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Figure 1: Lattice GE Bracket grown by our method on a
mesh of 308 × 518 × 833 regular hexahedra.

Abstract

Lattice structures can present advantageous mechanical
properties while remaining remarkably lightweight. Precise
lattice design can however be tricky to set up with classical
3D modeling methods as it involves very fine details. Inter-
estingly, natural porous structures can present such lattice-
like or membrane-like features which motivates to seek for
more bio-inspired approaches to microstructure design. In
this paper we present a novel method to grow lattice-like
and membrane-like structures within an arbitrary shape and
aligned along an oriented field. Our method relies on the

use of a dedicated anisotropic Reaction-Diffusion system
guided by an orthotropic diffusion tensor field. Assuming
for instance the diffusion tensor to be related to the stress
analysis of a given shape allows to generate emerging stripes
patterns aligned along each one of the principal stress direc-
tions independently. A globally coherent mechanical model
conforming to the initial shape boundary and infilled with
oriented microstructures can therefore be synthesized. Fur-
ther, we demonstrate the capability of this approach to handle
other types of oriented fields such as obtained through op-
timization of material directions in scenarios with multiple
load-cases. Our approach relies on spatially and tempo-
rally local operations allowing for efficient parallelization.
This permits user-interaction and automated adaptation of
the design, even for fine meshes over large volumes. For in-
stance, a designer can locally erase or "draw" over the struc-
ture and let it regrow and adapt as well as enforce regions
to be deliberately full or empty. The proposed approach
yields smooth and conformal oriented anisotropic geomet-
rical patterns. This is related to recent effort in the Structural
Optimization community on the topic of optimized oriented
infills andmicrostructure de-homogenization. One of the re-
sulting designs is validated by means of a full scale general
nonlinear analysis showcasing the advantageous properties
of oriented microstructures for stability and robustness to
buckling.

Keywords: Reaction-Diffusion, Anisotropy, Topology
Optimization, Additive Manufacturing, Micro-structures.

1 Introduction
Recent advances in AdditiveManufacturing and 3D Printing
allows for high shape complexity that leads to seek for new
lightweight designs. Hence there has been a growing in-
terest in design of optimized multi-scale structures recently
reviewed by Wu et al. (2021a). Simplified methods to gen-
erate such structures often rely on infilling 3D shapes with
regular microstructures.
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In such case the infill pattern presents typically anisotropic
mechanical properties (e.g. a regular hollowed cubic cell is
stiffer along its axes than along other directions) which can
be desirable to enhance the mechanical performance of the
global shape. This approach has a major shortcoming in that
the cells are aligned with the model axis directions and not
with the load paths, making for poor structural performance.
In addition the microstructure has to be enclosed by a load-
bearing shell, as the cells cannot mesh conformally to an
outer boundary. In short, this limits the solution space and
thus the structure properties.
Let us consider the case of a design region undergoing

a single-load case. In such case, and as long as long as
the geometrical constraints make this possible (Podersen
(1998); Pedersen (2000)), the stress does not exhibit lo-
cal concentration within the shape, and it is known that a
stiffness-optimal structure can be made by aligning the lo-
cal orientation of an orthotropic material properties with
the principal stresses (Pedersen (1989)). In our case, we
will make it from a hexahedral grid – that we designate
as lattice – with edges locally aligned along the principal
stress directions. However, computing a continuous lattice
that locally adapts to the stress direction for arbitrary design
boundaries is a challenging problem. Our growth-based ap-
proach is able to generate such generic oriented-lattice for
a given design region and stress distribution, and is there-
fore able to generate a stiffness-optimized structure when
the optimality-assumptions are met. But our method can
further be extended to more general – although not neces-
sarily optimal – cases where the shape exhibits local stress
concentration while still providing coherent oriented mi-
crostructure locally mixed with solid material regions. In
addition, the same framework can be used to generate ori-
ented membranes instead trusses.
According to Jakob et al. (2015), meshing algorithms able

to generate hexahedral-grid with spatially varying orienta-
tion divide into twomajor classes: local and global methods.
The former are usually simpler and scalable but tend to in-
troduce many singularities, i.e., points in the output mesh
where the connectivity deviates from that of a regular lattice
like T-junctions, and they do not usually support alignment
of the output mesh with surface features (Lai et al. (2008)).
The latter solve an optimization problem whose size de-
pends on the mesh, increasing quality at the sacrifice of
scalability (Kälberer et al. (2007); Bommes et al. (2009);
Ebke et al. (2014)). Although our method relies on local
computations, the structure is grown from a small seed thus
leaving few topological defects in the final structure. It also
makes it easy for the final shape to capture the surface fea-
tures while still allowing fast editing by local modifications
of the underlying tensor field. The Structural Optimization
community already approached this problem in the context
of microstructure de-homogenization. Assuming that our
structure has been parameterized with multiple parameters
so that their homogenized material properties have been op-
timized, the de-homogenization consists in reconstructing
a manufacturable structure made of discrete elements. It
could be noted that our generative approach can find appli-
cation in the context of de-homogenization in order to build
efficiently discrete elongated and oriented structures.
Some natural materials show remarkable mechanical per-

formance based on this stress orientation property. Wood,
for instance, presents a natural polar anisotropy provided by
evolution, being most stiff along the grain than through its
radial and circumferential directions (Wood (1960)). Hence
the study of natural shape formation as well as morphogen-
esis gives interesting prospects for optimal design although
fewworks attempt to inspire frommorphogenesis in the field
of structural optimization. Starting from this observation we
propose to use a model of anisotropic Reaction/Diffusion
because of its ability to grow patterns along a desired orien-
tation.
In this paper, we describe a novel bio-inspired method

to design conforming lattice-like and membrane-like struc-
tures. Our method divides into two major steps. The first
step proposes to generate intermediate structures with pat-
terns oriented by an underlying tensor field and limited by a
prescribed 3D shape with a growing process. This growth
phase is controlled by an anisotropic Reaction/Diffusion
model which is able to leave some solid material in the
areas where orientation singularities can occur. Each prin-
cipal tensor direction of the tensor field is independently
considered from the others and converted to an adapted dif-
fusion field allowing to synthesize an oriented structure.
The second step starts by applying some filter to the dif-
ferent structures to operate on the thickness of the oriented
structures before combining them with Boolean operations
in a similar way than Geoffroy-Donders et al. (2020). An
overview of the method can be seen Fig. 2 which shows sev-
eral steps of the growth of the final structure for a 4-legged
stool scenario.
Our contributions are:

• A general method for designing field conformal lattice-
like andmembrane-like structures, compatible with the
workflow of topology optimization

• Anovel approach based on a classic Reaction/Diffusion
model to design global structure using anisotropic
growth of microstructures

• A new process to design structures which constitute a
good trade-offbetween stiffness property and resistance
to buckling despite not being directly an optimizer of
these properties

The present article is organized as follows. We start
by a review of the related work in section 2. Section 3
gives an overview of the method. In section 4 and 5 the
two main steps of our method, the pattern growth and the
structure compilation, are detailed. Results with analysis
are discussed section 6.

2 Related work
Our work is among recent efforts on structural optimization
for 3D printing and topology optimization of multi-scale
structures which both became thriving fields in the past
decade. Because it borrows from a morphogenesis process
our approach also belongs to the cross field of bio-inspired
design.
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Figure 2: Growth steps for a 4-legged stool scenario with uniform downward loading on the top plate and zero displacement
at the bottom of the 4 legs on a mesh of 295 × 295 × 295 regular hexahedra.

2.1 Optimized design for Additive Manufac-
turing

Progresses in 3D printing gave a new dynamic to computa-
tional design (Alfaify et al. (2020)). Above all, structural
optimization has become remarkably popular in the field
(Liu et al. (2018b); Attene et al. (2018)). Common ap-
proaches relies on lightweight filling a predefined 3D shape
using various infill such as honeycomb structures (Ahsan
and Khoda (2021)), laminar structures (Stutz et al. (2022)),
lattice (Dong et al. (2017)), Voronoï cells (Martínez et al.
(2016); Lu et al. (2014)), bone-like porous structures (Wu
et al. (2018)) or othotropic foam (Martínez et al. (2017)).
Our work builds upon this design approach and proposes a
method to infill a prescribed 3D shape with lattice-like ma-
terial aligned with a desired local orientation while allowing
specific areas to remain completely solid.
Because our approach results from a diffusion process,

the structure smoothly meet the boundary surface of the
input 3D shape regardless of the local orientation hence no
additional treatment is required to obtain a conformal lattice
structure (Brennan-Craddock (2011); Nguyen et al. (2012))
nor to rely on an outer shell (Clausen et al. (2015, 2016);Wu
et al. (2017); Groen et al. (2019)). Furthermore the patterns
generated by the model of Reaction/Diffusion are properly
connected for well-chosen parameters specified in Sec. 4.4,
avoiding any branching regularization operated by Tricard
et al. (2020) or Elingaard et al. (2022).
Based on the principle that stress-aligned structure is best

for stiffness improvement (Michell (1904); Pedersen (1989);
Allaire and Kohn (1993)), Arora et al. (2019) proposed a
parametric method to design Michell trusses destined to be
3D printed. However their method is based on a global
parameterization which is computationally expensive, with
a high sparsity purpose, which makes their approach more
adapted to generate structures with few beams. Ours is
more suitable for a large number of cells and also provides
a filtering step allowing to link the thickness of the oriented
patterns to their stress direction.

2.2 Homogenization-based Topology Opti-
mization

Thanks to the theory of homogenization (Bensoussan et al.
(1979)), able to describe the macroscale (homogenized)
properties of periodic compositemicrostructures, it has been
established that a class of sequential laminates, called the
rank-𝑁 laminates, and composed of an infinity of spatially
geometric patterns spanning multiple length scales, are nec-
essary to achieve ultimate stiffness (Francfort and Murat

(1986); Allaire and Aubry (1999)). The seminal paper by
Bendsøe and Kikuchi (1988) then introduced an interpre-
tation with a material model composed of infinitely small
square cells with rectangular holes and showed that near-
optimal structures could be generated by optimizing the
lengths of the rectangle as well as the orientation of the
cells.
However, because of manufacturing constraints at the

time, mono-scale approaches such as the SIMP method
(Solid Isotropic Material with Penalization) were brought
in, optimizing the distribution of a homogeneous isotropic
material (Bendsøe (1989); Bendsøe and Sigmund (1999))
and convenient to implement (Sigmund (2001); Andreassen
et al. (2011)). Lastly, the emergence of 3D printing tech-
nologies allowed to actually manufacture objects designed
with such method but also gave a new dynamic to the area
of research of optimized multi-scale structures.
According to Wu et al. (2021a) two main strategies can

be adopted to design multi-scale structures with topology
optimization. The first approach consists in performing a
full-scale topology optimization on a high resolution grid to
let multi-scale features appear naturally (Liu et al. (2018a)).
Such method can be combined with the enforcement of
porosity using the now widely known local volume con-
straints (Wu et al. (2018)) and further controlled with vary-
ing fields (Schmidt et al. (2019)). The second strategy,
referred to as multi-scale approach, assumes a separation
of the different length scales. For instance a common ap-
proach uses parameterized unit-cells with multiple param-
eters (including rotation to approach rank-𝑁 laminate de-
sign) and numerically optimizes these homogenized mate-
rial properties. From this optimization, reconstructing a
global connected and manufacturable structure is called the
de-homogenization process. Even when restricted to peri-
odic microstructures, this constitutes one challenging issue,
especially because the stress field has a rotational symmetry
of 𝜋. The most common methods which has been developed
relies on the deformation of a periodic grid by a diffeo-
morphism with a cosine wave to project the microstructures
(Pantz and Trabelsi (2008); Groen and Sigmund (2018); Al-
laire et al. (2019)). Not only that these methods should treat
well the singularities caused by the stress field (Stutz et al.
(2020)), their extensions to 3D bring other issues given that
the principal stress directions are not well-ordered in 3D,
requiring additional regularization steps (Geoffroy-Donders
et al. (2020); Groen et al. (2020)). A different approach
proposed by Wu et al. (2021b) consists to de-homogenizing
a structure by finding a lattice structure whose edges are
locally aligned with the optimized directions, inspired by
field-aligned meshing from the Computer Graphics com-

3



munity (Jakob et al. (2015); Gao et al. (2017)).

Our method uses the properties of the anisotropic diffu-
sion to grow microstructures aligned along a tensor field.
In this way we avoid the problem caused by the rotational
symmetry of 𝜋 since the oriented growth happens on the two
sides of a same direction. We show in the Results section
that our approach can be employed as a de-homogenization
method, in place of Elingaard et al. (2022) process, and give
comparable results for rank-2 laminates.

2.3 Bio-Inspired Modeling

Multi-scale structures are prevalent in nature and can be
found in various vegetals and animal bodies (Lakes (1993);
Fratzl and Weinkamer (2007)). While their underlying pro-
cesses of conception are not always understood, they gen-
erally offer remarkable mechanical properties. Lately this
led to the emergence of a new field referred as Bio-Inspired
Modeling or Bio-Inspired Design. The latter is commonly
used in the context of structural design for Additive Manu-
facturing (Du Plessis et al. (2019); Podroužek et al. (2019);
Zhang et al. (2020)). We restrict here to the field of 3D
modeling otherwise terms such asMorphogenetic Engineer-
ing (Doursat et al. (2013)) or Computer-Aided Biomimetics
(Kruiper et al. (2016, 2018)) can be employed for more
general problem solving.

Compared to classical topology optimization, which can
generate organic shapes using only mathematical optimiza-
tion, Bio-Inspired Modeling finds its roots in the field of
morphogenesis, and aims to use natural processes to pro-
duce optimized design. The interdisciplinary character of
the field makes it difficult to regard it as a unique design pro-
cess yet it is more a set of various approaches using distinct
representations and occurring at different scales (Chaturvedi
et al. (2005)). For instance, pattern formation can be de-
scribed by numbers of approaches from biology, chemistry,
physics, mathematics or computer graphics. In a seminal
paper, Turing (1952) accounts pattern formation in nature
to a Reaction/Diffusion mechanism. Because they are also
easy to implement (Hutton et al. (2015)), various models
of Reaction/Diffusion have been proposed in the literature
(Murray (2001)) to describe the formation of specific pat-
terns (FitzHugh (1961); Nagumo et al. (1962); Hagberg and
Meron (1994); Kobayashi (1993); Kawasaki et al. (1997);
Sanal (2014)). For our purpose we chose to use a model of
Reaction/Diffusion introduced by Gray and Scott (1984) for
their ability to generate oriented stripes whose direction can
be controled through anisotropic diffusion.

Finally we should note that the Reaction/Diffusion equa-
tion has been used in level-set Topology Optimization tech-
niques to directly drive the design (Yamada et al., 2010)
(Choi et al., 2011) (Emmendoerfer Jr and Fancello, 2016),
which is fairly different from what we present here. Only
the recent work from Zhou et al. (2022) approaches what is
presented here.

3 Method Overview

3.1 Outline
Let us consider a rectangular domain𝛀, subset of R2 or R3,
representing the domain of definition of the three following
fields used as inputs of our method as illustrated in Fig 3-
top. First the scalar field 𝜌(x ∈ Ω) ∈ [0, 1], describes an
initial notion of material density at each position in 𝛀. For
a given isovalue 𝑖𝑠𝑜 ∈]0, 1[, the domain implicitly defined
by 𝜌(x) > 𝑖𝑠𝑜 corresponds to the general appearance of the
3D shape where the micro-structure should be synthesized,
and will be designated as infill space. Second, a tensor field
�(x ∈ Ω) (for instance associated to the stress tensor), whose
principal directions are considered to be the desired local
orientation of the microstructures. Third, another scalar
field Γ(x ∈ Ω) ∈ [0, 1] called infill map used to indicate
the local regions to infill preferentially with solid material
instead of lattice microstructures.
Note that these inputs such as 𝜌 and � can typically be

computed using topology optimization approaches, while
we propose an automatic computation of Γ as described in
Sec. 3.2. All inputs and intermediate field values are stored
on a discretized grid, and we may pre-process these inputs
in up-sampling if needed their values by interpolation to any
grid resolution adapted to our expected lattice microstruc-
ture.
The output of our approach is also described as a scalar

field S𝜌,�,Γ (x ∈ Ω) ∈ [0, 1]. The resulting shape surface is
described as an isosurface of S which can be computed typ-
ically using the Marching Cubes or Dual Contouring algo-
rithms when a triangular mesh is expected for visualization
and manufacturing purpose. This surface represents a hy-
brid structure mostly filled with lattice aligned with both the
tensor field directions and the boundary of the infill space.
More precisely, at the boundary the lattice remains oriented
according the tensor field while shaped by the outer shell.
The core of our algorithm lies in the two major steps
(RD) and (B). Step (RD) is the actual anisotropic Reac-
tion/Diffusion process allowing to synthesize intermediate
scalar fields with locally oriented patterns. We compute 2
(resp. 3) independent processes in 2D (resp. 3D), while
considering for each of them one of the respective tensor
direction to be the main diffusion direction. The anisotropic
Reaction/Diffusion patterns have a lattice-like structure in
2D, and a membrane-like structure in 3D, and are restricted
to grow in the regions specified by 𝜌 as explained in Sec. 4.
Once these intermediate fields are generated, the final struc-
ture is generated in step (B). To this end, we first apply
a filter (F ) on each of the intermediate fields in order to
steepen the variations of the field as well as thickening or
thinning the patterns depending on their directions. The
output field S is finally obtained in combining the previous
filtered fields using Boolean operations in order to gener-
ate a single structure from the individual oriented patterns.
These last steps are described in Sec. 5.

3.2 Inputs
This section describes with more details the automatic com-
putation we followed to generate the input fields 𝜌, �, Γ.
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Figure 3: Global pipeline of our method. The first step (RD) designates the Reaction/Diffusion, the intermediate step
(F ) represents a filtering process while the final step (B) is constituted of boolean operations

While these fields can be provided using arbitrary methods,
wewill describe them as being automatically computed from
a topology optimization as it provides an interesting case of
application in the context of structural optimization.
Following the latest works on the topic (Elingaard et al.

(2022); Stutz et al. (2022); Groen et al. (2021); Stutz et al.
(2020)), these fields can be given directly by the results from
a homogenization-based topology optimization of parame-
terized laminates microstructures. Examples using such
inputs are shown in Sec. 6.8. However we adopt here a more
straightforward model for most of our examples, which can
fully demonstrate the capabilities of the approach.

3.2.1 Infill Space 𝜌

The infill space is a density field describing the region in
which the material infill should be present. We adopt a sim-
ple approach where this density field 𝜌 is the direct output of
a density-based compliance topology optimization subject
to a global volume constraint. We use thematerial interpola-
tion scheme known as the Solid Isotropic Material with Pe-
nalization (SIMP) approach (Bendsøe and Sigmund, 1999)
in conjunction with length-scale filters (Sigmund, 1997) to
obtain a well-defined boundary for the infill region. The
density per element is bounded as follows:

0 ≤ 𝜌(x) ≤ 1, ∀x ∈ 𝛀 (1)

A numerical optimization on a low resolution grid can be
conducted following Andreassen et al. (2011). An example
of results can be seen in Fig. 4b. The optimization scenario
with boundary conditions and loads depicted at the top of
Fig. 4a is referred to as the cantilever problem, a de facto
standard test case in the literature.

3.2.2 Tensor field �

The stress tensor field �(x ∈ 𝛀) can then be extracted from
this preliminary optimization. For each element the tensor is
diagonalizable in an orthogonal basis with real eigenvalues:

� = R�R𝑇 with

� = diag(𝜎𝑖)𝑖∈È1,𝑑É, |𝜎𝑖 | ≥ |𝜎𝑖+1 |

R = (v𝑖)𝑖∈È1,𝑑É, ‖v𝑖 ‖ = 1
(2)

with 𝜎𝑖 the principal stresses, v𝑖 their associated directions
(i.e. the eigenvectors) and 𝑑 ∈ {2, 3} the dimension consid-
ered (2 or 3).

(a) Design space, loads and
boundary conditions

(b) Density field 𝜌

(c) Stress rotation field R (d) Infill Map Γ�
Figure 4: Results for the Cantilever 2D on a 64 × 32 grid

The eigenvalues are called the principal stresses and their
associated eigenvectors form a rotation matrix which char-
acterizes the principal stress directions perpendicular to the
planes where the principal stresses act. Such rotation field
R(x) is shown Fig. 4c for the Cantilever2D.
Aswe aim to construct a lattice built upon this stress tensor

field, we seek for a certain regularity in the rotation field
R(x). This is not always the case where the orientation is
not clearly defined (𝜎𝑖 ≈ 0 or𝜎𝑖 ≈ 𝜎𝑗 ). Some regularization
steps can be necessary before using this tensor field as input
of our method. These steps are explained in the Appendix.

3.2.3 Infill Map Γ

The InfillMap indicates the areas to infill with homogeneous
material. It can be divided into two sub-maps: the first one
Γ𝑐 (x) is given by the designer constraints and the other one
Γ� (x) is derived from the previous rotation field.
This second map addresses an issue encountered when

the input stress field is locally isotropic, or is associated to
very low values. In this case, the ordering and direction
of the eigenvalues become meaningless, and the extracted
rotation field would exhibit discontinuities. As there is no
clear orientation to follow in these regions, we propose to
infill them with solid isotropic material.
To detect these regions, we propose an automatic compu-

tation assessing the local consistence of the alignment of all
eigenvectors using the value

𝑎(x) = 1
𝑁x𝑑

∑︁
y∈𝑁 (x)

∑︁
1≤𝑖≤𝑑

|v𝑖 (y) · v𝑖 (x) | (3)
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with 𝑁 (x) and 𝑁x respectively the set and count of neigh-
bours of the element situated in x. We can then define Γ� (x)
as:

Γ� (x) = (1 − 𝑎(x))𝜌(x) (4)

Such map for the cantilever 2D problem can be seen on
Fig. 4d. The global map can then be written:

Γ(x) = (Γ𝑐 ∪ Γ�) (x) = max(Γ𝑐 (x), Γ� (x)) (5)

4 Pattern Growth
The concept of Turing patterns was first introduced by Alan
Turing (1952) in a foundational paper. In this paper, he de-
scribes how natural patterns such as stripes, spots, spirals,
fronts, targets, hexagons may arise naturally out of a ho-
mogeneous and uniform state. The original theory explains
pattern formation through a Reaction/Diffusion mechanism
and as of this day it remains a major theory in theoretical
biology used to model embryonic development as well as
skin pigmentation.

4.1 The Gray-Scott Model
In this paper we are mainly focused on a model which was
first introduced by Gray and Scott (1984) to describe the
kinetics of a chemical reaction. The model proposes to
characterize the evolution of the concentrations 𝑢(x, 𝑡) and
𝑣(x, 𝑡) of two reactive chemical species 𝑈 and 𝑉 (directly
linked to the visual patterns that can appear) by the following
set of equations:

𝜕𝑢
𝜕𝑡

= ∇ · (�𝑢∇𝑢) + 𝛾 𝑓 (𝑢, 𝑣)

𝜕𝑣
𝜕𝑡

= 𝑑∇ · (�𝑣∇𝑣) + 𝛾𝑔(𝑢, 𝑣)
(6)

where �𝑢 and �𝑣 represent the diffusion tensors of the two
species, 𝑑 =

𝐷𝑣

𝐷𝑢
the diffusion ratio between the two species,

and 𝛾 a parameter which controls the characteristic length
of the pattern.
In the original model the chemical 𝑈 is added in the

environment at a feed rate 𝐹 while the chemical𝑉 is removed
at a kill rate 𝑘 . Both chemicals diffuse but 𝑈 diffuses faster
than 𝑉 (𝑑 < 1) to observe patterns. The reaction kinetics is
hence controlled by the following functions:

𝑓 (𝑢, 𝑣) = −𝑢𝑣2 + 𝐹 (1 − 𝑢)

𝑔(𝑢, 𝑣) = 𝑢𝑣2 − (𝑘 + 𝐹)𝑣
(7)

Here we are only interested in this model as a tool
to generate smooth oriented patterns through the integra-
tion of the PDE. The isotropic form of this equation, for
�𝑢 = �𝑣 = 1, is a case study for pattern formation through
Reaction/Diffusion in the literature. An example of typical
2D Gray-Scott pattern is shown Fig. 5.
Starting from this isotropic form, one need to control

these patterns for the purpose of designing anisotropic mi-
crostructures. First, the pattern growth should be restricted
inside a domain defined by a thresholding of the input Den-
sity Field 𝜌 (section 4.2). As a second constraint, pattern

Figure 5: A typical Gray-Scott isotropic pattern called
"worms" patterns: iso at 0.5 of the normalized concentration
of 𝑉 .

should be able to grow in accordance with the input Tensor
Field � (section 4.3). Then the parameters 𝐹 and 𝑘 should
be chosen wisely to generate connected structures as well
as letting specific areas homogeneous according to the input
Infill Map Γ (section 4.4).
In the following, the species (1 −𝑈) is considered as the

species of interest which means the density field generated
by (1 − 𝑢(x)) normalized between 0 and 1 is supposed to
shape the oriented structure.

4.2 Restriction to a design area
Pattern growth can be restricted to a design region 𝛀 =

{x, 𝜌(x) > 𝑠} (for 𝑠 chosen in ]0, 1[). There are differ-
ent options to enforce this constraint. Because (1 − 𝑈) is
considered as the species of interest, an absorbing condition
for the species 𝑉 is sufficient to restraint the growth, and we
propose the following formulation:

𝜕𝑢
𝜕𝑡

= ∇ · (�𝑢∇𝑢) + 𝛾 𝑓 (𝑢, 𝑣)

𝜕𝑣
𝜕𝑡

= 𝑑∇ · (�𝑣∇𝑣) + 𝛾𝑔(𝑢, 𝑣)1𝛀 − 𝜆(1 − 1𝛀)𝑣
(8)

where 1𝛀 (x) takes the value 1 if x ∈ 𝛀 and 0 otherwise.
We set 𝜆 > 0 and 𝜆 � 𝐹, 𝑘 such that the species 𝑉 as well
as the species (1−𝑈) are exponentially "killed" outside the
area of interest. This is the case Fig.6 for the cantilever in
the isotropic case.

Figure 6: Gray-Scott pattern restricted inside the region
where 𝜌(x) > 0.5

4.3 Anisotropic Growth
AnisotropicReaction/Diffusion can be tricky to handlewhen
using standard finite difference approaches on a grid. We
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start by explaining why and which choices and simplifica-
tions have been made to overcome these difficulties.

4.3.1 Anisotropic Reaction/Diffusion

(a) 𝜃 = 0 (b) 𝜃 = 𝜋
4

(c) 𝜃 = 𝜋
3 (d) 𝜃 = 𝜋

2
Figure 7: Patterns generated when the two species are equiv-
alently anisotropic

Anisotropic diffusion is numerically inaccurate when in-
tegrated with the finite differences on a regular grid for
anisotropy directions not aligned with the axis of the grid
(Umansky et al. (2005); Pérez-Grande et al. (2016); Meier
et al. (2010)). It’s very noticeable for extremely anisotropic
cases such as in plasmas (Batischev et al. (1999); Günter
et al. (2005)) and lots of methods have been proposed to
address this issue in these specific cases (Soler et al. (2020);
van Es et al. (2016); Tang andWang (2017); Yang andWang
(2019)). Although it is rarely mentioned, such inaccuracy
also impacts anisotropic Reaction/Diffusion systems, and
the non-linear term describing the chemical reaction even
amplifies this effect. Let us consider the example of a Gray
Scott model with two anisotropic species with �𝑢 = �𝑣 = �

such that the first eigenvalue of � is 5 times bigger than
the second one, and parameters (𝐹, 𝑘) chosen for produc-
ing worms patterns (note that there’s no reason to observe
Turing patterns in the general case where �𝑢 ≠ �𝑣 ). Fig.
7 shows some results obtained when the main anisotropic
direction is rotated along an angle 𝜃. While Fig 7a and 7d
exhibits highly oriented structure when the anisotropic di-
rection is aligned with the 𝑥 or 𝑦 axis of the grid, it is not
the case anymore when this direction follows an arbitrary
angle (Fig. 7b and 7c). In the later, a worm-like pattern is
still generated, but the alignment of the synthesized patterns
along the prescribed direction is clearly reduced compared
to the grid-aligned direction.
Only few works have proposed the use of anisotropic

Gray-Scott Reaction/Diffusion. Some were related to vector
field visualization (Sanderson et al. (2004)) or texture syn-
thesis (Witkin and Kass (1991); Kindlmann et al. (2000);
Sanderson et al. (2006)) but fall out our scope as they only
considered very small anisotropy magnitude. Others tack-

led specific anisotropy through a polar diffusive function
which favour the diffusion front toward a specific directions
in 2D (Kim and Lin (2007); Chi et al. (2016)), while not
considering a diffusive tensor in its general form.
Interestingly, and as noted in the 2D case by Malheiros

and Walter (2017), considering solely the species 𝑈 to be
anisotropic while letting 𝑉 isotropic (�𝑣 = identity) allows
to generate oriented patterns that are artifact free even when
basic explicit standard first-order discretization is used for
the numerical integration of the PDE.As illustrated in Fig. 9,
even for a small anisotropy (here the first eigenvalue is only
𝜉 = 1.2 time bigger than the second one), the synthesized
patterns remain coherently oriented and their shape are in-
dependent of the orientation of the anisotropy with respect
to the grid. While the method doesn’t guarantee numerical
accuracy, the orientation-independence of the pattern is suf-
ficient for our purpose and the approach has the advantage
to generalize trivially to 3D Reaction/Diffusion. We further
show in Fig.8b and 8f an example with spatially varying
orientation of the diffusion field (�𝑢). In this case, an initial
diffusion field is defined on a 11×11 grid with an anisotropy
𝜉 = 5 times superior on the main direction (red) than in the
secondary orthogonal direction (green). The field is then
interpolated on a refined grid in order to solve the Reac-
tion/Diffusion and generate the patterns with sufficient res-
olution. Note that the resulting patterns are always oriented
perpendicularly to the main direction of diffusion because
𝑈 diffuses faster than 𝑉 so the orientation is imposed by the
slowest direction of diffusion of𝑈.
To simplify the computation and avoid the evaluation

of the derivative of �, we suppose that the field � vary
sufficiently slowly in space such that we can approximate
∇ · (�(x)∇) ' (�(x)∇) · ∇ , therefore neglecting the term
∇�(x)∇. As illustrated in Fig. 8c and 8g, we check on these
typical examples that the synthesized patterns obtained us-
ing the approximation remain similar to the full computa-
tion. We further compute the local average orientations of
the pattern using a local 2D Fourier transform. To this end,
we split the synthesized image into sub-images of 11 × 11
pixels that we normalize individually to a zero mean value.
We then compute a FFT on each sub-image and locate its
maximal modulus. The corresponding mean direction is
orthogonal to the maximal frequency can therefore be vi-
sually interpreted as the direction that links the center of
the patch to the maximal modulus in this 2D Fourier space.
The results are presented on Fig.8d and 8h and show the
correspondence with the expected directions.
The equation we use in the following to generate the

anisotropic patterns is therefore the following modified ver-
sion of Eq. (6)

𝜕𝑢
𝜕𝑡

= (�(x)∇) · ∇𝑢 + 𝛾 𝑓 (𝑢, 𝑣)

𝜕𝑣
𝜕𝑡

= 𝑑∇2𝑣 + 𝛾𝑔(𝑢, 𝑣)
(9)

4.4 Parameters selection

Optimal parameters range

In the isotropic Gray-Scott model, an exhaustive study has
been conducted by Pearson (1993) to identify for which set
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(a) �𝐴(x) with 𝜃 varying be-
tween 0 and 𝜋 along 𝑦

(b) Patterns generated by �𝐴(x)
with the term ∇�(x)∇

(c) Patterns generated by �𝐴(x)
without the term ∇�(x)∇

(d) Mean orientation computed
from the FFT by patches

(e) �𝐵 (x) with 𝜃 varying be-
tween − 𝜋

2 and
𝜋
2 along 𝑦

(f) Patterns generated by �𝐵 (x)
with the term ∇�(x)∇

(g) Patterns generated by �𝐵 (x)
without the term ∇�(x)∇

(h) Mean orientation computed
from the FFT by patches

Figure 8: Oriented patterns generated by the species 𝑉 on a 2D grid

(a) 𝜃 = 0 (b) 𝜃 = 𝜋
4

(c) 𝜃 = 𝜋
3 (d) 𝜃 = 𝜋

2
Figure 9: Patterns generated when only one species is
anisotropic

of (𝐹, 𝑘) patterns can be observed and of which type. To
this end, the Reaction/Diffusion is simulated for different
values of 𝐹 and 𝑘 to construct a map (𝐹, 𝑘) depicting the
different areas where patterns can emerge.
In our case, we aim at finding the optimal parameters
(𝐹, 𝑘) in the anisotropic case such that the synthesized pat-
terns are both well aligned with the prescribed direction and
fairly connected so that it creates continuous paths without
end points. We thus propose to conduct the same study with
a discretization of the space (𝐹, 𝑘) into duplicated patches
where the anisotropy is locally controlled by the tensor �𝐵
introduced Fig. 8e. The map is simulated on a 4000× 4000
grid, subdivided in patches of size 100 × 100 where the Re-
action/Diffusion is oriented by �𝐵 inside each patch, and for

𝐹, 𝑘 varying from 0 to 0.1 along the whole grid.

Such map is shown in Fig. 10, and it allows to observe
which kind of pattern are synthesized in the anisotropic
case depending on the values of 𝐹 and 𝑘 . Similarly to the
isotropic case, patterns tend to appear on a curved front,
thus 𝐹 and 𝑘 need to be chosen in this area of interest.
In addition, the connectivity of the pattern is not the same
everywhere. For a fixed value of 𝐹, one can notice for
instance that patterns are getting less connected from left
to right. As we are interested in connected patterns as
they preserve longer paths, we will choose some sets of
(𝐹, 𝑘) which favour this behaviour. The area bounded in
red Fig. 10 delimits the values (𝐹, 𝑘) which correspond
to this desired behaviour. Choosing a set of (𝐹, 𝑘) outside
this area will either show no pattern at all (plain or empty
fill in the most-left/right side) or patterns with disconnected
components (right-neighborhood of the circled area). We
chose experimentally 𝐹 = 0.0395 and 𝑘 = 0.0595 in all our
simulations. These values correspond to a mid-point of the
circled region, but we note that selecting other values in the
admissible region are associated with similar results.

Infill a specific area

As explained in Sec. 3.2.3, the scalar field Γ(x) is used to in-
dicate where the model should be filled with plain material.
To represent this effect within the Reaction/Diffusion pro-
cess, we extend the value 𝑘 to a space-varying field defined
as

𝑘 (x) = 𝑘 (1 − 𝛼Γ(x)) . (10)

This allows to "kill" 𝑉 (and so (1 − 𝑈) ) conformly to the
Infill Map, while the parameter 𝛼 ∈ [0, 1] is used to adjust
how much these regions should be infilled.
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Figure 10: The (𝐹, 𝑘) map for the anisotropic Gray-Scott model (iso at 0.5). The bounded area in red shows the acceptable
values for 𝐹 and 𝑘 in the simulation. The zooms show clearly the variations of pattern connectivity

4.5 Reaction/Diffusion along multiple direc-
tions for lattice generation

Our objective is to generate a lattice structure from the syn-
thesized patterns. To this end, we consider 𝑑 independent
Reaction/Diffusion processes, with 𝑑 = {2, 3} being the di-
mension of the embedding. Each process 𝑖 ∈ [0, 𝑑 − 1]
uses its own diffusion tensor �𝑖 with a main direction of
anisotropy oriented orthogonally to the expected growing
pattern (a curve in 2D, and a surface in 3D), and two dif-
ferent processes are set to have orthogonal main anisotropic
directions. We detail in the following the complete formu-
lation used for these processes

Tensor guided patterns

Our input tensor can be written � = R�R𝑇 , potentially after
some regularization of R as explained in 3.2.2. If we define
𝜉 > 1 our custom anisotropy we can define one diffusion
tensor for each principal direction 𝑖 as:

�𝑖 =
1

Tr(D𝑖)
RD𝑖R

𝑇 (11)

where D𝑖 is a diagonal matrix filled with 1 on the diago-
nal and 𝜉 at the (𝑖, 𝑖) position. This will generate patterns
oriented along each principal direction of the input tensor
field.

Stress oriented structures

Compared to classical structural optimization schemes, no
finite element analysis of the structure is being performed.
Our method can be seen as a "post processing" from the
result of the optimization via the Reaction/Diffusion equa-
tions.
Gathering all together we can now generate structures

infilled with patterns perpendicular to each principal direc-
tions of the input tensor field. Each structures S𝑖 is repre-
sented by a normalized density field obtained by the finite
differences integration of each following system:

(S𝑖)



𝜕𝑢𝑖
𝜕𝑡

= (�𝑖 (x)∇) · ∇𝑢𝑖 + 𝛾 𝑓 (𝑢𝑖 , 𝑣𝑖)

𝜕𝑣𝑖
𝜕𝑡

= 𝑑∇2𝑣𝑖 + 𝛾𝑔(𝑢𝑖 , 𝑣𝑖)1𝛀 − 𝜆(1 − 1𝛀)𝑣𝑖

𝑓 (𝑢𝑖 , 𝑣𝑖) = −𝑢𝑖𝑣2𝑖 + 𝐹 (1 − 𝑢𝑖)

𝑔(𝑢𝑖 , 𝑣𝑖) = 𝑢𝑖𝑣
2
𝑖
− [𝑘 (1 − 𝛼Γ(x)) + 𝐹] 𝑣𝑖

𝑢𝑖 (x, 𝑡 = 0) = 1,
{
𝑣𝑖 (x ∈ D0, 𝑡 = 0) = 1
𝑣𝑖 (x ∉ D0, 𝑡 = 0) = 0

(12)
where D0 designates the initial "seed", typically a small

disk (in 2D) or sphere (in 3D)with at least a portion included
in the infill space. This small initial seed was preferred to a
large initial and possibly random covering of the infill space,
as we noticed experimentally that the Reaction/Diffusion
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(a) (S1) (b) (S2)
Figure 11: Stress oriented structures for the cantilever 2D generated on 1280 × 640 mesh, iso at 0.7

process generates more conforming patterns when these are
developed as growth through empty space. Nonetheless it is
possible to speed up the structure generation by choosing an
initial state made of several seedsD = ∪𝑖D𝑖 as long as they
are sufficiently spaced. Fig.11 show the resulting structures
generated by an isosurface extraction of the density fields
𝑠𝑖 = 1−𝑢𝑖 for the cantilever. Note that for a given resolution
the parameter 𝛾 controls the number of lines contained in a
slice of material (i.e. the wavelength) whereas the chosen
isosurface controls their size.

4.6 Numerical Implementation
To solve Eq. 12, we use a straightforward finite explicit
difference scheme. First the values are discretized on a
regular squared grid to compute the terms (�(x)∇) · ∇𝑢 and
∇2𝑣 by second order finite differences. This reduces the
computation to an Ordinary Differential Equation (ODE).
This ODE can then be discretized in time 𝑡 and solved by a
first order explicit scheme:


𝑢𝑡+1 = 𝑢𝑡 +

(
1

Δ𝑥2
L� ∗ 𝑢𝑡 + 𝛾 𝑓 (𝑢𝑡 , 𝑣𝑡 )

)
Δ𝑡

𝑣𝑡+1 = 𝑣𝑡+
(

𝑑

Δ𝑥2
L ∗ 𝑣𝑡+𝛾𝑔(𝑢𝑡 , 𝑣𝑡 )1𝛀−𝜆(1 − 1𝛀)𝑣𝑡

)
Δ𝑡

(13)
Here L�∗ and L∗ represent the discrete spatial operators

which can be written in the form of convolutions. Δ𝑥 and Δ𝑡
are the disretization steps in space and time. While solving
the isotropic heat equation using such explicit schemewould
require the condition Δ𝑡/Δ𝑥2 < 1

2 to converge, we found
in practice that we had to slightly lower this bound in the
Reaction/Diffusion case, and Δ𝑡/Δ𝑥2 < 1/8was found to be
sufficient in the examples shown in our results.
Reaction/Diffusion is a constantly evolving process that

may never reach a real static fix-point state. Even when
the main structures have grown and reached the boundaries,
local oscillations and species concentration swaps between
𝑢 and 𝑣 can occur in the branching regions of the patterns.
We, therefore, cannot check for local convergence criteria
for each pixel/voxel of the discrete structure. Instead, we
propose an automatic stopping criteria that only considers
the design changes at a more global scale. To this end,
we interpret the value 𝑢 at a given pixel/voxel as being
a weighted area/volume. Our general idea is to stop the
time integration when the change of volume of the structure

becomes sufficiently small.

G𝑡 =
1
𝑉𝛀

����𝜕𝑉S𝜕𝑡 ���� = 1
𝑉𝛀Δ𝑡

�����∑︁
𝛀

(𝑢𝑡+1 − 𝑢𝑡 )
����� < 𝜀, (14)

where 𝑉𝛀 is the volume (resp. the area in 2D) of the de-
sign region, and 𝜕𝑉S

𝜕𝑡
is its change along the current time

step. G𝑡 measures the relative volume (resp. area) of the
structures that are still in the growth phase, and its value will
decrease after having passed through one or several maxima,
as shown in Fig. 12 for the cantilever. We used 𝜀 = 10−7 in
all our examples. From this figure, one can also notice that
the growth is slower (about 2 times for the cantilever ini-
tialized with one seed in the center) for the pattern oriented
perpendicularly to the first direction (S1) than for the one
lined up. More precisely, the high frequency oscillations on
G𝑡
1 correspond to the emergence the parallel stripes which
grow perpendicularly to the first stress direction. The same
scenario goes for the three oriented structures generated for
the chair Fig. 24 and whose the G𝑡 can be visualised Fig.
13. The condition G𝑡 < 𝜀 therefore allows to continue the
evolution as long as new branching elements are generated
as this is associated to a change of the volume, while being
able to stop when only local oscillations take place as this
global volume does not change anymore.
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Figure 12: G𝑡 for the two stress oriented structures of the
cantilever
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Figure 13: G𝑡 for the three stress oriented structures of the
chair

5 Structure Compilation
Eventually by merging the different substructures infilled
with oriented patterns along the principal stress directions,
it is possible to generate a shape with oriented lattice. How-
ever, while the generated microstructures are oriented in
conformity with the local stress directions, they are not as-
sociated with an optimized response to the stress magni-
tude. To get closer to optimized structures, we add a pattern
rescaling filter to adapt the structure patterns thickness on a
qualitative basis (section 5.1) before combining them (sec-
tion 5.2).

5.1 Pattern rescaling filter

Qualitative rescaling

Bendsøe and Kikuchi (1988) introduced the unit-cell with a
rectangular hole as it constitutes an optimized microstruc-
ture compared to a regular square cell (Fig. 14).

Figure 14: Layout of the unit-cell with a square hole (left)
and with a rectangular hole (right) optimized for the stress
tensor (𝜎1, 𝜎2)

Following this idea, in order to enhance the structural per-
formance relatively to the mass, one can shift qualitatively
the iso according to whether the substructure is oriented
along the first principal direction or not to enlarge the pat-
tern oriented along the first principal stress directions while
reducing the width of the others. Assuming that 𝑠𝑖 has been
rescaled between 0 and 1, this can be achieved by redefining
the density fields as follow

𝑠𝑖 = max (min(𝑠𝑖 , 1 − 𝜇𝑖 + 𝛿𝑖), 1 − 𝜇𝑖 − 𝛿𝑖) (15)

where 𝜇𝑖 denotes the relative thickness according to the
direction 𝑖 and 𝛿𝑖 a parameter which applies a threshold

favouring a binary structure while preserving its smooth-
ness.

Minimum member size

Because our structure aims to be manufactured, we need to
guarantee that the minimum strut diameter or wall size of
the lattice can be fabricated. This means that we need to
make sure that the smallest features from 𝑠𝑖 are resolved by
a minimum number of pixels ℎ𝑚𝑖𝑛. The parameter 𝑙 in Fig.
14 denotes the wave-length (in pixel/period) of the pattern
periodicity, which is the same for the different directions
because of the way the diffusion tensors were built. The
relative thickness 𝜇𝑖 is linked to the width of the pattern ℎ𝑖
(in pixel) by:

𝜇𝑖 =
ℎ𝑖

𝑙
(16)

As the smallest features have to be resolved by at least
ℎ𝑚𝑖𝑛 pixels, it constrains 𝜇𝑖 to be greater than 𝜇𝑚𝑖𝑛 =

ℎ𝑚𝑖𝑛

𝑙
.

For instance, in the cantilever structures generated Fig. 11 on
a 1280×640mesh, if we want the smallest features resolved
by at least 1 pixel, we measured a wavelength of pattern
periodicity of 𝑙 ' 15 pixels/period pixel and so 𝜇𝑖 ≥ 0.07.
A bilinear upsampling from the actual mesh to a finer

mesh may be performed if one wants to use a smaller value
for 𝜇𝑚𝑖𝑛.

Variable thickness

In its simplest form, the proposed filter re-scales the density
fields for each of the principal directions and yields a uniform
porosity of the infill (except, of course, in the fully-solid
region Γ). The resulting pattern has a consistent length-
scale but this also leads to a sub-optimal design compared
to methods allowing a graded porosity. As demonstrated in
the section 6, our filter can be replaced by the last step of the
post-processing procedure from Elingaard et al. (2022) to
allow spatially varying thickness of the pattern. As a matter
of fact, 𝐷𝑖 (x) = 1− 𝑠𝑖 (x) can be seen as a distance field and
the thickness of its implicit skeleton can be controlled using
a lamination width 𝜇𝑖 (x) to adaptively threshold the density
field where H(x) is the Heaviside step function:

𝑠𝑖 (x) = H(𝜇𝑖 (x) − (1 − 𝑠𝑖 (x)) (17)

5.2 Boolean Operation
Thefinal structure can be generated through the use of binary
merging operators of implicit surfaces, corresponding to the
use of min and max functions on their field values

(S)


S2𝐷 = S1 ∪ S2 = max(𝑠1, 𝑠2)

S3𝐷 =
⋃
𝑖≠ 𝑗

S𝑖 ∩ S 𝑗 = max
𝑖≠ 𝑗

(
min
𝑖≠ 𝑗
(𝑠𝑖 , 𝑠 𝑗 )

) (18)

The results for the cantilever is shown Fig. 15 and differ-
ent examples in 2Dand3Dwith structural analysis validation
are given in the next section.
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Figure 15: Final structure for the cantilever 2D, with 𝜇1 =
0.3 and 𝜇2 = 0.12

6 Results and analysis
This section provides various numerical examples, in 2D
and 3D, which demonstrate the capability of our method.
The common parameters used in all of our examples are
summarized Table 1, while Table 2 presents the relative
thickness values 𝜇𝑖 .

Param. 𝑑 𝛾 𝐹 𝑘 𝛼 𝜉 𝛿𝑖
Value 0.5 1 0.0395 0.0595 0.5 5 0.01

Table 1: Parameters and associated values in every example

Model 𝜇1 𝜇2 𝜇3
Cantilever 2D Fig. 15 0.12 0.3 .

L-Beam Comp. 2D Fig. 18 0.15 0.4 .
L-Beam Stress 2D Fig. 18 0.15 0.4 .
Bridge MoLC 2D Fig. 19a 0.15 0.4 .
Bridge MuLC 2D Fig. 19b 0.15 0.4 .
Bracket MoLC 3D Fig. 1 0.15 0.25 0.25
Bracket MuLC 3D Fig. 21 0.15 0.25 0.25
MBB Beam 3D Fig. 22h 0.20 0.25 0.25

Chair 3D Fig. 24b 0.20 0.25 0.25
Table 2: relative thickness values 𝜇𝑖

The structures shown on our result figures are generated
from iso curves (in 2D) or iso surfaces (in 3D) extraction
from the pixel/voxel representation. The experiments were
run on a PC workstation with an Intel Xeon Gold 6148 CPU
running at 2.40GHz, 128 GB RAM and a Nvidia Quadro
RTX 6000 with 24 GB memory. Our implementation is
based on PyTorch library in Python to store the 2D and
3D grids as PyTorch-tensors. The spatial finite difference
operators are computed as convolutions and benefit from
the parallel execution on the GPU. For memory and speed
reasons we employed Half-precision float numbers for all
the computations.

6.1 Computational times
We present in Table 3 the timings of the method for the
different examples. This table presents respectively: The
input resolution on which the stress tensor or an optimized
material orientation has been computed; The resolution of
the upsampled grid on which the Reaction/Diffusion PDE
is numerically solved, and its corresponding number of pix-
els/voxels #Ele.; The spatial interval Δ𝑥 and time step Δ𝑡

considered; The total time 𝑇S1
𝑅𝐷
for the structure S1 to grow

from the initial condition shown Fig. 16 with the number of
iterations #It. to achieve it.
In standard conditions, we started the complete growth of

the Reaction/Diffusion process in setting a small disk/sphere
of uniform density 𝑢 = 1 placed inside the design space, with
a radius of 0.05 ×max𝑖=𝑥,𝑦,𝑧 𝐿𝑖 where 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 is the
resolution of the mesh. The total timings range from tens
of seconds for the simple 2D examples to about an hour
and a half for the more detailed 3D case (the chair model).
Note that these timings can be reduced in seeding more
initial disc/spheres within the design space (see bottom right
corner of Fig. 16). This seeding strategy allows to start the
growing process in multiple places, therefore saving time
compared to waiting for the RD to diffuse from a single
center – see Chair 3D Fig. 24b. takes 95min VS Chair
3D with mult. seeds reduced to 23 min. In this specific
example the quality of the final structure is similar. However
this additional seeding strategy must leave enough space
between the filled disc (at least the disc diameter) for the RD
to grow as expected, otherwise the oriented patterns cannot
fully generate themselves leading to badly-aligned pattern as
shown Fig. 17. The quality of the structure generated with
this seeding strategy also strongly depends on the topology
of the Infill Space, making it difficult to find a formal criteria
minimizing the computation timewithout sacrificing pattern
quality.

Figure 16: Initial conditions and seed regions for the models
referenced in Table 3

Figure 17: Effect of the initial seeding on the quality of the
pattern orientation on the example of the Cantilever.

The last column of Table 3 𝑇2% provides the timing spent
for the structure to locally reconstruct itself for local mod-
ification spanning an area of 2% of its infill space volume.
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In this last case, we consider a fully grown structure, and
locally "damage/reset" it by setting the value inside a small
disk (resp. sphere) with an area set at 2%𝑉Ω to be 0. 𝑇2%
corresponds to the time needed to the Reaction/Diffusion to
refill this empty space again. Note that this local adaptation
is much faster than a full RD grows, and our approach is
therefore able to provide an efficient solution for local shape
modification.

6.2 Optimized 2D input: L-Shaped Beam
In this example, the inputs are generated from a L-Shaped
Beam problem whose the loads and boundary conditions
are depicted at the top of Fig. 18. We run two topology
optimizations minimizing compliance or peak stress both
under the same mass constraint. From the results of these
optimizations, our method grew the two lattice structures
displayed in the center and bottom of Fig. 18 for the com-
pliance and peak stress minimization inputs respectively.

Figure 18: L-Shaped Beam generated on a 800 × 800 grid,
from tensor fields calculated on a 80 × 80 grid.

We observe that the re-entrant corner is avoided in the
stress minimization case. A high resolution numerical anal-
ysis of the resulting structures reveal that the stress opti-
mized structure achieves a peak stress 63% lower than the
the compliance optimized structure. This demonstrates that
the proposed approach can successfully generate coherent
oriented microstructures in a variety of optimization prob-
lems.

6.3 Optimized shape for multiple load cases:
5-load bridge

A common industrial requirement is the ability to optimize
structures under multiple load cases. By definition, this
precludes the use of the stress field to guide the design due
to its non-uniqueness. In general, microstructures aligned
with the stress tensor field of one load-case will yield sub-
optimal anisotropic pattern orientations for all the other load
cases. Since our approach is compatiblewith any sufficiently
smooth orientation field, it therefore does not require the use
of stress tensors to guide the pattern growth.

(a) Mono load case

(b) Multi load case
Figure 19: Five-load bridge: (1200 × 800)

The present section illustrates how the reaction diffusion
process can instead be guided by a topology optimization us-
ing an orthotropic material law and considering both local
material density and orientation as design variables opti-
mized for one or multiple load cases (Schmidt et al., 2020)
according to the following formulation:

argmin
𝝆,𝜶

𝐽 (𝝆,𝜶) =
( ∑︁
𝑖∈𝑳𝑪

(
𝒇𝑇𝒊 𝒖𝒊

) 𝑝)1/𝑝
𝑠.𝑡. 𝑲 (𝝆,𝜶)𝒖𝒊 = 𝒇𝒊 , ∀𝑖 ∈ 𝑳𝑪

0 ≤ 𝜌𝑒 ≤ 1, ∀𝑒 ∈ 𝛀
− 𝜋 ≤ 𝛼𝑒 ≤ 𝜋, ∀𝑒 ∈ 𝛀

𝐺 (𝝆) = 1
𝐺★𝑣Ω

∑︁
𝑒∈𝛀
(𝜌𝑒𝑣𝑒) − 1 ≤ 0

(19)

13



Model Input resolution R/D Resolution ♯Ele. Δ𝑥 Δ𝑡 𝑇
S1
𝑅𝐷

♯It. 𝑇2%
Cantilever 2D Fig. 15 64 × 32 1280 × 640 819k 1.7 1.1 30s 28k 3s

L-Beam Comp. 2D Fig. 18 80 × 80 800 × 800 640k 2.4 1.05 44s 34k 5s
L-Beam Stress 2D Fig. 18 80 × 80 800 × 800 640k 2.4 1.05 55s 42k 5s
Bridge MoLC 2D Fig. 19a 150 × 100 1200 × 800 960k 2.8 1.35 1m04s 54k 5s
Bridge MuLC 2D Fig. 19b 150 × 100 1200 × 800 960k 2.8 1.35 1m02s 52k 4s
Bracket MoLC 3D Fig. 1 44 × 74 × 119 308 × 518 × 833 133m 2.4 1.35 64m33s 19k 5m49s
Bracket MuLC 3D Fig. 21 44 × 74 × 119 308 × 518 × 833 133m 2.4 1.35 66m10s 19k 6m01s
MBB Beam 3D Fig. 22h 4 × 16 × 64 32 × 128 × 512 2.1m 2.4 1.35 34s 9k 2s

Chair 3D Fig. 24b 140 × 100 × 200 504 × 360 × 720 131m 3 1.35 95m33s 30k 4m28s
Chair 3D w/ mult. seeds 140 × 100 × 200 504 × 360 × 720 131m 3 1.35 23m17s 7k 4m28s

Table 3: Computational performance on the different scenarios presented in the article.

The orthotropic material constitutive law of each finite
element 𝑒 in the design space Ω is parameterized by two
design variables 𝜌𝑒 and 𝛼𝑒. We chose an orthotropic ma-
terial law with the principal direction 3 times stiffer than
the transverse direction. The design variables 𝜌 describe
the density distribution similarly to classical density-based
topology optimization. The design variables 𝛼 describe the
material orientation as 1 or 3 rotation angles per element in
2D and 3D respectively. The stiffness matrix 𝑲 is assem-
bled based on the values of the design variables. Then, for
each nodal force vector 𝒇𝒊 corresponding the the load-cases
𝑖 ∈ 𝑳𝑪, the nodal displacement vector at equilibrium 𝒖𝒊 is
computed. The objective function 𝐽 is a p-Norm aggregation
of compliances of each load-case with 𝑝 = 8 thereby min-
imizing the highest compliance across all load cases. An
inequality constraint 𝐺 on the maximum allowed volume
𝐺★ = 0.3 is applied based on the design space volume 𝑣Ω
and element volumes 𝑣𝑒. The derivatives 𝛿𝐽

𝛿𝝆 ,
𝛿𝐽
𝛿𝜶 ,

𝛿𝐺
𝛿𝝆 and

𝛿𝐺
𝛿𝜶 are obtained via adjoint analysis or analytical deriva-
tion and the optimization problem is solved using the MMA
gradient-based optimization scheme (Svanberg, 1987).
Using a simple test scenario of a bridge with 5 loads

applied at the top of the design domain we produce two
sets of optimized density and orientation fields 𝜌 and 𝛼.
The first set was optimized considering all 5 loads applied
simultaneously as a single load-case while the second set
considered the loads applied separately as 5 distinct load-
cases. We guide the anisotropic reaction diffusion process
using these two sets of density and orientation field and
obtain the designs in Fig. 19a and Fig. 19b for the single
and multiple load-cases scenarios respectively.
We compare the performance of both designs in Fig. 19a

and 19b by running a high-resolution finite element analysis
for each of the 5 load-cases. The comparison is shown in
Fig. 20 where one can clearly see that the pattern growth
capitalizes on considering bothmaterial orthotropy andmul-
tiplicity of load-cases. The design optimized for multiple
load cases achieves a significantly lower overall compliance
as well as a a smaller variation in compliance across all
load-cases.

6.4 Optimized 3D input: GE Bracket

Fig. 1 and Fig. 21 show a lattice structure for theGE Bracket
(GrabCAD (2013)). The former is generated using the stress
of an input which has been optimized for a single-load case

Figure 20: Comparison of the final compliances of designs
in Fig. 19a and 19b for each of the 5 load cases where the
load-case are numbered from left to right.

while the latter input had its material orientation optimized
for a multi-load case scenario.

Figure 21: Our GE Bracket built from an input material
orientation optimized for a multi-load case scenario

6.5 Optimized 3D input: MBB Beam
Fig. 22 shows the different steps for the MBB Beam case in
3D. Starting from a rectangular cuboïd Design Space (22a),
the Infill Space (22b) is computed by Topology Optimiza-
tion. Then the Stress Tensor (22c) can be extracted with
the Infill Map (22d). From these inputs, 3 oriented struc-
tures (22e, 22f, and 22g) are generated. These structures are
composed of foiled patterns in 3D. Each intersection of these
oriented structures taken two at a time gives the intermedi-
ate shapes (22i), (22j) and (22i) composed of beam oriented
along the principal stress directions. The union of these three
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(a) Design Space with load and
boundary conditions

(b) Infill Space 𝜌 (c) Tensor Field � (d) Infill Map Γ

(e) (S1) (f) (S2) (g) (S3) (h) (S)

(i) (S1 ∩ S2) (j) (S1 ∩ S3) (k) (S2 ∩ S3) (l) ((S1 ∩ S2) ∪ S3)
Figure 22: The original Design Space is 32 × 16 × 4 while the final structures are generated on a 256 × 128 × 32 grid

structures form the final lattice-like structure (22h). Addi-
tionally other interesting combinations can be made such as
(22l) which preserves membrane-like structures along the
plane stress direction and lattice in the transverse direction.
We ran a comparative Finite Element Analysis between

(22h) and (22l). The shift of isosurfaces of the two structures
have been made such that they present the same mass. It
comes out that the membrane-like structure (22l) shows a
compliance and peak von Mises stress respectively 6% and
7% lower than the lattice-like structure (22h).

Figure 23: Visualisation of the von Mises stress for the lat-
tice like-structure (top) and for the membrane-like structure
(bottom)

6.6 Highly detailed structure: 3D Chair
Our method also demonstrates great lattice regularity. As
an example of highly detailed structure, Wu et al. (2021b)
proposed an optimized lattice chair (Fig. 24b) relying on a
TopologyOptimizationwith oriented homogenizedmaterial
performed on a resolution of 140×100×200 (using a design
domain with external loads shown Fig. 24a), and followed
by a parameterization optimization algorithm to design the
lattice.

Using the same underlying tensor field kindly shared by
them, the growth by our method on a 504 × 360 × 720
grid is shown Fig. 24c. Ours does not provide an explicit
truss graph but shows more lattice regularity especially near
the surface of the object due to the aptitude of the Reac-
tion/Diffusion to smoothly grow along the overall 3D shape.
Although our structure looks more regular, it should be em-
phasized that our method only takes into account the orien-
tation given by the tensor field. In particular, our approach
does not take into account a variation of porosity in the
parameters of the unit cell, therefore leading to a globally
sub-optimal structure compared to the original result.

6.7 Non-linear Structural Analysis
The present section summarizes the results of a non-linear
numerical analysis comparing two design variants for the
MBB Beam scenario. The two design variants are obtained
with a classical compliance-based topology optimization
and with the proposed Reaction-Diffusion approach, re-
spectively referred to as TO design and RD design in the
following. Both models have the same total volume and
are discretized with approximately 2.5 × 105 second-order
quadrilateral finite elements yielding about 106 finite ele-
ment nodes in the non-linear numerical analysis.We run a
general non-linear analysis in Abaqus 2021 and retrieve the
force-displacement curves shown in Fig. 25.
Several observations can be made from this non-linear

analysis. The force-displacement curves of both design ini-
tially start with a roughly linear portion where the displace-
ment is proportional to the applied force. In this linear por-
tion, the steeper slope indicates that the TO design achieves
a higher stiffness, which is to be expected because it was
specifically optimized for maximum stiffness. However, at
a load magnitude of approximately 140000𝑁 the TO design
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Figure 24: Optimized lattice chair: (a) Design Space with constraints (b) Optimized lattice chair generated by Wu et al.
(2021b) (c) Our version on a 504×360×720mesh grid using the same underlying tensor field (d) Right and Bottom views
of our optimized lattice chair. (a) and (b) reprinted with the permission of Wu et al. (2021b).

Figure 25: Force-Displacement curves for the TO design variant (in green) and the RD design (in blue) in the MBB Beam
scenario. The models are displayed at different times during the non-linear analysis and color-coded by their von Mises
stress.

undergoes in-plane buckling and collapses. In contrast, the
RD design shows near-linear deformation up to a load mag-
nitude of 200000𝑁 , and supports a peak load approximately
70% higher than the TO design. Finally, when approach-
ing peak carrying load, the RD design shows a smooth and
progressive failure instead of the sudden collapse of the TO
design. All these findings are in good qualitative agreement
with the validation by physical experiment conducted in
(Wu et al. (2021b)) despite using an entirely different strat-
egy to generate the oriented lattice-like structures. Finally,
these findings are also in agreement with the general theory
that lattice structure allow trading some stiffness in the ex-
pected loading conditions for a gain in stability, resistance to
buckling, robustness to unexpected loading conditions, etc.
Looking more closely at the RD design near peak carrying
load shown in Fig. 26 allows making additional observa-
tions.

We can see that, despite being thinner, the transverse bars
in the structure are generally under low stress. This confirms
that their main role is to prevent bending thereby improving
resistance to buckling by increasing the second moment of
area of the macroscopic structural members. This also indi-

cates that the generated microstructure is correctly oriented
since the thicker primary structure carries the loading while
the thinner secondary structure provides stability. We ob-
serve that the solid regions at the connection of macroscopic
structural members do not show high stresses, meaning that
the transition from lattice-like microstructure to solid mate-
rial does not introduce stress concentrations, and this strat-
egymight in fact be too conservative in this scenario. Finally
we observe that the material is evenly distributed along the
length of the macroscopic structural members under axial
load. In other words, the generated oriented microstruc-
ture is spatially regular and doesn’t introduce undesirable
perturbations or bottlenecks in the load paths.

6.8 De-homogenization of rank-2 laminates

Our method can also be applied to de-homogenize rank-2
laminate structures to obtain similar results compared to
Elingaard et al. (2022). The pipeline of this previous work
starts by generating patterns from a pre-trained convolu-
tional neural network evaluating a branching loss, followed
by a solidifying branching step (the reader is invited to refer
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Figure 26: RD design variant of the MBB Beam at peak load in the non linear analysis color-coded by the von Mises
stress.

ℎ𝑐 𝜇𝑚𝑖𝑛 𝑉𝑟𝑒 𝑓 ℎ 𝑓 𝜀 𝑓 𝜀𝑖 Δ𝑥 T𝑖 𝑉 𝑓 𝑇{.}[s] Method

1/120 0.05 0.2532 1/24ℎ𝑐 60ℎ 𝑓

20ℎ𝑖 . 1920 × 960 0.2587 13.7 Elingaard et al. (2022)
7.5ℎ𝑖 2.9 720 × 360 0.2415 20.6 Ours
10ℎ𝑖 2.2 960 × 480 0.2473 23.7 Ours
20ℎ𝑖 1.1 1920 × 960 0.2449 61.8 Ours

1/120 0.10 0.2566 1/24ℎ𝑐 60ℎ 𝑓

20ℎ𝑖 . 1920 × 960 0.2586 13.7 Elingaard et al. (2022)
7.5ℎ𝑖 2.9 720 × 360 0.2524 22.6 Ours
10ℎ𝑖 2.2 960 × 480 0.2541 22.7 Ours
20ℎ𝑖 1.1 1920 × 960 0.2442 63.4 Ours

1/120 0.20 0.2572 1/24ℎ𝑐 60ℎ 𝑓

20ℎ𝑖 . 1920 × 960 0.2607 13.7 Elingaard et al. (2022)
7.5ℎ𝑖 2.9 720 × 360 0.2603 22.4 Ours
10ℎ𝑖 2.2 960 × 480 0.2639 23.3 Ours
20ℎ𝑖 1.1 1920 × 960 0.2609 71.3 Ours

Table 4: Comparison of the computational cost between Elingaard et al. (2022) method and ours for the de-homogenization
of a 240 × 120Michell cantilever input to a fine mesh of 5760 × 2880 elements with a wave-length of 𝜀 𝑓 = 60ℎ 𝑓

Figure 27: In this example the parameter 𝛾 is linearly in-
creasing from the top (𝛾 = 0.5) to the bottom (𝛾 = 2.5)
which has the effect to reduce the wave-length.

to their paper). In our case, we replaced these two first steps
by the anisotropic Reaction/Diffusion growth. Then the den-
sity field 𝑠𝑖 (generated with 𝜌 = 1 and Γ = 0 everywhere)
generated by R/D is plugged into the rest of Elingaard et al.
(2022) pipeline, starting by the skeletonization step, in order
to obtain the results shown in Fig. 28.
To validate that our method gives results as good as Elin-

gaard et al. (2022) method, we provide a comparison of the
performance of the two methods Table 5 for a set of 6 struc-
tures shown in Fig. 29 dehomogenized on a 2400 × 1200
mesh. We find that the values of C 𝑓 ·𝑉 𝑓

C𝑟𝑒 𝑓 ·𝑉𝑟𝑒 𝑓
- the ratio be-

tween the performance of the de-homogenized design and
the reference solution (lower is better) - is close (sometimes
higher, sometimes lower) to Elingaard et al. (2022) results.

We also propose to compare the average computation
time of the two methods by measuring the set {CNN for-
ward + Loss eval. + Solidify branches + Upsampling} for
Elingaard et al. (2022), and {Reaction/Diffusion S1 + S2
+ Upsampling} for ours. In every example the initial state
is composed of evenly spaced disk seeds uniformly dis-
tributed in the rectangular area (20 × 20 𝑛𝑥

𝑛𝑦
seeds of radius

0.015𝑛𝑦). The results are displayed in Table 4 for the de-
homegenization of a 240 × 120 Michell cantilever input to
a fine mesh of 5760 × 2880 elements with a wave-length of
𝜀 𝑓 = 60𝑘 𝑓 .

An advantage of our Reaction/Diffusion-based approach
is the possiblity to adapt the wavelength of the patterns in a
flexible way without requiring a new training. This allows
to generate structures with the same final wave-length using
smaller sizes for the intermediate mesh thus decreasing the
computation time of our method. While the computation
cost of our method is higher, this disregards the 1-hour long
training of a CNN which is only able to output a pattern of
a fixed wavelength 𝜀𝑖 on the intermediate mesh. By varying
spatially the parameter 𝛾, it is even possible to obtain deho-
mogenized structures with a spatially variable wavelength
as shown Fig. 27. Moreover one can note that our approach
would also be valid in 3D without designing and training a
new CNN architecture.
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(a) 𝑉 = 0.25, 𝜇𝑚𝑖𝑛 = 0.05, Elingaard et al. (2022) (b) 𝑉 = 0.25, 𝜇𝑚𝑖𝑛 = 0.05, Ours

(c) 𝑉 = 0.25, 𝜇𝑚𝑖𝑛 = 0.10, Elingaard et al. (2022) (d) 𝑉 = 0.25, 𝜇𝑚𝑖𝑛 = 0.10, Ours

(e) 𝑉 = 0.25, 𝜇𝑚𝑖𝑛 = 0.20, Elingaard et al. (2022) (f) 𝑉 = 0.25, 𝜇𝑚𝑖𝑛 = 0.20, Ours
Figure 28: De-homogenization of a 240 × 120 Michell cantilever input to a fine mesh of 5760 × 2880 elements with a
wave-length of 𝜀 𝑓 = 60ℎ 𝑓 , with Elingaard et al. (2022) method (left) and our method (right). The figures generated with
our method used an intermediate wave-length 𝜀𝑖 .

6.9 Manual Correction & Interactive Design

One of the main advantages of our method compared to
others is its local aspect. As it is built upon a morpho-
genesis process it shows some biological properties such as
adaptation and regeneration that one can efficiently use for
structure design. For instance, the designer can interact with
the structure by manually cutting, erasing or infilling some
areas and let the reaction diffusion reacts to grow a different
yet coherent new structure. Self-organization can be also
used to combine different structures as shown Fig. 30. Af-
ter having grown a structure for a specific scenario such as
the multi-load bridge, the designer can decide to stick some
existing structures previously generated (here these are the
3 owls) above. In order to compute the final structure there
is no need to generate the entire structure from scratch. The
designer can simply place the two objects in contact (a),
with optional removal of material at the junction (b), and
just let the structure grows from the existing parts (c). This
technique can also lead to a fast generation of very high
resolution shapes from precomputed parts.

Conclusion

The present work proposed a novel approach to design con-
forming lattice-like structures, inspired by morphogenesis.
We developed a method relying on an anisotropic Reac-
tion/Diffusion specific model, capable of growing patterns
oriented by an underlying tensor field while remaining in-
side a prescribed 3D shape. By generating an oriented struc-
ture for each principal tensor direction taken independently,
it is then possible to produce a global lattice-like shape
by combination of these substructures with Boolean oper-
ations. Furthermore the thickness of the oriented pattern
can be controlled by applying some filters before combining
them.
Our method finds its application in the design of detailed

lattice and membrane structures oriented by inputs which
can be provided by a stress field or an anisotropic material
orientation field inside a structurally optimized shape. In
this context, our lattice-like structures come as a good trade-
off between pure stiffness, stability or resistance to buckling.
By non-linear numerical analysis we demonstrate that our
optimized structure can support a buckling load approx-
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(a) 𝑉 = 0.25, 𝜇𝑚𝑖𝑛 = 0.05 (b) 𝑉 = 0.25, 𝜇𝑚𝑖𝑛 = 0.10 (c) 𝑉 = 0.25, 𝜇𝑚𝑖𝑛 = 0.20

(d) 𝑉 = 0.40, 𝜇𝑚𝑖𝑛 = 0.05 (e) 𝑉 = 0.40, 𝜇𝑚𝑖𝑛 = 0.10 (f) 𝑉 = 0.40, 𝜇𝑚𝑖𝑛 = 0.20
Figure 29: De-homogenization of a 60 × 30 Michell cantilever input to a fine mesh of 2400 × 1200 elements with a
wave-length of 𝜀 𝑓 = 50ℎ 𝑓 using our method.

ℎ𝑐 𝜀𝑖 T𝑖 𝜇𝑚𝑖𝑛 𝑉𝑟𝑒 𝑓 C𝑟𝑒 𝑓 ℎ 𝑓 𝜀 𝑓 𝑉 𝑓 C 𝑓
C 𝑓 ·𝑉 𝑓

C𝑟𝑒 𝑓 ·𝑉𝑟𝑒 𝑓

Elingaard et al. (2022)
1/30 10ℎ𝑖 480 × 240 0.05 0.2535 106.21 1/40ℎ𝑐 50ℎ 𝑓 0.2581 143.65 1.3770
1/30 10ℎ𝑖 480 × 240 0.05 0.4024 68.58 1/40ℎ𝑐 50ℎ 𝑓 0.4201 78.79 1.1993
1/30 10ℎ𝑖 480 × 240 0.10 0.2568 113.61 1/40ℎ𝑐 50ℎ 𝑓 0.2569 149.53 1.3167
1/30 10ℎ𝑖 480 × 240 0.10 0.4080 69.00 1/40ℎ𝑐 50ℎ 𝑓 0.4224 75.16 1.1279
1/30 10ℎ𝑖 480 × 240 0.20 0.2614 122.86 1/40ℎ𝑐 50ℎ 𝑓 0.2566 152.86 1.2214
1/30 10ℎ𝑖 480 × 240 0.20 0.4165 73.37 1/40ℎ𝑐 50ℎ 𝑓 0.4323 77.39 1.0949

Ours
1/30 12.5ℎ𝑖 600 × 300 0.05 0.2535 106.21 1/40ℎ𝑐 50ℎ 𝑓 0.2570 135.46 1.2930
1/30 12.5ℎ𝑖 600 × 300 0.05 0.4024 68.58 1/40ℎ𝑐 50ℎ 𝑓 0.4281 78.17 1.2126
1/30 12.5ℎ𝑖 600 × 300 0.10 0.2568 113.61 1/40ℎ𝑐 50ℎ 𝑓 0.2667 156.12 1.4271
1/30 12.5ℎ𝑖 600 × 300 0.10 0.4080 69.00 1/40ℎ𝑐 50ℎ 𝑓 0.4332 81.16 1.2489
1/30 12.5ℎ𝑖 600 × 300 0.20 0.2614 122.86 1/40ℎ𝑐 50ℎ 𝑓 0.2808 134.78 1.1784
1/30 12.5ℎ𝑖 600 × 300 0.20 0.4165 73.37 1/40ℎ𝑐 50ℎ 𝑓 0.4432 75.22 1.0909

Table 5: Comparison of the performance between Elingaard et al. (2022) method and ours for the de-homogenization
60 × 30Michell cantilever input to a fine mesh of 2400 × 1400 elements with a wave-length of 𝜀 𝑓 = 50ℎ 𝑓

imately 70% higher than a classic topology optimization
design without actually requiring an explicit modeling of
buckling behavior.

The other main application of our approach is the de-
homogenization of rank-2 laminates. Our results are com-
parablewith state of the artmethods such as (Elingaard et al.,
2022) but our approach offers some key benefits. Specif-
ically, we avoid the use machine learning approaches and
the accompanying challenges of generating data, choosing
a network architecture and training the network.

Due to its 2-scale nature, our method is fast and scalable
to high resolution designs. Moreover, the microstructure
generation is completely local, allowing the designer to dy-
namically interact with the growing structure, by erasing or
modifying some parts and letting it evolve. Additionally, the
aptitude of the Reaction/Diffusion to smoothly grow along
the overall 3D shape ensure to generate structures with high
lattice regularity, which is desirable both for aesthetics and
mechanical performance.

Limitations & Future work
The substructures oriented independently by the tensor di-
rections usually show great regularity thanks to the diffusion
term but some defects can appear after the Boolean com-
bination, at the boundary of the shape. Even if the Reac-
tion/Diffusion can grow smoothly along the 3D shape, de-
pending on the growing orientation, the patternwill not grow
exactly at the exact same distance of the boundary, leading
to damage artefacts after Boolean combination. Different
methods could be investigated to overcome this problem,
such as an explicit graph extraction using skeletonization
or intersection points, or filtering constraints to enforce the
Reaction/Diffusion to always grow at a constant distance of
the boundary.
An explicit graphwould also offer a lighter 3D representa-

tion as our method requires to work on high resolution grids
when generating highly detailed shapes. For instance our
optimized lattice chair necessitated to store more than 130M
voxel values. In addition a graph representation would make
it more compatible with CAD software as it constitutes an
exact representation.
Empirical results show that our method reliably gener-
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Figure 30: Combination of existing structures by self regeneration: (a) The owl structure is duplicated to be put on the
bridge (b) The owl structures are concatenated to the bridge (c) Several damages are done in the structure which is then
left to grow again to form the final whole structure (d)

ates efficient oriented infill patterns. However, it is worth
noting that the Reaction-Diffusion process is not an opti-
mization of an objective function so it does not guarantee
to generate optimal results. In addition, the naive approach
to completely infill problematic areas with fast orientation
variations can waste some material from an optimization
perspective. Unconnected patterns or topological defects
can also lead to disconnected component near the boundary
of the final structure.

Appendix
The stress tensor field can require additional regularization
steps for being operable with our method. As we seek for
a certain regularity in its associated rotation field R(x), this
is not the case where the orientation is not clearly defined
either because the stress is trivial (𝜎𝑖 ≈ 0) or because it is
almost isotropic (𝜎𝑖 ≈ 𝜎𝑗 ). In these regions the tensor can
change almost randomly of directions from a neighbour to
another which makes it difficult to build a regular structure.
Hence we need to modify the tensor field in these areas such
that the field becomes regular and in accordance with the
other regions where the orientation of the stress field is well
defined.
To this end, we start by setting to zeros the eigenvec-

tors associated to not well-defined orientations i.e. where

|𝜎𝑖 | < 𝜎𝑚𝑖𝑛 or
��|𝜎𝑖 | − |𝜎𝑗 |

�� < 𝜎𝑚𝑖𝑛. Considering the other
ones as well-defined we need to re-generate these trivial
eigenvectors conformly to the other ones. In order to reduce
the number of eigeinvectors to re-compute we make some
simplifications: in the particular 2D case we set v2 (x) = 0
only if v1 (x) = 0 because only one vector is sufficient to
describe the orientation so the second one suits if the first
one does. In 3D we set v3 (x) = 0 only if v2 (x) = 0 for the
same reason.

After this pre-treatment, two cases need to be considered
in 3D. In 2D, for an element x considered it has either
all its eigenvectors trivial or neither of them. That is not
the case in 3D for which there is the case where the first
one is non trivial and the two last ones are equal to zeros.
As we aim to generate the trivial rotations as a mean of
their non-zeros neighbours we need to have either R(x) = 0
or R(x) = (v1 (x), v2 (x), v3 (x)) with v𝑖 (x) ≠ 0. To this
end we recompute the vectors v2 (x) = v3 (x) = 0 with
non trivial first eigenvectors by selecting two non-colinear
constant vectors v𝛼 and v𝛽 which are likely to be not aligned
with any of v1 (x) and we apply the simple algorithm 1.
Once we are brought back to the case where either the

field R(x) is composed either of rotations or zeros, we can
compute the missing rotations as a mean of their neighbours
expressed in the same orthonormal basis following the al-
gorithm 2. The function 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝑀𝑎𝑡𝑟𝑖𝑥(R𝑎,R𝑏) considers
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Algorithm 1 : Complete the partially trivial orientations
R(x)
Let 𝜀 � 1
for x ∈ 𝛀 do

if v1 (x) ≠ 0 and v2 (x) = 0 then
v2 (x) = v1 (x) × v𝛼

if ‖v2 (x) ‖ < 𝜀 then
v2 (x) = v1 (x) × v𝛽

end if
v2 (x) ← v2 (x)

‖v2 (x) ‖
v3 (x) = v1 (x) × v2 (x)

end if
end for

the 8-symmetric group (in 2D) or the 48-symmetric group
(in 3D) that expresses R𝑏 in the R𝑎 basis. After a sufficient
number of steps every zeros-rotations should be replaced.

Algorithm 2 : Re-generate the trivial orientations R(x)
Let 𝑁 (x) be the set of neighbours of x and R𝑟𝑒 𝑓 the orientation matrix
of the first neighbour y ∈ 𝑁 (x) such that R(y) ≠ 0.
for nStep do

for x ∈ 𝛀 do
if R(x) = 0 then

for y ∈ 𝑁 (x) do
if R(y) ≠ 0 then
R𝑡𝑚𝑝 = 𝑐𝑙𝑜𝑠𝑒𝑠𝑡𝑀𝑎𝑡𝑟𝑖𝑥 (R𝑟𝑒 𝑓 , R(𝑦))
R(x) ← R(x) + R𝑡𝑚𝑝

end if
end for
R(x) ← 𝑂𝑟𝑡ℎ𝑜𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (R(x))

end if
end for

end for

It should be noted that this second correction step is un-
common for structures designed by Topology Optimization
as the optimization build the shape by following the load
paths hence the stress should always be significant anywhere
inside the structure.
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