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Highlights

Neural network sensitivity and interpretability predictions in power

plant application

Tina Danesh, Rachid Ouaret, Pascal Floquet, Stephane Negny

• Enhancing the interpretability of ANN predictions with the help of SA

and model-agnostic techniques.

• Performing the hyper-parameters analyses with the help of sensitivity

measure.

• Understanding how variations in inputs affect the predictions of a neu-

ral network.

• Identifying the most influential input parameters in the prediction of

electrical power (PE) in a combined cycle power plant.
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Abstract

Machine learning (ML) models such as Deep Neural Networks (DNN) have

become increasingly ubiquitous due to their accuracy and flexibility. How-

ever, the lack of interpretability and explainability is why they are uncom-

mon in engineering applications. Meanwhile, the research community has

identified interpretability as a hot research topic, leading to confusion in

various communities. This paper discusses a methodological framework to

define and enhance interpretability in the prediction application of Neural

Networks. The methods to deal with this problem are (i) Sensitivity Anal-

ysis (SA) for Neural Network prediction (model-specific interpretation tool)

and (ii) model-agnostic methods. The latter tools could be used for any ML

model prediction. In this study, we enhance the interpretability of the Neural

Network predictions with the help of SA and model-agnostic methods. In or-

der to visualize the inputs’ impacts on prediction results, Partial Dependence

Plots (PDP), Individual Conditional Expectation (ICE), and Accumulated
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Local Effects (ALE) are used and compared. The prediction of the electrical

power (PE) output of a combined cycle power plant (CCPP) has been chosen

to demonstrate the feasibility of these methods under real operating condi-

tions. The results show that the most influential input parameter among

ambient temperature (AT), atmospheric pressure (AP)), Vacuum (V) and

relative humidity (RH) is AT. The visualization outputs allow us to identify

the direction (positive or negative) and the form (linear, nonlinear, random,

stepwise, ...) of the relationship between the input variables and the model’s

output.

Keywords: Neural networks, Sensitivity analysis, Model-agnostic, Partial

dependence plots, Accumulated local effects, Interpretability, Combined

cycle power plant

PACS: 0000, 1111

2000 MSC: 0000, 1111

Nomenclature

Indices

f, h Number of predictors or features

F Total number of predictors or features

l Number of layers

m Number of sample

n Number of neurons
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U, V Total number of interval

u, v Number of interval

Symbols of multilayer perceptron equations

AF l
n The activation function of the nth neuron in lth layer

bl The bias in the lth layer

wl
nj The connection’s weight between neurons jth and nth in the (l − 1)th

layer and the lth layer

yln The weighted sum of the neuron inputs

zln The output of the nth neuron in the lth layer of an MLP

Symbols of PDP and ALE equations

ĝ(x) The fitted neural network model

g(x) A black box supervised learning model; here is a neural network

LB0,f The approximate lower bounds of Xf

LB0,h The approximate lower bounds of Xh

LBU,f The largest observation

X Random variables

x Specific values of the random variables

Symbols of sensitivity measures equations

3
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Savg
in , Savg

i Mean sensitivity for one output neuron and more than one output

neuron respectively

Ssd
in , S

sd
i Standard deviation sensitivity for one output neuron and more than

one output neuron respectively

Ssq
in , S

sq
i Mean squared sensitivity for one output neuron and more than one

output neuron respectively

Variables of real data

P̂E Electrical Power output predictions using ANN

AP Atmospheric Pressure

AT Ambient Temperature

PE Electrical Power output

RH Relative Humidity

V Vacuum

1. Introduction

Different mathematical models exist in order to describe, analyze and

predict different engineering systems’ behavior. There are mainly two differ-

ent visions: Equation-based knowledge models, known as physical-chemical

or "white box" models, and data-oriented approaches, which are primarily

based on Machine Learning (ML) algorithms known as "black-box" models.

4
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The Equation-based methods are easy to understand and interpret predic-

tions since the model’s assumptions and the relationship between different

variables have physical meanings. In addition, several studies have been

performed on them, so they are understandable and well established by the

community. In parallel, Machine Learning has been heavily researched and

widely used in many areas, such as in engineering design (Sharpe et al., 2019;

Balochian and Baloochian, 2019; Romeo et al., 2020), and optimization plants

(Mafarja et al., 2019; Tubishat et al., 2020; Tso et al., 2020). The success of

ML in many applications is grounded in its powerful capability for prediction

purposes. However, they are still hard to understand the relations between

predictors and model outcomes (Moradi and Samwald, 2021). Indeed, they

suffer from a lack of interpretability and explainability because they function

without process knowledge dependency. This is the reason why they are re-

ferred to as black-box models (lack of transparency and physical significance).

Extensive literature attests to the superiority of black-box machine learning

algorithms in minimizing predictive error, both from a theoretical (Cybenko,

1989; Hornik, 1991; Park and Sandberg, 1991; Leshno et al., 1993) and an

applied perspective (Sahoo et al., 2017; Li et al., 2019).

From the chemical engineering perspective, the detailed description of

the whole system requires complex and often highly parameterized models

with numerous assumptions that should be made to analyze and predict

accurately, especially thermodynamical analysis. Most of the time, these

assumptions do not meet when dealing with real data, bring some uncertainty

to the systems and affect the output. However, a thermodynamical analysis

of a real application consists of many nonlinear equations; hence it is time-

5
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consuming and takes too much effort. On the other side, chemical engineering

problems have become complicated dramatically and consist of more and

more data to analyze, especially if the system under study is large and has

complex nonlinear behavior. Furthermore, they have some features such as

uncertainty, multi-scale, time lag, and large variable space dimensions. Data-

oriented and machine learning techniques would be helpful to deal with these

barriers (Kesgin and Heperkan, 2005).

Machine learning techniques are applied mainly as alternatives instead of

physical approaches, considering the increasing volume of data and informa-

tion in real-world situations (Chen and Zhang, 2014). These data-oriented

models can be applied to take out useful information and supports decision-

maker. One of the most popular machine learning algorithms in continuous

output predictions is Artificial Neural Network (ANN) thanks to the univer-

sal approximation theorem (Hornik, 1991).

Multi-Layer Perceptron (MLP), a subset of ANN architectures, is trained

by the back-propagation algorithm and has a wide variety of applications

(Rumelhart et al., 1986). The MLP learning is utilized to predict the re-

sponse of one or more variables given one or many explanatory variables.

The significant feature of the MLP is the description of relationships us-

ing an arbitrary number of parameters selected via iterative training with

the back-propagation algorithm. Conceptually, the MLP as a hyper param-

eterized nonlinear model could fit a smooth function to any dataset with

the minimum residual error representing the relationship between the out-

put and the input variables (Hornik, 1991). The artificial neural network

has some advantages that include providing predictive benefits compared to

6
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other models, such as detecting complicated nonlinear relationships between

dependent and independent variables. Its disadvantages include the com-

plexity of neural networks, making it hard to understand why it predicts

successfully and when we can trust it.

A recent advanced research topic in neural networks is to find methods

to obtain information and gain the ability to interpret how the input vari-

ables affect the output variable to help decision-makers. The interpretability

could be handled by using sensitivity analysis as a quantitative method and

model-agnostic such as Partial Dependence Plots (PDP) (Friedman, 2001),

and Accumulated Local Effects (ALE) (Apley and Zhu, 2020) as qualitative

methods. Figure 1 shows the overview of the machine learning interpretabil-

ity procedure. Firstly, the goal is to predict the system’s output and help the

decision-maker decide and control. For this purpose, a supervised ML model

such as ANN is used. In order to give valuable information to the decision-

maker, the interpretability methods as model-agnostic methods attempt to

address the question of how the inputs impact the model’s predictive perfor-

mance. The interpretability tools are employed after predictions.

In this paper, the prediction interpretability of regression problems is de-

fined as the process of extracting relevant knowledge from a model about the

learned relationships between features and model outputs. These aspects

have been addressed in the sensitivity analysis framework of neural network

predictions. Enhancing interpretation, in our context, consists of distinguish-

ing the effect of each input uncertainty on the model output variance.

Some examples of methods for sensitivity analysis that could help to

gain helpful information from the neural networks are Neural Interpretation

7
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Figure 1: Overview of Machine Learning interpretability.

Diagram (NID) (Özesmi and Özesmi, 1999; Olden and Jackson, 2002), Gar-

son’s method for variable importance (Garson, 1991), and partial derivatives

method (White and Racine, 2001).

The partial derivatives method calculates the derivative of each output

variable according to each input variable evaluated on each data sample

of a specified dataset. Each input’s effect using all the dataset samples is

computed in both magnitude and sign concerning the connection weights, the

activation functions, and the values of each input to avoid information loss

during learning or calibration steps. Analytically calculating the derivatives

gives more robust diagnostic information since it only depends on neural

network prediction efficiency. The derivatives will be the same and will not

rely on the training conditions and the network structure until the neural

network predicts the output variable with high accuracy (Beck, 2018). Its
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ability to make sensitivity analysis a beneficial technique for interpreting and

improving neural network models is considered its main advantage.

As mentioned before, it is not simple to interpret the machine learning

models. The general interpretative framework depends on the models. For

example, in linear regression, it is possible and straightforward to understand

the how and the why given the statistical significance of the weights, so the

interpretation of the linear regression model can be assessed by its coeffi-

cients. The linear regression coefficients (e.g. β1, β2, ..., βp) associated with

continuous predictors x1, x2, ..., xp is the difference in the predicted value

of the response variable for each one-unit change in the predictor variable,

assuming all other predictor variables are held constant. It is not easy to

extrapolate this process to other models, so one can imagine specific meth-

ods or tools to interpret it for any model. That is the reason that they are

called model-specific interpretations. These approaches have been designed

specifically for a given model. Recently, some tools have emerged in ML that

are supposed to remove this barrier to express the interpretation of machine

learning models, whatever the learning model used. These tools are called

model-agnostic tools.

Model-agnostic methods could be effective in order to interpret machine

learning models by separating the explanations from the machine learning

model (Ribeiro et al., 2016). Model-agnostic methods like sensitivity analysis

(SA) are distinguished into local and global methods. The PDPs, Individ-

ual Conditional Expectation (ICE) plots, and ALE Plots are some model-

agnostic techniques (Friedman, 2001; Apley and Zhu, 2020).

We carry out our study on a Combined Cycle Power Plant (CCPP) as

9
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a real-world application. The dataset is taken from Tüfekci’s paper and

contains 9568 data points collected from a CCPP over six years (2006-

2011)(Tüfekci, 2014). Tüfekci tested and compared some machine learning

regression methods to extend a predictive model for an electrical power out-

put of the CCPP. The paper evaluated the prediction accuracy by Mean

Absolute Error (MAE) and Root Mean Squared Error (RMSE) for continu-

ous variables. It had two primary purposes. The first one was to detect the

best subset of the dataset among all other subset configurations. The second

one was to realize the most successful machine learning regression method.

The Tüfekci’s paper does not focus on the interpretability aspects of the

applied ML methods, especially from the SA and model-agnostic points of

view.

The contributions of our paper include:

• Enhancing the interpretability of ANN predictions with the help of SA

and model-agnostic techniques.

• Identifying the most influential input parameters in predicting electrical

power in a CCPP.

• Compare the model-specific (partial derivatives) approach and model-

agnostic for interpretability purposes.

• Understanding how variations (quantitatively and qualitatively) in in-

puts affect the predictions of a neural network.

In our study, to calculate the sensitivity measures, the output’s partial

derivatives are determined concerning the inputs of an MLP model. We used
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PDPs, ICE plots, and ALE plots as model-agnostic methods to visualize the

input’s effect on the output. The MLP theory and model-agnostic methods

will be explained concerning its inputs and some sensitivity measures in the

following sections.

The rest of this paper is organized as follows. In Section 2, Neural Net-

work Sensitivity and interpretation tools are presented, whereas the experi-

mental and simulation work is given in Section 3. Section 4 is dedicated to

analyzing and discussing the findings. Finally, we conclude in Section 5.

2. Neural Network Sensitivity and interpretability

Figure 2 summarizes the methodological scheme of the study. This method-

ology composes of three main parts: Problem (A), Methodology (B), and

result (C). Part A corresponds to the description of the problem or issue

we face. In this part, we attempt to answer the following question: how

do predictor variables impact the predictions of neural network regression?.

Specifically, we have 9568 data points that were preprocessed by (Tüfekci,

2014). The ANN is performed on the data to predict PE, though it lacks ex-

plainability and interpretability. Part B corresponds to the methods included

in this paper to solve the problem in part A. The results and comparison that

we gain from each method will present in Part C. This section will explain

part B in detail.

2.1. Multilayer perceptron (MLP)

An artificial neural network is a mapping between two Euclidean spaces,

nonlinear with respect to its parameter θ that associates to an entry x an

output y = f(x, θ). An MLP is a structure composed of several hidden layers

11
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Figure 2: Overview of the methodology used in the study

of neurons (oriented graph), where the output of a neuron of a layer becomes

the input of a neuron of the next layer. It contains at least three layers of

nodes: an input layer of the predictor variables, a hidden layer composed of

several neurons, and an output layer. The output of one section travels along

with one connection to another section. It is multiplied by the weight of each

connection. After that, the summation of the inputs at each section is added

to a constant or bias. Once each section’s input terms are calculated, an

activation function is utilized to get the result (forward propagation flow).

The activation function in a neural network explains how the input’s weighted

sum is changed into an output from a node or nodes in a network’s layer.

For an MLP with L layers, the output zln of the nth neuron in the lth layer
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(1 ≤ l ≤ L) is calculated by the following equation:

zln = AF l
n

(
yln
)
= AF l

n

ml−1∑
j=1

wl
nj . z

l−1
j + wl

n0.b
l

 (1)

Where AF l
n refers to the activation function of the nth neuron in lth layer

and yln refers to the weighted sum of the neuron inputs. wl
nj refers to the

connection’s weight between neurons jth and nth in the (l − 1)th layer and

the lth layer. ml−1 refers to the number of neurons in the (l − 1)th layer. bl

refers to the bias in the lth layer. For the initial state of the input layer we

have these parameters, l = 1, z1−1
j = xj, w1

nj = 1, and b1 = 0.

Weights in the ANN structure specify how the information flows from

the first layer to the last layer. The optimal weights that make the min-

imum prediction error are determined during the neural network training.

The backpropagation algorithm is one of the most important parts of train-

ing feedforward neural networks (Rumelhart et al., 1985). Partial Derivative

(PD) and gradient descent procedures are the backpropagation algorithms’

most important parts. Partial derivatives are computed using an expression
∂C
∂w

measuring the cost function C with respect to any weight w (or bias b)

in the network. The link between sensitivity analysis and the MLP learning

algorithm is remarkable using partial derivatives since it quantifies the im-

portance of each network’s weights on the behavior of the output. From this

point of view, the sensitivity of an MLP using the partial derivative expres-

sion tells us how quickly the cost changes when we change the weights and

biases.
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2.2. ANN sensitivity through partial derivatives

We could perform sensitivity analysis on the neural networks through the

partial derivatives method. This method comprises calculating the derivative

of the output according to the inputs of the neural network (Pizarroso et al.,

2020). These partial derivatives are considered as sensitivity and can be

calculated by the following equation:

sin |xm =
∂zn
∂xi

(xm) (2)

Where sin|xm refers to the sensitivity of the nth neuron’s output in the output

layer according to the ith neuron’s input in the input layer that is calculated

in xm, and xm is the m sample of the dataset that the sensitivity analysis

is performed on. In order to compute the sensitivity of the inner layers, the

chain rule is applied to the partial derivatives. The related equations of the

partial derivatives of the inner layers are defined by: (i) the derivative of yln
regarding zl−1

i is ∂yln
∂zl−1

i

= wl
ni that represents the weight of the connection

between the nth neuron in the lth layer and the ith neuron in the (l − 1)th

layer, and (ii) the derivative of zln regarding yli is ∂zln
∂yli

∣∣∣zli = ∂AF l
n

∂yli

(
yli
)

that ∂AF l
n

∂yli

refers to the partial derivative of the activation function of the nth neuron in

the lth layer regarding the nth neuron’s input in the lth layer estimated for

the input yli of the ith neuron in the lth layer.

2.3. Sensitivity measures

After calculating the sensitivity for each variable and sample, we could

apply different measures to analyze and interpret the results. The related

measures are presented in table 1 under two conditions: one output neuron

or more than one output neuron. In general case, the following sensitivity
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Table 1: The basic sensitivity measures for an MLP using partial derivative. m is the

number of samples in the dataset.

Sensitivity measure One output neuron More than one output neuron

Mean Savg
in =

∑m
j=1 sin|xj

m
Savg
i =

∑ml

n=1 S
avg
in

mL

Standard deviation Ssd
in = σ

(
sin|xj

)
; jϵ1, ...,m Ssd

i =

√∑ml

n=1

(
(Ssd

in)
2
+(Savg

in −Savg
i )

2
)

mL

Mean squared Ssq
in =

√∑M
j=1(sin|xj)

2

m
Ssq
i =

∑ml

n=1 S
sq
in

mL

measures are used: (i) Mean sensitivity of the nth neuron’s output in the

output layer regarding the ith input variable, (ii) Standard deviation (σ)

sensitivity of the nth neuron’s output in the output layer regarding the ith

input variable. (iii) Mean squared sensitivity of the nth neuron’s output in

the output layer regarding the ith input variable (Yeh and Cheng, 2010).

The mean effect of the input variable on the output is illustrated by mean

sensitivity. The variance of the input variable’s effect on the output in the

input space is represented by standard deviation sensitivity.

2.4. Partial Dependence Plots and Individual Conditional Expectation

Partial Dependence Plot (PDP) (Friedman, 2001) is an ideal graphical

tool to analyze the impact of some input variables on the dependent vari-

able when using nonlinear models, such as an ANN, random forest, or some

gradient boosting. This is why they are considered as a model agnostic tool.

The PDP highlights the change in the average predicted value as the spec-

ified feature(s) vary over their marginal distribution. For individual data

instances, the plots are considered as Individual Conditional Expectation

(ICE) (Goldstein et al., 2015). For example, in terms of MLP learning, all
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we get is the importance of the weight. It is relatively simple to know which

node connections significantly influence the outcome; it sucks that we do

not know in which direction it is affecting. The PDP is an intuitive and

easy-to-understand visualization of the effect of the inputs on the predicted

outcome.

Assume that g(x) is a black box supervised learning model; here is a

neural network in our study. The fitted model is named ĝ(x). We use upper

case X to identify random variables and lower case to identify specific values

of the random variables.

The xf is the feature for which we want to know its effect on the prediction

for plotting the partial dependence plots, and X\f are the other features

that exist in the machine learning model except xf , which are considered as

random variables. The combination of feature vectors xf and x\f is the total

feature space x.

The partial dependence function is defined as:

ĝf,PDP (xf ) = EX\f

[
ĝ
(
xf , X\f

)]
=

∫
X\f

ĝ
(
xf , X\f

)
dP (X\f ) (3)

Where each subset of predictors f has its own partial dependence function

gf , which gives the average value of g when xf is fixed and X\f varies over

its marginal distribution dP (X\f ). The ĝf is the expectation of g over the

marginal distribution of all variables other than Xf .

In practice, the estimation of the equation 3 is calculated by averaging

over the training data that is known as the Monte Carlo method:

ĝf (xf ) =
1

m

m∑
a=1

g(xf , x
(a)
\f ) (4)
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Where x
(1)
\f , ..., x

(m)
\f represent the actual feature values that are observed in

the training data, and m is the number of instances in the dataset. In PDP,

we assume that the features in set \f are not correlated with the features in

set f ; if not, the average calculated for PDP may contain data points that are

very unlikely or even impossible. Friedman’s partial dependence plot aims to

visualize the marginal effect of a given predictor towards the model outcome

by plotting out the average model outcome in terms of different values of the

predictor.

While PDP provides the average effect of a feature of the predictions over

the marginal distribution, ICE plots are a method to disaggregate these av-

erages. ICE plots visualize the functional relationship between the predicted

response and the feature separately for each instance. In other words, a PDP

averages the individual lines of an ICE plot. In some of our experiments, we

used normalized variables.

2.5. Accumulated Local Effects plots

Accumulated Local Effects (ALE) explain the average impact of features

on the prediction of a machine learning model (Apley and Zhu, 2020). They

are a faster option than partial dependence plots. ALE methods could work

while the features are dependent, although the biggest problem of PDPs is

the assumption of feature independence.

As mentioned before, for each f ∈ {1, ..., F}, let X\f illustrate the subset

of (F − 1) predictors excepting Xf . The ALE main effect of predictor xf is

defined as:

ĝf,ALE (xf ) =

∫ xf

LB0,f

E
[
ĝf

(
Xf , X\f

)
|Xf = LBf

]
dLBf − C (5)
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Where, ĝf
(
Xf , X\f

)
= ∂ĝ(X1,...,XF )

∂Xf
. LB0,f refers to the approximation lower

bound of Xf , and it affects the vertical translation of the ALE plot. C is

considered as a constant that aims to make the mean of ĝf,ALE (xf ) equal

to zero concerning the marginal distribution of Xf or to center the plot

vertically.

To define the ALE second-order effects, for each pair of indices {f, h} ⊆

{1, ..., F}, let X\f,h illustrate the subset of (F − 2) predictors excepting

{Xf , Xh}. The ALE second-order effect of predictors {Xf , Xh} is defined

by the following equation:

ĝ{f,h},ALE (xf , xh) =∫ xh

LB0,h

∫ xf

LB0,f

E

[
∂2ĝ(X1, ..., XF )

∂Xf∂Xh

|Xf = LBf , Xh = LBh

]
dLBfdLBh

−ff (xf )− fh(xh)− C

(6)

Where, LB0,f and LB0,h refer to approximate lower bounds of Xf and Xh,

respectively. The functions of single variables Xf and Xh (ff (xf ) and fh(xh))

and the constant aims to centralized ĝ{f,h},ALE (xf , xh) or has the mean of

equal to zero concerning the marginal distribution of Xf and Xh.

There are some differences in the ALE formulation compared to the PDP

formulation, such as:

• ALE averages the predictions conditional on each grid value of the

interested feature, and PDP presumes the marginal distribution at each

grid value.

• We average the changes of predictions, not the predictions themselves,

and we define the change as the partial derivative.
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• The equation has the additional integral over LB0,f that refers to an

approximate lower bound of Xf .

• To center the ALE plot, we subtract a constant value from the results;

therefore, the average effect over the data is zero.

In order to calculate the estimation of the equations 5 and 6, first, features

are categorized into many intervals, and then the differences in the predic-

tions are calculated. This procedure could approximate the derivatives. This

procedure’s advantage is that it can work for models with no derivatives. The

estimated equations that are proposed by Apley and Zhu (2020) are as fol-

lows:

• Estimation of ALE main effect:

ˆ̃gf,ALE (xf ) =

uf (x)∑
u=1

1

mf (u)

∑
t:xt,f∈Nf (u)

[
ĝ(LBu,f , xt,\f )− ĝ(LBu−1,f , xt,\f )

]
−C

(7)

Where for each u ∈ {1, 2, ..., U}, mf (u) refers to the number of train-

ing observation that falls into uth interval Mf (u). For each f ∈

{1, 2, ..., F}, {Mf (u) = (LBu−1,f , LBu,f ];u = 1, 2, ..., U} refers to an enough

good partition of the sample range of {xt,f : t = 1, 2, ...,m} into U in-

tervals (U is an input argument in the ALEPlot function, and gen-

erally is chosen around 100, larger values we often get better result).

LBu,f is assumed as the u
U

quantile of the empirical distribution of

{xt,f : t = 1, 2, ...,m} that LB0,f is considered below the smallest ob-

servation, and LBU,f is considered as the largest observation. The

constant is chosen in order to have 1
m

∑m
t=1 ĝf,ALE (xt,f ) = 0.
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• Estimation of ALE second-order effects for {Xf , Xh} at any (xf , xh) ∈

(LB0,f , LBU,f ]× (LB0,h, LBU,h]:

ˆ̃g{f,h},ALE (xf , xh) =

uf (xf )∑
u=1

vh(xh)∑
v=1

1

m{f,h}(u,v)∑
t:xt,{f,h}∈M{f,h}(u,v)

[ĝ(LBu,f , LBv,h, xt,\{f,h})− ĝ(LBu−1,f , LBv,h, xt,\{f,h})]−

[
ĝ(LBu,f , LBv−1,h, xt,\{f,h})− ĝ(LBu−1,f , LBv−1,h, xt,\{f,h})

]
− C

(8)

Where the {Xf , Xh} space is split up into a grid of U×V rectangular cells

{Mf,h(u, v) = Mf (u)×Mh(v);u = 1, 2, ..., U ; v = 1, 2, ..., V } shown in figure

3. For each u ∈ {1, 2, ..., U} and v ∈ {1, 2, ..., V }, mf,h(u, v) refers to the

number of training observation that falls into cell Mf,h(u, v). The constant

is chosen in order to center the ALE second-order effects estimation in two

directions.

3. Case Study and data sets

As a real-world application of a thermodynamic system, we consider a

Combine cycle power plant (CCPP). Generally, a CCPP contains gas turbines

(GT), steam turbines (ST), and heat recovery steam generators (HRSG). In

a CCPP, the gas and steam turbines generate the electricity combined in

one cycle, and the electricity is transferred from one turbine to another (Niu

and Liu, 2008). The CCPP uses the waste heat to produce extra steam to

generate additional electricity.

The gas turbine is one of the most efficient devices to convert gas fuels to

mechanical and electrical power. Lately, the efficiency of the simple cycle has
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𝐿𝐵0,𝑓 𝐿𝐵1,𝑓 𝐿𝐵U,𝑓𝐿𝐵U−1,𝑓…
𝐿𝐵0,ℎ

𝐿𝐵1,ℎ

𝐿𝐵V−1,ℎ

𝐿𝐵V,ℎ

…

𝑀𝑓(1) 𝑀𝑓(2)

…

… 𝑀𝑓(U − 1) 𝑀𝑓(U)

𝑀𝑙(1)

𝑀𝑙(2)

𝑀𝑙(V − 1)

𝑀𝑙(V)

𝑥𝑓

𝑥ℎ

𝑀 𝑓,ℎ (U − 1,2)

Figure 3: Clarification of the notations utilized in the estimation of ALE second-order

effects adopted from (Apley and Zhu, 2020). Each of {Xf , Xh} are split up into U and V

intervals respectively, and rectangular cells of the grid come from their cross product.

increased, and the natural gas prices have decreased. As a result, gas turbines

have been more widely used for base-load power generation, particularly in

combined cycle mode, where waste heat is recovered to produce additional

electricity.

A CCPP not only produces high power outputs efficiently but also re-

leases fairly low exhaust gases. Other types of power plants could generate

only 33% electricity and the remaining 67% waste. In comparison, CCPP

generates 68% electricity. Due to its advantages, CCPP is used these days

increasingly. Consequently, predicting and interpreting the prediction model

of a power plant has been investigated as a crucial real-world problem. Know-

ing the influential factors to accurately predict a base-load power plant’s full

load electrical power output is essential for a power plant’s efficiency. It
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is beneficial for maximizing the income from the available megawatt hours

(MW h). The reliability and sustainability of a power plant are related sig-

nificantly to predicting its power generation, especially when there are some

high efficiency and contractual liabilities constraints.

Figure 4 illustrates the CCPP and the sensors location of the CCPP in-

stallation (Tüfekci, 2014). The CCPP is affected by the ambient conditions,

mostly ambient temperature (AT), atmospheric pressure (AP), and relative

humidity (RH). However, the steam turbine is affected by the exhaust steam

pressure (or vacuum, V). We could consider these parameters as input vari-

ables for the two turbines. The electrical power generated by both gas and

steam turbines is considered as a target variable. All the input variables and

target variables are average hourly data that are measured by the sensors

located in the measurement points in figure 4.

In order to develop a predictive model, Tüfekci tested and compared

several machine learning regression methods that could predict the electrical

power output of a CCPP. The author worked on the dataset supplied from a

power plant over six years designed with a nominal generating capacity of 480

MW, made up of two 160MW ABB 13E2 Gas Turbines, two dual pressure

Heat Recovery Steam Generators (HRSG), and one 160MW ABB Steam

Turbine. The measured data from the plant, as well as all preprocessing

steps, are described in the original paper (Tüfekci, 2014). It consists of

9568 data points collected when the plant worked with a full load over 674

different days. Thus, some data preprocessing operations are needed. In the

first step, the dataset is cleaned by removing the incompatible values and

the noisy data. We perform our study on the dataset of Tüfekci’s paper with

22

Electronic copy available at: https://ssrn.com/abstract=4119745



Generator
G Generator High Pressure Steam

Low Pressure Steam
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Figure 4: The combined cycle power plant layout presented in (Tüfekci, 2014). It contains

two gas turbines, a steam turbine, and heat recovery steam generators. The figure shows

the measurement points of the input and output variables.
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the same CCPP. The significant difference with the mentioned paper is that

we bring a sensitivity analysis and model-agnostic methods in the framework

of supervised machine learning approaches to understand and visualize the

effects of the predictor variables on the predicted response.

4. Results and discussion

Figure 5 shows the overview of the result section. The first part of our

analysis focuses on the optimization of the MLP model’s hyper-parameters,

namely the number of layers and the number of neurons in each layer (l and

m in equation 1). In that respect, the impact of these parameters on the

sensitivity measures was evaluated (4.1). After validating the accuracy pre-

dictions of MLP, sensitivity measures of the ANN model have been applied

to assess the impact of input parameters on the output variability (section

4.1). This step could be considered as a model-specific that gives us a quan-

titative description. After that, we perform PDP, ICE, and ALE plots as

a model-agnostic approach to visualize and describe the predictors’ effects

with the MLP model as a qualitative description (sections 4.2 and 4.3).

All the results, simulations, and plots are obtained from R software (Team

et al., 2013). The ANN regressions and PDP results are obtained thanks to

pdp (Greenwell, 2017) and RSNNS (Bergmeir et al., 2012) R packages.

4.1. MLP Hyper-parameters analyses

4.1.1. Impact of Hyper-parameters: variation of the number of neurons for

one layer

For this simulation, we assume only one hidden layer and vary the number

of neurons from 15 to 100. Figure 6 shows the mean sensitivity of the neural
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Figure 5: Overview of the result presentation. There are two steps to enhance the inter-

pretability. The first one is named model-specific, which gives us a quantitative descrip-

tion, and the second one is called model-agnostic, which provides us with a qualitative

description.

networks as a function of the number of neurons in the hidden layer. It

seems that the variability of the neural network’s output depends strongly

on the temperature variable. However, the sensitivity of the other parameters

remains relatively stable.

We can estimate the adequate number of neurons for the lowest sensitivity.

About fifty neurons in the hidden layer would correspond to low sensitivity

in the output of the neurons; as a result, we choose this number of neurons

for the neural network architecture with one layer.

4.1.2. Impact of Hyper-parameters: variation of the number of neurons and

layers

For this simulation, we change the number of hidden layers from 2 to 7

and the number of neurons from 2 to 10 for each layer. The same number

of neurons for all layers is considered. For example, if we have two layers,

the number of neurons changes from 2 to 10 for all two layers. We choose
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Figure 6: The Mean sensitivities obtained on the output of the MLP neural network as a

function of the number of neurons in the hidden layer.
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seven layers maximum because the mean sensitivity values do not change

remarkably after 6 or 7 layers, and we choose ten neurons maximum because

it would be time-consuming for more neurons.

Figure 7 depicts the mean sensitivity of the neural networks as a function

of the number of neurons and hidden layers. It seems that by increasing

the number of layers, the mean sensitivity tends to zero intensely at first

and then almost keeps a constant value while the number increases. We

should remember that the lowest sensitivity represents the sufficient number

of neurons and layers.

The foremost observation in figure 7 is that three of our input parameters

(AT, V, and RH) have pretty similar behavior. However, atmospheric pres-

sure does not give the same result as others, and we do not know its reason.

From figure 7, it can be concluded that three hidden layers and six neurons

would match low sensitivity in the output. Accordingly, these values for the

MLP’s hyper-parameters are considered.

4.2. PDP and ICE plots

Figures 8 and 9 show the Partial Dependence Plots (PDP) and Individual

Conditional Expectation (ICE) simultaneously for different neural network

architecture when the data are normalized. Figure 8 presents PDP for an

ANN prediction with one layer and fifty neurons, and figure 9 presents PDP

for an MLP with three layers and six neurons.

There are some assumptions for PDP that should be met to have the

ability to show the way an input impacts an outcome variable. More accu-

rately, this plot discovers the relationship between the predicted response and

the selected input variables. The partial dependence function can be com-
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Figure 7: The Mean sensitivities obtained on the output of the MLP neural network as a

function of the number of neurons and hidden layers.

puted by averaging predictions with actual feature values of all inputs except

the inputs that we want to study their effect, or it calculates the marginal

impact of mentioned inputs on the prediction (Molnar, 2019). Individual

Conditional Expectation (ICE) plots disaggregate the averages of PDP. ICE

plots picture the functional relationship between the predicted response and

the input separately for each sample. We can conclude that a PDP averages

the individual lines of an ICE plot. The PDP shows the marginal effect one

or two features have on the predicted PE of a neural network (MLP). It

indicates whether the relationship between the PE and input variables (AT,

V, AP, and RH) is nonlinear, monotonic, or more complex.

Figure 8 illustrates that the ambient temperature plot is the most complex

figure among these four inputs. It is divided into three parts. It is partly
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linear in the first and third parts. In the middle, we have a complex variation.

The curve shape of AT remind us the inverse sigmoidal function (PE =

α
1+βγ−AT for 0 < γ < 1). The atmospheric pressure plot is divided into two

parts, the first part is almost linear, and in the second part, we get more

complex values. Relative humidity and exhaust steam pressure plots are

similar and partly linear.

In general, we have smoother results in figure 8 than figure 9 for ICE

plots. For example, the sinusoidal turbulence on top of the relative humid-

ity plots can be seen. However, we have approximately the same trend for

PDPs. Consequently, PDP is MLP architecture-independent, i.e., changing

the hyper-parameters (neither hidden layer nor neurons) impacts the predic-

tion response behavior.

Figures 10 and 11 show the sensitivity of the neural network output based

on the variability of two variables for both neural networks with the same

architecture as before. We make a uniform color bar for these plots to make

it easy to compare them; you can find the plots with the original color bar in

the appendix. They are more useful in comparing the effect between every

two variables. These figures illustrate which areas PE is more or less high

and homogeneous. They also show us that the output does not vary linearly

with the simultaneous variability of two variables and how we can reach high

PE values.

In subplots of figure 10 with the variability of ambient temperature and

other input variables (V, AP, and RH), the relation between PE and the

variability of two inputs is almost linear; increasing inputs makes PE de-

crease. We could reach the maximum values of PE when the temperature is
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Figure 8: Partial dependence plots (red) and Individual Conditional Expectation plots

(black) of a neural network for PE predictions with one layer and fifty neurons. The

PDP and ICE are computed after the MLP learning for PE predictions. All variables are

standardized during the learning step and kept dimensionless in the PDP computations

step.
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Figure 9: Partial dependence plots (red) and Individual Conditional Expectation plots

(black) of an MLP neural network for PE predictions with three layers and six neurons.

The PDP and ICE are computed after the MLP learning for PE predictions. All variables

are standardized during the learning step and kept dimensionless in the PDP computations

step.
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Figure 10: The 2D PDP of variables combination of ANN predictions with 50 neurons

(one layer) for the CCPP data values. The gradient legend shows the sensitivity of the

neural network output P̂E (yhat) to the variability of two variables with a uniform color

bar.

lower than 15◦C. Moreover, we get approximately the same results for the

variability of AT and other input variables (when the variables are low, we

get higher PE). We could conclude that AT is the most effective parameter

in our case.

In the subplot with the variability of vacuum and atmospheric pressure,

PE is high when the atmospheric pressure is high; it is better to see figure

15. It shows the dependence of PE on joint values of AP and V. The vacuum

does not affect much, so the influential input variable between them is AP.

It illustrates the dependence of PE on joint values of AP and V. We can see

an interaction between the two features: for V greater than 35 cm Hg, PE is

nearly independent of V.

In the subplot with the vacuum and relative humidity variability, PE
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Figure 11: The 2D PDP of variables combination of MLP neural network predictions

with 3 layers and 6 neurons for the CCPP data values. The gradient legend shows the

sensitivity of the neural network output P̂E (yhat) to the variability of two variables with

a uniform color bar.

could obtain its maximum values when the vacuum is between 35 and 45 cm

Hg and relative humidity is less than 30% or between 50% and 65%. The

relation between PE and the variability of atmospheric pressure and relative

humidity is not linear. We get lower PE when AP is more than 1025 mbar.

PE is nearly independent of RH.

In subplots of figure 11 with the variability of ambient temperature and

other input variables (V, AP, and RH), we have almost the same result as

figure 10. The relation between PE and the variability of two inputs is almost

the same, and we get lower PE when we increase the inputs. We could reach

the maximum values of PE when the temperature is lower than 10◦C. In the

subplot with ambient temperature and relative humidity variability, for RH

less than 50%, PE is nearly independent of RH.
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In the subplot with the variability of vacuum and atmospheric pressure,

the lowest part is when we have the highest value of input variables, and the

highest part is when we have the lowest value of input variables. Variability of

vacuum and relative humidity could affect the output almost linearly. The

subplot with the variability of relative humidity and atmospheric pressure

shows that the variation of these two variables does not have too much effect

on PE. We can grasp that PE could obtain its maximum values in the middle

of atmospheric pressure and relative humidity plot for AP values between

1005 and 1015 mbar and RH values between 60% and 80% from the figure

16 that is without a uniform color bar.

4.3. ALE plot

Figure 12 shows the ALE main-effect plot for different neural network

architectures. They reveal the main effect of input variables. We could have

smoother plots in figure 12b; however, they display approximately the same

result. For example, the AT main effect has inverse sigmoidal behavior in

both figures. Increasing the AT makes PE decrease. The RH main effect

behaves quadratically.

Figures 13 and 14 are the ALE second-order effect plot without the main

effect of each input variable. They reveal the interaction between input

variables for a neural network with fifty neurons and MLP neural network

with three layers and six neurons, respectively. The numbers on the contours

show the function values. The darker the chart color, the higher the function

value.

Figure 13 reveals notable interactions between AT and V since the contour

values change over a range of 2.5 units (from -2 to +0.5), which is almost as
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(a) ALE main-effect plots for neural network

with 50 neurons.
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(b) ALE main-effect plots for MLP neural net-

work with 3 layers and 6 neurons

Figure 12: ALE main-effect plots for neural networks with different architecture for scaled

data

large as the range for the main effect of AT in figure 12a (for scaled data).

Figure 13 shows almost moderate interaction in subplots AT-AP and V-AP.

It demonstrates negligible interaction between other input variables.

In figure 14, we have lower interaction in general, although the critical

and sensitive points remain the same. For example, in both figures 13 and

14, the crucial point in subplot AT-V is when AT is around -1.5 and V is

around +1 for normalized data.

We can conclude that AT and V have the most interaction, and AP and

RH have the most negligible interaction based on both figures 13 and 14.

35

Electronic copy available at: https://ssrn.com/abstract=4119745



−2 −1 0 1 2

−
2

−
1

0
1

2

AT

V

−2 −1 0 1 2

−
4

−
2

0
2

4

AT

A
P

−2 −1 0 1 2

−
3

−
2

−
1

0
1

2

AT

R
H

−2 −1 0 1 2

−
4

−
2

0
2

4

V

A
P

−2 −1 0 1 2

−
3

−
2

−
1

0
1

2

V

R
H

−4 −2 0 2 4

−
3

−
2

−
1

0
1

2

AP

R
H

Figure 13: ALE second-order effect plots for neural network with 50 neurons and scaled

data. The numbers on the contours represents the function values. The darker the chart

color, the higher the function value. All variables are scaled before MLP learning step.
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Figure 14: ALE second-order effect plots for MLP neural network with 3 layers and 6

neurons. The numbers on the contours represents the function values. The darker the

chart color, the higher the function value. All variables are scaled before MLP learning

step.
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5. Conclusion

The present study was designed to test the interpretability tools of an

MLP prediction model. Two basic approaches have been tested, sensitiv-

ity analysis through derivative methods and model-agnostic methods. All

of these techniques were applied on full load combined cycle power plant.

The main motivation for this study is to analyze the elements of the global

context of a real application in a machine learning model. This is a fun-

damental step towards a hybridization of equation-based models and data

driven approaches, which would allow reconciling the prediction accuracy

and the interpretability level.

This study was performed on the same data set as Tüfekci’s paper (Tüfekci,

2014). while that work has compared different regression methods to predict

an electrical power output. This paper focuses on the interpretability point

of view of ANN models with different architectures. To this end, first, a

clarification on the concept of interpretability of supervised machine learn-

ing predictions was provided. Then we perform a sensitivity analysis on the

neural network to specify the sufficient number of neurons and layers in our

model.

After optimizing hyper-parameters of the MLP, we use model-agnostic

methods such as partial dependence plots, individual conditional expecta-

tions, and accumulated local effects for visualization and description aspects.

The obtained curves would the exhibit the interaction shape between two of

the input variables and the output variable, and reveal the most important

input variables.

We can conclude through the obtained plots that the most important
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parameter in the CCPP is AT. It could affect PE the most, and the com-

bination of AT with other input parameters are more complicated than the

other without AT. AT’s main or first-order effect on PE has inverse sigmoidal

behavior, which means increasing AT decreases PE for the understudy data

range. Other input variables could affect PE but for the small range.

The significant advantage of model-agnostic methods is their flexibility,

which can be applied to any supervised ML model (regression and classifi-

cation). The functional relationship provided by these tools is an important

model diagnostic technique.

However, there are still some deficiencies in the PDP. It is not trustable

in complex systems and data because its computation requires averaging

predictions of unrealistic artificial data instances if features of a machine

learning model are statistically not independent. The requirement of artificial

data instances can impress the estimation of the feature effect. ALE plots

are faster to compute than PDPs, but the equivalent of ICE curves presented

for the PD plots do not include in ALE plots.

A further research objective will include the comparison of model-agnostic

methods for different temporal neural network architectures. For example,

Recurrent neural net (RNN), Long short-term memory (LSTM) used in the

field of deep learning for time series. Moreover, we could apply and compare

other model-agnostic methods, such as global surrogate models, local inter-

pretable model-agnostic explanations, and permutation feature importance.

Additionally, the interpretability of other machine learning methods, such as

Random forest and support vector machine, could be examined.
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6. Appendix

We use the plots with a uniform color bar in subsection 4.2 to make it

easy to compare different plots; here you can find the plots with the original

color bar.
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Figure 15: The 2D PDP of variables combination of ANN predictions with 50 neurons

(one layer) for the CCPP data values. The gradient legend shows the sensitivity of the

neural network output P̂E (yhat) to the variability of two variables with the original color

bar.
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Figure 16: The 2D PDP of variables combination of MLP neural network predictions

with 3 layers and 6 neurons for the CCPP data values. The gradient legend shows the

sensitivity of the neural network output P̂E (yhat) to the variability of two variables with

the original color bar.
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