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ABSTRACT: The circular economy and its various recirculation loops have become a major study subject over recent 

years, particularly in the field of agriculture, which is a significant source of waste production. There have been several 

studies focused on transforming agricultural lignocellulosic waste with "sustainable" processes: economically viable, 

socially accepted, and environmentally friendly. Thanks to "life cycle thinking", it is possible to assess these potential 

environmental impacts. However, these environmental analyses generally require a massive volume of specific data, the 

collection of which can be time-consuming and tedious, or impossible to practice. On the other hand, scientific articles 

describing the processes for the valorization of agricultural by-products are intriguing but rarely exploited sources of data. 

In this paper, a hybridization of data science techniques and environmental analysis proposed to improve Life Cycle 

Analysis (LCA) thanks to Machine Learning (ML). ML part of the proposed approach is based on unsupervised learning, 

which is composed by two methods: dimension reduction using the Multidimensional Scaling and clustering technique 

using k-means. Composed by five steps and dedicated to researchers or R&D engineers, the approach is oriented towards 

offering decision on technologies and processes for waste to energy in early eco-design step. The case study in the domain 

of pre-treatment processes for corn stover and rice straw is detailed. The results show that all impacts that concern chemical 

pollution of soil and water are found in the same cluster. Other impacts are detected in the same cluster which are related 

to the land use and the land transformation. In the same vein, two purely mechanical pre-treatments has been identified and 

grouped by Multidimensional Scaling and k-means. 
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1. INTRODUCTION AND SCIENTIFIC CONTEXT 

The idea of sustainable development is a complex problem applying in almost all areas of life, from social and health 

to economic development and environmental assessment (WCED 1987). In recent years, policymaking increasingly 

involves action plans for climate, sustainable development or environment like Kyoto Protocol or Paris climate agreement. 

In December 2019 at the COP25 Climate Summit in Madrid Spain (COP25), the European Green Deal is presented by the 

European Commission and is accepted in January 2020 (European Commission 2019). The European Green Deal plan 

includes several actions aimed at stopping climate change and reducing the level of pollution emitted into the atmosphere. 

One of the main action plan named “Circular Economy Action Plan” proposes to use the Circular Economy (CE) model to 

simulate the use of sustainable models. This plan completes the 2015’s first Circular Economy Action Plan whose all 54 

actions under the plan have been delivered or are being implemented. Ellen Macarthur Foundation (2015) defines the 

circular economy as “be one that is restorative and regenerative by design and aims to keep products, components, and 

materials at their highest utility and value at all times, distinguishing between technical and biological cycles". This new 

concept of sustainable development could reconcile some environmental, economic, and social aspects. A review paper 

proposed by Ghisellini et al. (2016) describes the origins, principles and the limitations of CE models. Following the first 

plan in 2015, the French government recommended the SNTEDD (National Ecological Transition Strategy for Sustainable 

Development) which consists of nine areas, including the CE. According to the French Agency for Environment and Energy 

Management (ADEME), the CE takes into account three areas of action: (1) consumption through consumer demand and 

behaviour, (2) supply and economic actors for whom industrial ecology is an accepted and promising path from the initial 

design of a territorial area and (3) waste management policy (Belaud et al. 2019a). These three areas represent the entire 

life cycle of a product, service, or a process. To achieve sustainable models, life cycle thinking can help improve 

environmental performance while maximizing economic and social benefits. Several global methods have emerged to 

design waste recycling processes that fit into the circular economy (Grimaud et al. 2017). Agriculture is a particular area 

in which CE and life-cycle thinking have developed over the last decades. Singh et al. (2021) highlights the connections 

between CE and various major themes and notably the links between CE and LCA, biomass, biorefinery, bioenergy and 

waste management.  

  

In France, the agri-food industry produces about 2.6 million tons of organic waste per year, a figure that is constantly 

increasing (Barry 2020). This trend is accompanied by the projected increase in the world's population. At the same time, 

human activities are reducing the amount of land available for agriculture, which inevitably has an impact on farming 

systems. For some people, new agricultural technologies that facilitate sustainable intensified agriculture seem to be the 

best solution for the future (Garnett et al. 2013). However, such intensification in agriculture could result in more waste of 

products and resources (West et al. 2014). According to Horton et al. (2016), a major challenge in achieving sustainability 
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in agriculture is categorizing wastes. They distinguished them into two categories: wastes generated by inputs, such as 

fertilizers remains or used water, and wastes generated from following treatment processes. The latter, composed of huge 

amounts of lignocellulosic by-products, comes mainly from incomplete conversion of biomass or raw materials processing 

in the supply chain.  Lignocellulosic biomass is one of the most abundant and least expensive renewable resources on 

Earth. The production of biomaterials, biomolecules and bioenergy often relies on the bioconversion of it, where it is 

enzymatically hydrolysed to produce glucose. It is also possible to produce different biomaterials to replace plastic material, 

such as composite beads based on olive pomace (Lissaneddine et al. 2021). Lignocellulosic biomass consists of four main 

elements: lignin, cellulose, hemicellulose, and phenolic acids. Only cellulose and hemicellulose can be hydrolysed to 

generate glucose. Although lignocellulosic biomass is a renewable resource, transformation processes must be sustainable 

to participate in sustainable development. For this reason, more and more agri-food processes have been incorporated with 

various sustainability assessments (Food SCP Round Table European Commission 2012; Raymond 2012). In order to 

generate a good yield of glucose, it is important to pre-treat the biomass before hydrolyzing it. Over the past 30 years, 

numerous pre-treatment processes have been studied and published (Davis et al. 2017). Various factors were applied to 

evaluate and compare the performance, efficiency, or environmental influences of these processes (Joglekar et al. 2019). 

Environmental factors, energy consumption and energy efficiency were considered as 3 classical factors (Zhu et al. 2010; 

Barakat et al. 2013). However, there is a lack of criteria to guide the choice between all these processes. The use of 

environmental, economic, and social assessment in a CE context is a good way to guide this choice. In this paper, only the 

environmental dimension is studied, even though it is entirely possible to complete our approach through economic and 

social manners. Our choice for the environmental analysis is based on the Life Cycle Assessment (LCA) method published 

by the International Organization for Standardization (ISO 14040:2006 2006). 

 

From the literature on LCA, it appears that the most commonly used approaches rely on knowledge-based approaches 

and multi-criteria decision-making. The Life Cycle Impact Assessment (LCIA) knowledge acquisition is based on several 

experts from different backgrounds (ecologist, chemist, lab technician, epidemiologist, ... ). Most previous LCA studies 

and methods for assessing sustainability are based on environmental, social, and economic dimensions (Svensson et al., 

2018; Zhao et al., 2019). For measuring country sustainability performance, Tan et al. (2017) used an adaptive neuro-fuzzy 

inference system (ANFIS) approach. The proposed approach is effective to measure the countries’ sustainability 

performance, however, the results of the ANFIS method are strongly dependent on appropriate training data. In this regard, 

we have recently seen an increase in the fuzzy-set theory in the sustainability assessment field. Many researchers have 

applied this approach for country sustainability assessment. The advantage of the fuzzy-set and fuzzy inference system is 

it can emulate the behaviour of skilled humans and handle the multidimensional complexity of vague situations. Several 

studies have been conducted using other Machine Learning (ML) algorithms. For example, Kouchaki-Penchah et al. (2017) 

and Zhao et al. (2019) have combined Data Envelope Analysis (DEA) with LCA. Such hybrid systems have been tested 

for determining the energy efficiency, for measuring the efficiency of a sustainable development system by tracking 

economic, environmental, and social dimensions. 

Some studies have examined the spatiotemporal patterns of Life-Cycle Environmental (LCE) based on multi-year 

assessment over a large geographic region, and improving the spatial resolution of LCE (Lee et al. 2020). In the same 

context, Romeiko et al. (2020) utilized boosted regression tree models to identify the top influential factors among soil, 

climate, and farming practices, which drive the spatial and temporal heterogeneity of life cycle environmental impacts. The 

results of this study showed that soil organic content and nitrogen application rate were the top influencing factors for life 

cycle eutrophication (EU) and acidification (AD). The top influencing factors for life cycle global warming (GWP) impacts 

were soil texture, nitrogen application rates, and temperature in March. By using Boosted Regression Tree (BRT) model 

with Gaussian distribution, the same team researchers have conducted another study based on the prediction of LCE 

impacts of corn production under climate variability and scenarios. To the best of our knowledge, many methods for LCIA 

or for general sustainability assessment are “supervised”, meaning that learning algorithms are performed from input-

output data (Abdella et al. 2020).  However, in many cases, one needs to extract latent data structures based on the 

observations and the mixture nature of the endpoint area protection. For this reason, our research relies on the use of 

Dimension Reduction (DR) techniques for the assessment of sustainability through a set of impacts (Climate change, 

Human Health, Ozone depletion, Human toxicity, ... ) and underlying process. Several strategies have been explored to 

achieve this goal using “Unsupervised” learning which includes dimension reduction and clustering. 

 

The purpose of this paper is to present an approach to aid in the analysis and comparison of different pre-treatment 

processes for lignocellulosic biomass and different types of biomass in the context of the circular economy. The main 

contribution of this study is the development of an approach that suggests the enhancement of the traditional LCA method 

by coupling methods from ML. This enhancement can be found in two main items: (i) the use of experimental opendata 

extracted from scientific web engines and (ii) the inclusion of unsupervised ML for the interpretation and analysis of 

environmental impacts. To date, few research studies have been conducted using big data technologies for LCA. In 

particular, there are studies to complete the background data, necessary for LCA, or to adapt LCA to technological 

developments (Cooper et al. 2013; Bhinge et al. 2015). However, in our knowledge, no study uses experimental data from 

public web, such as data from scientific article or from scientific open database, to complete the foreground database 
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required in a LCA. This point is developed in the step 2 of our approach, and to this end, the proposed approach constitutes 

a contribution to the classical literature (section 2.2). The use of unsupervised learning for LCA is motivated to detect the 

environmental fingerprint of lignocellulosic biomass processes. More precisely, this study lies in the characterization of 

different environmental impacts into clusters to help analysis, interpretation and decision. This point corresponds to the 

step 4 of our approach (section 2.2 and result section). 

This approach is intended for researchers or research and development engineers who would like to make the first 

screening in pre-treatment processes or biomasses using data contained in the scientific literature. It can be deployed during 

a preliminary study phase and be used to assist an initial decision for the development of a laboratory or semi-industrial 

pilot. After an introduction to the description of data availability, section 2 outlines this general approach. Section 3 will 

use this approach to deal with the study of different pre-treatments processes of rice straw and corn stover and then provides 

the results and interpretations. 

2. METHODOLOGICAL APPROACH 

2.1. LCA and ML methods  

Data science can be used at different levels of sustainability management. One of the challenges in valorising by-

products in the agricultural supply chain is to design a process that is as sustainable as possible. The supply chain includes 

several operational steps, from biomass selection to waste disposal, and goes through various processing steps. Each step 

in the chain can be described with its inputs and outputs, as well as its energy and economic data. All these data are required 

so that the LCA could be carried out taking into account the data diversity and its heterogeneous sources. Various types of 

data from heterogeneous sources are required for environmental analysis.  ML would provide appropriate methods and 

technologies for this analysis. The main objective of this approach is to analyse diverse technological processes and to 

provide decision supports by analysing the results. 

2.1.1. LCA method 

 

LCA is a tool for assessing the potential environmental impact of a product or service through its entire life cycle. The 

life cycle of a product/service can be broken down into several stages which starts from the designing of the product to 

various stages of processing and utilization, and ends with the disposal or recycling stage of the product. LCA involves 

four steps: defining the objective and scope of the study, conducting a life cycle inventory, conducting a LCIA, and, at last, 

analysing and interpreting the results. 

The first step is to define the objective, system boundaries, and the functional unit of the life cycle. The functional unit 

must be well defined so that it will not disturb the outcome of the LCA (Burgess and Brennan 2001).  

The Life Cycle Inventory (LCI), which is the second step, aims at collecting data about the quantities of pollutants 

emitted and resources extracted throughout the life cycle. This inventory concerns two kinds of data: the background data 

and the foreground data. The foreground data represents data on processes of interest to decision-makers, while the 

background data includes all the other processes data that is related to processes of interest (Clift et al. 1998; Elghali et al. 

2007). Data for these inventories can be obtained directly, through on-site measurements (primary data), or indirectly, from 

published scientific papers, models, and databases (secondary data). The foreground system is generally based on primary 

data, while the background system is based on secondary data sources (Guinée 2002).  

The third step is the LCIA, during which numerous data of pollutants and resources collected at the LCI are calculated 

through specific methods to evaluate their environmental impacts (Suh and Huppes 2005).  

The last step is the interpretation of the results, which involves identifying important issues based on the results of the 

LCI and LCIA, assessing their sensitivities, checking for their consistency and completeness, and formulating a report with 

conclusions, recommendations, as well as limitations. This last stage of LCA is "delicate" for novices and, sometimes, even 

experts. It may be, therefore, beneficial to enrich the original LCA method with other techniques to assist researchers or 

engineers during their analysis and interpretation.  

In our approach, we use only secondary data. Foreground data are taken from the public web through scientific articles 

(Web of Science and Science Direct) to constitute an unstructured database, whereas background data are available in 

structured databases (public or private) such as EcoInvent (Frischknecht et al. 2005). To analyse this data and structured 

them, engineering and ML techniques for clustering were used. 

 

2.1.2. Multidimensional Scaling method 

 

In this article, we use Multidimensional Scaling (MDS), also called Principal Coordinates Analysis (PCoA) which is 

a method for visualizing (de)similarity between objects in a reduced dimensional space. It is designed to understand the 

proximity and opposition structures. Starting from information about the mutual similarities of 𝑛 objects, often with the 
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similarity matrix where ∆ =  𝛿 (𝑖, 𝑗)0≤𝑖≤𝑛;0≤𝑗≤𝑛 , we look for a configuration of 𝑛 points (𝑅2) which would be like that if 

the object 𝑖 resembles to 𝑗 more than the object 𝑙 to 𝑘, we have 𝛿 (𝑖, 𝑗)  <  𝛿 (𝑙, 𝑘).  

For any distance matrix of size 𝑛 × 𝑛, the MDS allows us to find a set of 𝑛 points marked by their coordinates whose 

similarity matrix is equal or very close according to the data.  

Let 𝑥𝑟  (𝑟 =  1, . . . , 𝑛) be the coordinates of 𝑛 points in a 𝑝 dimensional Euclidean space where 𝑥𝑟  =  (𝑥𝑟1, 𝑥𝑟2, . . . , 𝑥𝑟𝑝)
⊤

 

and [𝐵]𝑟𝑠 = 𝑏𝑟𝑠 = 𝑥𝑟
⊤𝑥𝑠. From the Euclidean distance ∆ =  𝛿𝑟𝑠, and a matrix 𝐴 of elements [𝐴]𝑟𝑠 = 𝑎𝑟𝑠 = −

1

2
𝛿𝑟𝑠

2 , which 

is deducted from the decomposition 𝑥𝑟
⊤𝑥𝑠, the matrix 𝐵 is obtained using the following relation : 

𝐵 =  𝐻𝐴𝐻 (1) 
where 𝐻 is the centring matrix: 𝐻 =  𝐼 −  𝑛−1𝐼 · 𝐼⊤, where 𝐼 , a 𝑛 × 𝑛 identity matrix and𝐼 =  (1,1, . . . ,1)⊤, a vector 

of 𝑛 ones. The elements of 𝑏𝑟𝑠 = 𝑎𝑟𝑠 − 𝑎𝑟• − 𝑎•𝑠  +  𝑎•• , where :: 

𝑎𝑟• = 𝑛−1 ∑

𝑠

𝑎𝑟𝑠 , 

𝑎•𝑠 = 𝑛−1 ∑

𝑟

𝑎𝑟𝑠  , 𝑎𝑛𝑑 

 𝑎•• =  𝑛−2 ∑

𝑟

∑

𝑠

𝑎𝑟𝑠. 

The algorithmic procedure of  MDS can be summarized, as illustrated in (Cox and Cox 2001) by the following steps: 

1. Obtain the matrix ∆ =  𝛿𝑟𝑠 of dissimilarities. 

2. Find the matrix 𝐴 = [−
1

2
𝛿𝑟𝑠

2 ].  

3. Find the matrix 𝐵 =  [𝑎𝑟𝑠 − 𝑎𝑟• − 𝑎•𝑠  +  𝑎••]. 

4. Find the eigenvalues 𝜆1, 𝜆2, . . . , 𝜆𝑛−1 and the eigenvectors 𝑣1, 𝑣2, . . . , 𝑣𝑛−1. If 𝐵 is semi-defined positive (some 

eigenvalues are negative), either (𝑖) ignore the negative values and continue, or (𝑖𝑖) add an appropriate constant 𝑐 

to the (dis)similarities 

5. Choose an appropriate size number 𝑙, possibly using 
∑𝑙

1 𝜆𝑖

∑ (𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠)
. 

6. The coordinates of the n points in Euclidean dimension space 𝑙 are given by 

 𝑥𝑟𝑖  =  𝑣𝑖𝑟  (𝑟 =  1, . . . , 𝑛;  𝑖 =  1, . . . , 𝑙). 

 

 

2.2. Approach 

Using a general architecture based on sustainability principles (Belaud et al. 2019b), our approach is composed of five 

steps (Figure 1): (1) goal and boundaries, (2) data architecture, (3) the environmental assessment, (4) results visualization 

and analysis, and (5) decision. Each step has sub-steps and the transition from one to the other can be done in either direction 

through feedback loops. It is recommended to iterate to consolidate the results and, subsequently, the choices resulted from 

the interpretations.  
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Figure 1: Five main steps of the approach 

2.2.1. Goal and scope 

 

In this step, the goal of the study case and the boundaries of the system must be clearly defined. It is possible to come 

back to this step if a blur or a problem is noticed in the following steps. Life cycle thinking is recommended. This thinking 

encourages a "cradle to grave" or "cradle to gate" approach. In the CE model, the part of the life cycle in which the product 

is used is a key element in moving towards the ecological transition. “Cradle-to-Gate” approaches are often preferred 

because integrating downstream elements into sustainability analyses can be tedious and difficult. Especially, scientists 

and engineers often find it impossible to consider end-user or consumer behaviour in their models. The system boundary 

has a significant effect on subsequent evaluations. For example, it needs to be clarified whether the upstream biomass 

supply chain is considered. Once the objective and scope have been properly defined, the supply chain, technologies and 

transformation processes should also be described. This description should be as complete as possible concerning the 

operations of the process, the location of the study, the various inputs and outputs, and the type of energy used. These 

details ensure the relevancy of the collected data. 

2.2.2. Data architecture 

 

The data architecture is directly inspired by the construction of massive data architecture and consists of five sub-

steps: (i) data collection and extraction, (ii) data enrichment and storage, (iii) data processing, (iv) (raw) data analysis, and 

(v) (raw) data visualization. 

Collecting and extracting data from unstructured databases requires special tools, such as data queries (SQL queries) 

or Online Analytical Processing (OLAP). This sub-step is more complicated for unstructured data collected from the web. 

The meta-data associated with these web pages can be used for their classification and to provide access to their content. 

For example, the definition of the MARC (MAchine-Readable Cataloging) format in the early 1960s standardized metadata 

in documentary resources. With the development of Linked Web, especially the Resource Description Framework (RDF, 
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a W3C standard), it is possible to use SPARQL Protocol and RDF Query Language to request the RDF. The extraction 

process generates a structured table which differs according to the format of the web pages: API, HTML, or pdf.  The 

extraction process can be automatic, semi-automatic or manual. Data can be extracted automatically from web pages with 

an API format. However, extracting relevant data from scientific articles requires a reading guide, which is generated from 

ontologies and pre-processing analysis of experts. This type of extraction is therefore semi-automatic. 

For data enrichment and storage, the extracted data is stored in Relational Database Management Systems (RDBMS). 

Enrichment is the process of adding data to the DBMS. This data comes from experts or pre-processing models. The models 

are empiric numerical simulations of unit operation type, thermodynamics, and energy for the control of flows, 

transformations, and transfers. 

Data processing involves cleaning, adding, and deleting data for volume and value management. After this step, a 

second, more accurate and more accessible database can be generated. Keeping this second database saves time for the 

following sub-steps and avoids misinterpretations during the data analysis sub-step and the environmental analysis step. 

The data analysis sub-step depends on the objective, data domains and decision-makers. Different types of analysis are 

possible: descriptive analysis (what happened?), diagnostic analysis (why did it happen?), predictive analysis (what is going 

to happen?) and prescriptive analysis (how can we make it happen?). Some of these methods are visual, so data visualization 

can be included in the data analysis sub-step. Data visualization can also be achieved by plotting the raw data in the form 

of a simple or interactive graph. 

2.2.3. Environmental assessment 

In this step, the LCI and the LCIA is performed. It is very important to follow the steps recommended by ISO (ISO 

14040:2006 2006) and to use the data from the previous step for the process data. The background data is taken directly 

from the EcoInvent database. Once the inventory (LCI) is completed, one (or more) impact calculation method(s) must be 

chosen under Step 1 (The purpose and the boundary of the study). It is possible to choose several impact calculation 

methods to compare the results, but this may hinder the final analysis and the choice of process or biomass for the researcher 

in his or her first analysis. 

2.2.4. Results visualization and analysis 

 

It is in this stage where we bring the ML method into use to help analyse environmental impacts which is the focus of 

this paper. At the end of the previous step, the result obtained is a matrix with the processes, biomasses, and environmental 

impacts, which is difficult to analyse for a non-expert in LCA. From the statistical literature, this step combines traditional 

techniques for dimension reduction and unsupervised clustering to extract knowledge about life cycle impact assessment 

(LCIA). More specifically, the hybrid approach is based on Multidimensional Scaling (MDS) using Canberra distance 

(Lance and Williams 1966) and 𝑘−means. MDS is an algorithm that transforms a distance matrix into a set of coordinates 

such that the distances derived from these coordinates approximate as well as possible the original distances. In this work, 

we used Canberra distance (a weighted version of the Manhattan distance) for constructing the proximity matrix and then 

the data is mapped on a lower-dimensional (two or dimensions) spatial representation. These methods reduce the 

dimensional space (the variable set) while preserving the maximum amount of information. The goal is to seek “hidden” 

structures in the multidimensional data and to help to interpret the grouped endpoint area of the LCIA assessment matrix. 

The benefit of such approach is that the data-driven methods require minimal process knowledge to perform this task. 

 

Figure 2 outlines the data-driven processing for LCIA. In the proposed method, first, the process-impacts matrix is used 

as input (similarity matrix) for learning from data (Part A). Second, DR techniques project the raw process data to a lower-

dimensional space (2 or 3) (Part B). There are several statistical methods to achieve this mapping such that uninformative 

variance in the data is discarded (Burges 2010). After projection raw data by a DR technique, the clustering approach is 

then applied to consider similar life cycle impacts as well as in the process within the lower-dimensional space (Part C). 

Finally, the user (expert) analyses the grouped data in clusters to relate them to meaningful process/impacts (Part D). This 

last cluster assignment and extracting information step is called knowledge discovery. An advantage of the workflow is 

that it is relatively simple to use because each DR and clustering combination requires the specification of only one or two 

parameters and techniques. The idea behind the proposed workflow is motivated by the fact that sustainability assessment 

requires both qualitative and quantitative criteria. 
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Figure 2: Schematic of data driven processing for LCIA 

2.2.5. Decision making 

 

The visualization of data clusters from the previous step can help the researcher with his decision-making. This 

decision can be made by the researcher himself or by a group composed of different engineers/researchers from different 

fields. 
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3. RESULTS AND DISCUSSION  

In this section, the first results of our approach are presented with a case study comparing different pretreatment 

processes of two biomasses: corn stalk and rice straw. A software programmed on Excel supports the data architecture and 

the environmental steps as well as on R for results analysis and visualization step. The software part is shown in Figure 3. 

The internal software has been verified with:  

- well-establisted ProSim for the process simulation part. The process simulation is used to raw data processing 

(step 2 iii), especially for the verification of mass balances. An article whose material balance could not be verified 

is deleted from the database. 

- SimaPro for the environmental impact simulation part (step 3)  

 

For the origins of data, foreground data come from data collection of our approach - they are called process data - and 

background data come from. EcoInvent Database. This study concerns mainly the foreground data, the background data 

are not modified or analysed. 

 

 

 

 
 

Figure 3: Software tools scheme 

 

 

3.1. Study case first results 

The purpose of the study is to help the researcher to select a process and/or a biomass for the production of glucose. 

The study has a cradle-to-grave approach i.e. the boundaries of the study range from biomass to the enzymatic hydrolysis. 

Biomass is here considered as a waste from agriculture that has no impact - the impacts are attributed to the final product 

of agriculture (corn and rice).  Besides, the biorefinery is considered to be relatively close to the site, and therefore the 

transport stage is negligible.  The function of the system is, therefore “producing glucose” and the functional unit is the 

"production of 1 kg of glucose". All results can therefore be expressed in terms of the functional unit. Figure 4 shows a 

instance pre-treatment process from a Liu et al. (2013)’s paper.  
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Figure 4: Pretreatment process example adapted from (Liu et al. 2013) 

Now, the step 2 of the approach - data architecture - was developed. A more detailed step can be found in Belaud et 

al. (2021). The selection of articles describing the processes was made by process experts on corn stove and rice straw 

thanks to keywords: “rice straw”, “corn stover”, “treatment”,“hydrolyze” and “milling” in scientific databases, such as 

Web of Science or Science Direct. Eighteen papers were initially selected and stored by topics (different type of process). 

The data from the papers were then extracted and stored in CSV files before being passed into our software (cf. Figure 3). 

This software developed on Excel did a first cleaning of the data using process simulations to calculate and verify the mass 

balance. Thirteen articles were selected because they had either too much missing data for verification or too many 

inconsistencies. The raw data analysis and visualisation are not used in this case study and they will be the subject of future 

research.  

 

Then the environmental assessment is performed on the remaining process data. The LCA method used here is ReCiPe 

2016 (Huijbregts et al. 2017) , the background database is EcoInvent and the processed data comes from the previous steps. 

The result of this step is a matrix of 18 mid-point impacts and 13 processes. This matrix is then analyzed by 

multidimensional scaling. 

 

The interpretation of an MDS result is the same as for any other dimension reduction; objects that are closer together 

on the scatter plot are more alike than those further apart. That is the projected points are arranged in such a way that the 

grouped ones (small geometrical distance between them) will reflect original relationships in the data. However, additional 

information to make the projection more informative. As illustrated in Figure-workflow 1, a clustering algorithm has been 

applied to the MDS projection to highlight the most similar objects (Impacts - Process). The abbreviation of the impacts is 

introduced to facilitate the visualization (Table 1, Annex 1). The two-dimensional of MDS results of projected impacts (17 

impacts) is shown in Figure 5. It presents 4 sub-figures of the first 4 dimensions with the most significant combinations 

(dimension 1 vs. dimension 2, ..., dimension 2 vs. dimension 3). For example, in the first figure (top left), we have 

represented the projection of the 17 impacts on the first two dimensions, which represent a total variance of 45%. The 

percentage of explained variance for the first four components is 70%. The visualisation of the four dimensions shows the 

same three groups and we can clearly distinguish three clusters using k-means: 

 

- Group 1: Terrestrial Acidification (TA), Freshwater Eutrophication (FrEu), Terrestrial Ecotoxicity (TecoX) and 

Freshwater Ecotoxicity (FrEco). TA is most closely associated with FrEu, with respondents considering them almost 

identical. Other points of Impacts in this cluster are considered similar based on their proximity such TecoX with TA. The 

FrEco item is furthest in group 1. Almost all impacts that concern chemical pollution of soil and water are found in this 

group. The exemption is the marine ecotoxicity found in group 2. 

 

- Group 2: Human Toxicity (HT), Particulate Matter formation (PM), Climate Change to Human Health (CCHH), 

Marine Ecotoxicity (MaEco), Metal Depletion (MeDe), Fossil Depletion (FossDe), Climate Change to Ecosystems (CCE) 

and Ionizing Radiation (IR). This group forms three sub-clusters with superposed points (from the 2-D perspective). This 

suggests that these points are highly similar based on the Canberra distance. For example, HT and PM, CCE and IR and, 
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MaEco, MeDe and FossDe. Here, we find a group quite heterogeneous where impacts not presented in groups 1 and 3 are 

found. The marine ecotoxicity expected rather in group 1 is found in this group. 

 

- Group 3: Urban Land Occupation (UrbLOcc), Photo-Chemical Oxidant formation (Pohto_ChOx), Agricultural 

Land Occupation (AgLOcc), Ozone Depletion (OD) and Natural Land Transformation (NLTran). This group mainly 

includes impacts related to land use and land transformation. 

 

 

 

 

 

 

 
Figure 5: Scatter plot of MDS projection (two dimensions) and k-means clustering based on Impacts distance matrix. Percentage 

of explained information for the first four components is 70%. 

 

 

  



 

11 

 

 

 

 
Figure 6: Scatter plot of MDS projection (two dimensions) and k-means clustering based on Process distance matrix. Percentage 

of explained information for the first four components is 98%. 

The results of MDS using process distance matrix is presented in the Figure 6. In this case, the percentage of explained 

variance for the first four components is 98%, which is an excellent representation in lower-dimensional spaces. That is 

from a matrix with dimension 15, we lose only 2% to represent the first 4 dimensions. The results are quite similar to those 

obtained by using MDS on the impacts matrix (Figure 5): three distinguished groups have been identified. The acronyms 

captioning the dots represent each type of process. These will not be explained here. Three distinct groups of processes can 

be identified. Very tight and separate clusters appear in the process data, which may suggest that each cluster is a domain 

or sub-domain that needs to be analysed individually. In group 3, for example, there are two purely mechanical pre-

treatments (PM-UFM for "pre-milling and ultra-fine milling"). Going back to the impacts, we find that these two pre-

treatments have a very significant impact on the depletion of fossils compared to the others. For Group 1, the three pre-

treatments have relatively similar impacts. For all impacts and fossil depletion, the impact costs around $10, whereas group 

2 pre-treatments have an impact costs around $1. Through these groups, we can find an analysis that could be done by an 

LCA expert, whereas the visualization was done using tools from data science field.  
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3.2. Discussion and perspectives 

The approach proposed in this article is, to our knowledge, unique. It is intended to be generic and practical for the 

researcher or the R&D engineer. For instance, before starting a project involving the recovery of energy and valuables from 

wastes, the researcher will be able to compare different processes existing in the literature. The enhancement of the 

traditional LCA method by coupling tools from (big) data science and algorithms from artificial intelligence allows to have 

different discussion on environmental impacts. Indeed, on the one side, tools from data science allow to extract and collect 

data directly from scientific papers. And on the other, the MDS allows to simplify the discussion on environmental impacts.  

In this paper and this case study, the MDS method was studied because it was the one that gave the best percentage of 

explained variance. 

3.2.1. Limits of this approach 

 

This case study has shown various limitations of the data, and especially data from scientific databases generated by 

laboratories. The life cycle analysis is therefore carried out at a research TRL scale (TRL scale 1/2) which can lead to a 

change of scale if we want to switch to an industrial pilot (Bianco et al. 2021). Moreover, as the processes are not continuous 

in the labs, the data had to be processed so that the inputs of a process step correspond to the outputs of the previous step. 

The data processing can be improved, for example, adding scale changes made in the process engineering. Another 

limitation in the data concerning the abundance and quality, which can be very low for some innovative and new processes 

such as biomass pre-treatment processes. It would be interesting for future studies to change the functional unit and broaden 

the boundaries of the study to take into account the overall logistical scale or to consider effluent recycling. Indeed, all 

impacts have been related to the final product (glucose) and no recycling of effluents is taken into account. Recycling could 

reduce the impacts of some processes more than others. In fact, this approach serves more like aid in deciding on which 

process or biomass should not be used or which routes could be taken, instead of deciding which one is the best process. 

A final limitation comes from the main input, which is biomass, a waste product from agriculture which can be of variable 

quality depending on time and storage. Furthermore, it is necessary to evaluate its durability and supply, which could also 

vary over time. These three criteria might be a problem for both the economic and environmental process. 

 

3.2.2. Perspectives of the work 

 

Further improvements to the proposed approach could be obtained with any of the following:  

(i) including additional specific data sources, methods and visualisations for the economic and social areas. These 

aspects could enhance the sustainability data inventories and assessment methods. We can cite Social LCA, Life Cycle 

Cost (LCC), consequential LCA (Curran et al. 2005) or dynamic LCA (Collinge et al. 2013).  

(ii) addition of new circular indicators like service-oriented optimization model (Al-Aomar and Alshraideh, 2019) 

(iii) progress towards the automation in the data extraction step (step 2 in our approach). This would make it 

possible to save time and to add new sources of data more easily.  

(iv) test different ML techniques to analyse and visualise the raw data such as: 

a) Natural Language Processing (NLP) to analyse the text of the scientific  literature 

b) Other unsupervised learning  methods, in particular Dimensionality Reduction Techniques.  

(v) from our feedback with the Excel-VBA research tool, the development of a complete ergonomic computing 

framework remains to be achieved. This would encourage stakeholders to adopt this approach and would facilitate decision-

making through the implementation of collaborative decision-making techniques, such as Delphi-SWOT;  

(vi) the design of models for calculating energies, for assessing the impacts on the environment of activities linked 

to new energy systems; 

(vii) the generalisation of this principle and the development of a library of business and domain-specific models 

from agri-food process engineering. These models could be used to check and validate the data in the data architecture 

step. Controls could include, for example, an advanced material balance or energy analysis;  

(viii) the development of data dispersion propagation and automatic qualitative explanation systems for 

stakeholders. 
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4. CONCLUSION 

A general approach coupling Multidimensional Scaling, k-means algorithm and environmental analysis was proposed. 

Composed of five steps, this approach is presented as a decision aid for the researcher in a pre-study. It is designed to save 

time and money by including no experiments and using public scientific data as a database. This approach has been tested 

in the example of the valorisation of lignocellulosic biomass into glucose through the comparison of pre-treatment 

processes and two biomasses: corn stalk and rice straw. 

After structuring the data and life cycle analysis steps, the environmental impact-process matrix is analysed using an 

MDS method. A major result of this article is that it highlights the importance of using a hybridization of LCA and ML 

methods.  In light of the results presented above, it can be concluded that:  

• This study demonstrates the importance of data science methods to shed new light on LCIA; 

• These results contribute significantly to the very small data set available in the literature on using unsupervised 

learning for LCA purposes.  
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ANNEX 1: NOMENCLATURE OF THE ABBREVIATION 

Life Cycle 

Terms Abbreviation 

Life Cycle Impact Assessment  LCIA 

Life Cycle Assessment  LCA 

Life-Cycle Environmental  LCE 

Life Cycle Inventory  LCI 

Circular Economy  CE 

Machine Learning 

Terms Abbreviation 

Adaptive Neuro-Fuzzy Inference System  ANFIS 

Data Envelope Analysis  DEA 

Multidimensional Scaling  MDS 

Dimension Reduction  DR 

Boosted Regression Tree  BRT 

Principal Coordinates Analysis  PCoA 

Database management 

Terms Abbreviation 

MAchine-Readable Cataloging MARC 

Relational Database Management Systems  RDBMS 

Machine Learning 

Terms Abbreviation 

Reaserch and developpement  R&D  

National Ecological Transition Strategy for Sustainable Development SNTEDD  

French Agency for Environment and Energy Management  ADEME 

 


