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1. The scattering law S(Q,) and related I(Q,t) and G(r,t) 2. Basic theory of inelastic neutron scattering. Different types of excitations. 3. Basic theory of quasielastic neutron scattering 4. Magnetic scattering 5. Different types of motions and how they can be distinguished 6. Different types of neutron spectrometers, including the spin-echo technique 7. Coherent and incoherent scattering of crystalline and amorphous materials 8. Examples of science, where inelastic and quasielastic neutron scattering are useful tools, including a description of the two hands-on experiments at ISIS 9. Data analysis. Corrections and analysis of real experimental data 10.Complementary molecular dynamics simulations

(1) -Outline Data analysis Corrections / reduction of real experimental data "From raw data to a complete fit, step-by-step", a few notes on Mantid, hdf and python in passing 

δ I k =Δ ( N k M k ) = √ N k M k + N k √ M k M k
I S = 1 A SC S ( I SC SC -A SC C A C C I C C ) A SC S , A SC C , A C C :q -dependent Paalman-Pings coefficients α SC := 1 A SC S β SC := 1 A SC S A SC S A C C
Attentuation of the neutron beam intensity along its path:

A Σ V (q)= 1 V ∫ V exp [ -∫ γ (x ) Σ(x ') ds( x ' ) ] d 3 x
Volume V , path γ (x), attenuation coefficient Σ , infinitesimal line element ds( x)

(3) -Empty can contribution, self-shielding 

I S = 1 A SC S ( I SC SC -A SC C A C C I C C ) A SC S , A SC C , A C C : q -dependent Paalman-Pings coefficients
All together, including detector efficiency correction:

I S (q)= 1 D (q) (α(q)I SC (q)-β(q) I C (q)) with α(q)= 1 A SC S (q) β(q)= 1 A SC S (q)
A SC S (q)

A C C (q) and the q-dependent detector efficiency D (q)

(3) -Empty can (3) -Empty can contribution, self-shielding

T H E E U R O P E A N N E U T R O N S O U R C E
(3) -Empty can contribution, self-shielding

Simulated scattering from a Vanadium cylinder

The sample is at the center of the sphere with the neutron beam coming from the left. 

S(q ,)∝ k i k f ∂ 2 σ ∂  ∂ Ω ∝ k i k f ∂ t ∂  ∂ 2 σ ∂ t ∂ Ω ∝t -4 ∂ 2 σ ∂ t ∂Ω using ∂ = ∂  ∂ t ∂t k f ∝m s t = 1 2 m v 2 = 1 2 m ( s t ) 2 ∂  ∂ t ∝t -3
s : flight path sample to detector; v :neutron velocity ∂Ω : solid angle element

(4) -Interpolation to S(q,ω)

From time-of-flight (ToF) data to S(q,ω)

(4) -Interpolation to S(q,ω)

IN5 data interpolated to S(q,ω)

(Example: protein in D 2 O → QENS) (4) -Detailed balance correction S (q ,-)=exp ( -ℏ  k B T ) S (q , )

Neutron Neutron energy gain energy loss

Principle of detailed balance (4) -Interpolation to S(q,ω)

∂ 2 σ inc ∂ Ω ∂  = k f k i b inc 2 exp ( -ℏ  2 k B T
) SS (q , ) one-phonon incoherent differential cross section reduced variables: α= ℏ

2 q 2 2 M k B T identical atoms, mass M β= ℏ  k B T SS (α ,β)=exp(-q 2 ⟨u 2 ⟩) α 2β sinh(β/ 2) g ()
with the density of states g() "Usually the physicist does an experiment and quotes a result a = a* ± Δa. 'What do we mean by a* and Δa ?' and 'What is the best way to calculate a* and Δa ?'. These are questions of extreme importance to all physicists." "What the physicist usually means is that the 'probability' of finding (a* -Δa) < a 0 < (a* + Δa) is 68.3 % (standard deviation)."

P(α ,β)=2β sinh(β/ 2) SS (α ,β) α generalized frequency distribution g()=2β sinh(β/2)lim α →0 ( SS (α ,β)
Gaussian: g(x ; σ)= 1 σ √ 2 π exp ( -1 2 x 2 σ 2 ) Lorentzian: l ( x ; γ)= 1 π γ x 2 + γ 2 Voigt: v( x ; σ , γ)= ∫ -∞ ∞ g( x ' ;σ )l(x -x ' ; γ) dx ' γ=1,σ =1 def V( x,
The more accurate term would be "inverse probability".

It is common in physics to have an infinite set of hypotheses; i. e., a parameter that is a continuous variable f(a;x).

(6) -Non-linear least squares minimization (6) -Non-linear least squares minimization

L (a)= ∏ i=1 N f (a ; x i )
Likelihood function: joint probability density of a particular experimental result, x 1 ; x 2 ; ...; x N , assuming f(a;x) is the true normalized distribution function:

The most probable value a* of a is called maximum likelihood solution of L(a).

Maximum likelihood theorem:

Maximum likelihood error: Let P(N,x) be the probability of finding N events, if the "true" count rate is .

∫ f (a ; x)dx=1 Δ a= [ ∫ (a-a * ) 2 L(a)da ∫ L(a)da ] 1 2 N →∞ : a * →a 0 N →∞ : L(a)∼exp [ -h 2 (a-a * ) 2 ] Δ a= 1 √h w :=- h 2 (a-a * ) 2 +const. ∂ w ∂ a =-h (a-a * ) - ∂ 2 w ∂ a 2 =h=Δ a P (N , N )= N N N ! e -N Poisson distribution L(a)= a N N ! e -a
w=N ln a-a-ln N ! ∂ 

. , m

The square is needed to obtain a differentiable function. 

f (x i ,β) ≈ f (x i ,β k )+ ∑ j ∂ f (x i ,β) ∂β j (β j -β j k ) = f (x i ,β k )+ ∑ j J ij Δ β j r i = y i -f (x i ,β k )-∑ k =1 n J ik Δβ k with the Jacobian J ij =- ∂ r i ∂β j
(6) -Non-linear least squares minimization

Gradient equations

Residuals:

r i = y i -f k ( x i ,β)-∑ k =1 n J ik Δ β k with the Jacobian J ij Iteration: β j ≈β j k +1 =β j k +Δ β k Δ y i = y i -f ( x i ,β k ) r i = y i -f ( x i ,β)=( y i -f (x i ,β k ))+(f (x i ,β k )-f ( x i ,β))≈Δ y-∑ s =1 n J is Δ β s
Inserting the above into the gradient equations:

-2 ∑ i=1 m J ij ( Δ y i -∑ s=1 n J is Δ β s ) =0
Rearrangement to:

∑ i=1 m ∑ s=1 n J ij J is Δ β s = ∑ i=1 m J ij Δ y i ( j=1, ... , n)
In matrix notation:

(J T J )Δ β=J T Δ y (6) -Non-

linear least squares minimization

The Jacobian changes during each iteration.

inserted

Error-weighted fits, diagonal weight matrix W

χ 2 = ∑ i=1 m W ii r i 2 (J T W J ) Δ β=J T W Δ y
Close to the minimum value: The Mittag-Leffler function interpolates between the stretched exponential and power law:

χ 2 ≈ ∑ i W ii ( y i -∑ j J ij β j ) 2 quadratic function ( 
P ( f | g exp , λ )=P( g exp | f , λ) P (f | λ) P(g exp | λ) P (g exp | f , λ)∝exp ( -1 2 χ 2 ) for number of data points N d →∞ χ 2 = ∑ k =1 N d ( g k exp -g k theo (f )) 2 σ k 2 P(f | λ)=exp (-α S) with S (h)= ∑ i=1 N p ( h i -m i -h i ln ( h i m i ) )
P (f | g exp , λ )=P( g exp | f , λ) P (f | λ) P(g exp | λ) P (g exp | f , λ)∝exp ( -1 2 χ 2 ) for number of data points N d →∞ χ 2 = ∑ k =1 N d ( g k exp -g k theo (f )) 2 σ k 2 P(f | λ )=exp (-α S) with S(h)= ∑ i=1 N p ( h i -m i -h i ln ( h i m i ) )
Measured data: Fourier coefficients g k =2 ∫ 0 1 f (x )cos(π k x )dx g k = 2 N ∑ n=0 N -1 f n cos ( π k n N ) f n =f ( n N ) f ( x)= g 0 2 + ∑ k =1 ∞ g k cos(π k x )
g k theo = 2 N ∑ n=0 N -1 f n cos ( π k n N ) χ 2 = ∑ k =0 9 ( g k exp -g k theo σ k ) 2 S= ∑ n=0 N-1 ( f n -m n -f n ln ( f n m ) ) m n =m ∀ n χ 2 =K , K =10 , sets α σ k =5 ∀ k ∈{ 0,... , 9 } f n ≥0 ∀ n∈{ 0, ... N -1 } (6) -Generalization to Maximum Entropy g k theo = 2 N ∑ n=0 N -1 f n cos ( π k n N ) χ 2 = ∑ k =0 9 ( g k exp -g k theo σ k ) 2 S= ∑ n=0 N-1 ( f n -m n -f n ln ( f n m ) )
(7) -QENS and (generalized fractional) diffusion

From

  standard corrections to some examples of how the corrected data can be fitted and analyzed monitor normalization empty can contribution, self-shielding Vanadium normalization standard time-of-flight data reduction detailed balance resolution function (spectrometer response function) data fitting, maximum liklihood estimation, χ 2 minimization and Bayesian analysis examplesfor any "GUI"): import sys sys.path.append( '/opt/Mantid/bin/' ) # then import Mantid application programming interface (API): import mantid.simpleapi as mtd (1) -Outline The "hdf" data format import h5py def loadIN5( filename ): # read lamp-reduced IN5 data class out: pass f = h5py.File( filename, 'r' ) out.hw = np.transpose( np.array( f['/entry1/data1/X/'] ) ) out.q = np.transpose( np.array( f['/entry1/data1/Y/'] ) ) out.sqw = np.transpose( np.array( f['/entry1/data1/DATA/'] ) ) out.dsqw = np.transpose( np.array( f['/entry1/data1/errors/'] ) ) return( out ) def loadMantid( filename ): # read Mantid-reduced data class out: pass f = h5py.File( filename, 'r' ) out.x = np.transpose( np.array( f['/mantid_workspace_1/workspace/axis1/'] ) ) out.q = np.transpose( np.array( f['/mantid_workspace_1/workspace/axis2/'] ) ) out.sqw = np.transpose( np.array( f['/mantid_workspace_1/workspace/values/'] ) ) out.dsqw = np.transpose( np.array( f['/mantid_workspace_1/workspace/errors/'] ) ) out.hw = ( out.x[0:-1] + out.x[1:] ) / 2.0 # from Mantid bins to channel center return

(

  Figure from M. Hennig, PhD thesis, University of Tübingen, Germany, 2011

M

  for volume lower index for material H.Paalman, C.Pings; J.Appl.Phys. 1962 dependent Paalman-Pings coefficients SC: Σ=Σ S Ω S ( x)+ Σ C Ω C ( x) Ω S ( x)=1 for x∈V Ω S (x)=0 for x∉V Path for neutron being scattered at x : γ( x)=x+t k /k for t≤0 γ (x)=x+t k ' / k ' for t >0 with t ∈[-∞ ,∞] Σ=ρ(σ c +σ i +σ a )(3) -Empty can contribution, self-shielding S: Sample , C: Container ,

  www.mcstas.org Limitation of the standard correction: No account for divergent beam and beam spot Solution: Ray-tracing "Monte Carlo" simulation, e.g. in McStas Example: Time-of-flight spectrum Individual detector on IN5 (Cold neutron ToF spectrometer) Sample: Protein in D 2 O, T=280K Container signal not subtracted (4) -Interpolation to S(q,ω) elastic line Neutron energy gain Neutron energy loss 'Handwaving' derivation of the conversion of raw ToF data to S(q , ) based on differential scattering cross sections in time t and energy 

α)

  approximation neglecting multiphonon contributions A.Fontana et al., Phys.Rev.B 41, 3778 (1990) The inelastic part of the spectrum -density of states (4) -Interpolation to S(q,ω) The inelastic part of the spectrum -density of states ToF spectrum on 11 B borate glass, IN6, 5.1Å, 176K A.Fontana et al., Phys.Rev.B 41, 3778 (1990) a) Experiment and fit of a spline b) calculated multiphonon contribution

  sigma, gamma ): # Voigt line shape import numpy as np from scipy.special import wofz # Faddeeva function exp(-z**2)*erfc(-i*z), erfc = 1-erf return np.real( wofz( (x + 1j*gamma) / sigma / np.sqrt(2.) ) ) / sigma / np.sqrt( 2.*np.pi ) Important functions (5) -Resolution function (5) -Resolution function Fit of the resolution function by a sum of Gaussians ħωω [μeV] Intensity [arb. units] Experimental Methods in the Physical Sciences Volume 49; F.Fernandez-Alonso, D.L.Price eds.; Neutron Scattering -Applications in Biology, Chemistry, and Materials Science; Elsevier Academic Press 2017; chapter least squares minimization (iterative application of linear least squares fitting to a linearized form) "A mathematical procedure for finding the best-fitting curve to a given set of points by minimizing the sum of the squares of the offsets ('the residuals') of the points from the curve." mathworld.wolfram.com Error-weighted fits "A measurement without error is meaningless." Machine learning is a kind of generalized fitting … "To build truly intelligent machines, teach them cause and effect." J.Pearl, Quanta Magazine 2018 (6) -Non-linear least squares minimization https://docs.scipy.org/doc/scipy/tutorial/optimize.html Fitting Useful reading (pdf via google scholar): J. Orear: Notes on Statistics for Physicists Laboratory for Nuclear Studies, Cornell University, Ithaca, NY 14853 July 28, 1982 (revised edition based on the original lecture series in 1958)

  = y i -f (x ,β) for i=1, 2,3, ..

  -Non-linear least squares minimization Function f depending on x and the fit parameters β: y=f ( x ,β) with β=(β 1 ,β 2 ,β 3 , ... ,β n ) Data points y i , residuals r i : r i = y i -f (x ,β) for i=1, 2,3, ... ... , n) Iteration: β j ≈β j k + 1 =β j k +Δβ j with the vector of increments (shift vector) Δ β First-order Taylor expansion about β k at each iteration step:

  6) -Non-linear least squares minimization Generalize to error-weighted fits: In python: resolution fit parameters signal errors popt, pcov = curve_fit( lambda x, *p: wrapper_func( x, q, r, fixed_p, len(f0), p ), x, y, p0=f0, bounds=(l,u), sigma=dy ) : perr = np.sqrt( np.diag( pcov ) ) docs.scipy.org def wrapper_func( hw, q, r, fixed_p, N, *args ): # "wrap" a variable number of fit parameters and fixed values into the model a = list( args[0][:N] ) fp = np.asarray( a ) return model_sqw( hw, fp, q, r, fixed_p ) # call the model function r=(r 1 , ... , r m ) ∇ 2 χ 2 =∇ (∇ r 2 )=∇ (2 r ∇ r )=2 ∇ r ∇ r +2 r ∇ -Non-linear least squares minimization C.Beck et al., J. Phys.Chem.B 122, 8343 (2018) "jump diffusion" (6) -Generalization to Maximum Entropy P( X , Y )=P( X | Y ) P(Y )=P(Y | X ) P ( X ) Bayes' theorem, X ,Y : random variables, P ( X ,Y ): probability of simultaneous incidence of X and Y, P(. | .): conditional probability P( X|Y )=P(Y|X ) P ( X ) P (Y )

  Shannon entropy Task: Maximize exp ( α S-1 2 χ 2 ) i.e. maximize α S-Minimal free energy F =U -T S (6) -Generalization to Maximum Entropy P( X , Y )=P( X | Y ) P(Y )=P(Y | X ) P ( X ) Bayes' theorem, X ,Y : random variables, P ( X ,Y ): probability of simultaneous incidence of X and Y, P(. | .): conditional probability P( X | Y )=P(Y | X ) P ( X ) P (Y )

( 6 )

 6 -Generalization to Maximum EntropyTask: Determine an even function f ( x ) in the intervall x∈[0,1] 

m n =m ∀ n χ 2 G

 2 =K , K =10 , sets α σ k =5 ∀ k ∈{ 0,... , 9 } f n ≥0 ∀ n∈{ 0, ... N -1 } Experimental Methods in the Physical Sciences Volume 49; F.Fernandez-Alonso, D.L.Price eds.; Neutron Scattering -Applications in Biology, Chemistry, and Materials Science; Elsevier Academic Press 2017; chapter 2 1 ( z) , stretched exponential exp (-|z| β ) Experimental Methods in the Physical Sciences Volume 49; F.Fernandez-Alonso, D.L.Price eds.; Neutron Scattering -Applications in Biology, Chemistry, and Materials Science; Elsevier Academic Press 2017; chapter 2

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  contribution, self-shielding

	Examples (λ=6.4Å):	
	Sample	Density	Σ [1/cm]
		[g/cm^3]	(cf. slide 9)
	Vanadium foil 6.11	1.673
	Aluminum	2.7	0.147
	sample		
	container		
	with protein Water (D 2 O)	1.174	0.708
	(BSA, 200mg/		
	ml)		
	Pure D 2 O	1.1056	0.649

Image copyright ILL

Diffusion equation:

Integro-differential operator: Thank you for listening !