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a b s t r a c t 

Non-invasive techniques to electrically stimulate the brain such as transcranial direct and alternating current 

stimulation (tDCS/tACS) are increasingly used in human neuroscience and offer potential new avenues to treat 

brain disorders. Previous research has shown that stimulation effects may depend on brain-states. However, this 

work mostly focused on experimentally induced brain-states over the course of several minutes. Besides such 

global, long-term changes in brain-states, previous research suggests, that the brain is likely to spontaneously 

alternate between states in sub-second ranges, which is much closer to the time scale at which it is generally 

believed to operate. Here, we utilized Hidden Markov Models (HMM) to decompose magnetoencephalography 

data obtained before and after tACS into spontaneous, transient brain-states with distinct spatial, spectral and 

connectivity profiles. Only one out of four spontaneous brain-states, likely reflecting default mode network activ- 

ity, showed evidence for an effect of tACS on the power of spontaneous 𝛼-oscillations. The identified state appears 

to disproportionally drive the overall (non-state resolved) tACS effect. No or only marginal effects were found in 

the remaining states. We found no evidence that tACS influenced the time spent in each state. Although stimula- 

tion was applied continuously, our results indicate that spontaneous brain-states and their underlying functional 

networks differ in their susceptibility to tACS. Global stimulation aftereffects may be disproportionally driven 

by distinct time periods during which the susceptible state is active. Our results may pave the ground for future 

work to understand which features make a specific brain-state susceptible to electrical stimulation. 
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. Introduction 

Non-invasive brain stimulation (NIBS) is increasingly used to assess

he involvement of specific brain regions or activity patterns such as

eural oscillations for certain cognitive functions. For example, an in-

reasing body of research used interventional approaches to study the

ole of brain oscillations in cognition by means of rhythmic NIBS such

s rhythmic transcranial magnetic stimulation (rTMS) and especially

ranscranial alternating current stimulation (tACS) ( Bergmann and

artwigsen, 2020 ; Herrmann et al., 2016b ; Kasten and Herrmann, 2020 ;

link et al., 2020 ; Vosskuhl et al., 2018 ). Apart from research applica-

ions, these techniques may offer new avenues for therapeutic interven-

ions ( Alexander et al., 2019 ; Elyamany et al., 2020 ; Mellin et al., 2018 ;

einhart and Nguyen, 2019 ). 

TACS works via the application of weak, alternating currents to

he scalp and is believed to engage neural oscillations via entrainment

 Fröhlich and McCormick, 2010 ; Herrmann et al., 2013 ; Johnson et al.,

020 ; Krause et al., 2019 ). On a physiological level, tACS has repeat-

dly been shown to alter human brain oscillations for several minutes
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r even beyond an hour after the offset of stimulation ( Kasten et al.,

016 ; Neuling et al., 2013 ; Vossen et al., 2015 ; Zaehle et al., 2010 ).

hese aftereffects have been suggested to arise due to neural plastic-

ty induced by the stimulation ( Vossen et al., 2015 ; Wischnewski et al.,

019 ; Zaehle et al., 2010 ). In recent years, NIBS techniques received

onsiderable criticism due to their weak and variable effects, leading

ome authors to question their efficacy altogether ( Horvath et al., 2015a ,

015b ; Lafon et al., 2017 ; Vöröslakos et al., 2018 ). It is suspected that

 wide variety of individual factors may influence the effectiveness

f NIBS ( Ridding and Ziemann, 2010 ), including differences in brain

natomy ( Kasten et al., 2019 ; Laakso et al., 2015 ) and genetic disposi-

ions ( Riddle et al., 2020 ). A number of studies further suggest, that ef-

ects of stimulation may depend on brain-states ( Alagapan et al., 2016 ;

eurra et al., 2019 , 2013 ; Neuling et al., 2013 ; Ruhnau et al., 2016 ).

or example, tACS induced modulations in 𝛼-band activity were ob-

erved while participants kept their eyes open, but were absent when

hey kept their eyes closed ( Alagapan et al., 2016 ; Neuling et al., 2013 ;

uhnau et al., 2016 ). These observations were based on experimen-

ally induced, comparably long-lasting changes in the brain’s state. It is,
ber 2022 
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Fig. 1. Possible activity changes underlying a tACS effect . (a) Hypothetical M/EEG 

time series before stimulation. The activity pattern alternates between two 

states: short occurrences of 10 Hz 𝛼-activity and ‘no-alpha’ states. The result- 

ing power spectrum is depicted on the right (b–d) After stimulation, an increase 

in the average power spectrum could potentially result from different changes 

in the activity pattern. (b) The amplitude in the alpha-state increases while the 

occurrence and time-spent in both states remain the same. (c) The time spent 

in the 𝛼-state increases, while the time spent in the ‘no-alpha’ state decreases. 

The amplitude of the oscillation remains the same. (d) Both the time-spent in 

the 𝛼-state and the amplitude of the oscillation change. (e) The amplitude of the 

oscillation increases, while the occurrence of the 𝛼-state decreases. In this sce- 

nario, the effect of tACS on oscillatory power might be obscured by the change 

of state occurrence. 
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owever, likely that even under relatively constant experimental con-

itions, the brain spontaneously alternates between different, transient

tates at rates of a few seconds or even at sub-second ranges, rather than

emaining in a constant state ( Baker et al., 2014 ; Vidaurre et al., 2018b ).

ecent work underpins this idea and demonstrated that such transient

tates exhibit distinct patterns of oscillatory activity and connectivity

 Vidaurre et al., 2016 , 2018b ). It is thus tempting to assume that these

hidden’, spontaneous brain-states may also differ in their susceptibility

o the same brain stimulation protocol. Such a phenomenon would bring

bout certain issues for the analysis of stimulation effects. A change in

scillatory power over a longer period of time can in principle occur

n multiple ways. It is usually assumed that the effect of tACS results

rom an increase in the amplitude of the target oscillation ( Fig. 1 a, b).

owever, it is also possible that changes in spectral power arise from a

ore frequent occurrence of brain-states with comparably higher oscil-

atory power, without necessarily changing the actual amplitude of os-

illations within each state ( Quinn et al., 2019 ) ( Fig. 1 c). Alternatively,

timulation effects may be obscured if an increase in power in a given

tate is accompanied by a reduced occurrence of the state or vice versa

 Fig. 1 e). 

The goal of the current study is to establish if differential effects of

ACS on transient brain-states as outlined above exist, and to dissociate

ffects of tACS on oscillatory power from those on the occurrence of

scillatory activity. The existence of such transient brain-state dynam-

cs would open a whole new perspective on tACS and brain stimulation

ata in general. In order to achieve our objectives, we adapted a recently

roposed analysis pipeline utilizing Hidden Markov Models (HMMs) to

ecompose neural time-series data into distinct, transient brain-states

 Baker et al., 2014 ; Vidaurre et al., 2016 , 2018b ). The analysis was

arried out on two recently obtained tACS-magnetoencephalography

MEG) datasets ( Kasten et al., 2019 ). Due to the nature of the avail-

ble data, we cannot yet resolve the intricacies of such transient brain-

tate dynamics, which, among other things, pertains the role of the fre-

uency band or montage with which tACS is applied. We hypothesized

hat occipito-parietal 𝛼-tACS differentially affects power in the 𝛼-band

(

2 
cross brain-states but does not alter the relative time spent in each

tate. 

. Methods 

.1. Participants 

All analyses in the current study were conducted on two pre-existing

ACS-MEG datasets ( Kasten et al., 2019 ). The first one was carried out

s a single-blind, between subject design on 40 participants (24 ± 3

ears, 20 females) with participants randomly assigned to one out of

wo experimental groups (tACS vs. sham), while counterbalancing for

articipants’ sex. The second experiment was performed as a single-

lind within-subject design ( N = 19, 25 ± 3 years, 11 females), with par-

icipants receiving both stimulation conditions at random order across

wo experimental sessions scheduled on two separate days. Participants

ere right-handed according to the Edinburgh Handedness-Inventory

 Oldfield, 1971 ), had normal or corrected-to-normal vision, were non-

mokers, without history of neurological or psychiatric disease and

edication-free at the day of the experiment. Written informed consent

as obtained from all subjects, both experiments were approved by the

ommission for Research Impact assessment and Ethics at the University

f Oldenburg and complied with all relevant ethical regulations. 

.2. Magnetoencephalogram (MEG) 

MEG signals were obtained at a rate of 1 kHz using a 306-channel

hole-head MEG system (Elekta Neuromag Triux System, Elekta Oy,

elsinki, Finland) inside a magnetically shielded room (MSR; Vacu-

mschmelze, Hanau, Germany). Participants’ head-position was con-

inuously monitored using five head-position indicator (HPI) coils, at-

ached to participants’ heads. Positions of the coils were digitized along

ith participants’ head shapes with a Polhemus Fastrak (Polhemus,

olchester, VT, USA) for later co-registration with structural MRIs (T1-

eighted 3D sequence, MPRANGE, TR = 2000 ms, TE = 2.07 ms,

lice thickness: 0.75 mm; Siemens Magnetom Prisma 3 T MRI machine,

iemens, Erlangen, Germany). 

.3. Electrical stimulation 

TACS was administered via two surface-conductive rubber electrodes

ositioned over locations Cz (7 × 5 cm) and Oz (4 × 4 cm) of the in-

ernational 10-10 system via an electrically conductive, adhesive paste

ten20 paste, Weaver & Co, Aurora, CO, USA). The stimulation wave-

orm was generated using a constant current stimulator (DC Stimula-

or Plus, Neuroconn, Illmenau, Germany) and remote-controlled via a

igital-to-analog converter (NI-USB 6251, National Instruments, Austin,

X, USA) fed with data by a MATLAB script (MATLAB 2016a, The Math

orks Inc., Natick, MA, USA). Stimulation currents were guided into

he MSR via the MRI extension-kit of the stimulator. Impedances were

ept below 20 k Ω, including two 5 k Ω resistors inside the stimulation

ables. Participants received 20 min of active tACS or sham stimulation

30 s of tACS at the beginning of the stimulation period) at their indi-

idual 𝛼-frequency (IAF). IAF was determined from a 3 min resting MEG

btained prior to the main experiment. 10 min of MEG were recorded

irectly before and after stimulation. To ensure participants remained

ttentive and kept their eyes open during the recording, they were asked

o perform a simple visual change detection task. To this end, a white

xation-cross on gray background was rear-projected onto a screen (dis-

ance: ∼100 cm) inside the MSR. Participants had to manually respond

o a 500 ms rotation of the cross by 45°, occurring at random intervals

ith a stimulus onset asynchrony of 10–110 s. Additional details on

he experimental procedures, including debriefing and the assessment

f adverse effects can be found in a previous publication on the data

 Kasten et al., 2019 ). 
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Fig. 2. Analysis Pipeline . Preprocessed MEG signals were projected into source- 

space using an LCMV beamformer. Source time-series were parcellated into 

42 ROIs. Before HMM training, single-subject time-series were concatenated, 

differences in dipole signs across subjects were resolved and the data was stan- 

dardized within subjects to avoid the HMM to adapt to inter-individual differ- 

ences. The HMM was then trained on the data in PCA space (84 components). 

The HMM infers a sequence of a finite number of hidden states (s 1 , …, s k ) based 

on a set of observable emissions (o 1 , …, o k ). Emissions and states are linked via 

an emission probability matrix b, where each state has a probability to cause 

each emission. The transition probability between states is represented in the 

transition probability matrix 𝜋. Both matrices are unknown and need to be es- 

timated from the data by an iterative algorithm (e.g. Baum-Welch). The HMM 

returns the most likely sequence of states, which are used to compute the relative 

time spent in each state (a.k.a. fractional occupancy), as well as the underlying 

state probability series. For each timepoint, the series contains a probability of 

each state being active. By weighting the ROI time series with the state prob- 

ability series, state-wise frequency spectra and connectivity measures can be 

computed. 

a  

i  

s  

G  

H  

d  

w  
.4. Data analysis 

.4.1. Preprocessing 

MEG preprocessing was performed in MATLAB 2019b using the field-

rip toolbox ( Oostenveld et al., 2011 ). HMM training and state-wise

requency analysis was performed using the HMM-MAR toolbox ( https:

/github.com/OHBA- analysis/HMM- MAR ). Statistical analysis was car-

ied out in R 3.6.1 (The R Core Team, Vienna, Austria) running on

-Studio (RStudio Team, PBC, Boston, MA, USA). Statistical functions

rovided by the fieldtrip toolbox were utilized to compute cluster-

ermutation statistics ( Maris and Oostenveld, 2007 ). 

In a first step, spatio-temporal signal-space-seperation (tSSS) was ap-

lied to the data to suppress external interferences and correct for head-

ovements during the recording ( Nenonen et al., 2012 ; Taulu et al.,

005 ; Taulu and Simola, 2006 ). TSSS was applied using MaxFilter TM 

2.2 (Elekta Neuromag Oy, Helsinki, Finland) with standard settings

L in = 8, L out = 3, correlation limit = .98). Signals were subsequently

mported to MATLAB. To reduce computational demands, the analysis

as exclusively performed on the 102 magnetometer channels. Signals

ere resampled to 256 Hz and filtered between 1 and 40 Hz using 6th-

rder forward-backward Butterworth filters. An independent compo-

ent analysis (ICA) was performed to remove signal components reflect-

ng eye-movements, cardiac artifacts and stimulator noise. MEG time-

eries were then projected into source-space using an LCMV beamformer

 Van Veen et al., 1997 ) with single-shell head models ( Nolte, 2003 ) and

 10 mm source-grid warped into Montreal Neurological Institute (MNI)

pace. Source time series were subsequently parcellated into 42 virtual

hannels representing the activity of cortical regions of interest (ROIs)

overing the entire cortex. The regions correspond to the ROIs used

n Vidaurre et al. (2018b ). A weight-matrix was used to project data

nto brain-space for visualization purposes. A multivariate correction for

patial-leakage ( Colclough et al., 2015 ) was applied using the ROInets

oolbox ( https://github.com/OHBA- analysis/MEG- ROI- nets ). The cor-

ection reduces artificial correlations between adjacent virtual channels,

hile resembling the original data as close as possible. Such correlations

re known to bias connectivity estimates and can hamper HMM training.

 conceptual overview of the analysis pipeline is provided in Fig. 2 . 

.4.2. Hidden Markov Model 

HMMs are used to infer a sequence of a finite number of hidden states

f a system, based on their observable emissions (e.g., patterns of mea-

urable brain signals), where each state has a certain probability to be

ccompanied by each emission. It is assumed that at each timepoint t,

he system is in one out of K discrete states and that the observable data

 at each timepoint is drawn from an observation distribution, which is

f the same family in all states. However, for each state the observation

odel has a different set of parameters (e.g., different mean and/or SD

or a Gaussian observation model) ( Vidaurre et al., 2018b ). The transi-

ion probability between states is Markovian, i.e., it depends exclusively

n the previous state s t-1 : 

 ( 𝑠 𝑡 |𝑠 1 … 𝑠 𝑡 −1 ) = 𝑃 ( 𝑠 𝑡 |𝑠 𝑡 −1 ) = 𝜋𝑡 

here 𝜋t is the ( K x K ) transition probability matrix, containing the tran-

ition probability between all states. The standard approach for training

n HMM with a fixed number of states and unknown transition and

mission probabilities is the Baum-Welch algorithm – also referred to

s the Forward-Backward algorithm ( Baum et al., 1970 ). The algorithm

stimates both the emission and transition probabilities by starting off

ith an initial estimate and then iteratively optimizing both probability

atrices. As this requires a complete sequential forward- and backward

ass through the entire concatenated data of all subjects, which is de-

anding in terms of memory usage and computation times, we opted

o run the algorithm with a recently developed stochastic inference pro-

edure implemented in the HMM-MAR toolbox. In contrast, to tradi-

ional approaches using variational inference or maximum likelihood,

tochastic inference allows to perform HMM training on large datasets
3 
t reasonable memory requirements and computation times, by estimat-

ng interim state observation models on computationally more efficient

ubsets of data ( Vidaurre et al., 2018a ). Due to the additive nature of

aussian distributions, these can be linearly combined to update the

MM observation model (for details on the stochastic inference proce-

ure please refer to Vidaurre et al. 2018a ). In line with previous work,

e ran stochastic inference with a batch size of M = 5. Once the tran-

https://github.com/OHBA-analysis/HMM-MAR
https://github.com/OHBA-analysis/MEG-ROI-nets
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o  
ition and emission probabilities are estimated, a state probability se-

uence 𝛾, indicating the probability of each state being active at each

imepoint, can be computed along with the most likely state sequence

 Fig. 2 ). These form the basis for subsequent analyses characterizing

ach state’s relative occurrence, dwell time and switching rate, as well

s it is frequency content (see next section). 

We followed the analysis framework described by Vidaurre et al.

2018b ) using a time-delay-embedded HMM (TDE-HMM) trained on

he concatenated ROI time series of all participants. This variant of the

MM, uses a Gaussian observation model with zero mean to model the

ata over a certain time window, effectively utilizing the data autoco-

ariance across regions. The TDE-HMM is sensitive to changes in power

nd phase-locking while being able to deal with a relatively large num-

er of channels ( Vidaurre et al., 2018b ). We chose a TDE-HMM with an

bservation window of 15 samples centered around each t and working

n PCA-space with 84 components (explaining ∼68% of the variance in

oth datasets). This forces the model to return a common set of states

cross the whole dataset. To avoid that the model assigns states based

n inter-individual differences between subjects, ROI time-series were

tandardized (z-transformed) within each subject and the dipole-sign-

mbiguity of individual time-series was resolved using the approach

resented in Vidaurre et al. (2018b ). After the training, we visually con-

rmed that each state was present in each subject (Supplementary Figs.

 and 2). The underlying MATLAB code for HMM training and state-

ise frequency analysis (see next section) can be obtained via the open

cience framework (see section Data availability). 

A common challenge in the application of HMMs, particularly to bi-

logical data, is the definition of the number of states for the model,

hich has to be pre-specified by the user. Objective model selection

rocedures, e.g., based on Akaike’s or Bayesian Information Criterion

AIC, BIC), or the comparison of free energy ( Baker et al., 2014 ), have

een proposed for the selection of model complexity. However, these

pproaches often favor models with large numbers of states that are dif-

cult to handle and interpret ( Pohle et al., 2017 ). It is thus suggested

o take a more practical approach integrating objective measures with

ractical considerations such as interpretability of results and useful-

ess in the light of the research question ( Pohle et al., 2017 ). For our

nalysis we considered eleven different HMMs with the max number of

tates ranging from 2 to 12. Indeed, the free energy for these HMMs

onotonically decreased from the 2- to the 12-state HMM (Supplemen-

ary Fig. 3). However, two “knees ” in the trajectory indicate that after

ncluding state 4, additional states have less impact on free energy as

ompared to the previous states. In addition, HMMs with larger num-

ers of states tended to return states that are similar with respect to their

patial and spectral patterns (e.g., the 6-state HMM, Supplementary Fig.

), indicating that a state may have been split into sub-states with only

inor differences, which is undesirable for our analysis. Based on these

onsiderations we decided to settle for a 4-state HMM for subsequent

nalyses. 

.4.3. Fractional occupancy and state-wise frequency analysis 

After HMM training, we utilized the obtained probabilistic state se-

uence to compute fractional occupancy, i.e., the relative time each sub-

ect spent in each state, during the baseline and post-stimulation blocks,

espectively. To this end, each time-point was assigned to the most prob-

ble state and the proportion of time points relative to the total amount

f time points per subject and block was computed for each state. In

ddition, we extracted each states’ so-called dwell and interval times,

eferring to the average duration of a state visit and the average time

etween two visits to the same state, respectively. Although these char-

cteristics of the states cannot readily explain changes in overall spec-

ral power, as the state occupancy can, they do allow to characterize the

emporal progression of the states. 

In order to obtain state-wise frequency and connectivity profiles,

e leveraged the probabilistic state-time course to perform a state-wise

ulti-taper analysis ( Fig. 2 , bottom) ( Vidaurre et al., 2016 ). The stan-
4 
ard multi-taper power spectral density (PSD) of the entire time series

s given by |𝑆( 𝑓 ) |2 , with 

 ( 𝑓 ) = 

1 √
𝑅 

𝑅 ∑
𝑟 =1 

𝑇 ∑
𝑡 =1 

𝛿
( 𝑟 ) 
𝑡 
𝑦 𝑡 𝑒 

−2 𝜋𝑖𝑓𝑡 

here 𝛿
( 𝑟 ) 
𝑡 

is the value of the r th taper at time point t . To obtain a state-

ise spectral analysis for each of the k states, the data y at each time

oint t is weighted by the probability of being in that state 𝜌, such that

he PSD for the k th state can be obtained by: 

 ( 𝑓 ) = 

1 √
𝑅 

𝑅 ∑
𝑟 =1 

𝑇 ∑
𝑡 =1 

𝜌
( 𝑘 ) 
𝑡 
𝛿
( 𝑟 ) 
𝑡 
𝑦 𝑡 𝑒 

−2 𝜋𝑖𝑓𝑡 

ith 

( 𝑘 ) 
𝑡 

= 

√ 

𝛾
( 𝑘 ) 
𝑡 √ ∑𝑇 

𝑡 =1 𝛾
( 𝑘 ) 
𝑡 

∕ 𝑇 

here the normalization term for 𝜌
( 𝑘 ) 
𝑡 

is chosen to preserve the total

ower of the signal, i.e. the sum of the state spectra (weighted by

he state probability) corresponds to the total spectrum of the signal

 Vidaurre et al., 2016 ). From these PSD estimates, measures of connec-

ivity, such as coherence can be computed. 

State-wise PSD and coherence were computed separately for the

aseline and post-stimulation blocks using Slepian sequences with 7

apers and a time-bandwidth product of 4. Importantly, we used the

nstandardized ROI time-series for the analysis as the standardization

an cancel out differences between blocks and subjects (i.e., stimula-

ion effects). For inspection of the states’ overall spectral, spatial and

onnectivity profiles, results were averaged across recording blocks and

ubjects, after re-aligning individual spectra on the IAF. For statistical

nalysis, PSD in each recording block was averaged within the individ-

al 𝛼-band (IAF ± 2 Hz). To facilitate statistical comparisons, the rela-

ive change in IAF band power after stimulation relative to baseline was

omputed: 

𝑒𝑙. 𝑐ℎ𝑎𝑛𝑔𝑒 = 

𝐴 − 𝐵 

𝐵 

here A is IAF band power after tACS or sham stimulation, and B is IAF

and power in the baseline recording. To test if effects on state power

re specific to the 𝛼-frequency range, we repeated the analysis for the

eighboring individual 𝜃- (IAF-7 Hz – IAF-3 Hz) and 𝛽-band (IAF + 4 Hz

IAF + 20 Hz). It should be noted that, while this control analysis can

erve to assess if the response to 𝛼-tACS is specific to the 𝛼-band, it does

ot allow to determine if the response in the 𝛼-band is specific to 𝛼-tACS

or of similar effects could be achieved by stimulation in other frequency

ands). The latter would require the inclusion of additional stimulation

requency conditions, which are not available for the current dataset. 

In addition, we ran the frequency analysis on the ROI time series

ithout weighting by states to test for non-state resolved effects of tACS

n the second dataset. This allows to compare tACS effects within states,

o those commonly seen on the global level. 

.4.4. Resolving the contribution of states to the global stimulation effect 

In order to assess the contribution of each state to the global stimula-

ion effect, we developed an undirected and a directed state contribution

ndex (SCI). As described in the previous section, state-wise power spec-

ra can be computed by weighting the ROI time series with the state

robability series. Their sum weighted by the state probability 𝛾 should

esemble the total power of the original signal: 

 𝑆𝐷 𝑡𝑜𝑡𝑎𝑙 = 

𝐾 ∑
𝑘 =1 

𝑃 𝑆𝐷 𝑘 

∑𝑇 

𝑡 =1 𝛾𝑡,𝑘 

𝑇 

Based on this rationale, we can compute an index of the contribution

f each state to the overall dynamics of the global tACS effect, by taking
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s  
he absolute value of the state-wise effect of the k th state and dividing

t by the sum of the absolute value of all effects: 

𝐶𝐼 𝑢𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 = 

|||𝐸𝑓 𝑓 𝑒𝑐𝑡 ( 𝑘 ) |||∑𝐾 

𝑘 =1 |𝐸𝑓 𝑓 𝑒𝑐𝑡 𝑘 |
here the effect is defined as the difference in power change from pre- to

ost-stimulation between the tACS and the sham condition within each

tate after weighting each PSD estimate with the average probability of

he state within the specific experimental block. 

𝑓 𝑓 𝑒𝑐𝑡 ( 𝑘 ) = 

(
𝑃 𝑆𝐷 

( 𝑘 ) 
𝑝𝑜𝑠𝑡,𝑡𝐴𝐶𝑆 

𝛾
( 𝑘 ) 
𝑝𝑜𝑠𝑡,𝑡𝐴𝐶𝑆 

− 𝑃 𝑆𝐷 

( 𝑘 ) 
𝑝𝑟𝑒,𝑡𝐴𝐶𝑆 

𝛾
( 𝑘 ) 
𝑝𝑟𝑒,𝑡𝐴𝐶𝑆 

)

− 

(
𝑃 𝑆𝐷 

( 𝑘 ) 
𝑝𝑜𝑠𝑡,𝑠ℎ𝑎𝑚 

𝛾
( 𝑘 ) 
𝑝𝑜𝑠𝑡,𝑠ℎ𝑎𝑚 

− 𝑃 𝑆𝐷 

( 𝑘 ) 
𝑝𝑟𝑒,𝑠ℎ𝑎𝑚 

𝛾
( 𝑘 ) 
𝑝𝑟𝑒,𝑠ℎ𝑎𝑚 

)

The undirected SCI provides an estimate of the relative contribution

f each state to the overall dynamics across all states. By definition, the

ndirected SCI can take values between 0 and 1, and the SCI of all states

hould sum up to 1. However, the index cannot resolve if the contribu-

ion of a state to the global effect is positive or negative (i.e., some states

ay show an effect opposite to the global effect thus reducing it over-

ll). By including the sign of the effect of the state in question, we can

btain a directed measure of the state contribution: 

𝐶𝐼 𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑 = 

𝐸𝑓 𝑓 𝑒𝑐𝑡 ( 𝑘 ) ∑𝐾 

𝑘 =1 |𝐸𝑓 𝑓 𝑒𝑐𝑡 𝑘 |
The index can take values between -1 and 1, where positive values

ndicate a positive contribution of the state to the global effect, while

egative values indicate a negative contribution of the state. Due to

he possible changes in signs, the directed SCIs across states are not

uaranteed sum up to 1 and the obtained values are only informative

n terms of the direction and relative strength of the contribution of a

tate to the global effect, but the values cannot be interpreted in terms

f a proportion of effect contributed by the state. 

.4.5. Statistical analyses 

The power change in the 𝛼-band (IAF ± 2 Hz) with respect to base-

ine, averaged over all 42 ROIs, as well as the change in fractional

ccupancy and other state characteristics (dwell times, interval times)

ere assessed using repeated measures ANOVAs with factors STIMU-

ATION (2-levels, tACS vs. sham, dataset 1: between-subject, dataset 2:

ithin-subject) and STATE (4-levels, within-subject in both datasets).

reenhouse-Geisser corrected p -values are reported if sphericity was vi-

lated. Partial 𝜂2 is reported as a measure of effect size: 

2 = 

𝑆𝑆 𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 

𝑆 𝑆 𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 + 𝑆 𝑆 𝑑𝑒𝑚𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 

To resolve in which states tACS led to a larger power increase rel-

tive to baseline as compared to sham, relative power changes in each

tate of all 42 ROIs were submitted to non-parametric random permuta-

ion cluster t-tests (two-sided; dataset 1: independent samples, dataset 2:

ependent samples), using 10,000 randomizations and Monte-Carlo esti-

ates for p -values. The obtained p -values were Bonferroni-corrected for

he 4 multiple comparisons in addition to the cluster correction within

ach test. 

. Results 

.1. HMM decomposes time-series into transient states 

The HMMs decomposed the source time-series into brain-states with

istinct spatial, spectral and connectivity profiles. In an initial step, we

ested different HMMs with the number of states ranging from two to

welve. After inspection of the results, we decided to settle for a four-

tate HMM for subsequent analyses, as it returned distinct brain-states

ithout producing redundant (i.e., two or more similar) states (see Sup-

lementary Fig. 4 for an example). The states seem to correspond to
5 
ensori-motor, visual, and default mode network (DMN) states as well a

egative activation state (relative to the other states; Fig. 3 ) and seem

enerally in agreement with previous work ( Vidaurre et al., 2018b ).

owever, while the more complex 12-state HMM in Vidaurre et al. re-

ealed an anterior and a posterior sub-network of the DMN, our 4-state

odel seemed to have returned a general DMN state, somewhat similar

o the combination of the anterior and posterior higher-order cognitive

tate described by the authors (compare Fig. 6 in Vidaurre et al., 2018b ).

f note, the authors also find several “negative activation ” states, simi-

ar to what we observe in state 1. 

.2. tACS differentially affects 𝛼-power across states, but not state 

ccupancy 

To test if tACS differentially affected brain-states, we compared

he power increase in the individual 𝛼-band (IAF ± 2 Hz) relative to

aseline, averaged over all 42 ROIs, between the tACS and the sham

roup using a repeated measures ANOVA with the within-subject fac-

or STATE (4-levels) and the between-subject factor STIMULATION (2-

evels; tACS vs. sham). Results yielded significant main effects of STIM-

LATION (F 1,38 = 9.61, p = .0036, 𝜂2 = 0.13) and STATE (F 3,114 = 6.28,

 = .008, 𝜂2 = 0.06) and a significant STIMULATION 

∗ STATE interaction

F 3,114 = 4.28, p = .031, 𝜂2 = 0.04), indicating that the tACS effect dif-

ered across spontaneous brain-states ( Fig. 4 a, b). 

To assess which states were affected by stimulation, we subsequently

erformed two-sided non-parametric random permutation cluster t-tests

or independent samples comparing the power increase following tACS

nd sham in each state. Tests yielded a significant cluster in state 2

p cluster = .0012, df = 38, Fig. 4 c). No clusters were identified in the other

tates (all p cluster > .14, all df = 38, Supplementary Table 1). We did not

nd evidence for effects of tACS in the neighboring 𝜃- (IAF-7 Hz – IAF-

 Hz) and 𝛽-bands (IAF + 4 Hz – IAF + 20 Hz; Supplementary Table 2).

hen we repeated the analysis for HMMs with other numbers of states

 k = 2 to k = 12) we obtained similar results, i.e., tACS consistently

ffected a single state that showed activation and connectivity patterns

ery similar to the DMN state in the 4-state HMM (see Supplementary

ig. 5 for exemplary results for the 6-state model). 

To test whether tACS affects the time spent in each state (a.k.a.

he fractional occupancy), we compared the absolute change in frac-

ional occupancy from baseline to post-stimulation between tACS and

ham using a repeated measures ANOVA with the within-subject fac-

or STATE (4-levels) and the between-subject factor STIMULATION (2-

evels; tACS vs. sham). The analysis yielded a significant main effect of

TATE (F 3,114 = 4.17, p = .024, 𝜂2 = 0.09), indicative of a general change

f fractional occupancy across states, but neither an effect of STIMU-

ATION (F 1,38 < 0.01, p = 1, 𝜂2 < 0.01), nor a STIMULATION 

∗ STATE

nteraction (F 3,114 = 1.70, p = .25, 𝜂2 = 0.04), suggesting that tACS did

ot influence the occurrence of transient states ( Fig. 4 d). 

We next assessed if tACS influenced the duration of individual state

isits (dwell times) or the time between visits to the same state. To this

nd, we submitted the absolute change in dwell and interval times to

wo repeated measures ANOVAs with between subject factor STIMULA-

ION and within subject factor STATE. While there was a significant

ain effect of STATE (F 3,114 = 11.89, p < .001, 𝜂2 = 0.13) on partici-

ants dwell times, we did not observe any main effect of STIMULATION

F 1,38 = 0.01, p = .91, 𝜂2 < 0.01) or a STIMULATION x STATE inter-

ction (F 3,114 = 0.82, p = .49, 𝜂2 = 0.01) on dwell times. Neither main

ffects of STIMULATION (F 1,38 = 0.03, p = .86, 𝜂2 < 0.01) or STATE

F 3,114 = 1.60, p = .21, 𝜂2 = 0.03), nor an interaction effect of STIMU-

ATION x STATE (F 3,114 = 0.16, p = .77, 𝜂2 < 0.01) were observed with

espect to changes in state interval times. 

.3. Results replicate in validation data 

The HMM analysis on the second dataset returned states with spatio-

pectral profiles similar to the ones obtained in the first dataset ( Fig. 5 ).
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Fig. 3. State profiles in experiment 1. Each column depicts power spectra, relative state occupancy (top row), spatial maps of 𝛼-power relative to the average over all 

states (1st middle row) and connectivity profiles (2nd middle row, coherence in the 𝛼-band) for each of the four states. Connectivity profiles are thresholded to show 

the 5% strongest connections, darker shades of red indicate higher connection strength. Shaded areas depict standard deviation (S.D.). Bottom row depicts dwell 

times (average time a state is active during each visit; left column) and interval times (average time between visits to a state; right column) of each of the states. 
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ike our results in the first dataset, the states seem to reflect visual,

ensori-motor and DMN activity as well as a negative activation state. 

Again, we assessed the effect of tACS on power in the individual 𝛼-

and (IAF ± 2 Hz) using a repeated measures ANOVA with the within-

ubject factors STIMULATION (2-levels; tACS vs. sham) and STATE

4-levels). The analysis yielded significant effects of STIMULATION

F 1,18 = 9.06, p = .008, 𝜂2 = 0.06) and STATE (F 3,54 = 5.05, p = .013,
2 = 0.02). Importantly, the STIMULATION 

∗ STATE interaction again

eached significance (F 3,54 = 6.88, p = .004, 𝜂2 = 0.02), replicating the

ifferential effect of tACS across states found in the first dataset ( Fig. 6 a,

). To assess which states were affected by stimulation, we subsequently

erformed two-sided non-parametric random permutation cluster t-tests

or dependent samples comparing the power increase during stimula-

ion and sham in each state. Tests yielded a significant cluster in state 4

p cluster = .004, df = 18, Fig. 6 c) as well as a trend in state 3 (p cluster = .07,

f = 18, trend not shown in cluster maps). No effects were found in the

ther states (all p cluster > .46, df = 18, Supplementary Table 3). Note-

orthy, state 4 in this dataset shows strong similarities with state 2 from

ataset 1 ( Fig. 3 second column, Fig. 5 fourth column), which was the

nly state showing a significant effect to tACS in the previous analysis

 Fig. 4 ). Again, we did not find evidence for effects of tACS in the neigh-

oring 𝜃- (IAF-7 Hz – IAF-3 Hz) and 𝛽-band (IAF + 4 Hz – IAF + 20 Hz;

upplementary Table 4). 

We next assessed whether tACS affected the time spent in each

tate by submitting the absolute change in fractional occupancy from

aseline to the post-stimulation period to a repeated-measures ANOVA
 W  

6 
ith the within subject factors STIMULATION (2-levels, tACS vs. sham)

nd STATE (4-levels). Once again, the analysis revealed a significant

ffect of STATE (F 3,54 = 10.25, p < .001, 𝜂2 = 0.21), but neither a

ain effect of STIMULATION (F 1,18 < 0.01, p = 1, 𝜂2 < 0.01), nor a

TIMULATION 

∗ STATE interaction (F 3,54 = 1.07, p = .33, 𝜂2 = 0.03),

uggesting that tACS did not affect the relative time spent in each of the

tates ( Fig. 6 d). 

We subsequently tested if tACS influenced the duration of individual

tate visits (dwell times) or the time between visits to the same state. To

his end, we submitted the absolute change in dwell and interval times

o two repeated measures ANOVAs with within subject factors STATE

nd STIMULATION. While there was a significant main effect of STATE

n participants dwell (F 3,54 = 9.14, p < .001, 𝜂2 = 0.18) and interval

imes (F 3,54 = 2.86, p = .045, 𝜂2 = 0.07), we did not observe any main

ffect of STIMULATION (dwell times: F 1,18 = 3.66, p = .07, 𝜂2 = 0.03;

nterval times: F 1,18 < 0.01, p = .94, 𝜂2 < 0.01) or a STIMULATION x

TATE interaction (dwell times: F 3,54 = 2.35, p = .08, 𝜂2 = 0.04; interval

imes: F 3,54 = 1.84, p = .15, 𝜂2 = 0.04) on either of the measures. 

.4. DMN state disproportionally drives global tACS effect 

Our results so far suggest that one out of our four transient brain-

tates is most susceptible to tACS. But does this state also drive the

ACS effect on a global level? To address this question, we revisited the

lobal (i.e., non-state-solved) tACS effect in the within-subject dataset.

e computed non-state-resolved power spectra from our ROI time se-
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Fig. 4. State-specific tACS effect in experiment 1. (a) Relative power change per state in the two experimental groups (tACS vs. sham). Black dots and error bars indicate 

mean and S.D. Colored dots indicate the distribution of individual datapoints. (b) Average power spectra over all ROIs before and after tACS or sham stimulation, 

respectively. Shaded areas depict standard error of the mean (S.E.M.) (c) Significant clusters exhibiting larger relative power increase in the 𝛼-band after tACS as 

compared to sham stimulation. T -value maps are thresholded at an 𝛼-level of 0.05 (after an additional Bonferroni correction for four multiple comparisons). Only 

one of the four states (state 2) was susceptible to tACS. (d) Change in fractional occupancy per state for the two experimental sessions (tACS vs. sham). TACS did not 

change the relative occurrence of states compared to sham. 

r  

i  

p  

o  

t  

f  

1

 

b  

p  

i  

o  

t  

p  

e  

a  

m

 

M  

i  

r  

s  

c  

s  

m  

s  

s  

N  

p  

c  

s

4

 

t  

a  

d  

V  

s  

o  

s  

o  

Z  

s  

w  

fi  

w  

t  

b  

c  

f  

s  

t  

t  
ies and computed the pre- to post-stimulation power increase in the

ndividual 𝛼-band and submitted the resulting data to a dependent sam-

les random-permutation cluster test. The test confirmed a global effect

f tACS in the data (p cluster = .006, df = 18; Fig. 7 a–c). Importantly,

he global cluster shows a substantial spatial overlap with the cluster

ound in the DMN state (state 4) in the second dataset, with 12 out of

8 significant ROIs in the global cluster overlapping ( Fig. 7 d). 

We next estimated how much of the effect seen at the global level can

e attributed to each of the transient brain-states. To this end, we com-

uted the directed and undirected state contribution indices as detailed

n Section 2.4.4 . In short, the indices estimate the relative contribution

f the tACS effect in each state to the global effect, taking into account

he state probability series. The SCI undirected provides an estimate of the

roportion of the overall tACS related 𝛼-power dynamics explained by

ach state, irrespective of its direction. The SCI undirected estimates the rel-

tive contribution between states, taking into account whether the state

akes a positive or negative contribution to the global tACS effect. 

Our results suggest, that while the DMN state occupies only

 = 12.73% (SD = 2.52) of the overall experiment time ( Fig. 5 top),

t on average, contributes M = 31.02% (SD = 10.38) to the global tACS

elated 𝛼-power dynamics ( Fig. 7 e). In contrast, each of the remaining 3

tates occupies around 29% of the overall experiment time, while only

ontributing 20–25% to the overall dynamics. SCI undirected in the DMN

tate was significantly larger as compared to the average across the re-

aining states (t 18 = 2.53, p = .02). Further, the DMN state was the only

tate showing a net positive directed contribution to the global effect,

ignificantly different from zero (t 18 = 3.41, p Bonferroni = 0.013; Fig. 7 f).

one of the other states showed a significant directed contribution (all
 a

7 
 > .16, uncorrected). Similar to the SCI undirected , SCI directed was signifi-

antly larger in the DMN state as compared to the average of the other

tates (t 18 = 2.59, p = .02). 

. Discussion 

In the current study, we aimed to reveal the role of hidden, spon-

aneous brain-state dynamics on aftereffects of tACS. To this end, we

dapted a novel analysis framework to decompose neural time series

ata into brain-states using Hidden Markov Models ( Baker et al., 2014 ;

idaurre et al., 2018b , 2016 ). These states are characterized by distinct

patial, spectral and connectivity profiles and reflect known networks

f human brain activity. The approach further allowed us to gain in-

ights to the nature of changes underlying the increase in spectral power

ften associated with tACS ( Kasten et al., 2016 ; Veniero et al., 2015 ;

aehle et al., 2010 ). Our results suggest that tACS distinctly and con-

istently modulated 𝛼-power within the same state across both datasets,

hich we identified as most likely reflecting DMN activity. We did not

nd evidence for such an effect in other states. Further analyses in our

ithin-subject dataset suggest that the effect in the DMN state substan-

ially overlaps with the tACS effect seen on a global level and seems to

e the most significant driving force of the global effect. This significant

ontribution of the state occurs despite the fact that the state is active

or only ∼12% of the total time. We did not find evidence that the time

pent in any of the states was modulated by tACS, or that the stimula-

ion gave rise to entirely new brain-states. Overall this finding confirms

he general assumption that tACS indeed affects the power of oscillatory

ctivity but not how frequently this activity occurs. 
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Fig. 5. State profiles in experiment 2. Each column depicts power spectra, relative state occupancy (top row), spatial maps of 𝛼-power relative to the average over 

all states (1st middle row) and connectivity profiles (2nd middle row, coherence in the 𝛼-band) for each of the four states. Connectivity profiles are thresholded to 

show the 5% strongest connections. Shaded areas depict standard deviation (S.D.). Bottom row depicts dwell times (average time a state is active during each visit; 

left column) and interval times (average time between visits to a state; right column) of each of the states. 
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TACS is generally considered a subthreshold stimulation approach.

s such, it is believed to be capable of modulating pre-existing oscilla-

ory activity, but not of inducing new oscillatory activity. In line with

his idea, the state most affected by stimulation was one that shows con-

iderable amounts of endogenous activity in the 𝛼-band. To our surprise,

owever, the state that captured visual 𝛼-oscillations, seemed to have

ot been affected by tACS, and seems to show the lowest contribution

o the global tACS effect ( Fig. 7 f). The Cz-Oz montage used during the

xperiment was originally designed to maximize current in the occipital

obe ( Neuling et al., 2012 ). This raises the question; which properties

f a brain-state determine whether it is susceptible to tACS? For ex-

mple, it has been suggested that states with already high oscillatory

ctivity cannot be further elevated due to ceiling effects ( Neuling et al.,

013 ; Ruhnau et al., 2016 ). Alternatively, it has been argued that at

east some involvement of the target oscillation in the state is neces-

ary for the stimulation to elicit effects ( Feurra et al., 2013 ; Kasten and

errmann, 2017 ). Unfortunately, neither of these explanations can fully

ccount for our findings of a susceptible, high 𝛼-power DMN state and

n unsusceptible high 𝛼-power visual state. This may indicate that our

urrent perspectives on the state-dependency of tACS effects may be too

implistic. To what extent other features of brain-states such as the num-

er of brain regions involved, their connectivity profiles, the duration

or which the state is active, the nature of the underlying information

rocessing or subtle differences in the underlying activity patterns might
8 
lay a role remains largely elusive and may deserve consideration in fu-

ure studies. Noteworthy, the DMN state most affected by tACS in both

atasets happens to be the state that was active for the least amount

f time, while exhibiting the most widespread activation and connec-

ivity profile. Previous studies have linked posterior 𝛼-oscillations with

MN functioning ( Knyazev et al., 2011 ; Mo et al., 2013 ). In particular,

 recent study demonstrated that 𝛼-tACS applied to the occipito-parietal

idline did not only increase the power of intrinsic 𝛼-oscillations, but

lso caused an upregulation of DMN connectivity ( Clancy et al., 2022 ).

The differential effect of tACS on spontaneous brain-states has impli-

ations for the variability of stimulation effects. As illustrated in Fig. 1 ,

hanges in the time spent in the brain-state susceptible to stimulation

ay obscure stimulation effects. Although we did not find evidence that

ACS induces such changes in our data, it may be possible that they

ay occur at random or due to factors unrelated to stimulation (e.g.,

atigue/time on task, context conditions, experimental manipulations,

tc.). Another aspect that may be worth considering, is the effective

timulation duration that may follow from our results. The susceptible

rain-state is active for approximately 10–15% of the recording time.

ssuming that the state dynamics during tACS remain comparable to

hose before and after stimulation, and that tACS only exerts its effects

uring the time the susceptible state is active, this would imply that our

0 min period of tACS may have contained less than 3 min of effec-

ive stimulation. It should be emphasized, though, that these consider-
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Fig. 6. State-specific tACS effect in experiment 2. (a) Relative power change per state in the two experimental groups (tACS vs. sham). Black dots and error bars 

indicate mean and S.D. Colored dots indicate the distribution of individual datapoints. Gray lines indicate within subject differences between stimulation sessions. 

(b) Average power spectra over all ROIs before and after tACS or sham stimulation, respectively. Shaded areas depict standard error of the mean (S.E.M.). (c) 

Significant clusters exhibiting larger relative power increase in the 𝛼-band after tACS as compared to sham stimulation. T -value maps are thresholded at an 𝛼-level 

of 0.05 (after Bonferroni correction for four multiple comparisons). Only one of the four states (state 4) appeared to be susceptible to tACS. (d) Change in fractional 

occupancy per state for the two experimental sessions (tACS vs. sham). TACS did not change the relative occurrence of states compared to sham. 
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tions are highly speculative as the HMM approach cannot be reliably

pplied during stimulation due to the contamination of MEG signals

ith a large electromagnetic artifact which are notoriously difficult to

emove ( Gebodh et al., 2019 ; Kasten et al., 2018a , 2018b ; Neuling et al.,

017 ; Noury et al., 2016 ; Noury and Siegel, 2018 , 2017 , for an overview

ee Kasten and Herrmann 2019 ). 

Some limitations of the current study and its methodology deserve

iscussion. The HMM requires the user to pre-specify the number of

tates to be found in the data. In our analysis we settled for a four state

MM, as larger numbers resulted in a certain redundancy (i.e., simi-

arity between two or more states) of the states returned by the model.

his does, however, not imply that the brain exclusively switches be-

ween these four states. Specifying a larger number of states, may be

seful depending on the specific research question, e.g., if a more fine-

rained decomposition of states is desired. For example, using a 12-state

MM could be used to identify subnetworks of the DMN ( Vidaurre et al.,

018b ). However, such more detailed descriptions of the data come at

he cost of a larger number of multiple comparisons that have to be taken

nto account and may hamper statistical power. In addition, an overall

ore complex pattern of results may be more difficult to interpret. 

The results at hand were obtained from a re-analysis of two existing

atasets ( Kasten et al., 2019 ). Consequently, the current results cannot

e interpreted as an independent replication of the aftereffect of tACS,

ut rather provides a different point of view on the underlying tACS-

nduced oscillatory changes already demonstrated in this dataset. Fur-

her, the datasets only provide data for one stimulation montage and fre-

uency along with a sham control. This precludes definitive conclusions

bout the frequency specificity of tACS and how it might relate to brain-

tate dynamics based on the current findings. It is generally believed that
9 
ACS elicits its effects in a frequency specific manner, i.e. only modu-

ates oscillations within the frequency band at which it is applied. Indeed

everal studies report frequency specific effects of stimulation on behav-

oral tasks or MEP measures ( Feurra et al., 2013 ; Kasten et al., 2020 ;

östmann et al., 2018 ). Testing frequency specificity in the context of

ACS aftereffects is however challenging and time consuming, as each

dditional stimulation condition (i.e., frequency) included in the pro-

ocol requires an additional recording session (or experimental group)

ncreasing the burden of measurements for both participants and experi-

enters. We therefore refrained from including more stimulation condi-

ions when the data was originally acquired. While the state-dependent

ffect of our 𝛼-tACS seems to be limited to the 𝛼-band, it cannot be ruled

ut that stimulation at other frequencies would have had the same ef-

ect. TACS at other stimulation frequencies could for example modu-

ate oscillations in the 𝛼-band via entrainment of harmonic frequencies

 Herrmann, 2001 ; Herrmann et al., 2016a ), cross-frequency interactions

 Boyle and Frohlich, 2013 ; Palva, 2005 ) or via unintended side effects,

uch as stimulation of peripheral nerves that could give rise to changes

n arousal or vigilance ( Schutter, 2016 , but see Kasten et al. 2019 ). In ad-

ition, it remains elusive how such stimulation would have interacted

ith the different brain-states. One could for example speculate that

ifferent states and their underlying networks might be susceptible to

timulation at different frequencies. Future studies adapting the HMM

pproach to experiments with different stimulation protocols are thus

esirable to better generalize the current findings. Those studies could,

or example, apply stimulation montages to specifically target each of

he states reported here and differentially test their susceptibility to

timulation. For the current study, we aimed to establish the existence

f differential responses to tACS across transient brain-states, which is,
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Fig. 7. Global vs. brain-state resolved tACS effect in within-subject data. (a, b) Spec- 

tra depict the global (non- state-resolved) power increase across all ROIs from 

the pre- to the post stimulation periods for the tACS (a) and sham (b) condi- 

tion. Shaded areas indicate S.E.M. (c) Significant clusters exhibiting a larger 

𝛼-power increase after tACS as compared to sham. T -value map is thresholded 

at an 𝛼-level of 0.05. (d) Cluster overlap between global tACS effect and the 

effect observed in the DMN state in experiment 2. (e, f) Relative contribution of 

the tACS effect within each state on the global tACS effect. (e) Undirected con- 

tribution of each state, indexing the proportion of the overall global dynamics 

explained by the state. (f) Directed contribution of each state. Positive values 

indicate a positive contribution to the global effect, while negative values in- 

dicate a negative influence of the state on the global effect. Asterisks indicate 

significant differences ( ∗ p < .05). 
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o some degree, independent from the question of whether or not ef-

ects of tACS are frequency specific. Even in the (hypothetical) case that

ACS would be demonstrated to have effects on 𝛼-oscillations that are

ndependent of stimulation frequency, such a finding would not render

he observation of a differential effect of tACS across transient brain-

tates invalid. Another interesting application of HMMs in the context

f tACS effects may additionally lie in the combination with cognitive

asks. Given a sufficiently large number of states, HMMs may allow to

ncover which subprocess of a task is affected by stimulation. This may

oster our understanding of how tACS exerts its behavioral effect, or to

ven tailor stimulation more specifically to target such subprocesses spa-

ially, temporally and in terms of frequency thereby improving the capa-

ilities of neuroimaging informed brain stimulation ( Bergmann, 2018 ;

ergmann et al., 2016 ). 

In general, HMMs may have a wide range of applications in the re-

earch of non-invasive brain stimulation. Their usage is not limited to
10 
/EEG signals, but they can be utilized in any neuroimaging modal-

ty. For example its application to fMRI ( Baker et al., 2014 ) might be

articularly interesting to study spontaneous state dependency of tDCS.

MMs thus offer a versatile tool to uncover hidden dynamics behind

rain stimulation effects and could foster our understanding of brain-

tate-dependency by providing a more detailed view on neuroimaging

ata of brain stimulation experiments. 
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