criteria provided by the shape gradient and also when we consider the optimality criteria provided by the topological derivative of the usual objective functional of the problem. These critical points have the same radial symmetry as the circular scatterer, which allows the application of a very accurate semi-analytical method based on series expansions to obtain the solutions of the forward and adjoint problems, as well as to compute the shape and topological derivatives. The critical points are obtained by solving the nonlinear system of equations that provide the optimality conditions, and are reported for different values of the material properties that define the inverse problem.

Introduction

The inverse scattering problem has important applications in diverse areas, and has attracted the attention of many researchers since the mid-1960s, when the development of the mathematical theory needed to deal with this type of ill-posed problems began, and the computational capabilities required for the numerical resolution of this and other related problems became available [START_REF] Colton | Recent developments in inverse acoustic scattering theory[END_REF][START_REF] Colton | Inverse acoustic and electromagnetic scattering theory[END_REF]. It consists of determining the shape of one or several obstacles, also called scatterers, that are embedded in a homogeneous medium, using the information corresponding to far-field or near-field measurements of a scattered wave.

Many different approaches have been applied to the numerical solution of the inverse scattering problem. For instance, Colton and Monk [START_REF] Colton | The numerical solution of an inverse scattering problem for acoustic waves[END_REF] considered the background medium and scatterers as an heterogeneous medium of variable index of refraction. This index is the main unknown of an optimization formulation of the inverse problem, which is obtained using a gradient-based optimization method. Hohage and Schormann [START_REF] Hohage | A Newton-type method for a transmission problem in inverse scattering[END_REF] considered the boundary of a single starshaped scatterer as the main unknown, which is obtained using a gradient-based regularized Gauss-Newton algorithm. Litman et al. [START_REF] Litman | Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level-set[END_REF] instead used the level set approach to represent the geometry of the scatterers, and obtained the optimal reconstruction by solving the Hamilton-Jacobi equations for field velocities given by an empirical formula that takes into account the shape derivative of the objective functional.

Some novel methods to address the inverse scattering problem are based on the topological derivative concept [START_REF] Novotny | Topological derivatives in shape optimization[END_REF][START_REF] Novotny | Applications of the topological derivative method[END_REF]. The topological derivative have been used as an indicator function used to generate an image capable of revealing the location and approximate shape of the scatterers [START_REF] Feijoo | A new method in inverse scattering based on the topological derivative[END_REF][START_REF] Guzina | Small-inclusion asymptotic of misfit functionals for inverse problems in acoustics[END_REF][START_REF] Louër | Topological sensitivity analysis revisited for time-harmonic wave scattering problems. Part I: the free space case[END_REF]; and thus can be used as an effective preliminary tool to create good initial guesses for gradient-based solvers. It has also been used as the basis of stand-alone iterative tools designed to obtain the final reconstruction [START_REF] Louër | Topological sensitivity analysis revisited for time-harmonic waves scattering problems. Part II: recursive computations by the boundary integral equation method[END_REF].

It is well known that the ill-posed and non-linear nature of the inverse scattering problem poses several challenges to solution procedures. For instance, gradient based solvers require a good initial guess to obtain a suitable reconstruction, and global search algorithms may not be practical due to the high computational cost of solution [START_REF] Guzina | Small-inclusion asymptotic of misfit functionals for inverse problems in acoustics[END_REF]. Methods based on the topological derivative also face several difficulties. When working with low frequencies, the topological derivative tends to ignore the existence of small scatterers located close or far from a larger one. Therefore, preliminary tools using the topological derivative as an indicator function can only reveal the presence of the largest scatterers [START_REF] Louër | Topological sensitivity analysis revisited for time-harmonic wave scattering problems. Part I: the free space case[END_REF]. More sophisticated iterative tools based on the topological derivative can reveal the presence of the small scatterers after a few iterations [START_REF] Louër | Topological sensitivity analysis revisited for time-harmonic waves scattering problems. Part II: recursive computations by the boundary integral equation method[END_REF], but they may have difficulties in obtaining an accurate description of the shape of the scatterers. On the contrary, when working with relatively high frequencies, the topological derivative, used as an indicator function, can provide good information on the presence of small scatterers and on the shape of the largest ones. However, its highly oscillating behavior tends to indicate the presence of a large number of small scatterers that do not really exist, especially when working with limited aperture measurements [START_REF] Louër | Topological sensitivity analysis revisited for time-harmonic wave scattering problems. Part I: the free space case[END_REF]. In addition, it tends to present high negative values at the boundaries of the scatterers [START_REF] Guzina | Why the high-frequency inverse scattering by topological sensitivity may work[END_REF], which poses difficulties when used in iterative reconstruction methods. In particular, preliminary results obtained using an iterative method based on the topological derivative for relatively medium and high frequencies, have shown us that the scatterer boundaries are correctly captured in the first few iterations, but the iterative method stagnates and provides hollow reconstructions of solid scatterers. There seems to be a consensus that the information obtained using the topological derivative for relatively high frequencies should be used together with the information obtained at lower frequencies. Techniques that combine information obtained using low and high frequencies are very promising, as they can potentially lead to high-quality reconstructions (see the numerical results presented in [START_REF] Louër | Topological sensitivity analysis revisited for time-harmonic wave scattering problems. Part I: the free space case[END_REF][START_REF] Park | Analysis of a multi-frequency electromagnetic imaging functional for thin, crack-like electromagnetic inclusions[END_REF]), although these procedures have a higher computational cost related to the several independent calculations required when considering different frequencies.

With the main purpose of investigating the difficulties that arise in solving the inverse scattering problem, in particular the stagnation of iterative methods based on the topological derivative, we decided to study a very simple example of the two-dimensional case: a solid homogeneous circular scatterer within a homogeneous medium of different material properties. The measurements are taken on a whole circle surrounding the scatterer, for incident plane waves coming from all directions. In addition, no measurement errors are introduced. This example seems to be the most favorable for the solution of the inverse problem. However, we have seen that for relatively medium frequencies, the usual optimization formulation of the problem can present several families of critical points when both shape and topology optimality criteria are considered. These critical points could prevent iterative methods from finding the global optimal solution. Another difficulty is related to the jump discontinuity that the topological derivative presents across the reconstruction boundary for certain material configurations. This discontinuity can lead to a highly undesirable situation: a given reconstruction can satisfy an optimality criterion based on the topological derivative even without having an optimal shape.

The contents of this article are organized as follows: Sections 2 and 3 introduce, respectively, the forward and inverse scattering problems. Sections 4 and 5 introduce, respectively, the shape derivative and the topological derivative, as well as the optimality criteria based on these concepts. Section 6 presents the mathematical expressions based on series expansions used to solve the circular scatterer example. Section 7 presents the series expansion expressions used to study possible optimal reconstructions with different topologies. In particular, this section presents the expressions used to compute the topological derivative. Section 8 presents the search method and the families of critical points found for the optimization formulation of the inverse scattering problem. Finally, Section 9 presents the conclusions of this work.

Forward problem

The two-dimensional problem corresponding to antiplane motion in the frequency domain within a linear elastic solid medium reads as [START_REF] Graff | Wave motion in elastic solids[END_REF]:

∇ • (µ∇u) + ρω 2 u + f inc = 0 in R 2 , lim r→∞ r 1/2 ∂ r (u -u inc ) -iκ e (u -u inc ) = 0 . (2.1)
In this problem u : R 2 → C is the magnitude of the transverse displacement, i.e. u = u(x 1 , x 2 )e 3 is the displacement vector in the frequency domain, µ is the shear elastic modulus, ρ is the mass density, and ω is the angular frequency. In this problem c = µ/ρ is phase velocity of the antiplane waves, k = ω ρ/µ is the wavenumber, and λ = 2π/k is the wavelength. The material is considered uniform outside the open and bounded set B (in this article called the region of interest), where it has the properties µ e and ρ e , and the wavenumber is κ e = ω ρ e /µ e . The function f inc is the source of the incident wave, which is assumed to be compactly supported in R 2 \ B, u inc is the known displacement of the incident wave. The second equation in (2.1) is the Sommerfeld radiation condition, which has to be satisfied uniformly in all directions. In this equation r = |x| for x ∈ R 2 . The incident wave satisfies the field equation:

∇ • (µ e ∇u inc ) + ρ e ω 2 u inc + f inc = 0 in R 2 . (2.2)
It is worth mentioning that Problem (2.1) is the mathematical model for different propagation phenomena, such as thermal wave problems, acoustic waves, etc. For appropriate data, Problem (2.1) is well-posed, see [START_REF] Rapún | Mixed boundary integral methods for Helmholtz transmission problems[END_REF]Section 2] and the references therein.

inverse scattering problem

In the inverse scattering problem considered in this article we assume that there is an open, not necessarily connected, domain Ω (the scatterer) in the bounded set B (see Figure 1), such that the material properties are given by the following expressions:

µ(x) = µ i and ρ(x) = ρ i if x ∈ Ω , µ(x) = µ e and ρ(x) = ρ e if x ∈ R 2 \ Ω . (3.1) Ω B \ Ω R 2 \ B Figure 1.
Scatterer Ω in the surrounding medium.

The inverse scattering problem consists of determining the scatterer Ω from measurements of the solution u to Problem (2.1) in certain region K ⊂ (R 2 \ B). This inverse problem is usually ill-posed, and a classical approach to address this problem is to find an approximation Ω ⊂ B (in this article called the reconstruction) to the scatterer Ω that minimizes certain objective functional J.

Taking into account (3.1), and introducing the notations u i = u Ω Ω and u e = u Ω R 2 \Ω , we obtain from (2.1) the following problem:

               ∇ • (µ i ∇u i ) + ρ i ω 2 u i = 0 in Ω , ∇ • (µ e ∇u e ) + ρ e ω 2 u e = 0 in R 2 \ Ω , u i = u e on ∂Ω , σ∂ n u i = ∂ n u e on ∂Ω , lim r→∞ r 1/2 ∂ r (u e -u inc ) -iκ e (u e -u inc ) = 0 , (3.2) 
where n is the outward unit normal of ∂Ω, and σ = µ i /µ e is a dimensionless physical constant. The functional J is defined by:

J(Ω) = K j(u Ω ) dA , (3.3) 
where u Ω is the solution to (3.2). The function j takes into account the measurements u obs taken in K, for instance j(u

Ω ) = 1 2 |u Ω -u obs | 2 .
In the absence of measurement errors, the function u obs would be the solution to (3.2) with Ω instead of Ω. However, in normal situations u obs is that solution perturbed by measurement errors.

Shape derivative

Suppose the reconstruction Ω is subjected to the transformation Ω → Ω τ depending on the small shape parameter τ as follows:

Ω τ = {x + τ v : x ∈ Ω} , (4.1) 
where v is a sufficiently smooth velocity field. Then, the shape derivative [START_REF] Soko | Introduction to shape optimization[END_REF][START_REF] Walker | The shapes of things, volume 28 of Advances in Design and Control[END_REF][START_REF] Henrot | Shape variation and optimization[END_REF] of the objective functional (3.3) is:

∂ τ J(Ω τ ) τ =0 = Re K j ′ (u Ω )u ′ Ω dA , (4.2) 
where, if u = a + ib, with real a and b, and

j(u) = j(a, b), then j ′ (u) is defined by j ′ (u) := ∂ a j(a, b) -i ∂ b j(a, b). In addition, calling u ′ i = u ′ Ω Ω , and u ′ e = u ′ Ω R 2 \Ω
, then u ′ i and u ′ e solve the following problem [START_REF] Hettlich | Frechet derivatives in inverse obstacle scattering[END_REF]:

               ∇ • (µ i ∇u ′ i ) + ρ i ω 2 u ′ i = 0 in Ω , ∇ • (µ e ∇u ′ e ) + ρ e ω 2 u ′ e = 0 in R 2 \ Ω , u ′ i -u ′ e = -(v • n)(∂ n u i -∂ n u e ) on ∂Ω , σ∂ n u ′ i -∂ n u ′ e = (v • n)(σκ 2 i -κ 2 e )u i + (σ -1)∂ t [(v • n)∂ t u i ] on ∂Ω , lim r→∞ r 1/2 ∂ r u ′ e -iκ e u ′ e = 0 , (4.3) 
where t is the unit tangent vector of ∂Ω.

The shape derivative of the objective functional can also be computed by means of the solution w Ω to the following adjoint problem:

∇ • (µ∇w) + ρω 2 w + µj ′ (u Ω )δ K = 0 in R 2 , lim r→∞ r 1/2 [∂ r w -iκ e w] = 0 , (4.4) 
where δ K is the Dirac delta distribution of the domain K. Taking into account (3.1), and using the notations

w i = w Ω | Ω and w e = w Ω | R 2 \Ω
, this problem can be equivalently expressed as: Then, using (4.2), (4.3) and (4.5), we get:

               ∇ • (µ i ∇w i ) + ρ i ω 2 w i = 0 in Ω , ∇ • (µ e ∇w e ) + ρ e ω 2 w e + µ e j ′ (u Ω )δ K = 0 in R 2 \ Ω , w i = w e on ∂Ω , σ∂ n w i = ∂ n w e on ∂Ω ,
∂ τ J(Ω τ ) τ =0 = Re ∂Ω (v • n) (σκ 2 i -κ 2 e )u i w i + σ(1 -σ)∂ n u i ∂ n w i + (1 -σ)∂ t u i ∂ t w i ds . (4.6)
Definition 1. A reconstruction Ω is said to be a shape critical point of the objective functional J if the shape derivative ∂ τ J| τ =0 is zero for the domain transformations (4.1) corresponding to all smooth velocity fields v.

Suppose the normal and tangent fields n and t defined on ∂Ω can be continuously extended to the region of interest B (the boundary ∂Ω has to be smooth enough, see [START_REF] Soko | Introduction to shape optimization[END_REF][START_REF] Walker | The shapes of things, volume 28 of Advances in Design and Control[END_REF][START_REF] Henrot | Shape variation and optimization[END_REF]). Then, we introduce the function ψ S : B → R related to the integrand of (4.6) as follows:

ψ S = Re (σκ 2 i -κ 2 e )u i w i + σ(1 -σ)∂ n u i ∂ n w i + (1 -σ)∂ t u i ∂ t w i in Ω , Re (σκ 2 i -κ 2 e )u e w e + σ -1 (1 -σ)∂ n u e ∂ n w e + (1 -σ)∂ t u e ∂ t w e in B \ Ω . (4.7) 
Note that the transmission conditions on ∂Ω, i.e. u i = u e , σ∂ n u i = ∂ n u e , w i = w e , and σ∂ n w i = ∂ n w e on ∂Ω, make the function ψ S continuous in the region of interest B. Note also that the reconstruction Ω is a shape critical point of the objective functional provided ψ S is zero on the boundary ∂Ω.

Topological derivative

The topological derivative measures the sensitivity of a given shape functional with respect to an infinitesimal singular domain perturbation, such as the insertion of holes, inclusions, sourceterms or even cracks. This concept has proved to be extremely useful in the treatment of a wide range of problems, we refer the reader to the books [START_REF] Novotny | Topological derivatives in shape optimization[END_REF][START_REF] Novotny | Applications of the topological derivative method[END_REF].

Consider Problem (2.1), and assume that we have a reconstruction Ω ⊂ B of the scatterer Ω. Let B ε (x) be the open ball centered at x ∈ R 2 \ Ω with radius ε small enough such that B ε (x) ⊂ R 2 \ Ω, and let Ω ε = Ω ∪ B ε (x). Then, it is known that the objective functional (3.3) admits the following topological asymptotic expansion [START_REF] Novotny | Topological derivatives in shape optimization[END_REF][START_REF] Novotny | Applications of the topological derivative method[END_REF]:

J(Ω ε ) = J(Ω) + f (ε)D T J(x) + o(f (ε)) , (5.1) 
where f = πε 2 and the topological derivative is [START_REF] Louër | Topological sensitivity analysis revisited for time-harmonic wave scattering problems. Part I: the free space case[END_REF][START_REF] Louër | Topological sensitivity analysis revisited for time-harmonic waves scattering problems. Part II: recursive computations by the boundary integral equation method[END_REF]:

D T J(x) = Re (σκ 2 i -κ 2 e )u Ω (x)w Ω (x) + 2(1 -σ) 1 + σ ∇u Ω (x) • ∇w Ω (x) for x ∈ R 2 \ Ω . (5.2)
In the expression above w Ω is the solution to the adjoint problem (4.4) for the material properties µ and ρ given by Ω in accordance with (3.1).

In the case that a ball of the exterior material is inserted into Ω, i.e. if Ω ε = Ω \ B ε (x) with B ε (x) ⊂ Ω, then, a sensitivity analysis analogous to that given in [START_REF] Louër | Topological sensitivity analysis revisited for time-harmonic wave scattering problems. Part I: the free space case[END_REF][START_REF] Louër | Topological sensitivity analysis revisited for time-harmonic waves scattering problems. Part II: recursive computations by the boundary integral equation method[END_REF] (i.e. we adapted Theorem 3 in [START_REF] Louër | Topological sensitivity analysis revisited for time-harmonic waves scattering problems. Part II: recursive computations by the boundary integral equation method[END_REF] to the case of the domain perturbation Ω ε = Ω \ B ε (x) and use the asymptotic expressions of Theorems 6 and 7 of that reference with 1/σ instead of σ because of the opposite configuration of materials in the small perturbation and the surrounding medium) shows that the expansion (5.1) is still valid, but in this case the topological derivative is given by:

D T J(x) = Re (κ 2 e -σκ 2 i )u Ω (x)w Ω (x) + 2σ(σ -1) σ + 1 ∇u Ω (x) • ∇w Ω (x) for x ∈ Ω . (5.3)
We note that the above expression differs from the one given in [START_REF] Carpio | Solving inhomogeneous inverse problems by topological derivative methods[END_REF] in sign (in that reference the adjoint variable p is w/µ e in our notation). Note that the reconstructions Ω satisfying the previous definition are minimal configurations in the sense that any small topological perturbation of the reconstruction (of the type considered in this section) located in the neighborhood A increases the value of the objective functional J.

Analogously to the previous section, we introduce the function ψ T : B → R related to the topological derivative as follows:

ψ T = +D T J in B \ Ω , -D T J in Ω . (5.4)
Note that in the case σ = 1 the function ψ T coincides with ψ S and is therefore continuous in B. If σ ̸ = 1 then the jumps in the normal components of the gradients ∇u Ω and ∇w Ω make the function ψ T discontinuous. Note also that a reconstruction Ω is a topology local minimum of the objective functional provided there exists an open set A containing Ω such that ψ T is negative in Ω and positive in A \ Ω.

Circular scatterer

Suppose the scatterer is the disk Ω of radius R centered at the origin of the coordinate system. According to (3.1), the scatterer has constant material properties µ i and ρ i , while the surrounding medium has constant material properties µ e and ρ e . Let u Ω be the solution to (2.1) for the incident wave u inc = U e iκed•x , where U is a given amplitude. Then, introducing the notations u 1 = u Ω| Ω and u 2 = (u Ω -u inc )| R 2 \ Ω, we obtain the following formulation of (2.1):

                 ∇ • (µ i ∇u 1 ) + ρ i ω 2 u 1 = 0 in Ω , ∇ • (µ e ∇u 2 ) + ρ e ω 2 u 2 = 0 in R 2 \ Ω , u 1 = u 2 + u inc on ∂ Ω , µ i ∂ n u 1 = µ e ∂ n u 2 + µ e ∂ n u inc on ∂ Ω , lim r→∞ r 1/2 [∂ r u 2 -iκ e u 2 ] = 0 . (6.1)
The exact solution of this problem is given by the following series defined in the usual polar coordinates (r, θ) [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF]:

u 1 (r, θ) = ∞ n=-∞ A 1,n J n (κ i r)e inθ , (6.2) 
u 2 (r, θ) = ∞ n=-∞ A 2,n H (1) n (κ e r)e inθ , (6.3) 
where J n and H

n are, respectively, the Bessel and Hankel functions of the first kind. These series satisfy the field equations and the radiation condition. Therefore, if the incident wave satisfies:

u inc (R, θ) = ∞ n=-∞ A inc 3,n e inθ , (6.4 
)

µ e ∂ n u inc (R, θ) = ∞ n=-∞ A inc 4,n e inθ , (6.5) 
then the transmission conditions on ∂ Ω are satisfied as long as the parameters A 1,n and A 2,n solve the following 2 × 2 linear systems of equations:

J n (κ i R) -H (1) 
n (κ e R) µ i ∂ n J n (κ i R) -µ e ∂ n H (1) n (κ e R) A 1,n A 2,n = A inc 3,n A inc 4,n . (6.6) 
Note that A inc 3,n and A inc 4,n are the coefficients of the Fourier series of the known functions u inc (R, θ) and µ e ∂ n u inc (R, θ), respectively, which can be obtained numerically, e.g. using the FFT algorithm.

Therefore, if measurements are taken on a circle Γ obs of radius R obs > R, in absence of measurement errors we would obtain the function u obs given by:

u obs (R obs , θ) = u inc (R obs , θ) + ∞ n=-∞ A 2,n H (1)
n (κ e R obs )e inθ . (6.7)

Reconstruction topologies

In preliminary experiments carried out with a numerical tool based on topological derivatives, we have observed that the reconstruction obtained using the synthetic measures corresponding to the circular scatterer of the previous section was not always a solid disk as expected. Instead, we obtained reconstructions like those shown in Figure 2. The reconstruction 2(a) has the topology typically obtained for relatively low frequencies. Since it has the same topology as the true scatterer Ω, this topology gives the global minimum of the objective functional for any frequency. The topologies 2(b), 2(c) and 2(d) were occasionally obtained for relatively medium frequencies. We will present here the expressions used to obtain the topological derivative as a series expansion for the case of the ring of Figure 2(b). The expressions for the shape derivative and for the other topologies of Figure 2 can be found in a completely analogous way. Therefore, suppose that the reconstruction Ω is the ring given in polar coordinates by R 1 < r < R 2 , i.e. the material properties are µ e and κ e in the disk Ω 1 where r < R 1 , are µ i and κ i in the ring Ω 2 where R 1 < r < R 2 (which coincides with Ω), and are µ e and κ e again in the exterior region r > R 2 . Let Ω 3 be the ring R 2 < r < R 3 where R 3 < R obs is the radius of the circular region of interest B, and let Ω 4 be the exterior domain r > R 3 . Then, by introducing the notations

u 1 = u Ω | Ω 1 , u 2 = u Ω | Ω 2 , u 3 = u Ω | Ω 3 , u 4 = (u Ω -u inc )| Ω 4 , Γ 1 = ∂Ω 1 ∩ ∂Ω 2 , Γ 2 = ∂Ω 2 ∩ ∂Ω 3 , and Γ 3 = ∂Ω 3 ∩ ∂Ω 4 , the forward problem is:                                              ∇ • (µ e ∇u 1 ) + ρ e ω 2 u 1 = 0 in Ω 1 , ∇ • (µ i ∇u 2 ) + ρ i ω 2 u 2 = 0 in Ω 2 , ∇ • (µ e ∇u 3 ) + ρ e ω 2 u 3 = 0 in Ω 3 , ∇ • (µ e ∇u 4 ) + ρ e ω 2 u 4 = 0 in Ω 4 , u 1 = u 2 on Γ 1 , µ e ∂ n u 1 = µ i ∂ n u 2 on Γ 1 , u 2 = u 3 on Γ 2 , µ i ∂ n u 2 = µ e ∂ n u 3 on Γ 2 , u 3 = u 4 + u inc on Γ 3 , µ e ∂ n u 3 = µ e ∂ n u 4 + µ e ∂ n u inc on Γ 3 , lim r→∞ r 1/2 [∂ r u 4 -iκ e u 4 ] = 0 . (7.1)
The solution to this problem is given by the following series:

u 1 (r, θ) = ∞ n=-∞ B 1,n J n (κ e r)e inθ , (7.2) 
u 2 (r, θ) = ∞ n=-∞ B 2,n H (1) n (κ i r)e inθ + B 3,n H (2) n (κ i r)e inθ , (7.3) 
u 3 (r, θ) = ∞ n=-∞ B 4,n H (1)
n (κ e r)e inθ + B 5,n H (2) n (κ e r)e inθ , (7.4)

u 4 (r, θ) = ∞ n=-∞ B 6,n H (1) n (κ e r)e inθ , (7.5) 
where H

n is the Hankel function of the second kind. These series satisfy the field equations and the radiation condition. If the boundary data satisfy:

u inc (R 3 , θ) = ∞ n=-∞ D inc 5,n e inθ , (7.6 
)

µ e ∂ n u inc (R 3 , θ) = ∞ n=-∞ D inc 6,n e inθ , (7.7) 
then the transmission conditions on the contact boundaries are satisfied if the coefficients B 1,n , B 1,n , B 3,n , B 4,n , B 5,n and B 6,n solve the following 6 × 6 linear systems of equations:

          J n (κ e R 1 ) -H (1) 
n (κ i R 1 ) -H (2) 
n (κ i R 1 ) 0 µ e ∂ n J n (κ e R 1 ) -µ i ∂ n H (1) n (κ i R 1 ) -µ i ∂ n H (2) n (κ i R 1 ) 0 0 H (1) n (κ i R 2 ) H (2) n (κ i R 2 ) -H (1) 
n (κ e R 2 ) 0 µ i ∂ n H (1) n (κ i R 2 ) µ i ∂ n H (2) n (κ i R 2 ) -µ e ∂ n H (1) 
n (κ e R 2 ) 0 0 0 H (1) n (κ e R 3 ) 0 0 0 µ e ∂ n H (1) 
n (κ e R 3 ) . . . 0 0 . . . 0 0 . . . -H (2) 
n (κ e R 2 ) 0 . . . -µ e ∂ n H (2) n (κ e R 2 ) 0 . . . H (2) 
n (κ e R 3 ) -H

(1)

n (κ e R 3 ) . . . µ e ∂ n H (2) n (κ e R 3 ) -µ e ∂ n H (1) n (κ e R 3 )          ×          B 1,n B 2,n B 3,n B 4,n B 5,n B 6,n          =          0 0 0 0 D inc 5,n D inc 6,n          . (7.8)
After solving the linear systems (7.8), we can use the coefficients B 6,n to obtain the objective functional. In fact, the response obtained on the circle Γ obs is:

u Ω (R obs , θ) = u inc (R obs , θ) + ∞ n=-∞ B 6,n H (1)
n (κ e R obs )e inθ . (7.9)

Consider the following objective functional:

J(Ω) = Γ obs 1 2 |u Ω -u obs | 2 ds . (7.10)
Using (6.7) and (7.9) we get:

J(Ω) = πR obs ∞ n=-∞ |B 6,n -A 2,n | 2 |H (1) n (κ e R obs )| 2 . (7.11) Since j(u Ω ) = 1 2 |u Ω -u obs | 2 , we have j ′ (u Ω ) = u Ω -u obs .
Consider the region Ω3 given by r > R 2 . Then, introducing the notations

w 1 = w Ω | Ω 1 , w 2 = w Ω | Ω 2 , and w 3 = w Ω | Ω3
, the adjoint problem is formulated as:

                               ∇ • (µ e ∇w 1 ) + ρ e ω 2 w 1 = 0 in Ω 1 , ∇ • (µ i ∇w 2 ) + ρ i ω 2 w 2 = 0 in Ω 2 , ∇ • (µ e ∇w 3 ) + ρ e ω 2 w 3 = -µ e (u -u obs )δ Γ obs in Ω3 , w 1 = w 2 on Γ 1 , µ e ∂ n w 1 = µ i ∂ n w 2 on Γ 1 , w 2 = w 3 on Γ 2 , µ i ∂ n w 2 = µ e ∂ n w 3 on Γ 2 , lim r→∞ r 1/2 [∂ r w 3 -iκ e w 3 ] = 0 . (7.
12)

The source concentrated on Γ obs causes a jump of value µ e ∂ n w 4 -µ e ∂ n w 3 = -µ e (u -u obs ) in the normal flux, so let us redefine the ring Ω3 as the region given by R 2 < r < R obs , and let Ω4 be the region given by r > R obs . Then, introducing the notation w 4 = w Ω | Ω4 , we have:

                                             ∇ • (µ e ∇w 1 ) + ρ e ω 2 w 1 = 0 in Ω 1 , ∇ • (µ i ∇w 2 ) + ρ i ω 2 w 2 = 0 in Ω 2 , ∇ • (µ e ∇w 3 ) + ρ e ω 2 w 3 = 0 in Ω3 , ∇ • (µ e ∇w 4 ) + ρ e ω 2 w 4 = 0 in Ω4 , w 1 = w 2 on Γ 1 , µ e ∂ n w 1 = µ i ∂ n w 2 on Γ 1 , w 2 = w 3 on Γ 2 , µ i ∂ n w 2 = µ e ∂ n w 3 on Γ 2 , w 3 = w 4 on Γ obs , µ e ∂ n w 3 = µ e ∂ n w 4 + µ e (u -u obs ) on Γ obs , lim r→∞ r 1/2 [∂ r w 4 -iκ e w 4 ] = 0 . (7.13)
The solution to this problem is given by the following series:

w 1 (r, θ) = ∞ n=-∞ C 1,n J n (κ e r)e inθ , (7.14) 
w 2 (r, θ) = ∞ n=-∞ C 2,n H (1) n (κ i r)e inθ + C 3,n H (2) n (κ i r)e inθ , (7.15) 
w 3 (r, θ) = ∞ n=-∞ C 4,n H (1)
n (κ e r)e inθ + C 5,n H (2) n (κ i r)e inθ , (7.16)

w 4 (r, θ) = ∞ n=-∞ C 6,n H (1)
n (κ e r)e inθ . (7.17)

These series satisfy the field equations and the radiation condition. The transmission conditions on the contact boundaries are also satisfied if the coefficients solve the following 6 × 6 systems of linear equations:

          J n (κ e R 1 ) -H (1) 
n (κ i R 1 ) -H (2) n (κ i R 1 ) 0 µ e ∂ n J n (κ e R 1 ) -µ i ∂ n H (1) n (κ i R 1 ) -µ i ∂ n H (2) n (κ i R 1 ) 0 0 H (1) n (κ i R 2 ) H (2) n (κ i R 2 ) -H (1) n (κ e R 2 ) 0 µ i ∂ n H (1) n (κ i R 2 ) µ i ∂ n H (2) n (κ i R 2 ) -µ e ∂ n H (1) 
n (κ e R 2 ) 0 0 0 H (1) n (κ e R obs ) 0 0 0 µ e ∂ n H (1) 
n (κ e R obs ) . . . 0 0 . . . 0 0 . . . -H (2) n (κ e R 2 ) 0 . . . -µ e ∂ n H (2) n (κ e R 2 ) 0 . . . H (2) 
n (κ e R obs ) -H

(1)

n (κ e R obs ) . . . µ e ∂ n H (2) n (κ e R obs ) -µ e ∂ n H (1) n (κ e R obs )          ×         C 1,n C 2,n C 3,n C 4,n C 5,n C 6,n         =         0 0 0 0 0 E 6,n         , (7.18) where E 6,n = µ e (B 6,-n -A 2,-n )H (1) 
-n (κ e R obs ). The coefficients obtained by solving (7.18) can be used to compute the shape and topological derivatives, and the functions ψ S and ψ T . For example, the topological derivative D T J in the domain of interest is obtained using (5.2) in the domains Ω 1 and Ω 3 , and (5.3) in Ω 2 :

D T J =              Re (σκ 2 i -κ 2 e )u 1 w 1 + 2(1-σ) 1+σ ∇u 1 • ∇w 1 in Ω 1 , Re (κ 2 e -σκ 2 i )u 2 w 2 + 2σ(σ-1) σ+1 ∇u 2 • ∇w 2 in Ω 2 , Re (σκ 2 i -κ 2 e )u 3 w 3 + 2(1-σ) 1+σ ∇u 3 • ∇w 3 in Ω 3 . (7.19) 
7.1. Considering multiple incident waves. The results obtained in the previous section are valid for a single incident wave of direction d. Suppose now that we consider all possible directions d α = (cos(α), sin(α)), for which we have measurements u obs α (R obs , θ) and responses u α (R obs , θ) for the ring reconstruction Ω. An appropriate objective functional for this case is:

J(Ω) = 2π 0 Γ obs 1 2 |u α -u obs α | 2 ds dα . (7.20) 
For this functional, the expressions obtained above for u obs , u Ω and w Ω are still valid taking d = d α . In addition, if all the plane waves have the same amplitude U , then it is easy to see that the rotational symmetry of the problem gives:

u obs α (r, θ) = u obs 0 (r, θ -α) , (7.21) 
u α (r, θ) = u 0 (r, θ -α) , (7.22) 
w α (r, θ) = w 0 (r, θ -α) . (7.23) 
Therefore, the solutions for each direction d α can be obtained from the solutions corresponding to the direction d 0 . For instance, in the region Ω where the material properties are µ i and ρ i , we have:

D T J(r, θ) = Re 2π 0 (σκ 2 i -κ 2 e )u α (r, θ)w α (r, θ) + 2(1 -σ) 1 + σ ∇u α (r, θ) • ∇w α (r, θ) dα = Re 2π 0 (σκ 2 i -κ 2 e )u 0 (r, θ -α)w α (r, θ -α) + 2(1 -σ) 1 + σ ∇u α (r, θ -α) • ∇w α (r, θ -α) dα . (7.24)
Since for each θ the same functional values are integrated, the result obtained is independent of θ, and D T J has rotational symmetry. In fact, we have:

D T J(r) = Re 2π 0 (σκ 2 i -κ 2 e )u 0 (r, α)w 0 (r, α) + 2(1 -σ) 1 + σ ∇u α (r, α) • ∇w α (r, α) dα . (7.25)
By integrating the expressions in (7. [START_REF] Hettlich | Frechet derivatives in inverse obstacle scattering[END_REF]) we obtain the topological derivative in the region of interest. For instance, in Ω 1 we have:

D T J(r) = Re 2π ∞ n=-∞ (σκ 2 i -κ 2 e ) B 1,n J n (κ e r) C 1,-n J -n (κ e r) + 2(1 -σ) 1 + σ B 1,n ∂ r J n (κ e r) C 1,-n ∂ r J -n (κ e r) + 2(1 -σ) 1 + σ (in)B 1,n J n (κ e r)/r (-in)C 1,-n J -n (κ e r)/r , (7.26) 
where all the coefficients that appear in this expression are those of the series expansions corresponding to the incident direction d 0 . Analogous expressions are obtained for the subdomains Ω 2 and Ω 3 of the region of interest B.

obtained using ψ S are verified to also satisfy Definition 2 and to be points of local convergence of the gradient-based optimization algorithm fmincon of MATLAB. The families of critical points obtained for σ ̸ = 1 are described in Subsection 8.3. Finally, some critical points found throughout the investigation that present interesting features are shown in Subsection 8.4. 8.2. Example 1. In this example we consider µ i /µ e = 1 and ρ i /ρ e = 1/4, which give c i /c e = 2. For frequencies ω such that 0.94 ≤ (2R)/λ e ≤ 3.05 we have found many critical points corresponding to the reconstruction topologies of the type shown in Figure 2. These critical points satisfy Definitions 1 and 2 and are presumably local minimum points of the objective functional J with respect to shape variations as explained in Section 8.1.

The critical points obtained are given in Figure 3, and are grouped into the six families presented in Figure 4. In these figures, the values of the radii that define the optimal reconstructions are plotted against the value of (2R)/λ e . Critical points were not found for (2R)/λ e < 0.94. The search was limited to the frequencies ω such that (2R)/λ e ≤ 3.05. Note that in the interval 0 ≤ (2R)/λ e ≤ 3.05 other families of critical points that were not found and thus are not represented in Figures 34 For instance, consider the frequency corresponding to the value (2R)/λ e = 1.3. For this frequency, Figures 34indicate that there are two critical points, both with the shape of rings, one corresponding to the blue curves and the other one corresponding to the purple curves of the figures. Figures 56show the functions ψ T corresponding to the critical points. All the critical points represented in Figures 34are not global minima, since all these reconstructions have a positive value for the objective functional while the original scatterer Ω of radius R has zero value (measurement errors were not considered). In addition, we have noted that these reconstructions can sometimes be improved by adding very thin rings outside the neighborhood A, which usually have very small effect on the objective functional. For instance, the reconstruction of Figure 5 presents a function ψ T that is negative around r/R ≈ 1.6, which allows adding a thin ring and thus obtain the reconstruction of Figure 7. Reconstructions of this type, with very thin rings of radius significantly larger than R, were not represented in Figures 34. More examples of critical points are shown in Figures 89 For these dimensionless constants the critical points found are given by Figures 1011. Note that the first family of Figure 4 disappears in this example, and the other families experienced a reduction in their frequency range.

The critical points obtained satisfy Definitions 1 and 2. For example, the critical point found for (2R)/λ e = 2.6 is shown in Figures 1213. Note that this shape critical point is also a topology local minimum. Although this fact was observed for the critical points presented in Figures 1011, it is not a general feature of the shape critical points, which is shown in Subsection 8.4. Note also that the jump of ϕ T across the contact boundaries allows for small changes of the radii without producing sign changes in ϕ T . Therefore, topology local minima, in contrast to the shape critical points, are not locally unique (with respect to the radii). If we take µ i /µ e = 1.5, keeping the ratio c i /c e unchanged, then only the last two families of Figure 11 remain, and all families seem to disappear when µ i /µ e = 2. The frequency ω is such that (2R)/λ e = 2.2. In this example, the shape critical point found for the radii R 1 /R ≈ 0.24669, R 2 /R ≈ 0.64097 and R 3 /R ≈ 0.98333 is not a topology local minimum, since, according to the sign of ψ T , small topological perturbations located near the first root of ψ S would produce a decrease of the objective functional.

In the case of the example of Figure 15 the dimensionless constants are µ i /µ e = 1, ρ i /ρ e = 0.5, which give c i /c e = 2. In this example the topology local minimum found for the radii R 1 /R = 0.92, R 2 /R = 1.02 is not a shape critical point, since the function ψ S is nonzero on ∂Ω. This example shows there are topology local minima that do not have an optimal shape. . Functions ψ S and ψ T of a shape critical point that is not a topology minimum. The intervals that define the reconstruction Ω are indicated in red, the function ψ S is in blue, and the function ψ T is in green. Note in the detail of the first root of ψ S that there are points in a neighborhood of this root where ψ T is positive in Ω and negative outside Ω. Functions ψ S and ψ T of a topology local minimum that is not a shape critical point. The interval that define the reconstruction Ω is indicated in red, the function ψ S is in blue, and the function ψ T is in green. Note in the detail that ψ T has sign required for a topology local minimum, and ψ S is not zero on ∂Ω.

Conclusions

The examples considered in the previous section show that the usual topology optimization formulation of the inverse scattering problem may present multiple families of critical points which do not coincide with the true scatterer, i.e. the global minimum of the objective functional. This fact occurs despite the very simple setup considered: the scatterer is a disk, and measurements are taken on a whole circle surrounding the scatterer, for incident plane waves coming from all directions.

For the case µ i = µ e we have found six families of shape and topology critical points, which are presumably shape local minimum points of the objective functional. Each family presents critical points in a certain range of frequencies. A more extensive search could probably find other families.

When σ = µ i /µ e ̸ = 1, the function ψ T related to the topology optimality criterion becomes discontinuous across ∂Ω, which complicates the search of topology local minima. However, the function ψ S of the shape optimality criterion remains continuous and can be used to find the families of shape critical points. When µ i /µ e is increased, keeping the ratio c i /c e unchanged, we observed a reduction of the number of families of shape critical points, as well as a reduction of the range of frequencies of each family. When µ i /µ e = 1.3 only five families remain, when µ i /µ e = 1.5 only two remain, and when µ i /µ e = 2 all the families seem to disappear.

When µ i /µ e ̸ = 1 we have found shape critical points that are not topology local minima, as well as topology local minima that are not shape critical points. In addition, the topology local minima are not locally unique. These examples pose a major challenge to iterative tools based on the topological derivative concept: hollow reconstructions obtained in the first iterations of the reconstruction algorithms might not be improved throughout the iterative process, not even enough to reach a shape local minimum of the inverse problem.

lim r→∞ r 1 / 2 [

 12 ∂ r w e -iκ e w e ] = 0 .(4.5)

Definition 2 .

 2 A reconstruction Ω is said to be a topology local minimum of the objective functional J if there exists an open set A containing Ω such that the topological derivative (5.2) is positive in A \ Ω and the counterpart (5.3) is positive in Ω.

Figure 2 .

 2 Figure 2. Reconstructions obtained for the circular scatterer.

Figure 3 .Figure 4 .

 34 Figure 3. Critical points found in Example 1.

Figure 5 .Figure 6 .

 56 Figure 5. Function ψ T of the first critical point of Example 1 for (2R)/λ e = 1.3. The interval that defines the reconstruction Ω is indicated in red.

  .
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 3 Example 2. In this example we increase the values of µ i /µ e and ρ i /ρ e with respect to the previous example, keeping the ratio c i /c e unchanged. The values of the dimensionless constants are µ i /µ e = 1.3 and ρ i /ρ e = 0.325, which give c i /c e = 2.

Figure 7 .Figure 8 .

 78 Figure 7. Function ψ T of the other critical point of Example 1 for (2R)/λ e = 1.3. The intervals that define the reconstruction Ω are indicated in red.

Figure 9 .

 9 Figure 9. Function ψ T of the second critical point of Example 1 for (2R)/λ e = 2.6. The intervals that define the reconstruction Ω are indicated in red.

Figure 10 .Figure 11 .

 1011 Figure 10. Critical points found in Example 2.

Figure 12 .

 12 Figure 12. Functions ψ S and ψ T of the critical point found in Example 2 for (2R)/λ e = 2.6. The intervals that define the reconstruction Ω are indicated in red, the function ψ S is in blue, and the function ψ T is in green.

Figure 13 .

 13 Figure[START_REF] Park | Analysis of a multi-frequency electromagnetic imaging functional for thin, crack-like electromagnetic inclusions[END_REF]. Detail of functions ψ S and ψ T of the critical point found in Example 2 for (2R)/λ e = 2.6. The intervals that define the reconstruction Ω are indicated in red, the function ψ S is in blue, and the function ψ T is in green.

Figure 14

 14 Figure 14. Functions ψ S and ψ T of a shape critical point that is not a topology minimum. The intervals that define the reconstruction Ω are indicated in red, the function ψ S is in blue, and the function ψ T is in green. Note in the detail of the first root of ψ S that there are points in a neighborhood of this root where ψ T is positive in Ω and negative outside Ω.

  Figure 15. Functions ψ S and ψ T of a topology local minimum that is not a shape critical point. The interval that define the reconstruction Ω is indicated in red, the function ψ S is in blue, and the function ψ T is in green. Note in the detail that ψ T has sign required for a topology local minimum, and ψ S is not zero on ∂Ω.

Similar expressions are obtained for the functions ψ S and ψ T defined by (4.7) and (5.4). In the case of ψ S the natural extension for the fields n and t are the unit vectors e r and e θ of the polar coordinate system, which provide ∂ n = ∂ r and ∂ t = r -1 ∂θ.

Search method and results

In this section we first explain the search method used to find shape and topology critical points with the topologies of Figure 2, for the measurements corresponding to the circular scatterer of Section [START_REF] Novotny | Topological derivatives in shape optimization[END_REF]. The method is described in Subsection 8.1. The examples of critical points obtained are described in Subsections 8.2-8.4.

The physical and geometric parameters involved in the example of the circular scatterer are µ i , µ e , ρ i , ρ e , R, R obs , and ω (the results do not depend on the radius R 3 of the region of interest B, which was defined as R 3 = 2R). Taking into account the physical dimensions of the parameters, the problem has four dimensionless constants: µ i /µ e , ρ i /ρ e , R obs /R and (2R)/λ e = π -1 κ e R = π -1 Rω ρ e /µ e . We have observed that R obs /R has a negligible effect on the results, and R obs /R = 20 was always taken. In all the examples considered the material properties are such that the wave velocities satisfy c i /c e = 2, i.e. the wave velocity inside the inclusions doubles that of the exterior region. In the series expansions of Section 6, 31 terms were always considered (with n from -15 to 15) which give very accurate results. 8.1. Search method. In a first stage the inverse problem defined for σ = µ i /µ e = 1 was considered, i.e. the case where ψ S coincides with ψ T . The topology local minima were found by solving a nonlinear system of equations as explained below, starting from initial points that in some cases were obtained in preliminary experiments carried out with a topology optimization tool based on the topological derivative, and in some cases were guessed by analyzing the graph of the topological derivative obtained for the homogeneous domain. The critical points were found by solving the system of nonlinear equations that consists of finding the radii that define Ω such that the function ψ T corresponding to this reconstruction is zero when evaluated at each of those radii. For instance, in the case of the ring of Figure 2(b), making explicit the dependence of ψ T with respect to Ω, and the dependence of Ω with respect to R 1 and R 2 , the nonlinear system of equations that is solved in the variables R 1 and R 2 is:

Since in this case ψ S coincides with ψ T , the first function could also have been used to find the critical points. The solution to this nonlinear system of equations was obtained using the subroutine fsolve of MATLAB. Once a critical point is obtained for a certain frequency, we investigate the extension of the frequency interval of the family of critical points to which the found solution belongs. For example, if (R 1 (ω 0 ), R 2 (ω 0 )) is a solution of (8.1) for the frequency ω 0 , then we seek the maximum domain of the map ω → (R 1 (ω), R 2 (ω)) that gives a family of critical points. This map is found iteratively using the solution (R 1 (ω 0 ), R 2 (ω 0 )) as follows: for the frequency ω 0 + ∆ω the algorithm fsolve is called with the initial point (R 1 (ω 0 ), R 2 (ω 0 )) to obtain (when it exists) the solution (R 1 (ω 0 + ∆ω), R 2 (ω 0 + ∆ω)).

The critical points obtained by solving (8.1) are checked to satisfy Definitions 1 and 2, and also to be points of local convergence of the gradient-based optimization algorithm fmincon of MATLAB when used to minimize the objective functional J with respect to the radii. If local convergence to the critical point is obtained, then the critical point is presumably a shape local minimum of the objective functional (sufficient optimality conditions were not checked). The families of critical points obtained for σ = 1 are described in Subsection 8.2.

In a second stage, the value of the constants µ i /µ e and ρ i /ρ e are simultaneously increased to maintain the ratio c i /c e unchanged. The critical points were found as described above by solving the system (8.1), but in this case the function ψ S was used instead of ψ T . Since σ ̸ = 1, the function ψ T is discontinuous across the boundary of the reconstruction, which complicates the task of finding the critical points using that function. However, the shape critical points (Alfredo Canelas, Ana I. Abreu) Facultad de Ingeniería, Universidad de la República. Working at Université de Lorraine, IECL, Nancy, France Email address: {acanelas,aabreu}@fing.edu.uy (Jean R. Roche) Université de Lorraine, CNRS, IECL, Nancy, France Email address: roche6@univ-lorraine.fr