

Use of natural organic matter fluorescence to illustrate transit time differences in the unsaturated zone of karst hydrosystems

Leïla Serène¹, Naomi Mazzilli², Christophe Emblanch², Christelle Batiot-Guilhe¹, Milanka Babic², Julien Dupont², Roland Simler², Matthieu Blanc, Gérard Massonnat³

1HSM, Univ Montpellier, CNRS, IRD, Montpellier, France 2UMR 1114 EMMAH (AU-INRAE), Université d'Avignon, 84000 Avignon, France 3TotalEnergies, CSTJF, Avenue Larribau, CEDEX 64018 Pau, France

Transit time issues in karsts

Fast (<6 months) flows in karst

- Complex and fast recharge through hierarchized network
- Quantity and quality issues
- → Essential to trace short transit time (< 6 months)

Natural tracers

- Few available on the 0-6 months range
- High potential of natural organic matter (life duration
 < 6 months, Batiot, 2002)
- Use of fluorescence of organic matter in this purpose by Serène et al., 2022

Transit time issues in karsts

Fast (<6 months) flows in karst

- Complex and fast recharge through hierarchized network
- Quantity and quality issues
- → Essential to trace short transit time (< 6 months)

Natural tracers

- Few available on the 0-6 months range
- High potential of natural organic matter (life duration
 < 6 months, Batiot, 2002)
- Use of fluorescence of organic matter in this purpose by Serène et al., 2022

Objective

Use of fluorescent organic compounds as natural tracer of short transit time to improve LSBB flows knowledge

Study site & sampling

Fontaine de Vaucluse karstic system

- Catchment of 1160 km² Ollivier, 2020
- Mean flow rate 23,3 m³/s Cognard-Plancq et al., 2006
- Aquifer thickness up to 1500m
- Unsaturated zone average thickness 800m

Organic matter in natural waters

Organic matter of natural water

= Hydrogen + Oxygen + Nitrogen + Phosphorus + Organic Carbon (TOC)

Organic matter in natural waters

Fluorescent organic matter at the Fontaine de Vaucluse system

Fluorescent organic matter at the Fontaine de Vaucluse system

Dissolved organic matter dataset

- PARAFAC modeling
- Identification of fluorescent compounds

Fluorescent organic matter at the Fontaine de Vaucluse system

Correlation between compounds

- Soil = source of fluorescent compounds
 - → Correlation between all compounds for very recent water
- Tyr is the most digestible, Trp and P1 have almost the same digestibilty
 - → Correlation of Trp and P1 for recent water (Tyr is digested)
- Much more P1 than Trp
- → No correlation at all between Trp and P1 for « old » waters, most of fluorescent compound are digested

	W		A		В		С		D						
	Н	P1	Trp	Η	P1	Trp	Н	P1	Trp	Н	P1	Trp	Η	P1	Trp
P1	0.86			0.07			-0.07			-0.03			0.03		
Trp	0.9	0.97		0.79	0.37		0.5	0.76		0.16	0.82		0.59	0.63	
Tyr	0.64	0.87	0.88	-0.01	0.43	0.21	0.04	0.35	0.23	0.24	0.38	0.58	0.12	0.23	0.36

Correlation < 0.6

Correlation > 0.8 0.7 > Correlation > 0.8 0.6 > Correlation > 0.7

Organic matter in natural waters

$$TTi = \frac{Humic - like}{Humic and protein like}$$

TTi $\approx 1 \rightarrow$ « long » transit time TTi $\approx 0 \rightarrow$ short transit time

Serène et al., 2022

TTi calculation in our water samples

$$TTi = \frac{Humic (H1 \& H2)}{Humic (H1 \& H2) + proteic (Tyr, Trp, P1)}$$

Longer transit time for C, W while they are temporaries

Longer transit time for C, W while they are temporaries

Shorter transit time for B, A and D while they are perenials

Correlations & Tti: is there a match?

	W		В	С	D		
TTi	2 nd Longer transit time	Mid transit time	Shorter transit time	Longer transit time	Mid transit time		
Correlations	All correlated: Very short transit time	H and Trp correlation: Mix of waters?	Trp and P1 correlation : Short transit time				

Correlations & Tti: is there a match?

	W	A	В	С	D
TTi	2 nd Longer transit time	Mid transit time	Shorter transit time	Longer transit time	Mid transit time
Correlations	All correlated: Very short transit time	H and Trp correlation: Mix of waters?		ınd P1 correlat nort transit tim	

Opposite characteristics for temporary flows

Hydrodynamic model of flows

Hydrodynamic model of flows

B Mix between:

- Fast flows coming by the fault
 → Lowest TTi
- Older water stored → only correlation between Trp and P1

Hydrodynamic model of flows

Mix between:

- Fast flows coming by the fault
 → Low TTi
- Older water stored → only
 correlation between Trp and P1

Mix between:

- Fast flows coming by the fault
 → Lowest TTi
- Older water stored → only correlation between Trp and P1

Hydrodynamic model of flows

Mix between:

- Fast flows coming by the fault
 → Low TTi
- Older water stored → only correlation between Trp and P1

Conclusions & perspectives

Conclusions & perspectives

Conclusions & perspectives

Use of natural organic matter fluorescence to illustrate transit time differences in the unsaturated zone of karst hydrosystems. Application to the Low-Noise Underground Laboratory (LSBB) of Rustrel, Pays d'Apt, in France

Leïla Serène, Naomi Mazzilli, Christophe Emblanch, Christelle Batiot-Guilhe, Milanka Babic, Julien Dupont, Roland Simler, Matthieu Blanc, Gérard Massonnat

TTi and fluorescent correlation compounds

- → Qualitative transit time
- → Improvement of LSBB's flows characterization