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Over the past 10 years, the Mars Science Laboratory (MSL) rover Curiosity has been investigating
the plains of Aeolis Palus and the lower reaches of Aeolis Mons (informally known as Mount Sharp),
a 5 km tall mound of sedimentary rocks in Gale crater (Figure 1). After traversing 27 km and nearly
600 m of vertical stratigraphy, three lithostratigraphic groups have been identified: Bradbury, Mount
Sharp, and Siccar Point (SP). The Bradbury group consists of fluvial, deltaic, and lacustrine
sedimentary rocks [1-2]. The Mt. Sharp group mainly consists of laminated mudstones with minor
fluvial sandstones, interpreted as evidence of a long-lived lacustrine environment [1]. Locally,
exposures of the Mt. Sharp group are unconformably overlain by aeolian cross-bedded sandstones of
the SP group, interpreted to have deposited on an aeolian deflation surface [3].
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Figure 1: Location of the three lithostratigraphic groups
exposed at Aeolis Palus and lower Mount Sharp and of the
sedimentary rocks analyzed in this study.

While these three groups show evidence of deposition in specific environmental and climatic
conditions, knowledge of their stratigraphic relationships is a key information to understand the
evolution of environmental conditions in Gale. Yet, no clear stratigraphic contact has been observed
at the boundary between the Bradbury and the Mt. Sharp groups. Because the mean dip of the
Bradbury group is approximately horizontal, the MSL team suggested that the Bradbury group might
be stratigraphically lower than the Mt. Sharp group, and therefore lower than the SP group [1].
Nonetheless, orbital analyses of the region suggested that capping strata of the Bradbury group
could be part of the SP group [4]. Chemical data from the ChemCam and APXS instrument suites of
Bradbury and SP group rocks have recently shown that both groups have similar compositions and
possibly similar sediment sources [5-8]. In this study, we aim to reappraise the stratigraphic and
chemical relationships between the Bradbury and SP groups using Mastcam [9-10] and ChemCam
data [11-12] to characterize the evolution of Gale’s ancient environment.
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Figure 2: “Dog’s eye” view of the Zabriskie Plateau DOM, highlighting the lens-shaped interval of Bradbury group
conglomerates cropping out at the same topographic level than fine-grained Siccar Point group sandstones. White line
denotes inferred contact between both units, as nho marked transition is observed.

Lithostratigraphy of Zabriskie Plateau

One of the best candidates to assess the potential contact between Bradbury and SP group rocks is
located at the Zabriskie Plateau outcrop in the Pahrump Hills area (Figure 1). To better appreciate
the facies and 3D geometry of the contacts, this outcrop has been reconstructed as a Digital Outcrop
Model (Figure 2, https://skfb.ly/09ZAq) [13]. In this model, we observe that most of the outcrop is
composed of fine to medium-grained sandstones, arranged in dm- to meter-scale cross-
stratifications, similar to some of the aeolian facies of the SP group [3]. These sandstones exist as
“capping rocks” similar to previously described examples [4], suggesting that they are locally well-
cemented on the topmost meter. Near the base of the DOM, we observe a meter-scale, ~30-cm
thick, cross-stratified lens-shaped interval of coarser medium to pebble conglomerate. This level
represents deposition under energetic agueous conditions to transport clasts up to the pebble size,
more likely to pertain to a fluvial channel. Interestingly, this conglomerate interval is at similar
elevation (within one meter) to the surrounding sandstones, with no apparent unconformity, likely
evidencing a conformable emplacement of this level within the finer sandstone succession. This
would argue that the conglomerate level was deposited synchronously with the finer-grained
sandstones during the same depositional event.

Chemical composition of Bradbury and Siccar Point groups

The average compositions of Bradbury and SP group rocks are overall quite similar (Table 1), and
clearly distinct from Mount Sharp group rocks (Figures 3 and 4). By analyzing the rock compositions
of Bradbury and SP groups, we sorted them into five major chemical groups, which are, in order of
increasing average K,0/Na,O ratio and average K,O content for groups 1 to 4: group 1 has a
basaltic composition; group 2 has low SiO,, intermediate TiO,, high FeO; and Na,O contents;
group 3 has low CaO, high TiO,, FeO+, and K,O contents; group 4 has low TiO, and Al,05, and very
high K,O contents; and group 5 has a composition close to group 1 with higher SiO, and alkali
contents (Table 1, Figure 3). Overall, the MgO and Al,0; contents are quite variable. The
composition of these rocks suggests mixing between mafic minerals and feldspars, including alkali
feldspars in various proportions (Figure 4). Interestingly, both Bradbury and SP rocks occur in the
first three chemical groups, which suggests similar source rocks for both groups of at least two
types: a relatively low-potassium basaltic rock and a potassic-rich rock. The relative abundance of
potassic-rich source rock in the mixture is interpreted to increase from group 1 to group 4. Besides,
Bradbury and SP group rocks have a low Chemical Index of Alteration (CIA), which is indicative of
limited chemical weathering (Figure 4).



Table 1. Average major element composition of Bradbury and Siccar Point group rocks for major localities as seen by
ChemCam data in wt%. Standard deviation (SD) for each element and locality is indicated. Values are highlighted for
each element from the lowest value (green) to the highest value (red) for the groups 1 to 4. YKB corresponds to

Yellowknife Bay, and GP to Greenheugh pediment.
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Figure 3: Average major element composition for major localities in Bradbury, SP, and Mt. Sharp group rocks analyzed
by ChemCam normalized to Sheepbed composition. GP corresponds to Greenheugh pediment, and GT to Glen

Torridon.
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Figure 5: Schematic cross-section along Aeolis Palus and lower Mount Sharp. Location is indicated in Figure 1.

Conclusion

3D observations in the Pahrump Hills area suggest that Bradbury and Siccar Point units are
intermingled and synchronous in an environment allowing fluvial episodes to occasionally occur
among a drier setting, as observed on Earth [14]. This is consistent with the chemical compositions
of Bradbury and Siccar Point groups which suggest similar source rocks in different relative
abundances. This relationship implies that the Bradbury group could be younger than Mount Sharp
group (Figure 5). To summarize, these observations are in favor of a common origin for both
Bradbury and Siccar Point as a single clastic group, representing a temporal evolution from clement
conditions during the deposition of Mount Sharp group to a colder and drier environment with still
transient episodes of fluvial activity during the deposition of Bradbury and Siccar Point groups.
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