

Advanced hybrid electro-separation/electro-conversion systems for wastewater treatment, reuse and recovery: compromise between symmetric and asymmetric constraints

Emmanuel Mousset, T. Alan Hatton

▶ To cite this version:

Emmanuel Mousset, T. Alan Hatton. Advanced hybrid electro-separation/electro-conversion systems for wastewater treatment, reuse and recovery: compromise between symmetric and asymmetric constraints. Current Opinion in Electrochemistry, 2022, 35, pp.101105. 10.1016/j.coelec.2022.101105. hal-03842872

HAL Id: hal-03842872 https://hal.science/hal-03842872

Submitted on 7 Nov 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Advanced hybrid electro-separation/electro-conversion systems for wastewater treatment, reuse and recovery: compromise between symmetric and asymmetric constraints

Emmanuel Mousset^{1,*}, T. Alan Hatton²

¹ Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France

² Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA

ACCEPTED IN

Current Opinion in Electrochemistry journal

(Special issue "Hot topic: Emerging opinions (2022)")

*Contact of corresponding author: <u>emmanuel.mousset@cnrs.fr</u>

Abstract

Wastewater treatment with reuse and recovery of value-added compounds for valorization is of rising interest, and the combination of electro-separation and electro-conversion processes could be a promising solution to both environmental and resource availability problems. The more recent concomitant development of both electrochemical advanced oxidation processes and materials with new properties make the older electro-separation technologies regain interest. The electrofiltration/electrooxidation visibility and or electroreduction, electrosorption/electrooxidation, electrocoagulation/electro-Fenton, electroprecipitation/electrooxidation and electrodeposition/electrooxidation have been particularly critically reviewed. The conventional flow-by or flow-through parallel-plate and concentric cylinders design do not suffice to face the antagonist requirements in such simultaneous multiple electroproccesses. Innovative designs are needed and emerging concepts such as reactive electro-mixing are a possibility. Further modeling and scale-up studies based on revised theory are required in the future.

Keywords:

Anodic oxidation; peroxi-coagulation; electro-sorption; reactive electrochemical membrane; reactive electro-mixing; reactor design

Highlights

- Electro-separation/electro-conversion combination in simultaneous operation
- Competition between symmetric and asymmetric constraints
- Need for innovative design that consider antagonist requirements

1. Introduction

The rapid increase in water stress due to climate change while water demand is rising represents a major concern to the environment and to social structures [1]. The United Nations has identified water shortages as one of the biggest challenges to overcome in the next few decades [2]. One of the solutions is to adopt a water reuse strategy [3], which may also include the valorization of value-added inorganic and organic compounds often contained in municipal and industrial wastewaters [1]. In this context, advanced physico-chemical treatments have been developed as complementary or alternative techniques to conventional biotechnologies [4–7]. Among them, electrochemical systems could take advantage of their modularity, flexibility and sustainability [8,9].

Hybrid reactors that combine electro-separation systems with electro-conversion technology are attracting attention in wastewater treatment because of possible synergies in their application with reductions in footprint [10–13]. Electro-separation systems can separate selectively or not the compounds from the solution in order to recover value-added components and/or to avoid the release of electrogenerated by-products [14,15]. In addition, the electro-conversion permits elimination of worthless pollution and/or its conversion into valuable molecules [9,16,17]. Implementing this combination in a hybrid system can also concentrate the pollutants by electro-separation, while porous electrodes can be regenerated by electro-conversion [18,19]. However, these more complex systems require adequate design for an optimized process. Some of the developed technology lacks electrochemical engineering considerations. Therefore, the goal of this review paper is to list constraints in, and assemble tools for the design of scalable multifunctional electrochemical systems for applications in wastewater treatment, reuse and recovery.

2. Emerging hybrid electro-separation/electro-conversion systems for wastewater treatment, reuse and recovery

The hybrid electro-separation/electro-conversion combinations are critically discussed in this section and the main recent papers are described in Table 1 [10–13,18–29], while examples of reactor setup for each combination are presented in Fig. 1 [10,11,13,23–25].

Fig. 1. Hybrid reactor setup implementing electro-separation/electro-conversion combinations in simultaneous operation: (a) electrofiltration/electrooxidation in flow-through parallel-plate system (Reproduced with permission from [10]. Copyright 2020, American Chemical Society), (b)

electrosorption/electrooxidation in flow-through parallel-plate system (Reproduced with permission from [11]. Copyright 2022, Elsevier), (c) electrocoagulation/electro-Fenton in stirred tank reactor with electrodes in parallel (Adapted with permission from [13]. Copyright 2021, IWA Publishing), (d) electroprecipitation/electrooxidation in flow-by parallel-plate system (Adapted with permission from [23]. Copyright 2022, Elsevier), (e) electrodeposition/electrooxidation in stirred tank reactor with electrodes in parallel (Reproduced with permission from [24]. Copyright 2022, Elsevier), (f) Electrosorption/electrocoagulation/electro-Fenton in flow-through parallel-plate system (Reproduced with permission from [25]. Copyright 2021, Elsevier).

2.1. Electrofiltration/electrooxidation or electrofiltration/electroreduction

Electrified membranes, also called reactive electrochemical membranes (REMs), have been developed to combine electrofiltration with electrooxidation or electroreduction in order to enhance mass transport of organic and inorganic pollutants and concentrate them in the permeable electrode material, where they can be degraded and mineralized (Table 1) [30–32]. The porous anode material is usually coated with elements such as boron (boron-doped diamond (BDD)) (Fig. 1a) [10], tin oxide (SnO₂-Sb) [27], β-PbO₂ or sub-stoichiometric titanium oxide (Ti_4O_7) [10,26] that enable an increase its O₂ evolution overvoltage. This property allows electrogeneration of physisorbed hydroxyl radicals ('OH) from H₂O oxidation in the vicinity of the anode, which occurs within nanometers from the surface due to the very short lifetime (10⁻⁹ s) of 'OH [33,34]. These radicals are very powerful oxidants that can degrade non-selectively the organic pollutants in The quasi wastewater [35]. electrofiltration/electrooxidation combination allows degradation of pharmaceutical pollutants such as ciprofloxacin at very high level (92%) and in a single pass [27], while longer residence times (5-fold) are required without the combination. In the meantime, electroreduction of oxyanions (e.g., ClO₃⁻, ClO₄⁻, BrO₃⁻, NO₃⁻) becomes an important consideration, as they are known to occur during advanced electrooxidation by these radicals in wastewater containing halogenated and/or nitrogenous ions [36,37]. In this context, REM has also been tested and combined with electroreduction by implementing oxorhenium complex coated on Ti₄O₇ cathodes for the elimination of perchlorate from wastewater [28]. Perchlorate could be reduced by 21% with 99% selectivity towards Cl⁻, due to the electrofiltration/electroreduction combination.

REM systems present the advantage of decreasing the fouling compared to filtration alone, to a certain extent [38]. Nevertheless, the average pore diameters of such anodic filters are usually in the micrometer range [26,27], meaning that currently REM is only be suitable for micro- or ultra-filtration, but not for nanofiltration or reverse osmosis [30]. Moreover, the mechanism responsible for compound retention within the material would be more electrosorption than electrofiltration under these conditions [30]. This means that additional key parameters presented in sub-section 2.2 would also need to be considered for this hybrid system optimization.

2.2. Electrosorption/electrooxidation

Electrosorption describes the enhancement of adsorption by polarizing conductive materials at low electrode potentials, usually between 0.4 and 1.4 V/standard hydrogen electrode (SHE), in order to remain in the capacitive current domain [14,15,39]. Under such conditions, no faradaic reaction should occur (e.g. H₂O oxidation and reduction), while the double-layer capacitance is maximized [14,39]. This latter parameter along with mass transport phenomena are the major factors affecting the electrosorption efficiency [14]. This technology arose from interest in removing inorganic salts in brine water for its desalination at low energy demand compared to technology currently applied (e.g., reverse osmosis) [15]. This technique has also been applied to remove selectively and recover valuable organic compounds such as phenolic compounds [19] or benzoate as representative organic anions [40].

Electrosorption has been combined with electrooxidation to eliminate inorganic (arsenic (AS(III) [29]) and organic pollutants (e.g., naproxene [20], per- and polyfluoroalkyl substances (PFASs) (Fig. 1b) [11], N,N-diethyl-meta-toluamide (DEET), phenolic compounds [19], iopromide, carbamazepine and diatrizoate [18]) from wastewater (Table 1). Synergies have been obtained with this hybrid combination. For example As(III) was electrosorbed and accumulated (100 mg-As g(adsorbent)⁻¹) in the electrolyzer, and subsequently oxidized into a less hazardous form of As (As(V)) (>90% efficiency) [29]. In a similar manner, electrosorption permits concentration of persistent organic pollutants having a low initial concentration in water (0.2 μ mol L⁻¹ each), which can then be degraded by electrooxidation with synergy of removal ranging from 30 to 57% [11,18]. Interestingly, the amount of chlorinated by-product released in solution was diminished with the hybrid system, due to the electrosorption of such undesirable compounds.

However, electrosorption and electrooxidation do not operate over the same optimal potential range, which needs further innovative reactor design as discussed in section 3.

2.3. Electrocoagulation/electro-Fenton

Electrocoagulation corresponds to the electrogeneration of metal ions in the bulk electrolyte by anodic dissolution of the polarized metal, which is then hydrolyzed in water [41]. This permit the release of various coagulants in the electrolyte such as hydroxide sludges, depending on the

solution pH. The pollutants in wastewater - suspended solids to a large extent - can then be removed mainly by precipitation, coprecipitation and adsorption on precipitates [42].

Iron is one of the sacrificial anodes mostly used in electrocoagulation and has been combined with the electrogeneration of H_2O_2 from O_2 reduction at the cathode to form 'OH through the Fenton reaction, namely the peroxicoagulation process [12,43]. This combination allows simultaneous electrocoagulation and electro-Fenton within the same reactor with synergies in terms of energy consumption and removal of organic pollutants (Table 1) [12,13,21]. For instance, percentage removal higher than 92% could be reached for acrylonitrile [12], 1,4-dioxane (Fig. 1c) [13] and 2,4-dichlorophenoxiacetic acid [21] with the combination.

The hybrid combination of electrocoagulation or peroxicoagulation with advanced electrooxidation could be interesting in simultaneous operation to enhance the process efficiency, but these processes require a different anode material. This is the reason why the existing electrocoagulation/electrooxidation combinations are operated in a sequential mode instead of simultaneously [44,45]. Thus, new designs are required for such more complex hybrid systems as discussed in section 3.

2.4. Electroprecipitation/electrooxidation

Electroprecipitation phenomena occur principally on cathode surfaces due to local alkalization from O₂ and H₂O reduction reactions [23,46,47]. This local drastic increase in HO⁻ ions ensures ions like magnesium (Mg²⁺), calcium (Ca²⁺) and carbonates (CO₃²⁻) precipitate mainly as hydroxides (e.g., Mg(OH)₂) and calcium carbonate (CaCO₃) [48–51]. This technology has been applied widely for water softening processes. More recently, the interest in this system for calcium phosphate precipitation and subsequent phosphorus recovery has been assessed [52– 54]. The possible synergy that could be obtained between electroprecipitation and advanced electrooxidation using a BDD anode has been further studied (Table 1) [22,23]. It was highlighted that an anodic contribution on electroprecipitation phenomena could appear when interelectrode distances are varied from 50 to 3000 μ m (Fig. 1d) [23]. Still, further studies are necessary at different current densities and in the presence of organic pollutants to carry out the whole combination efficiently.

2.5. Electrodeposition/electrooxidation

In contrast to electroprecipitation, electrodeposition represents direct electron transfer between the electrode and the metal element to be deposited on the polarized material [55–57]. This technique is used widely in extraction and metal plating for subsequent metal recovery, with high purity attained in many cases [55–57]. Simultaneous electrodeposition and electrooxidation has been investigated recently (Table 1). Ni(II)-citrate was removed successfully (100% removal) by electrooxidation at the BDD anode, while metallic nickel was recovered on a titanium cathode by electrodeposition with 95% of purity (Fig. 1e) [24]. More studies are needed to assess the selectivity and efficiency of this approach with real effluents.

2.6. Hybrid multiple simultaneous electroprocesses

The combination of multiple electroprocesses higher than two and operated simultaneously in a single reactor has been barely examined as yet. Electrosorption has been combined with peroxicoagulation recently in a flow-through cell design (Table 1 and Fig. 1f) [25]. The coupling improved by 10-fold the electrosorption capacity compared with that of electrosorption alone, while 93% of dye removal was reached. However, electrosorption in this system was associated more with a pseudo-capacitive electrosorption, because it was performed under faradaic conditions. This means that the double-layer capacitance was not optimized. Thus, the conventional design of electrochemical reactors limits the possibility to operate with multiple simultaneous electroprocesses, knowing the constraints that need to be addressed as discussed in section 3.

Type of electroseparation/ electroconversion system and design	Targeted compound(s)	Characteristics of electrolyte	Electrode materials and distance	Studied parameters	Efficiency	Reference
Electrofiltration/ Electrooxidation in a hybrid undivided cylindrical parallel-plate flow-through cell, in simultaneous operation	Resorcinol	Synthetic wastewater containing 0.006-0.01 mol L ⁻¹ of KH ₂ PO ₄ , 0-0.05 mol L ⁻¹ NaCl and 0.001 mol L ⁻¹ of resorcinol	Anode: Ti ₄ O ₇ or BDD Cathode: BDD	Initial electrolyte concentration, electrolysis time, anode material	68% of resorcinol mineralization	[10]
Electrofiltration/ Electrooxidation in a hybrid undivided tubular flow- through cell, in simultaneous operation	Carbamazepine	Real secondary effluent from urban WWTP spiked with carbamazepine at 100 µg L ⁻¹	Anode: Ti ₄ O ₇ Cathode: carbon felt	Current density, flux, electrolysis time	>98% degradation of carbamazepine and 70% of mineralization with an energy consumption of 0.15 kWh g ⁻¹ of TOC removed	[26]
Electrofiltration/ Electrooxidation in a hybrid undivided cylindrical parallel-plate flow-through cell, in simultaneous operation	Ciprofloxacin	Synthetic wastewater containing 0.1 mol L ⁻¹ of Na ₂ SO ₄ and 10 µg L ⁻¹ of ciprofloxacin	Anode: porous Sb- SnO ₂ Cathode: Ti mesh	Reactor configuration (flow-by or flow- through), electrolysis time, initial concentration of pollutant, flux,	92% of ciprofloxacin removal in single pass (0.33 kWh m ⁻³)	[27]
Electrofiltration/ Electroreduction in a hybrid undivided cylindrical parallel-plate flow-through cell, in simultaneous operation	Perchlorate	Synthetic wastewater containing 0.01 mol L ⁻¹ of KH ₂ PO ₄ and 0.005 mol L ⁻¹ of NaClO ₄	Anode: BDD Cathode: oxorhenium complex coated on Ti ₄ O ₇	Electrode potential, flux, solution pH	21% of perchlorate reduction with 99% Cl ⁻ selectivity	[28]

Electrosorption/ Electrooxidation in a hybrid undivided flow-by cell, with simultaneous operation	Arsenic (As(III))	Real secondary effluent from urban WWTP spiked with As(III) at 100 µg L ⁻¹	Working electrode: poly(vinyl)ferrocene (PVF)/carbon nanotube composite Counter electrode: poly-TEMPO- methacrylate (PTMA) Electrode potential: 0.8 V/Ag-AgCl for 2 h	Electrolysis time, working electrode material, number of cycles of regeneration	37% of As(III) electrosorbed 93% of As(III) conversion into As(V) 0.45 kWh mol-As ⁻¹ (electrosorption + electroconversion)	[29]
Electrosorption/ Electrooxidation in a hybrid undivided stirred tank design with three-electrode system, in sequenced operation	Naproxene	10 mg L ⁻¹ naproxene and 0.05 mol L ⁻¹ of KNO ₃ solution at pH 7	Working electrode: packed activated carbon with stainless steel as current collector Counter electrode: stainless steel mesh Electrode potential: 1.2-1.4 V/NHE Interelectrode distance: 2 cm	Electrode potential, electrosorptin time, regeneration (reactivation) time	Regeneration (reactivation) increased electrosorption capacity (83%) at 0.7 V/NHE	[20]
Electrosorption/ Electrooxidation in a hybrid undivided cylindrical flow- through cell, in simultaneous operation	Per- and polyfluoroalkyl substances (PFASs)	PFASs (0.2 μmol L ⁻¹ each) in 10 mmol L ⁻¹ phosphate buffer (pH around 7.1)	Anode: graphene sponge with stainless steel as current collector Cathode: stainless steel sponge	Flow rate, anode potential, electrolysis time	67% of removal (35% by electrosorption; 32% by electrooxidation) at 230 A m ⁻² , leading to 10.1 kWh m ⁻³	[11]
Electrosorption/ Electrooxidation in a hybrid undivided flow-through cell with packed-bed material, in sequenced operation	N,N-diethyl-meta- toluamide (DEET), iopromide, carbamazepine and diatrizoate	Real secondary effluent from urban WWTP spiked with DEET, iopromide, carbamazepine and	Anode: mesh Nb/ BDD Cathode: stainless steel	Current density	DEET presented the highest synergy, ranging from 40% to 57%, followed by iopromide (22– 46%),	[18]

		diatrizoate (0.2 µmol L ⁻¹ each)	Granular activated carbon between cathode and anode		carbamazepine (15–34%) and diatrizoate (4–30%)	
Electrosorption/ Electrooxidation in a hybrid cylindrical flow-through cell with packed-bed electrode, in simultaneous operation	Phenolic compounds	Real olive mill wastewater effluent with total phenolic compounds at 10.6 g L ⁻¹	Anode: graphite rod Cathode: alginate/powdered activated carbon composite with a graphite rod as current collector	Electrolysis time, activated carbon load, electrode potential, effluent composition	307 mg g ⁻¹ with electrosorption and electrooxidation occurred simultaneously at a cathode potential below -1.2 V/Ag- AgCl	[19]
Electrocoagulation/ Electro- Fenton (= peroxicoagulation) in a hybrid undivided stirred tank reactor with electrodes in parallel, in simultaneous operation	Acrylonitrile	Synthetic wastewater containing 0.05 mol L^{-1} of Na ₂ SO ₄ and 50- 500 mg L^{-1} of acrylonitrile	Anode: iron plate Cathode: graphite felt coated with carbon black Interelectrode distance: 2 cm	Electrolysis time, current density, pH of solution, initial concentration of pollutant	More efficiency with the combination (92% of acrylonitrile removal) Less energy with combination (3.08 kWh kg- acrylonitrile ⁻¹)	[12]
Electrocoagulation/ Electro- Fenton (= peroxicoagulation) in a hybrid undivided stirred tank reactor with electrodes in parallel, in simultaneous operation	1,4-dioxane	Synthetic wastewater containing 0.1 mol L ⁻¹ of Na ₂ SO ₄ and 200 mg L ⁻¹ of 1,4 dioxane at pH 5	Anode: iron mesh Cathode: gas diffusion electrode with carbon black layer and a supporting layer of stainless steel mesh Interelectrode distances: 2-3.5 cm	Current density, pulsed switching frequency, electrolysis time	More efficiency with the combination (95% of pollutant removal) Less energy with combination (7.8 kWh kg-pollutant ⁻¹)	[13]
Electrocoagulation/ Electro- Fenton (= peroxicoagulation) in a hybrid undivided stirred tank reactor with electrodes in parallel, in simultaneous operation	2,4- dichlorophenoxiacetic acid	Synthetic wastewater containing 0.1 mol L ⁻¹ of Na ₂ SO ₄ and 50- 300 mg L ⁻¹ of 2,4- dichlorophenoxiacetic acid	Anode: iron plate Cathode: graphite felt coated with carbon black or natural air diffusion electrode	Electrode material, electrolysis time, current density, pH of solution,	More efficiency with the combination (100% of pollutant removal: 59.4% with	[21]

			Interelectrode	initial	electrocoagulation	
			distance: 1 cm	concentration	and 40.6% with	
				of pollutant	electro-Fenton)	
				-	Less energy with	
					combination (12	
					kWh kg-pollutant ⁻¹)	
Electroprecipitation/	Magnesium, calcium,	Synthetic wastewater	Anode: BDD	Electrolysis	Electrolyte	[22]
Electrooxidation in a hybrid	carbonates	containing 0.02-0.10	Cathode: stainless	time, current	composition	
undivided parallel-plate flow-		mol L ⁻¹ of Na ₂ SO ₄	steel	density.	influence co-	
by cell, in simultaneous		and 150 mg L^{-1} of	Interelectrode	effluent	electroprecipitation.	
operation		Ca^{2+} , 5 mg L ⁻¹ of	distance: 500 um	composition	while anodic	
1		Mg^{2+} . 60 mg-C L ⁻¹ of		1	oxidation did not	
		HCO_3^{-7}/CO_3^{2-7}			influence it in	
					applied condition	
Electroprecipitation/	Magnesium, calcium	Synthetic wastewater	Anode: BDD	Electrolysis	Maximal	[23]
Electrooxidation in a hybrid	carbonates	containing 0.02-0.10	Cathode: stainless	time.	electroprecipitation	[]
undivided parallel-plate flow-		mol L^{-1} of Na ₂ SO ₄	steel	interelectrode	at 100 µm gap.	
by cell, in simultaneous		and 150 mg L^{-1} of	Interelectrode	distance	with possible	
operation		Ca^{2+} 5 mg L ⁻¹ of	distances: 50-3000	cathode	anodic oxidation	
operation		$M\sigma^{2+}$ 60 mg-C L ⁻¹ of		potential	contribution that	
		HCO_{2}^{-7}/CO_{2}^{2-}	μΠ	potential	increased cathodic	
		110037003			electroprecipitation	
Flectrodeposition/	Ni(II)-citrate	Synthetic wastewater	Anode: BDD	Initial nickel	100% of Ni(II)-	[24]
Electropyidation in a hybrid		containing 0.08 mol	Cathode: polished	citrate	citrate removal	[24]
undivided stirred tank reactor		L ⁻¹ of electrolyte and	titanium	concentration	with 72% of	
with electrodes in parallel in		$75 \text{ mg I}^{-1} \text{ of Ni(II)}$	titamum	concentration,	metallic nickel	
simultaneous energian		/S IIIg L OI INI(II)-		donaity	metanic mckei	
siniuitaneous operation		cittate		initial all	recovery (93% of	
				interelectro de	purity)	
				distance		
				distance,		
				electrolyte		
				type, initial		
				electrolyte		
				concentration		

Electrosorption/	Orange II, 2,4-	Synthetic wastewater	Anode: Iron sheet	Solution pH,	93% of dye	[25]
Electrocoagulation/ Electro-	dichlorophenoxyacetic	containing 0.05 mol	Cathode: activated	flow rate,	removal and 1043	
Fenton in a hybrid undivided	acid, phenol and	L ⁻¹ of Na ₂ SO ₄	carbon fiber	initial	mg g ⁻¹ of	
parallel-plate flow-through	methylene blue		Interelectrode	concentration	electrosorption	
cell, in simultaneous			distances: 8 mm	of organics,	capacity (10 times	
operation				applied	higher than without	
-				voltage	combination)	

2 Abbreviations: BDD, boron-doped diamond; NHE, normal hydrogen electrode; WWTP, wastewater treatment plant

3 3. Constraints with simultaneous multiple electroprocess implementation

4

and emerging design considerations

5

3.1. Symmetric versus asymmetric constraints

6 In electrochemical systems, symmetric constraints need to be considered for optimal efficiency, as mentioned in renowned textbooks [58-62] and review papers [63,64] in the field of 7 8 electrochemical engineering. The current and potential distributions are important criteria that need to be kept as homogenized as possible [65,66]. This is to ensure the same efficiency of 9 electrosorption or electro-conversion on the entire active surface of the electrode so that it is 10 possible to make full use of the electrode surface. In practice, symmetric geometries, such as 11 12 parallel-plate cells or concentric cylinders with non-porous plane materials are usually favored [58,63]. However, porous materials are required in some electro-separation processes as 13 14 mentioned in section 2, while other electroprocesses benefit from porous electrodes to enhance mass transfer by implementing a flow-through configuration. These configurations could result 15 in heterogeneous distributions of current and potential within the three-dimensional electrode 16 material [58,67], such that not all of the internal electrode surface is active for either electro-17 separation and/or electro-conversion. Then, the material thickness needs to be optimized, since 18 the potential drop within the electrode increases when the thickness is increased [59]. Moreover, 19 20 porous materials induce curvature effects on the electrical double-layer that can affect electroseparation processes [14,68–70]. These are important features to consider in process 21 efficiencies, that are usually neglected in models and during optimization. 22

23 Another important feature to take into account in electrochemical systems applied for wastewater treatment is the mineral scaling issue due to electroprecipitation of hydroxides and 24 calcium carbonate on the cathode (section 2.4) [22,47]. Knowing that Mg^{2+} , Ca^{2+} and CO_3^{2-} are 25 ubiquitous in water, the progressive passivation of the cathode is almost unavoidable, especially 26 27 for long-term electrolysis run in industrial applications [22]. Practically, the polarity is frequently reversed in order to redissolve the precipitates in bulk solution [51,71]. Under these 28 29 conditions, both the cathode and the anode are typically the same materials in order to enable the electroprocesses to occur continuously, without interruption. It further means that the 30 31 materials need to have the ability to be operated over a wide potential window without any oxidation or reduction that could modify their properties or even damage them. This symmetric 32 constraint is often dismissed, because most of the research studies do not go beyond the 33 laboratory scale with synthetic aqueous effluents. Considering the implementation of hybrid 34

electro-separation/electro-conversion systems operated simultaneously, this constraint cannot
be met. The involvement of multiple electroprocesses requires an asymmetric system, since
each electroprocess from section 2 imposes different requirements. Therefore, the cathode and
anode materials have to be different. Moreover, there are conflicts in operating conditions (e.g.,
electrosorption/electrooxidation) and the degree of complexity increases with the number of
electroprocesses involved.

- 41
- 42

3.2. A few recommendations and some emerging reactor designs

The interest in microreactors is gaining traction for wastewater treatment, due to the intensification of mass transfer and redox cycles, the ability to work with low conductivity solutions without adding supporting electrolyte, and the decrease in energy requirements [51,72–78]. However, the treatment capacity remains low with such devices, as they require a prefiltration step and do not solve the antagonist requirements issue when multiple electroprocesses are implemented.

Recently, the possibility to combine multiple electroprocesses in a single reactor has been 49 proposed, by implementing the reactive electro-mixing concept and design [79]. In this setup, 50 liquid or semi-liquid mixtures are mixed by the electrochemical (micro)-cells in movement 51 52 connected in a monopolar mode, namely reactive electroblades. Therefore, it permits the combination of multiple (micro)-cells in one macro-reactor. Preliminary results have shown a 53 1.3-fold increase in paracetamol removal efficiency from wastewater by advanced 54 electrooxidation with BDD, while the energy consumption was reduced by 20-fold compared 55 to a conventional static filter-press cell involving the same anode material [79]. Following this 56 approach, a single electroblade in rotation has been proposed using solid polymer electrolyte to 57 operate in an even lower conductivity solution (μ S cm⁻¹ range) [80]. 58

In addition, the possibility of bipolar mode in a static or electroblade hybrid system could be explored more for wastewater treatment applications, when different cathode and/or anode materials are required.

62

4. Conclusions and future perspectives

This short review highlights the synergies that could be obtained by combining electroseparation with electro-conversion simultaneously in a single hybrid reactor for wastewater treatment, reuse and recovery. However, conflicts in the constraints on the individual operations enforce the need to invent new designs and to improve the properties of reactive conductive materials for better selectivity and life span.

69 Flexible designs are needed to overcome the antagonist requirements of the different processes.

70 The reactive electro-mixing reactor could be one of the solutions, but improvements are needed

71 to increase electroprocess efficiencies and their number.

72 The theory of the electroporcess operations also needs to be revised, since both mass transport and reactions are involved in multiphasic and multiscale hybrid systems using porous polarized 73 materials being subjected to angular momentum in some emerging reactor designs [81]. 74 Mathematical models should be developed to predict the influence of operating parameters on 75 76 the efficiency of different processes. Particular attention should be given to ensure symmetric 77 modeling studies at the electrode/electrolyte interface, meaning that the degree of complexity and the scale level should be similar for both the electrode surface and in the electrolyte [82]. 78 79 Coupling density functional theory (DFT) with molecular dynamics and microkinetics could be one of the possible approaches [82,83]. 80

Finally, electrosynthesis as an electro-conversion system is attracting interest for the generation 81 and subsequent valorization of value-added compounds from wastewater [16]. Moreover, H₂ 82 electrogenerated at the cathode due to H₂O reduction could be produced in sufficient quantities 83 at the industrial scale to be viable economically [84]. It could be even valorized as green H_2 if 84 renewable energies are used to power the electrolyzer [85,86]. The possible synergy of co-85 electrogeneration (e.g., H₂, value-added compounds) with one or several electro-separation 86 mechanisms should be carried out in the future, particularly with increases in selectivity. The 87 efficiency of these processes remains to be tested with real wastewater effluents. 88

89 Acknowledgments

90 E.M. gratefully acknowledges the support by the French National Research Agency (ANR)

91 through the REMixSyn project (n°ANR-21-CE04-0006-01).

92

93 **References**

- UNESCO, Wastewater, The Untapped Resource (Les eaux usées une ressource inexploitée). Rapport mondial des Nations Unies sur la mise en valeur des ressources en eau 2017, 2017.
- 97 [2] United Nations, The Sustainable Development Goals Report 2021, 2021.
- 98 [3] D.L. Sedlak, Water 4.0, Yale University Press, 2014.
- [4] L. Rizzo, W. Gernjak, P. Krzeminski, S. Malato, C.S. McArdell, J.A.S. Perez, H. Schaar,
 D. Fatta-Kassinos, Best available technologies and treatment trains to address current
 challenges in urban wastewater reuse for irrigation of crops in EU countries, Sci. Total
 Environ. 710 (2020) 136312. https://doi.org/10.1016/j.scitotenv.2019.136312.
- E. Mousset, W.H. Loh, W.S. Lim, L. Jarry, Z. Wang, O. Lefebvre, Cost comparison of advanced oxidation processes for wastewater treatment using accumulated oxygenequivalent criteria, Water Res. 200 (2021) 117234. https://doi.org/https://doi.org/10.1016/j.electacta.2021.138466.
- M.A. Oturan, J.-J. Aaron, Advanced oxidation processes in water/wastewater treatment:
 principles and applications. A review, Crit. Rev. Environ. Sci. Technol. 44 (2014) 2577–
 2641. https://doi.org/10.1080/10643389.2013.829765.
- E. Mousset, C. Trellu, H. Olvera-Vargas, Y. Pechaud, F. Fourcade, M.A. Oturan,
 Electrochemical technologies coupled with biological treatments, Curr. Opin.
 Electrochem. 26 (2021) 100668. https://doi.org/10.1016/j.coelec.2020.100668.
- I. Radjenovic, D.L. Sedlak, Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water, Environ. Sci.
 Technol. 49 (2015) 11292–11302. https://doi.org/10.1021/acs.est.5b02414.
- 116 [9] C.A. Martínez-Huitle, M. Panizza, Electrochemical oxidation of organic pollutants for
 117 wastewater treatment, Curr. Opin. Electrochem. 11 (2018) 62–71.
 118 https://doi.org/10.1016/j.coelec.2018.07.010.
- [10] M. Lin, D.M. Bulman, C.K. Remucal, B.P. Chaplin, Chlorinated byproduct formation during the electrochemical advanced oxidation process at Magnéli phase Ti₄O₇ electrodes, (2020). https://doi.org/10.1021/acs.est.0c03916.
- **[11]N. Duinslaeger, J. Radjenovic, Electrochemical degradation of per- and polyfluoroalkyl
 substances (PFAS) using low-cost graphene sponge electrodes, Water Res. 213 (2022)
 118148. https://doi.org/10.1016/j.watres.2022.118148.
- →First paper able to break C-F bond (PFAS pollutant) using carbon-based metal-free material,
 without the generation of unwanted chlorinated by-products (chlorate and perchlorate)
- [12] G. Ren, M. Zhou, P. Su, L. Liang, W. Yang, E. Mousset, Highly energy-efficient removal of acrylonitrile by peroxi–coagulation with modified graphite felt cathode: influence factors, possible mechanism, Chem. Eng. J. 343 (2018) 467–476.
- [13] Y. Lu, H. Shi, J. Yao, G. Liu, H. Luo, R. Zhang, 1,4-dioxane degradation using a pulsed switching peroxi-coagulation process, Water Reuse. 11 (2021) 268–278.
 https://doi.org/10.2166/wrd.2021.092.
- 133 [14] A. Lissaneddine, M.-N. Pons, F. Aziz, N. Ouazzani, L. Mandi, E. Mousset, A critical

- review on the electrosorption of organic compounds in aqueous effluent Influencing
 factors and engineering considerations, Environ. Res. 204 (2022) 112128.
- [15] X. Su, T.A. Hatton, Electrosorption at functional interfaces: From molecular-level interactions to electrochemical cell design, Phys. Chem. Chem. Phys. 19 (2017) 23570– 23584. https://doi.org/10.1039/c7cp02822a.
- *[16] S.O. Ganiyu, E.V. dos Santos, C.A. Martínez-Huitle, S.R. Waldvogel, Opportunities and challenges of thin-film boron-doped diamond electrochemistry for valuable resources recovery from waste: Organic, inorganic, and volatile product electrosynthesis, Curr.
 Opin. Electrochem. 32 (2022) 100903. https://doi.org/10.1016/j.coelec.2021.100903.
- H3 →Review paper that focus on the emerging way of valorization of pollutants in waste by
 converting them into value-added compounds through electrosynthesis instead of
 eliminating them.
- S.O. Ganiyu, C.A. Martínez-Huitle, M.A. Oturan, Electrochemical advanced oxidation 146 [17] processes for wastewater treatment: Advances in formation and detection of reactive 147 species and mechanisms, Curr. Opin. Electrochem. 27 (2021)100678. 148 https://doi.org/10.1016/j.coelec.2020.100678. 149
- [18] G.F. Norra, J. Radjenovic, Removal of persistent organic contaminants from wastewater
 using a hybrid electrochemical-granular activated carbon (GAC) system, J. Hazard.
 Mater. 415 (2021) 125557. https://doi.org/10.1016/j.jhazmat.2021.125557.
- [19] A. Lissaneddine, M.-N. Pons, F. Aziz, N. Ouazzani, L. Mandi, E. Mousset,
 Electrosorption of phenolic compounds from olive mill wastewater: Mass transport
 consideration under a transient regime through an alginate-activated carbon fixed-bed
 electrode, J. Hazard. Mater. 430 (2022) 128480.
- 157 [20] M.I. López-Cázares, E.D. Isaacs-Páez, J. Ascacio-Valdés, C.N. Aguilar-González, J.R. Rangel-Mendez, L.F. Chazaro-Ruiz, Electro-assisted naproxen adsorption followed by 158 its electrodegradation and simultaneous electroreactivation of the activated carbon 159 electrode. Sep. Purif. Technol. 160 258 (2021). https://doi.org/10.1016/j.seppur.2020.118030. 161
- [21] Y. Li, L. Liu, Q. Zhang, Y. Tang, M. Zhou, Highly cost-effective removal of 2,4 dichlorophenoxiacetic acid by peroxi-coagulation using natural air diffusion electrode,
 Electrochim. Acta. 377 (2021) 138079. https://doi.org/10.1016/j.electacta.2021.138079.
- 165 [22] F.H. Adnan, E. Mousset, S. Pontvianne, M.N. Pons, Mineral cathodic electroprecipitation and its kinetic modelling in thin-film microfluidic reactor during advanced electro-oxidation process, Electrochim. Acta. 387 (2021) 138487.
 168 https://doi.org/10.1016/j.electacta.2021.138487.
- *[23] F.H. Adnan, S. Pontvianne, M.N. Pons, E. Mousset, Unprecedented roles of submillimetric interelectrode distances and electrogenerated gas bubbles on mineral cathodic electro-precipitation: Modeling and interface studies, Chem. Eng. J. 431 (2022) 133413. https://doi.org/10.1016/j.cej.2021.133413.
- →First paper that highlight the detailed role of micro-distances in the inherent problem of
 mineral cathodic electroprecipitation during electrochemical advanced oxidation
 processes of water/wastewater
- 176 *[24] Q. Zhuo, X. Xu, S. Xie, X. Ren, Z. Chen, B. Yang, Y. Li, J. Niu, Electro-oxidation of Ni

- (II)-citrate complexes at BDD electrode and simultaneous recovery of metallic nickel by
 electrodeposition, J. Environ. Sci. (China). 116 (2022) 103–113.
 https://doi.org/10.1016/j.jes.2021.05.034.
- →First paper that combine electrodeposition with electrooxidation simultaneously for
 synergies of wastewater treatment and recovery
- *[25] W. Yang, M. Zhou, L. Ma, A continuous flow-through system with integration of electrosorption and peroxi-coagulation for efficient removal of organics, Chemosphere. 274 (2021) 129983. https://doi.org/10.1016/j.chemosphere.2021.129983.
- →One of the first article that propose multiple electroprocesses operated simultaneously in a
 single electrochemical cell, including electrosorption, electrocoagulation and electro Fenton.
- O. Ganzenko, P. Sistat, C. Trellu, V. Bonniol, M. Rivallin, M. Cretin, Reactive 188 [26] 189 electrochemical membrane for the elimination of carbamazepine in secondary effluent wastewater treatment plant. Chem. Eng. J. 419 from (2021)1-9. 190 https://doi.org/10.1016/j.cej.2021.129467. 191
- [27] C. Yang, Y. Fan, S. Shang, P. Li, X. yan Li, Fabrication of a permeable SnO₂-Sb reactive anodic filter for high-efficiency electrochemical oxidation of antibiotics in wastewater, Environ. Int. 157 (2021). https://doi.org/10.1016/j.envint.2021.106827.
- **[28]S. Almassi, C. Ren, J. Liu, B.P. Chaplin, Electrocatalytic perchlorate reduction using an
 oxorhenium complex supported on a Ti₄O₇ reactive electrochemical membrane, Environ.
 Sci. Technol. (2022). https://doi.org/10.1021/acs.est.1c08220.
- 198 \rightarrow First paper that propose Ti₄O₇ for the successful electroreduction of perchlorate
- [29] K. Kim, S. Cotty, J. Elbert, R. Chen, C.H. Hou, X. Su, Asymmetric redox-polymer interfaces for electrochemical reactive separations: Synergistic capture and conversion of arsenic, Adv. Mater. 32 (2020) 1–20. https://doi.org/10.1002/adma.201906877.
- **[30]M. Sun, X. Wang, L.R. Winter, Y. Zhao, W. Ma, T. Hedtke, J. Kim, M. Elimelech,
 Electrified membranes for water treatment applications, ACS ES&T Eng. 1 (2021) 725–
 752. https://doi.org/10.1021/acsestengg.1c00015.
- →Critical review on reactive membranes proposition of applications and improvement in water
 and wastewater area
- 207[31]B.P. Chaplin, The prospect of electrochemical technologies advancing worldwide water208treatment, Acc. Chem. Res. 52 (2019) 596–604.209https://doi.org/10.1021/acs.accounts.8b00611.
- [32] C. Trellu, B.P. Chaplin, C. Coetsier, R. Esmilaire, S. Cerneaux, C. Causserand, M.
 Cretin, Electro-oxidation of organic pollutants by reactive electrochemical membranes,
 Chemosphere. 208 (2018) 159–175.
 https://doi.org/10.1016/j.chemosphere.2018.05.026.
- [33] M.A. Oturan, Outstanding performances of the BDD film anode in electro-Fenton process: Applications and comparative performance, Curr. Opin. Solid State Mater. Sci.
 216 25 (2021) 100925. https://doi.org/10.1016/j.cossms.2021.100925.
- 217 [34] P.-A. Michaud, Comportement anodique du diament synthétique dopé au bore, PhD
 218 thesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), 2002.

- E. Mousset, N. Oturan, M.A. Oturan, An unprecedented route of OH radical reactivity 219 [35] evidenced by an electrocatalytical process: Ipso-substitution with perhalogenocarbon 220 compounds. Appl. Catal. В Environ. 226 (2018)135–146. 221 https://doi.org/10.1016/j.apcatb.2017.12.028. 222
- [36] E. Mousset, K. Doudrick, A review of electrochemical reduction processes to treat
 oxidized contaminants in water, Curr. Opin. Electrochem. 22 (2020) 221–227.
 https://doi.org/10.1016/j.coelec.2020.07.008.
- [37] S. Garcia-Segura, M. Lanzarini-Lopes, K. Hristovski, P. Westerhoff, Electrocatalytic
 reduction of nitrate: Fundamentals to full-scale water treatment applications, Appl. Catal.
 B Environ. 236 (2018) 546–568. https://doi.org/10.1016/j.apcatb.2018.05.041.
- [38] L. Hua, H. Cao, Q. Ma, X. Shi, X. Zhang, W. Zhang, Microalgae filtration using an electrochemically reactive ceramic membrane: Filtration performances, fouling kinetics, and foulant layer characteristics, Environ. Sci. Technol. 54 (2020) 2012–2021. https://doi.org/10.1021/acs.est.9b07022.
- [39] C. Zhang, D. He, J. Ma, W. Tang, T.D. Waite, Faradaic reactions in capacitive deionization (CDI) problems and possibilities: A review, Water Res. 128 (2018) 314–330. https://doi.org/10.1016/j.watres.2017.10.024.
- **[40]F. He, A. Hemmatifar, M.Z. Bazant, T.A. Hatton, Selective adsorption of organic anions
 in a flow cell with asymmetric redox active electrodes, Water Res. 182 (2020) 115963.
 https://doi.org/10.1016/j.watres.2020.115963.
- 239 →first flow system with asymmetric redox active polymer electrodes for electrochemically 240 mediated and highly selective adsorption and desorption of organic anions
- [41] A. Shahedi, A.K. Darban, F. Taghipour, A review on industrial wastewater treatment via
 electrocoagulation processes, Curr. Opin. Electrochem. 22 (2020) 154–169.
 https://doi.org/10.1016/j.coelec.2020.05.009.
- [42] J.N. Hakizimana, B. Gourich, M. Chafi, Y. Stiriba, C. Vial, P. Drogui, J. Naja,
 Electrocoagulation process in water treatment: A review of electrocoagulation modeling
 approaches, Desalination. 404 (2017) 1–21. https://doi.org/10.1016/j.desal.2016.10.011.
- [43] B. Boye, E. Brillas, A. Buso, G. Farnia, C. Flox, M. Giomo, G. Sandonà, Electrochemical removal of gallic acid from aqueous solutions, Electrochim. Acta. 52 (2006) 256–262.
 https://doi.org/10.1016/j.electacta.2006.04.062.
- [44] Y.G. Asfaha, A.K. Tekile, F. Zewge, Hybrid process of electrocoagulation and electrooxidation system for wastewater treatment: A review, Clean. Eng. Technol. 4 (2021) 100261. https://doi.org/10.1016/j.clet.2021.100261.
- [45] P. V. Nidheesh, J. Scaria, D.S. Babu, M.S. Kumar, An overview on combined
 electrocoagulation-degradation processes for the effective treatment of water and
 wastewater, Chemosphere. 263 (2021) 127907.
 https://doi.org/10.1016/j.chemosphere.2020.127907.
- [46] C. Deslouis, I. Frateur, G. Maurin, B. Tribollet, Interfacial pH measurement during the reduction of dissolved oxygen in a submerged impinging jet cell, J. Appl. Electrochem.
 259 27 (1997) 482–492. https://doi.org/10.1023/A:1018430224622.
- [47] C. Barchiche, C. Deslouis, D. Festy, O. Gil, P. Refait, S. Touzain, B. Tribollet,
 Characterization of calcareous deposits in artificial seawater by impedance techniques:

- 262 3 Deposit of CaCO₃ in the presence of Mg(II), Electrochim. Acta. 48 (2003) 1645–
 263 1654. https://doi.org/10.1016/S0013-4686(03)00075-6.
- [48] Z. Belarbi, J. Gamby, L. Makhloufi, B. Tribollet, Nucleation-growth process of calcium carbonate on rotating diskelectrode in mineral potable water, Electrochim. Acta. 109 (2013) 623–629. https://doi.org/10.1016/j.electacta.2013.07.148.
- [49] C. Carré, A. Zanibellato, M. Jeannin, R. Sabot, P. Gunkel-Grillon, A. Serres,
 Electrochemical calcareous deposition in seawater. A review, Environ. Chem. Lett. 18
 (2020) 1193–1208. https://doi.org/10.1007/s10311-020-01002-z.
- Z. Belarbi, B. Sotta, L. Makhloufi, B. Tribollet, J. Gamby, Modelling of delay effect of calcium carbonate deposition kinetics on rotating disk electrode in the presence of green inhibitor, Electrochim. Acta. 189 (2016) 118–127. https://doi.org/10.1016/j.electacta.2015.12.089.
- [51] F.H. Adnan, M.-N. Pons, E. Mousset, Thin film microfluidic reactors in electrochemical advanced oxidation processes for wastewater treatment: A review on influencing parameters, scaling issues and engineering considerations, Electrochem. Sci. Adv. Accepted (2022) e2100210.
- Y. Lei, J.C. Remmers, M. Saakes, R.D. Van Der Weijden, C.J.N. Buisman, Is there a precipitation sequence in municipal wastewater induced by electrolysis?, Environ. Sci. Technol. 52 (2018) 8399–8407. https://doi.org/10.1021/acs.est.8b02869.
- [53] Y. Lei, I. Hidayat, M. Saakes, R. van der Weijden, C.J.N. Buisman, Fate of calcium, magnesium and inorganic carbon in electrochemical phosphorus recovery from domestic wastewater, Chem. Eng. J. 362 (2019) 453–459. https://doi.org/10.1016/j.cej.2019.01.056.
- [54] Y. Lei, B. Song, R.D. Van Der Weijden, M. Saakes, C.J.N. Buisman, Electrochemical induced calcium phosphate precipitation: Importance of local pH, Environ. Sci. Technol.
 51 (2017) 11156–11164. https://doi.org/10.1021/acs.est.7b03909.
- [55] V. Rai, D. Liu, D. Xia, Y. Jayaraman, J.P. Gabriel, Electrochemical approaches for the recovery of metals from electronic waste : A critical review, Recycling. 6 (2021) 53.
- [56] H. Jiao, Z. Qu, S. Jiao, Y. Gao, S. Li, W. Song, M. Wang, H. Chen, D. Fang,
 Quantificational 4D visualization of industrial electrodeposition, Adv. Sci. 8 (2021)
 2101373. https://doi.org/10.1002/advs.202101373.
- L. Yang, W. Hu, Z. Chang, T. Liu, D. Fang, P. Shao, H. Shi, X. Luo, Electrochemical 293 [57] recovery and high value-added reutilization of heavy metal ions from wastewater: Recent 294 advances and future 106512. trends, Environ. Int. 152 (2021)295 https://doi.org/10.1016/j.envint.2021.106512. 296
- **[58]J. Newman, N.P. Balsara, Electrochemical systems, 4th ed, Wiley, 2021.
 https://www.wiley.com/en-us/Electrochemical+Systems%2C+4th+Edition-p 9781119514602.
- \rightarrow Last edition of the state-of-the art textbook on electrochemical system and engineering.
- 301 [59] F. Coeuret, Ingénierie des procédés électrochimiques, Ellipses, Paris (France), 2003.
- F. Goodridge, K. Scott, F. Goodridge, K. Scott, Electrolytic reactor design, selection, and scale-up, Electrochem. Process Eng. (1995) 177–244. https://doi.org/10.1007/978-

304

- 1-4899-0224-5 5.
- F. Goodridge, A.R. Wright, Porous flow-through and fluidized-bed electrodes, in:
 Compr. Treatise Electrochem., 1983: pp. 393–443.
- 307 [62] D. Pletcher, F.C. Walsh, Industrial electrochemistry, 1993. https://doi.org/10.1007/978 308 94-011-2154-5.
- 309 [63] F.C. Walsh, C. Ponce de León, Progress in electrochemical flow reactors for laboratory
 310 and pilot scale processing, Electrochim. Acta. 280 (2018) 121–148.
 311 https://doi.org/10.1016/j.electacta.2018.05.027.
- S. Bebelis, K. Bouzek, A. Cornell, M.G.S. Ferreira, G.H. Kelsall, F. Lapicque, C. Ponce
 de León, M.A. Rodrigo, F.C. Walsh, Highlights during the development of
 electrochemical engineering, Chem. Eng. Res. Des. 91 (2013) 1998–2020.
 https://doi.org/10.1016/j.cherd.2013.08.029.
- 316 [65] J. Newman, Current distribution and mass transfer in electrochemical systems, (1967).
- J. Newman, Engineering design of electrochemical systems, Ind. Eng. Chem. 60 (1968)
 12–27. https://doi.org/10.1021/ie50700a005.
- J. Newman, C.W. Tobias, Theoretical analysis of current distribution in porous
 electrodes, J. Electrochem. Soc. 109 (1962) 1183. https://doi.org/10.1149/1.2425269.
- [68] G. Dai, L. Zhang, Y. Liao, Y. Shi, J. Xie, F. Lei, L. Fan, Multi-scale model for describing
 the effect of pore structure on carbon-based electric double layer, J. Phys. Chem. C. 124
 (2020) 3952–3961. https://doi.org/10.1021/acs.jpcc.9b10587.
- M.C. Henstridge, E.J.F. Dickinson, R.G. Compton, On the estimation of the diffuse [69] 324 double layer of carbon nanotubes using classical theory: Curvature effects on the Gouy-325 167-170. 326 Chapman limit, Chem. Phys. Lett. 485 (2010)https://doi.org/10.1016/j.cplett.2009.12.034. 327
- J. Yang, A. Gallegos, C. Lian, S. Deng, H. Liu, J. Wu, Curvature effects on electricdouble-layer capacitance, Chinese J. Chem. Eng. 31 (2021) 145–152. https://doi.org/10.1016/j.cjche.2020.10.039.
- [71] F. Valero, R. Arbós, Desalination of brackish river water using Electrodialysis Reversal
 (EDR). Control of the THMs formation in the Barcelona (NE Spain) area, Desalination.
 253 (2010) 170–174. https://doi.org/10.1016/j.desal.2009.11.011.
- E. Mousset, Interest of micro-reactors for the implementation of advanced electrocatalytic oxidation with boron-doped diamond anode for wastewater treatment,
 Curr. Opin. Electrochem. 32 (2022) 100897.
 https://doi.org/10.1016/j.coelec.2021.100897.
- J.F. Pérez, J. Llanos, C. Sáez, C. López, P. Cañizares, M.A. Rodrigo, Towards the scale 338 [73] up of a pressurized-jet microfluidic flow-through reactor for cost-effective electro-339 generation of Clean. Prod. 211 (2019)1259-1267. 340 H₂O₂. J. https://doi.org/10.1016/j.jclepro.2018.11.225. 341
- J.F. Pérez, J. Llanos, C. Sáez, C. López, P. Cañizares, M.A. Rodrigo, Development of an 342 [74] innovative approach for low-impact wastewater treatment: A microfluidic flow-through 343 344 electrochemical reactor. Chem. Eng. J. 351 (2018)766-772. https://doi.org/10.1016/j.cej.2018.06.150. 345

- P. Ma, H. Ma, S. Sabatino, A. Galia, O. Scialdone, Electrochemical treatment of real
 wastewater. Part 1: Effluents with low conductivity, Chem. Eng. J. 336 (2018) 133–140.
 https://doi.org/10.1016/j.cej.2017.11.046.
- [76] O. Scialdone, C. Guarisco, A. Galia, G. Filardo, G. Silvestri, C. Amatore, C. Sella, L.
 Thouin, Anodic abatement of organic pollutants in water in micro reactors, J.
 Electroanal. Chem. 638 (2010) 293–296.
 https://doi.org/10.1016/j.jelechem.2009.10.031.
- F.H. Adnan, M.-N. Pons, E. Mousset, Mass transport evolution in microfluidic thin film
 electrochemical reactors: New correlations from millimetric to submillimetric
 interelectrode distances, Electrochem. Commun. 130 (2021) 107097.
 https://doi.org/10.1016/j.elecom.2021.107097.
- E. Mousset, M. Puce, M.-N. Pons, Advanced electro-oxidation with boron-doped diamond for acetaminophen removal from real wastewater in a microfluidic reactor Kinetics and mass transfer studies, ChemElectroChem. 6 (2019) 2908–2916.
 https://doi.org/10.1002/celc.201900182.
- **[79]E. Mousset, Unprecedented reactive electro-mixing reactor: Towards synergy between
 micro- and macro-reactors?, Electrochem. Commun. 118 (2020) 106787.
 https://doi.org/10.1016/j.elecom.2020.106787.
- →First paper implementing rotating electrochemical (micro)-cells in a macro-reactor, by
 initiating the "reactive electro-mixing" concept
- 366 [80] S. Ben Kacem, D. Clematis, S.C. Elaoud, A. Barbucci, M. Panizza, A flexible
 367 electrochemical cell setup for pollutant oxidation in a wide electrical conductivity range
 368 and its integration with ultrasound, J. Water Process Eng. 46 (2022) 1–7.
 369 https://doi.org/10.1016/j.jwpe.2022.102564.
- 370 [81] J. Newman, New perspectives on turbulence, Russ. J. Electrochem. 56 (2020) 795–808.
- 371 [82] W. Schmickler, Double layer theory, J. Solid State Electrochem. 24 (2020) 2175–2176.
 372 https://doi.org/10.1007/s10008-020-04597-z.
- A. Oleinick, I. Svir, C. Amatore, A few key theoretical issues of importance in modern molecular electrochemistry, Curr. Opin. Electrochem. 13 (2019) 33–39.
 https://doi.org/10.1016/j.coelec.2018.10.008.
- S. Xue, S. Watzele, V. Čolić, K. Brandl, B. Garlyyev, A.S. Bandarenka, Reconsidering
 water electrolysis: Producing hydrogen at cathodes together with selective oxidation of
 n-butylamine at anodes, ChemSusChem. 10 (2017) 4812–4816.
 https://doi.org/10.1002/cssc.201701802.
- [85] S.O. Ganiyu, C.A. Martínez-Huitle, The use of renewable energies driving
 electrochemical technologies for environmental applications, Curr. Opin. Electrochem.
 22 (2020) 211–220. https://doi.org/10.1016/j.coelec.2020.07.007.
- [86] S.O. Ganiyu, C.A. Martínez-Huitle, M.A. Rodrigo, Renewable energies driven
 electrochemical wastewater/soil decontamination technologies: A critical review of
 fundamental concepts and applications, Appl. Catal. B Environ. 270 (2020) 118857.
 https://doi.org/10.1016/j.apcatb.2020.118857.