
HAL Id: hal-03842393
https://hal.science/hal-03842393

Submitted on 7 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reducing the fault vulnerability of hard real-time
systems

Fabien Bouquillon, Smail Niar, Giuseppe Lipari

To cite this version:
Fabien Bouquillon, Smail Niar, Giuseppe Lipari. Reducing the fault vulnerability of hard real-time
systems. Journal of Systems Architecture, 2022, 133, pp.102758. �10.1016/j.sysarc.2022.102758�. �hal-
03842393�

https://hal.science/hal-03842393
https://hal.archives-ouvertes.fr

Reducing the Fault Vulnerability of Hard Real-Time Systems

Fabien Bouquillon ∗, Smail Niar †, Giuseppe Lipari ‡

November 7, 2022

Abstract

With the progress of the technology, the presence of transient faults (e.g. bit-
flipping errors) in cache memories becomes a challenge, especially in embedded real-
time systems. These are mission critical systems that are often subject to both fault-
tolerant and real-time constraints.

To reduce the impact of transient faults, hardware protection mechanisms are
usually proposed. However, these mechanisms introduce too much pessimism in the
computation of the worst-case execution time of a task, decreasing the overall system
performance.

In this paper, we propose a methodology to evaluate and reduce the vulnerability
of hard real-time applications to soft errors in IL1 cache memories.

We use static analysis tools to analyze a binary program and compute the overall
vulnerability of its instructions. Then, we propose to reduce this vulnerability by
invalidating some cache blocks at specific instants during the execution, thus forcing
vulnerable instruction blocks to be reloaded from higher layers of memory. Since
adding invalidation points will likely increase the WCETs of the tasks, we perform a
static analysis to guarantee that the application deadlines are respected

Finally, we analyze how our methodology can be combined with hardware pro-
tection mechanisms as ECC memories, and we evaluate the performance on a set of
benchmarks.
Keywords: Real-Time systems, Reliability, Cache memory, Transient Faults, Vul-
nerability, static code analysis, WCET analysis.

1 Introduction
The design and implementation of intelligent transportation systems and autonomous ve-
hicles is a major trend in the embedded system community. These systems are considered
as hard real-time, because they include critical subsystems such as ADAS, parking assis-
tance, engine control, etc. In turn, these subsystems are composed of many concurrent
software tasks that must produce correct results within predefined time windows. If a
computed result is not correct or if it is produced too late, a critical failure may happen
and cause serious accidents.

Hence, a precise analysis of the temporal behavior of critical software components is
required to guarantee the correct functioning. This analysis is produced in two steps.
First, each task is analyzed as if it were executed alone on the system to provide a Worst

∗Univ. Lille, Univ. Polytechnique Hauts-de-France, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL,
F-59000 Lille, UMR 8201 - LAMIH, F-59313 Valenciennes, France

†Univ. Polytechnique Hauts-de-France, CNRS, UMR 8201 - LAMIH, F-59313 Valenciennes, France
‡Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

1

Case Execution Time (WCET). This step is often produced by a static analysis WCET
estimation tool, such as OTAWA [1]. The second step consists in a schedulability analysis
to guarantee that each task will finish its execution in the correct time window, assuming it
will execute for its WCET and while accounting for the interference from the other tasks.
As the number of functionalities increases, these systems need to provide high performance
and high reliability while not being too expensive according the targeted market.

Many Commercial off-the-shelf (or COTS) microprocessors fit the cost requirement
and are increasingly used in production. They present complex architectural features as
superscalar pipelining, cache memory, shared bus, etc. that are essential for providing the
required level of performance. However, these features are also a source of unpredictability
and unreliability which must be taken into account for the design and implementation of
critical software. In this paper we focus on increasing robustness in Level-1 (or L1) cache
memories for microprocessor-based real time systems.

A well-known source of problems is the presence of transient faults on L1 cache mem-
ories. With the progress of the technology, which tends to integrate more transistors at a
smaller scale, the presence of bit-flipping errors in cache memories becomes a challenge [2].

Transient faults are temporary unpredictable faults due to environment factors, such
as temperature and radiations. They corrupt data in memory units, in particular SRAM-
based cache memories. Transient faults are different from permanent faults because the
hardware is not damaged, and the electronics components affected by these faults will
work correctly after the errors have been corrected.

To reduce the impact of these transient faults, hardware protection mechanisms are
usually proposed. We list here three types of protection mechanisms: the first and most
naive is to disable cache units; the second type is the use of Error Detection mechanisms,
such as a parity code or double-modular redundancy. These mechanisms detect the cor-
rupted instructions or data and trigger a reloading of the memory block from a higher
memory layer. The last type consists of Error Correcting Codes (ECC) or Triple-Modular
Redundancy (TMR) which can also automatically correct the data.

While protecting the instruction-cache, these mechanisms decrease the system perfor-
mance in terms of executed instructions per second. This loss of performance comes from
the reduction of the useful cache memory size, the error correction logic [3] or by delays
added by the protection mechanism to detect and correct faults. Hijaz et al. [4] proposed
a study to quantify the impact of a constant delay on cache hit access. They show in
their experiments that increasing the L1 cache hit latency from 1 to 2 cycles incurs a
performance loss of 10%, and when the latency climbs to 3 cycles, the loss of performance
is more than 30%.

We assume that higher layers of memory (L2, L3 or DRAM memory) are protected by
fault-tolerant mechanisms. In fact, the impact of error correction mechanisms for DRAM
in terms of performance loss is less important, and it is usually estimated around 1-2%.
Also, the cost of an ECC DRAM memory is proportionally lower than the cost of the L1
cache memory [5].

1.1 Original contributions

In this paper, we propose a methodology to evaluate the vulnerability of a hard real-time
application to soft errors caused by transient faults in Instruction L1 (IL1) cache memories.
The vulnerability of an instruction is proportional to the time it spends in the cache, and
it is therefore subject to transient faults. We use static analysis tools to analyze a binary

2

program and compute the overall vulnerability of its instructions.
Then, we propose to reduce this vulnerability by invalidating some cache blocks at

specific instants during the execution. In this way, we force vulnerable instruction blocks
to be reloaded from higher layers of memory. Since adding invalidation points will likely
increase the WCETs of the tasks, we perform a static analysis to guarantee that the system
remains schedulable (all the application deadlines are respected) after modification.

In other words, our proposal is to select the most vulnerable blocks and to choose
the most suitable moments when to reload these blocks without impacting real-time con-
straints. We also present different possible practical implementations of the cache invali-
dation mechanism according to the type of the IL1 cache memory, i.e. direct mapped or
set-associative. Finally, we analyze how our methodology can be combined with existing
hardware protection mechanisms as ECC memories. The performance of our methodology
in terms of vulnerability reduction is evaluated with a set of experiments on benchmarks.

This paper is organized as follows. First, in Section 2 we discuss briefly the existing
research in the field of cache reliability. Then, in Section 3 we present the system model
and our assumptions.

The main contributions of this paper are presented in Section 4 and Section 5. Then,
we present a case study and experiments to show the improvements in reliability with our
method compared to systems without any protection in Section 6. Finally, Section 7 gives
a conclusion and presents new research avenues for future works.

2 Related Work
Faults in computing systems can be classified in two categories: permanent faults and
transient faults.

In Siddiqua et al. [6] the authors realized several experiment to collect data concerning
memory robustness and faults. They gathered data memory reliability from the Cielo
supercomputer at Los Alamos National Laboratory over a five-year period. The investi-
gation is centered on DRAM (main memory) and SRAM (cache memory and registers).
Each fault is classified as either permanent or transient. Their experimental results show
that 99.36% of the faults in L3 cache (SRAM) are transient faults, and 99.98% of the
errors are single bit errors. The faults do not alter the entire cache index and cache way,
as they mostly affect only one cache line at a time, while the other types of faults are
permanent faults and affect cache way entirely.

When a permanent fault occurs, Agnola et al. [7] propose a method for reorganizing
memory location called Self Adaptive Cache Memories. Their method consists in replacing
a faulty cache line location by a healthy cache line location from another set to avoid an
entirely faulty cache set. They limit the number of faulty cache line per set to one. When
all the cache sets contain a faulty cache line, the mechanism reduces the associativity, thus
not considering the faulty cells anymore. Wilkerson et al. [8] present a scheme to improve
the reliability of cache memory when a low-voltage is used. Cache memories consume an
important quantity of energy. To reduce this consumption, it has been proposed to use
a near-threshold voltage for caches at the cost of higher fault probability. The authors
provide a precise characterization of errors that may occur during systems execution at
low-voltage. They derive the relation between the voltage and the probability of errors in
the cache memories. They assume that a probability of failure lower than 0.001 respects
the manufacturing yields and suggest minimal voltage value according this assumption.

3

Yan et al. [9] consider voltage scaling for delay sensitive L1 cache memory. Reducing
voltage of a chip is an efficient way to reduce power consumption, but has some draw-
backs, such as the reduction in reliability. They propose specific methods for data and
instruction caches. The method proposed for instruction cache is a remapping of instruc-
tions from defective blocks to free-fault blocks in cache memory. They use Built-in Self
Test (BIST) to identify defective words and remap them by using static compilation, just-
in-time compilation or binary translation. They achieve an energy reduction of 64% per
instruction.

The most important difference between these works and our is the type of considered
faults. Indeed, our work focuses only on transient faults. Furthermore, they do not
consider real-time guarantees.

Sugihara et al. [10] propose a MIP formulation that produces a scheduling of non-
preemptive tasks on multicore systems allowing to minimize the vulnerability of the sys-
tems while respecting real-time constraints. They use a reliable cache architectures instead
of our cache misses insertion. Reliable cache architectures reduce vulnerability by deacti-
vating cache ways or by merging them. While our method is similar to their approach, we
deactivate cache lines at a finer granularity and at determined points in the program. Also,
their methods do not work with direct mapped caches and necessitates specific hardware
modifications.

Wang et al. [11] develop a lifetime model for L1 cache. They propose to classify interval
of time during which cache elements (cache lines, words, …) are used as vulnerable or non-
vulnerable. If a fault (a bit-flip) happens between two read instructions, the fault becomes
an error. The variable is considered as vulnerable and the interval between the two reads is
declared as a vulnerable interval. On the other hand, if the fault happens between a read
and a write instructions, the faulty data is overwritten and does not cause any errors in the
program execution. For instruction caches, the vulnerability interval corresponds to the
time the instruction remains in the cache before being evicted by the cache replacement
algorithm. In this respect, Wang et al. [11] propose the TVF (Temporal Vulnerability
Factor), a reliability score for the cache: the highest is the score, the least reliable is the
cache.

Driven by the TVF metric, they propose a Clean Cache line Invalidation (CCI) tech-
nique to refresh the data in the cache after a given amount of time without any activity.
For the instruction cache, they propose to insert cache misses (called cache scrubbing)
instead of CCI to refresh the instructions of L1 cache from the L2 cache. To reduce the
overhead, they propose to insert cache misses during the idle cycles of cache memory. In
our work, we propose to insert cache misses at strategic points during the tasks execution
while considering timing constraints.

Later, the same authors focused on instruction cache memories for embedded sys-
tems [2]. A new metric has been proposed, the System-level Instruction Cache Vulnera-
bility Factor (SICFV). This metric aims to have a more accurate reliability measurement
by considering some specific properties of the 32 bit ARM ISA. Then, they suggest ways
to improve the ARM ISA in order to reduce the SICFV. In comparison, our solution does
not require neither new instructions in the ISA nor code re-compilation.

Song et al. [12] propose a predictable system-level fault tolerance system implementa-
tion on the COMPOSITE component-based OS. Their method does not require hardware
redundancy. It performs recovery of components by tracking their state during their exe-
cution. The authors provide also timing analysis of their system. Their method does not
focus specifically on cache memories but on the reliability of OS components. However,

4

a1 a2 a3

d1 d2 d3

Ti Ti

Di

Ci Ci

j1 j2 j3
Time

Figure 1: Task model

they consider timing constraints.
Hardware redundancy based methods such as DMR, TMR or CRC, are expensive

solutions for embedded systems [13]. However, Bhat et al. observe a trend around software
based approach to increase reliability. In their framework, the authors propose a novel task
allocation heuristic to respect fault-tolerant requirement and minimize the number of cores
in multi-core architecture. They also provide a schedulability analysis and testing of their
AUTOSAR-based framework. While their method takes into account timing constraints,
our work differs from theirs in that we do not require any redundancy. In addition, we
use cache misses insertion to improve reliability.

3 System model

3.1 Real-Time task model

In our work, a system consists of N independent real-time sporadic tasks, denoted as
T = {τ1, · · · , τn}.

A task τi is an infinite sequence of instances (also called jobs), and can be described
by the tuple (Ci, Di, Ti), with Ci the worst case execution time of its jobs, Di the relative
deadline, and Ti the minimum inter-arrival time between two of its jobs.

For simplicity, in this work we consider implicit deadline tasks, i.e. each task τi has
Di = Ti. However, our method is general, and it works also with constrained deadline
tasks (Di ≤ Ti). The worst-case execution time Ci is estimated through a static analysis
tool like OTAWA [1] assuming the task is executed alone on the processor. We consider
sporadic tasks, i.e. the exact arrival times of the instances of the tasks are not known at
analysis time; however, the minimum distance between two consecutive instances of the
same task is Ti. An example is proposed in Figure 1. This figure represents 3 jobs of the
task τi, denoted as j1, j2 and j3, with their respective arrival time a1, a2 and a3. In this
example the minimum inter-arrival between all the jobs of task τi is between jobs j1 and
j2, thus Ti = a2 − a1. Notice that the inter-arrival between two jobs might not be equal
to Ti as for example the inter-arrival between jobs j2 and j3 which is greater than Ti. For
each job, the box on the figure represents their execution time, as you may notice the
execution time of job j1 is equal in this example to the WCET of the task Ci contrary to
the execution time of j2. Also, all the jobs have the same relative deadline, we have for
the job jk: dk − ak = Di, with dk the absolute deadline of the job jk.

We assume that the tasks are scheduled by Non-Preemptive Earliest Deadline First
(NP-EDF) [14]. The job with the earliest deadline will be executed if the CPU is free.

5

· · ·· · ·

...

...

Set 0

Set 1

Set Z − 1

Way 0 Way 1 Way K − 1

Figure 2: K-ways set-associative Cache Memory

3.2 Instruction Cache Structure

A cache memory can be modeled as a matrix of cache lines. Each row of the matrix is
called a cache set and it may contain one or more cache lines. If the number of blocks
within the sets is K > 1, the cache is said K-way set-associative. If K = 1, the cache is
direct mapped. An example of a K-way set-associative cache is presented in Figure 2.

In this paper, we consider both set-associative and direct mapped caches. For simplic-
ity, we restrict our analysis to instruction caches: we discuss the impact of dealing with
data caches in Section 3.4. Also, in our model we consider that caches are flushed at the
start of each instance of task execution.

Definition 1 (Cache block). The main memory is naturally divided into blocks of the size
of a cache line, called cache blocks (CBs). When stored in the cache, every data of a CB
is contained in the same cache line. As the binary of each task is present in the main
memory, it can also be divided in CBs.

A given CB can only be stored into one cache set. To know which set will contain the
CB, a cache set index is computed based on its address.

In set-associative caches, a cache set may be composed of K cache lines and a re-
placement policy chooses the cache line where the block is stored. For example, the Least
Recently Used replacement policy stores the CB in an unused cache line, or it replaces the
least recently accessed cache line. In order to identify a cache block in a cache set, a tag
is computed based on the block’s address.

3.3 WCET Analysis and Cache Memory

The worst case execution time (WCET) analysis is a static analysis that computes an
upper bound to the execution time of any instance of a task.

Definition 2 (Basic block). A basic block (BB) is a sequence of non-branching instructions
terminated by a branch, a jump or a call.

Definition 3 (Line block). A binary code can be split in BBs and in CBs. As a BB and
a CB may not be of the same size, instructions belonging to the same BB can be present
in multiple CBs. A line block (LB) is a maximal subset of a BB that is fully contained in
a CB.

Figure 3 shows the relation between CBs, BBs and LBs.

6

Cache Memory

set 1

set 0

Task’s CBs

BBs and LBs

Figure 3: Example of BBs, CBs and LBs

The WCET analysis first transforms the binary code of the task into a Control Flow
Graph (CFG). The graph is composed of nodes representing BBs. Branches, jumps or
calls are represented as directed edges between nodes. An example of CFG is reported in
Figure 4: it is composed of 4 BBs, BB1, BB2, BB3 and BB4. Each BB is composed of
LBs, they are represented with a letter that corresponds to the CB they belong to.

Definition 4 (Vulnerability). Given a cache block x used by task τi, a vulnerability
interval of x is an interval of time between the moment x is loaded into the cache and a
subsequent read operation on x, without any reload or write operation within the interval.

A cache memory analysis assigns a category to each line block. There exists 5 cat-
egories [15]: first hit (FH), always hit (AH), first miss (FM), always miss (AM) and
unknown (U).

Since the WCET estimation tool must produce an estimation greater than or equal to
the real WCET, the cache analysis must consider as cache hit only those accesses that can
never be classified as cache misses in any possible scenario. For example, during WCET
analysis, each LB classified as unknown will instead be considered as always miss.

In this paper we also need to estimate the worst-case vulnerability of a cache line.
Therefore, during the vulnerability analysis, all scenarios with a potential cache hit will
be considered as always hit. This other kind of cache analysis has been proposed by Lee
et al. [16] and it is called a may analysis. To summarize, when computing the WCET we
consider the analysis proposed by Healy et al. [15] and when computing the vulnerability,
we instead use the analysis proposed by Lee et al. [16].

Definition 5 (Useful Cache Blocks). Given a point p between two BBs of a task, the set
of Useful Cache Blocks (UCBs) represents all CBs that are present in the cache and may
be reused sometimes later in the code.

Notice that UCBs may be accessed much later than the moment when they are first
loaded into the cache, therefore their vulnerability may be large. Our method consists in
forcing the reloading of some of these blocks so to reduce their vulnerability.

3.4 Instruction cache and data cache

In this paper we only address the problem of reducing the vulnerability of instruction
caches. Indeed, classifying CBs stored in data caches as CBs that can be hit later in the

7

A BB1

A

B

C

D

BB3
D BB2

D BB4

Control Flow Graph

UCBb-out
BB1

= {A}

UCBb-in
BB2

= {A,B,C,D}

UCBb-out
BB2

= {A,B,C,D}

UCBb-in
BB3

= {A,B,C,D}

UCBb-out
BB3

= {A,B,C,D}UCBb-in
BB4

= {D}

Figure 4: Example of task CFG

task execution requires a different kind of static analysis. For example, the authors of [17]
propose a method to compute the useful data cache blocks of a task.

Also, data caches bring in additional issues, like the choice of the write policy (write-
through vs. write-back) and its impact on timing and vulnerability. To limit the scope of
this paper, we remand the analysis of data caches to a future research work.

3.5 Example

Figure 4 represents the CFG of a task and the correspondence between BBs and CBs: the
nodes of the graph (blue rectangles) represent the BBs; the colored rectangles inside the
nodes represent the LBs; rectangles with the same letter represent LBs belonging to the
same CB. For example, the two rectangles with the letter A are two LBs belonging to the
same CB A, and to two different BBs BB1 and BB3 (nodes of the tasks).

In the example, we consider a set associative cache with k = 2 which contains only 2
cache sets. We assume that the addresses of the CBs are such that A and C fit into cache
set 1, and B and D into cache set 2.

The graph contains a loop between BB2 and BB3, therefore their execution is repeated
a certain number of times.

After the execution of the BB1, CB A is considered as UCB because there exists a
path without eviction between BB1 and BB3. Thus, we can state that A is vulnerable on
path BB1 → BB2 → BB3. Following the same reasoning, CBs A, B, C and D are both
vulnerable along path BB3 → BB2 → BB3. On path BB2 → BB4, neither A nor B and C
need to be considered as vulnerable, because they are not accessed after BB4.

4 Task Profile
To reduce the vulnerability of a task, we can artificially invalidate CBs at some point in
the code. In this way, the CBs will be reloaded from the main memory at their next read
accesses, thus reducing their vulnerability. This is equivalent to forcing artificial cache
misses. However, inserting cache misses also increases the task’s worst-case execution

8

time: if we insert too many cache misses, the WCET will increase to the point that the
task set becomes unschedulable. Therefore, we need to carefully select the locations where
to invalidate the cache misses so that the task set remains schedulable.

The number λ of potential locations where to invalidate the cache for a set of tasks
is linear in the size of the code. However, the number of combinations, is 2λ which is
exponential in the code size. Even the use of specialized solvers for exploring all possible
combinations is too expensive.

This paper takes a different approach. First, we analyze one task at a time to build a
task profile, which consists of a list of tuples containing the WCET, the task’s vulnerability
factor, and the combination of cache invalidation locations. Then, we use these profiles to
determine the best combination of artificial cache misses for each task, allowing the set of
tasks to remain schedulable.

4.1 Computing the vulnerability factor of tasks

In this paper, we use the TAsk Vulnerability Factor (TAVF) as a metric to evaluate the
vulnerability of a task in the system, that is the probability that a fault occurring on one
of the CBs used by the task will affect its behavior.

TAVF is a metric similar to the Temporal Vulnerability Factor (TVF) proposed by
Wang et al. [11]. The TVF represents the probability that a fault occurring on a used
part of cache memory will provoke a failure in the application. Therefore, the TVF is a
global metric on the cache, whereas TAVF is specific to a given task.

To compute the TAVF, we first need to compute an upper limit to the vulnerability of
the task. We consider the case where all instructions are vulnerable during its worst-case
execution time, and we denote it as task exposition. Therefore, the task exposition can be
computed simply by multiplying the WCET of the task times its size in bytes.

We use OTAWA [1], a static analysis tool that is mainly used to estimate the WCET
of a task, and that we extended to compute its vulnerability.

The vulnerability of a task consists in summing the worst-case vulnerability of each
LB. It can be decomposed into two components:

• The baseline vulnerability is the vulnerability of a LB during the execution of those
BBs which contain instructions from the corresponding CB;

• The path vulnerability is the vulnerability of a LB during the execution of those BBs
which contain no instructions from the corresponding CB.

4.1.1 Computing the baseline vulnerability

Similarly to [11], we only consider as vulnerable the time between two readings of the
same CB without the latter being evicted.

Since the WCET estimation tool has the time granularity of a BB, we consider that
all instructions of a BB have the same vulnerability during their execution.

Equation (1) allows us to compute the baseline vulnerability for a LB lb.

νbv
lb = dlb · Ilb · CBBlb (1)

where dlb corresponds to the size (in bytes) of the vulnerable instructions of the CB of
lb during the execution of BBlb; Ilb denotes the maximum number of executions of lb for

9

one instance of the task it belongs to; and CBBlb the WCET of BBlb which represents the
block that contains lb.

Equation (2) shows how dlb is computed: UCBb-out
lb is the list of UCBs at the output

of BBlb; the list of UCBs at the input of BBlb is denoted by UCBb-in
lb . Also, with CBlb we

denote the CB that contains lb.

dlb =

{
|CBlb|, if CBlb ∈ UCBb-out

lb
|lb|, otherwise

(2)

During the execution of lb, its instructions are always vulnerable. However, if CBlb belongs
to UCBb-out

lb then other instructions from CBlb may be used later by other BBs, and in
this case we have to consider the entire CB as vulnerable. For example, in Figure 4 the
LB that belongs to CB D is vulnerable during the execution of BB3. Furthermore, D is
present in UCBb-out

BB3
as it can be reused later without eviction, hence the other instructions

of D are also vulnerable during the execution of BB3.
To compute the baseline vulnerability for a task τi, we just sum the baseline vulnera-

bility of its LBs:
νbv
i =

∑
∀lb∈τi

νbv
lb (3)

Theorem 4.1. The baseline vulnerability of a task τi computed with Equation (3) is an
upper bound to the sum of the vulnerabilities of the task’s CBs during their execution.

Proof. Suppose an instruction i is stored in the cache while another instruction j from LB
lb belonging to the same CB of i is currently executed. Suppose that a path exists from j
to a point where instruction i is executed without being evicted from the cache. Observe
that instruction i is vulnerable on this path.

There are two cases:

• the instruction i is part of lb;

• the instruction i is not part of lb.

Equation (1) covers the first case, since it considers LBs vulnerable during the execution
of their BB (it multiplies the LB size by the WCET of its BB).

Furthermore, Equation (1) considers that the entire CB is vulnerable, and not only
the executed LB belonging to it, if it belongs to the set UCBb-out

lb . Since i will be executed
in the future without being evicted, its CB belongs to UCBb-out

lb . This covers the second
case.

Since Equation (3) is the sum of the baseline vulnerability for each LB of the task
computed with Equation (1), we conclude that Equation (3) is an upper bound to the
sum of the CBs vulnerability during their execution.

4.1.2 Computing path vulnerability

The baseline vulnerability of a task is not sufficient to bound its vulnerability. During
the execution of a basic block BB, CBs that have no instructions in BB are vulnerable
if they belong to the UCB set at the exit of BB. However, their vulnerability is not
considered by Equation (3), because the actual value of their vulnerability depends on
the path followed by the program. Therefore, we need to look at all paths in the graph
to effectively compute this additional vulnerability. We denote this component of the

10

vulnerability as path vulnerability since it affects only blocks in a path in which they are
not used.

For example, in Figure 4 CB A consists of two LBs present in BBs BB1 and BB3. By
the static analysis of the code, we know that A is present in UCBb-out

BB1
, UCBb-in

BB2
, UCBb-out

BB2

and UCBb-in
BB3

. Thus, A is vulnerable on path BB1 → BB2 → BB3. As BB1 and BB3 contain
a LB from A, the vulnerability of A during the execution of BB1 and BB3 is already
considered by its baseline vulnerability. Therefore, the path vulnerability accounts just
for the vulnerability of A during the execution of BB2.

We propose to compute for each LB the path vulnerability νpath
lb as follows:

νpath
lb =

{
dlb · Ilb · Pmax

lb , if CBlb ∈ UCBb-in
lb

0, otherwise
(4)

where Pmax
lb is the WCET of the longest path from the last access to the CBlb until BBlb.

We consider only the paths where CBlb is in the cache along the entire path without being
used (and it used at the end of the path).

Similarly to the baseline vulnerability, the path vulnerability for a task τi can be
computed as:

νpath
i =

∑
∀lb∈τi

νpath
lb (5)

Theorem 4.2. Equation (5) provides an upper bound to the path vulnerability for task τi.

Proof. To be considered as vulnerable at a point p, a LB lb must have its CB in the cache,
and it must be executed later without any eviction in the meantime.

If lb is vulnerable during the execution of a basic block BB that does not contain any
LBs from CBlb, then BB must be at least in one path of Pmax

lb′ , where lb′ is a LB from CBlb.
We are now in one of these two cases:

• lb = lb′, the vulnerability of lb between the start of the execution of BB and the
start of the execution of the BB containing lb is bounded by Equation (4). Indeed,
this equation consists in multiplying the length of the maximum path from Pmax

lb by
the size of lb or by the size of its CB.

• lb 6= lb′, the vulnerability of lb between the start of the execution of BB and the start
of the execution of the BB containing lb′ is also bounded by Equation (4). Indeed,
as the BB of lb′ is inside a path through a future execution of lb, CBlb ∈ UCBb-out

lb′ .
In this case, the equation consists in multiplying the length of the longest path from
Pmax

lb′ by the size of CBlb.

Thus, we can say that the path vulnerability of CBlb can be bounded by
∑

∀lb′∈CBlb

νpath
lb′ .

As Equation (5) is the sum of νpath
lb for all the LBs of task τi, it is also an upper bound

of the path vulnerability for task τi.

Finally, we compute the TAVF of τi as:

fv
i =

νbv
i + νpath

i

Ci · |τi|
(6)

where |τi| is the size in bytes of the task’s code.

11

4.1.3 Example

In this example we consider task τi whose CFG is shown in Figure 4. To compute its
vulnerability factor, we start by computing the size of the vulnerable instructions for each
LB with Equation (2). The results are reported in the second column of Table 1.

LB vulnerable data size baseline vulnerability path vulnerability
ABB1 |A| |A| · CBB1 0

DBB2 |D| |D| · CBB2 |D| · (IDBB2
· 0)

ABB3 |A| |A| · CBB3 |A| · (IABB3
· |BB3 → BB2 → BB3|)

BBB3 |B| |B| · CBB3 |B| · (IBBB3
· |BB3 → BB2 → BB3|)

CBB3 |C| |C| · CBB3 |C| · (ICBB3
· |BB3 → BB2 → BB3|)

DBB3 |D| |D| · CBB3 |D| · (IDBB3
· 0)

DBB4 |DBB4 | |DBB4 | · CBB4 |DBB4 | · (IDBB4
· 0)

Table 1: Vulnerable instructions and path vulnerability for each LB in the example of
Figure 4.

The baseline vulnerability of a task is obtained by summing the LB baseline vul-
nerabilities with Equation (1). The results are reported in the third column of Table 1,
and the baseline vulnerability of the task τi is the sum of its elements.

Then, the path vulnerability is computed, and the results are shown in the fourth
column of Table 1. As you may notice, the value of νpath

DBB4
is 0 since its greatest vulnerable

path is BB2 → BB4 and BBs at both sides of the path are not considered in the execution
time of the path.

Finally, the vulnerability task factor of this example can be computed by summing all
elements of the last two columns, and dividing them by the task’s WCET multiplied by
the size of the task.

4.2 CB invalidation

Without hardware support, we can invalidate cache lines by adding special sections of code
that perform the invalidation before executing the target instructions. This can be done
by directly modifying the binary of the task. In this section, we present different methods
to invalidate the cache depending on its architecture: direct mapped or set-associative.
They are based on the technique presented in [18]. The main difficulty here is the required
knowledge on the structure of the binary.

To invalidate a cache line at a point p, we change the instruction at this point with a
jump to an additional section of code that executes the replaced instruction after inval-
idating the cache line. These additional section of code will be invalidated immediately
after their execution to avoid adding too much vulnerability to the task.

We now present some examples demonstrating how cache lines can be invalidated
on processors based on the ARMv8 AArch64 ISA for direct mapped and set-associative
caches. However, our method can be easily adapted to other architectures. In the con-
sidered architecture, instructions are coded on 32 bits and a cache line contains 64 bytes,
therefore a CB contains 16 instructions.

Let us consider the code sample presented in Figure 6a. Here we have a CB going from
address 4006C0 to 4006FC. In Figure 5b we present the code transformation to invalidate
the CB in a direct-mapped cache of 16 KB.

12

· · ·
MOVK X2, #12, LSL 0;4006C0

MOVK X2, #C0, LSL 16;4006C4
· · ·
· · ·4006FC

· · ·

(a) Original task instructions.

· · ·
B 5006C0;4006C0

MOVK X2, #C0, LSL 16;4006C4
· · ·
· · ·4006FC

· · ·

1

MOVK X2, #12, LSL 0;5006C0
B 4006C4;5006C4
· · ·

NOP;5006FF 2

(b) Modifications to invalidate the cache line.

Figure 5: Invalidation mechanism for direct mapped cache memories.

1 presents the modified code of the task: the instruction at address 4006C0 is replaced
by an unconditional branch instruction B 5006C0 which re-routes the execution flow to
address 5006C0. As a consequence, instructions at addresses 5006C0 and 5006C4 are
executed (see CB 2 in the figure). They are composed of the substituted instruction and
the unconditional branch to the instruction at address 4006C4. Notice that this special
CB 2 is placed at an address which shares the same cache set index as 1 . Since this is
a direct mapped cache, these two CBs cannot be present at the same time in the cache.

The proposed scheme adds two cache misses to the task (for recharging each block 1
and 2) and only two jump instructions for each invalidation locations. We observe that
in this approach the first jump instruction is still vulnerable.

However, this simple strategy cannot be used for set-associative caches, because multi-
ple blocks with the same index can be present at the same time in the cache. Invalidating
all the cache lines of a given cache set is not efficient.

Therefore, we designed a second and a more complex strategy for set-associative caches,
which we describe in Figure 6b. Here, CB 1 represents the modified task instructions,
while 2 and 3 are the newly inserted CBs in the code.

Again, we substitute the instruction at address 4006C0 in CB 1 with an unconditional
branch instruction B 400C00 to CB 2 . After jumping into 2 , we execute the original
instruction, then, we find the instructions to invalidate CB 1 . Address to be invalidated
is loaded in register X0, and instruction IC IVAU, X0 is executed. This instruction is
a special instruction that invalidates a CB in the instruction cache until the point of
unification [19]. It is the point where instruction and data caches and translation tables
are guaranteed to see the same copy of a memory location [20].

In the figure we highlight the invalidation mechanism with a red dashed arrow: the CB
targeted by the arrow is invalidated by the IC IVAU instruction at the start of the arrow.
Notice that, in this example, we assume that register X0 is reserved for the sole purpose
of cache invalidation. If X0 is used for another purpose, another register can be chosen,
obviously.

At this point we have to remove the additional code from the cache memory to protect
it from soft errors and continue the execution of the task. However, a jump instruction
is needed to go back to the next task instruction. This jump must not be present in the
cache memory too, otherwise it is also vulnerable. Therefore, we use a third block 3 .

We first invalidate it to ensure that it is not vulnerable. A second jump is performed to
3 where, after invalidating 2 , we jump to the next instruction in the original location.

13

· · ·
MOVK X2, #12, LSL 0;4006C0

MOVK X2, #C0, LSL 16;4006C4
· · ·
· · ·4006FC

· · ·

(a) Original task instructions

Task with inserted cache miss

· · ·
B 400C00;4006C0

MOVK X2, #C0, LSL 16;4006C4
· · ·
· · ·4006FC

· · ·

1

MOVK X2, #12, LSL 0;400C00
MOVZ X0, #C0, LSL 0;400C04
MOVK X0, #06, LSL 16;400C08
MOVK X0, #40, LSL 32;400C0C
MOVK X0, #00, LSL 48;400C10

IC IVAU, X0;400C14
MOVZ X0, #40, LSL 0;400C18

MOVK X0, #0C, LSL 16;400C1C
MOVK X0, #40, LSL 32;400C20
MOVK X0, #00, LSL 48;400C24

IC IVAU, X0;400C28
B 400C40;400C2C
· · ·

NOP;400C3C

2

MOVZ X0, #00, LSL 0;400C40
MOVK X0, #0C, LSL 16;400C44
MOVK X0, #40, LSL 32;400C48
MOVK X0, #00, LSL 48;400C4C

IC IVAU, X0;400C50
B 4006C4;400C54
· · ·

NOP;400C7C

3

Loading
value
00400C40
into X0

(b) Modified task code.

Figure 6: CB invalidation mechanism for set-associative cache memory.

14

As a result, all blocks are invalidated and 3 cache misses and 18 instructions to the
task code are added.

We assume that, by configuring the compiler and the linker, all the additional CBs
are reserved a single cache index, such that no other CB in the task uses the same cache
index. In this way, the additional CBs will not interfere with the rest of the task execution.
Notice that reserving more than one cache line for this additional code is useless since all
the CBs put in this cache line will be invalidated just after being used.

The WCET of an Inserted Cache Miss (ICM) is defined by Equation (7)

CICM = δ + BRT · β (7)

where δ is the execution time of the code of the section and the jump instruction, BRT the
block reload time and β corresponds to the number of CBs used by the additional section.

When a cache miss is added at LB lb the impact on the WCET of the task can be
computed as follows:

C impact
lb = Ilb · (CICM + BRT) (8)

Let a list of LBs γ corresponding to the location of the inserted cache misses, the
modified WCET of a task τi, C ′

i can be computed as:

C ′
i = Ci +

∑
∀lb∈γ

C impact
lb (9)

Even if the additional sections of code have a limited vulnerability, we still need to
consider it with the following equation:

νICM =
∑

∀lb′∈ICM

Clb′ · |lb′| (10)

νICM
lb = Ilb · νICM (11)

where ∀lb′ ∈ ICM iterates on the LBs of the inserted cache miss mechanism.

4.3 ICM and TAVF

Cache misses have an impact on the task vulnerability factor. Invalidating block CBlb at
the start of lb reduces its vulnerability, but it increases the execution time of all paths that
contain lb and therefore it increases the vulnerability of other LBs that may be vulnerable
along those paths. For this reason it is necessary to compute the overall vulnerability for
a cache misses combination.

First, we notice that by invalidating a LB lb, dlb will be equal to the instruction size,
here the jump instruction.

dlb =

σ, if lb is invalidated
|CBlb|, else if lb ∈ UCBb-out

lb
|lb|, otherwise

(12)

Where σ is the size of the jump instruction (4 bytes in the previous example for ARMv8
architecture).

Second, the impact of the cache misses needs to be considered also along the vulnerable
paths. For any LB lb, we consider all vulnerable paths ending on lb. Let Γlb be a list of

15

LBs different from lb that contain an invalidation. We compute the impact of the inserted
cache misses on the path vulnerability of lb with the following equation:

ρlb =
∑

∀m∈Γlb

{
C impact
m , if ∃p ∈ Plb|m ∈ p

0, otherwise
(13)

where Plb is the list of vulnerable paths ending in lb.
Finally, Equation (4) is modified to account for the inserted cache misses:

νpath
lb =

{
dlb · (Ilb · Pmax

lb + ρlb), if CBlb ∈ UCBb-in
lb

0, otherwise
(14)

Example Consider again the example of Figure 4, and suppose we invalidate CB A at
LB ABB3 . The value of dABB3

is equal to σ. The vulnerability path of LBs BBB3 , CBB3 ,
DBB3 and DBB2 is changed according to Equation (14), since each of their vulnerable paths
contain BB3. The new path vulnerability values are shown in Table 2.

LB path vulnerability
ABB1 0

DBB2 |D| · (IDBB2
· 0 + ρABB3

)

ABB3 σ · (IABB3
· |BB3 → BB2 → BB3|)

BBB3 |B| · (IBBB3
· |BB3 → BB2 → BB3|+ ρABB3

)

CBB3 |C| · (ICBB3
· |BB3 → BB2 → BB3|+ ρABB3

)

DBB3 |D| · (IDBB3
· 0 + ρABB3

)

DBB4 |DBB4 | · (IDBB4
· 0)

Table 2: Path vulnerability for each LB in the example of Figure 4 after adding an ICM
to a at LB ABB3 .

4.4 Transformation to a QP problem

We now show how the different cache misses combinations are explored to build the task
profile.

As mentioned earlier, the number of ICM combinations is exponential in the number of
potential cache miss locations. We propose to use Quadratic Programming (QP) to search
a combination with the lowest vulnerability in a given interval while providing a WCET
bounded by a given value Cbound. The idea is to run several instances of the QP problem,
every time lowering Cbound, thus obtaining a pareto-front of vulnerability/WCET.

We denote as X the list of decision variables. Each element Xj of this list corresponds
to the invalidation of LB lbj , and it is equal to 1 when lbj is invalidated, and 0 if it is left
unmodified. We denote as V the list of real values Vj , each one corresponds to the path
vulnerability of a LB lbj .

We first define the constraint on the WCET:

Ci +
∑

∀lbj∈τi

C impact
lbj

·Xj < Cbound. (15)

16

Then, we build a constraint to compute Vj . We start by computing the length of
vulnerable path V path

j according to the inserted cache misses with Equation (16).

V path
j = Ilbj

· Pmax
lbj

+
∑

∀lbk∈p|∀p∈Plbj

Xk · C impact
lbk

. (16)

Then, this length is used to compute the path vulnerability Vj :

Vj = V path
j · ((1−Xj) · dlbj

+Xj · σ) +Xj · νICM
lbj

(17)

Factor Xj ·σ from Equation (17) corresponds to the case where a cache miss is inserted
into lb and the factor (1−Xj) ·dlbj

corresponds to the case when no cache miss is inserted.
Finally, the objective function is a minimization of the task vulnerability:

fctobj = min νbv
i +

∑
∀lbj∈τi

Vj (18)

We now present the Algorithm 1 that uses the QP problem to build the task profile.

Algorithm 1 Task profile builder
Require: a task τi
Ensure: a task profile L

1: L ← ∅
2: Cbound ←∞
3: while continue do
4: S ← QP (Cbound)
5: if S = ∅ then
6: break
7: else
8: L ← L ∪ {(Ci(S), Vi(S)

Ci·|τi| ,S)}
9: Cbound ← Ci(S)

return L

It starts at Line 1 by the initialization of the combinations list L to an empty set
since we have not yet computed any combination of cache misses. Then we set the WCET
upper bound Cbound. In Loop 3 the algorithm builds a combination of inserted cache miss
S with a QP generated as presented earlier in this section at Line 4. If no combination of
inserted cache misses is found, we exit the loop at Line 6. Otherwise, at Line 7, we add to
L the WCET and the vulnerability factor of the task considering cache misses combination
S respectively Ci(S) and Vi(S)

Ci·|τi| , and the combination S itself. The WCET bounds is also
updated with the current combination values WCET for the next iteration.

4.5 Using ECC SRAM memories

So far, we presented a methodology which reduces the vulnerability for COTS hardware
architectures using cache invalidation. However, our static analysis method can be easily
extended to hardware that provides some protection mechanisms for cache memory. In
this section we discuss the application of our method to hardware which features Error
Correcting Code (ECC) memories, and we propose a minor modification in the ISA to
exploit our methodology.

17

ECC protected memories can tolerate temporary faults by detecting and correcting
soft errors. Each time the processor accesses one location in the memory, an algorithm is
performed in the hardware circuitry that compares the stored code and the computed code.
To do this, the ECC memory uses extra bits to code enough information to recover from
faults. However, ECC memories need more die space compared to non-ECC memories to
store the extra bits and the encoding and decoding algorithms, and need an additional
delay to access the data, thus reducing the performance. In [21], the authors state that
ECC in DL1 increases the WCET of a task by 10% in average when adding an extra
cycle per access. In the extreme case, the WCET can climb up to 20% of its value
without ECC. This is because the ECC memory applies the protection mechanism to
every memory access. While the work in [21] targets the DL1 and not the IL1, we make
the same assumption that ECC in L1 cache memory are also implemented in a way that
an extra cycle is required to access the IL1.

To reduce the overhead, we can use our method to selectively enable the ECC correction
mechanisms only on those memory instructions which have the highest vulnerability, as
computed with our proposed methodology.

We suppose that the ARM ISA is modified to reserve a bit in the instruction encoding.
This bit is denoted as vulnerable mode: when an instruction is fetched from the cache
memory with its vulnerable mode bit equal to 1, the cache memory dedicated hardware
performs the ECC decoding algorithm on the CB’s instruction and produces the correct
instruction even in the presence of a temporary fault. In addition, the other instructions
of the CB are updated with their decoded versions. If the vulnerability mode bit is set to
zero, the instruction is accessed normally, without using the ECC mechanism and without
paying the additional delay due to decoding. However, in this case the instruction is
completely vulnerable.

We observe that the mechanism described above has a lower overhead than the cache
invalidation technique proposed in the previous section, both in terms of added delay and
in terms of additional code and vulnerability. However, it needs the support of a special
ISA and a special ECC cache memory.

To compute the task profile using this mechanism, we substitute Equation (8) with:

C impact
lb = Ilb · (CECC) (19)

where CECC is the extra delay of the ECC mechanism expressed in cycles.
As the ECC mechanism does not use any additional instructions, thus removing also

additional vulnerability sources, the vulnerability constraint modeled with Equation (17)
is simplified as follows:

Vj = V path
j · (1−Xj) · dlbj (20)

5 Reducing Task Set Vulnerability Factor
Once the tasks’ profiles have been computed, we can set up a QP problem to reduce the
total Task Set Vulnerability Factor (TSVF) while ensuring the respect of the schedulability
constraints.

For each task τi of task set τ we denote as Xi a list of decision variables. An element
Xi,j ∈ Xi corresponds to the selection of the jth combinations in the profile of τi: If the
value of this variable is 1 then the j-th combinations is selected, otherwise it is not. As
only one combination must be chosen for each task profile, the first constraint of our QP
problem is:

18

∀τi ∈ T ;
∑
∀j

Xi,j = 1 (21)

Let Ci,j and Vi,j be respectively, the WCET of τi and its TAVF when the jth combi-
nations of the task profile is selected.

We assume that the tasks are scheduled according to the non-preemptive EDF pol-
icy. We use the following equations, proposed by Jeffay et al. [14], for the schedulability
constraints: ∑

∀τi∈T

∑
∀j

Ci,jXi,j

Ti
≤ 1 (22)

∀i, 1 < i ≤ n; ∀L, T1 < L < Ti∑
∀j

Xi,j · Ci,j

+

i−1∑
k=1

⌊
L− 1

Tk

⌋
·

∑
∀g

Xk,g · Ck,g

 ≤ L (23)

Equation 22 limits the system workload to 1 which is the schedulability bound for
Earliest Deadline First Scheduler. Equation 23 verifies that each task finishes its execution
before its deadline in a non-preemptive system.

The objective function of the QP is the minimization of the TSVF. It corresponds to
the sum of the TAVFs of the tasks multiplied by their initial utilization:

fctobj = min
∑
∀τi∈τ

∑
∀j

(
Xi,j · Vi,j ·

CI

Ti

)
(24)

6 Evaluation
In this section, we present the experimental results obtained using the proposed method
on a set of benchmarks. We first explain the settings of our experiments. Then, we
present and discuss some representative task profiles obtained with our analysis. In the
last two subsections, we discuss the performance obtained by the invalidation and ECC
mechanisms.

6.1 Experimental setting

We consider a single ARM7 core architecture with a 16 KB IL1 cache memory. Each
cache line has a size of 64 bytes. Two IL1 configurations are explored: direct mapped and
2 way set-associative. We consider two different values for the BRT: 20 and 50 cycles.
These values have been chosen because they correspond to a typical embedded micro-
architecture. We assume that the tasks are scheduled non-preemptively according to the
np-EDF scheduling policy. Since the size of the task code of the benchmarks are relatively
small, we observed that increasing the total IL1 size does not impact the WCET or the
vulnerability factor.

In the experiments, we use tasks from two benchmarks: the Malärdalen benchmark
suite [22] and TacleBench [23]. Details of these tasks are given in Table 3: the third

19

column is the WCET and the last column is the initial TAVF of the unmodified tasks
computed with the OTAWA tool [1]1.

Name Benchmark WCET (cycles) TAVF
binarysearch TacleBench 6164 0.112

bs Malärdalen 1044 0.301
cnt Malärdalen 32097 0.253

fibcall Malärdalen 5348 0.268
insertsort Malärdalen 21236 0.191

janne_complex Malärdalen 4640 0.137
ludcmp Malärdalen 64624 0.074
matmult Malärdalen 1337090 0.15
minver Malärdalen 46627 0.081
ndes TacleBench 633538 0.054
ns Malärdalen 128321 0.109

qurt Malärdalen 24685 0.172
select Malärdalen 78961 0.22
sqrt Malärdalen 7656 0.25

Table 3: List of programs from the 2 benchmarks. In this table we consider a 16 KB IL1
and a BRT of 20 cycles.

6.2 Task profiles for the cache invalidation method

The impact of the inserted cache misses on the execution time and vulnerability used in
the experiments are presented in Table 4.

For each task in the benchmarks listed in Table 3, we built a profile using the CPLEX
tool. We set a limit of 3 minutes for solving each QP problem, thus obtaining a com-
bination of cache miss locations. Figures 7a, 7b, and 7c show the resulting task profiles
respectively for the binarysearch, cnt and select benchmarks. Each of these figures presents
six configurations. Each configuration is made up of a BRT value and one of the proposed
protection mechanisms: the direct mapped invalidation mechanism, the set-associative in-
validation mechanism, and the ECC mechanism. These figures show the relation between
the task WCET and its vulnerability factor for different combinations.

The cache configuration has a strong impact on the task profile. Figure 7a shows that
the profile of binarysearch with a direct mapped cache and a BRT of 20 cycles corresponds
to a nearly linear relation between the WCET and the vulnerability factor. However, in
the case of a set-associative cache with a BRT of 20 cycles, the vulnerability is more like

1The Vulnerability plugin for OTAWA can be found at the following address: https://gitlab.cristal.
univ-lille.fr/otawa-plugins/plugin_cache_blocks.git

Cache configuration β δ νICM

Direct mapped 1 3 24
Set-associative 2 33 1320

Table 4: Cache miss mechanism impact used in the experiments.

20

https://gitlab.cristal.univ-lille.fr/otawa-plugins/plugin_cache_blocks.git
https://gitlab.cristal.univ-lille.fr/otawa-plugins/plugin_cache_blocks.git

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

4.0⋅103 8.0⋅103 1.2⋅104 1.6⋅104 2.0⋅104

TA
V

F

WCET (cycles)

Direct mapped, BRT = 20 cycles
Direct mapped, BRT = 50 cycles

2 way, BRT = 20 cycles
2 way, BRT = 50 cycles

ECC, BRT = 20 cycles
ECC, BRT = 50 cycles

TAVF according to WCET

(a) Binarysearch

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

3.2⋅104 4.0⋅104 4.8⋅104 5.6⋅104 6.4⋅104 7.2⋅104 8.0⋅104

TA
V

F

WCET (cycles)

Direct mapped, BRT = 20 cycles
Direct mapped, BRT = 50 cycles

2 way, BRT = 20 cycles
2 way, BRT = 50 cycles

ECC, BRT = 20 cycles
ECC, BRT = 50 cycles

TAVF according to WCET

(b) Cnt

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

7.2⋅104 8.0⋅104 8.8⋅104 9.6⋅104 1.0⋅105 1.1⋅105 1.2⋅105 1.3⋅105 1.4⋅105 1.4⋅105

TA
V

F

WCET (cycles)

Direct mapped, BRT = 20 cycles
Direct mapped, BRT = 50 cycles

2 way, BRT = 20 cycles
2 way, BRT = 50 cycles

ECC, BRT = 20 cycles
ECC, BRT = 50 cycles

TAVF according to WCET

(c) Select

Figure 7: Case Study task profiles

a constant. Figure 7c shows also, that the vulnerability can not be approximated by a
linear function of the WCET.

These numbers show that our method can reduce the TAVF more or less effectively,
depending on the task code structure and the cache architecture. For example the cnt
TAVF can be decreased to 0.12 with a direct mapped cache and a BRT = 20 cycles. This
corresponds to a reduction of 50% of its initial TAVF. However, TAVF for select with a
direct mapped cache and a BRT = 20 cycles can be decreased by 73% compared to its
initial value.

6.3 TSVF reduction

In the previous section we have shown the relationship between vulnerability and WCET
by using the invalidation methods of Section 4.2. To do this, we built individual profiles
for each task. However, when a set of task is executed concurrently in a system, we have to
consider the impact of the WCET on the schedulability of the system. If a task’s WCET
increases too much, one of the system’s tasks can miss its deadline. In this section, we try
to reduce the global vulnerability of the system without missing any deadline by using the
optimization method of Section 5.

In the experiments, we assume that all the generated task sets contain 12 tasks ran-
domly selected from Table 3. To generate a task set, we proceed as follows: for each
experiment, we first fix the initial system workload U ∈ [0.1, 1] using steps of 0.05. Then,
the utilization Ui of each task is randomly assigned with the UUnifast [24] algorithm, such
that the sum of all tasks’ utilization is equal to the total system workload U .

21

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

A
v
e
ra

g
e
 W

o
rk

lo
a
d

 a
ft

e
r

m
o
d

ifi
ca

ti
o
n

T
S

V
F

Initial Workload

workload after modification
New TSVF

Initial TSVF

TSVF reduction

(a) Direct mapped, BRT = 20

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

A
v
e
ra

g
e
 W

o
rk

lo
a
d

 a
ft

e
r

m
o
d

ifi
ca

ti
o
n

T
S

V
F

Initial Workload

workload after modification
New TSVF

Initial TSVF

TSVF reduction

(b) 2 way-set-associative, BRT = 20

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

A
v
e
ra

g
e
 W

o
rk

lo
a
d

 a
ft

e
r

m
o
d

ifi
ca

ti
o
n

T
S

V
F

Initial Workload

workload after modification
New TSVF

Initial TSVF

TSVF reduction

(c) Direct mapped, BRT = 50

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

A
v
e
ra

g
e
 W

o
rk

lo
a
d

 a
ft

e
r

m
o
d

ifi
ca

ti
o
n

T
S

V
F

Initial Workload

workload after modification
New TSVF

Initial TSVF

TSVF reduction

(d) 2 way-set-associative, BRT = 50

Figure 8: TSVF reduction after CB invalidation with a 16KB-IL1 cache

Then, each task is assigned a period from the list G = {20, 50, 100, 200, 500, 1000, 2000,
5000, 10000, 20000, 50000, 100000, 200000, 500000}, such that

Ti = min
∀t∈G,t≥(Ci/Ui)

(t).

As some WCETs in Table 3 are larger than the periods in G, the WCET values have
been normalized, dividing them by the logarithm of the smallest WCET. This allows us
to test a larger number of task sets. For each total workload, we generated 1000 task sets.

For each task set, we used the corresponding task profiles to perform the optimization
procedure described in Section 5, which selects the best combinations of ICMs such that the
system remains schedulable. If a solution is found, we report the reduction in vulnerability
and the total workload after insertion of the cache misses. In the following Figures 8a,
8b, 8c and 8d we report the results on two y-axis: the y-axis on the left represents the
average value, among the schedulable task sets, of the workload after inserting the cache
misses. The right y-axis depicts the average TSVF value. On the x-axis we show the
initial workload of the generated task set.

In these figures, Initial vulnerability factor and New vulnerability factor (respectively)
corresponds to the TSVF before and after cache misses insertion. The Workload after
modification represents the workload of the task set after inserting cache misses.

We first observe that the task set workload after inserting cache misses is not always
equal to 1, and correspondingly, vulnerability is not reduced to 0. This means that, by
using the invalidation method, we can only reduce the vulnerability to a certain limit,
even when the system is largely underutilized. For example, for an initial workload of 0.3

22

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
S
V

F
re

d
u
ct

io
n
 (

%
)

Workload

direct mapped, BRT=20
2 ways, BRT=20

direct mapped, BRT=50
2 ways, BRT=50

Cache memory configuration impact on the TSVF reduction

Figure 9: TSVF reduction with miss insertion. In these experiments, an average TSVF
value is calculated on workloads of 1000 task sets.

in Figure 8a, the TSVF is reduced from 0.052 to 0.034 while the workload increases from
0.3 to 0.41.

To have a better view of the evolution of the new vulnerability factor curves compared
to their initial values, we give in Figure 9 the average task set vulnerability factor reduction
in percentage of the initial value. Each curve represents a different cache configuration.
Notice that the percentage reduction in the TSVF is almost constant until a certain
point. It should be noted that task sets with an initial workload greater than 0.8 are very
constrained: for these task sets, even a small increase in the WCET could deem the system
unschedulable. Therefore, our optimization algorithm has a small impact on vulnerability.

From Figure 9, we observe that we obtain better performance with direct mapped
cache than with set associative cache. This phenomenon is explained by the different
additional costs of cache invalidation between these cache memories. This figure depicts
also the strong impact of the BRT on the performance of our method. Again, this is
intuitively due to the additional cost of every cache miss.

Summarizing, by using the invalidation technique, we can achieve on average between
22% and 34% reduction of the TSVF in task sets with initial workload inferior to 85%.

6.4 TSVF reduction with ECC

In this section, we evaluate the efficiency of the ECC mechanism discussed in Section 4.5.
Figures 10a, 10b, 10c and 10d depict the results obtained using the same configurations

as those presented in Section 6.3. The ECC mechanism execution time CECC is set to 16
cycles in the experiments. This value is widely used in the literature [25] and corresponds
to an average value for ECC execution time with different levels of complexity.

As expected, with the ECC mechanism we obtain a higher TSVF reduction compared

23

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

A
v
e
ra

g
e
 W

o
rk

lo
a
d

 a
ft

e
r

m
o
d

ifi
ca

ti
o
n

T
S

V
F

Initial Workload

workload after modification
New TSVF

Initial TSVF

TSVF reduction

(a) Direct mapped, BRT = 20

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

A
v
e
ra

g
e
 W

o
rk

lo
a
d

 a
ft

e
r

m
o
d

ifi
ca

ti
o
n

T
S

V
F

Initial Workload

workload after modification
New TSVF

Initial TSVF

TSVF reduction

(b) 2 way-set-associative, BRT = 20

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

A
v
e
ra

g
e
 W

o
rk

lo
a
d

 a
ft

e
r

m
o
d

ifi
ca

ti
o
n

T
S

V
F

Initial Workload

workload after modification
New TSVF

Initial TSVF

TSVF reduction

(c) Direct mapped, BRT = 50

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

A
v
e
ra

g
e
 W

o
rk

lo
a
d

 a
ft

e
r

m
o
d

ifi
ca

ti
o
n

T
S

V
F

Initial Workload

workload after modification
New TSVF

Initial TSVF

TSVF reduction

(d) 2 way-set-associative, BRT = 50

Figure 10: TSVF reduction with the ECC mechanism for a 16KB-IL1 cache. ECC execu-
tion time is set to 16 cycles.

24

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
S
V

F
re

d
u
ct

io
n
 (

%
)

Workload

ECC, direct mapped, BRT=20
ECC, 2 ways, BRT=20

ECC, direct mapped, BRT=50
ECC, 2 ways, BRT=50

Cache memory configuration impact on the TSVF reduction

Figure 11: TSVF reduction with the ECC mechanism

to the CB invalidation mechanism. These results can be explained by two factors: first,
the ECC mechanism has a lower impact on the WCET and, second, the lower additional
vulnerability of the mechanism itself. Also, the efficiency of the ECC mechanism is almost
constant regardless of the initial workload of the task set.

Similarly to Figure 9, Figure 11 shows the average percentage of task set vulnerability
factor reduction for the different cache configurations according to the initial workload of
the task set, this time using the ECC mechanism. This figure shows that the efficiency of
our method with the ECC mechanism is the same regardless the cache memory configu-
ration. Furthermore, it also shows that our method can reduce the TSVF by 50% for task
sets with high utilization around U = 0.8.

6.5 Analysis time

The average analysis time for a given number of tasks is shown in Figure 12. A total of
18000 task sets has been generated for each size of task sets, but only schedulable task sets
have been taken into consideration. In this experiment, we considered a 16KB-IL1 cache
with 2 ways associativity and a BRT = 50 cycles; the curve illustrates the relationship
between the number of tasks and the average time to execute our algorithm for reducing
the TSVF, along with the 95% confidence intervals.

In the experiment, we excluded the execution time of Algorithm 1, which is the most
costly part of our analysis. As explained in Section 6.2, we have set a limit of 3 minutes to
build a task profile configuration. Thus, computing a task profile of 10 configurations can
take at most 30 minutes. Figure 12 shows that the time required for reducing the TSVF
of 12 tasks is 2.75 times longer than that for 6 tasks. Furthermore, the average execution
time of the algorithm is always under 250ms. Finally, we observed no relationship between
workload and execution time in our experiment. In conclusion, the overall cost of the

25

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 4 6 8 10 12 14

Ti
m

e
 (

s)

Number of tasks

QP time

TSVF reduction time

Figure 12: TSVF reduction time considering a 2 way-set-associative 16KB-IL1 cache and
BRT = 50 cycles.

analysis is dominated by Algorithm 1, which needs to be run once per task to build the
task profiles.

7 Conclusion
Hard-real time systems become more vulnerable to faults especially in the instruction cache
memory of COTS microprocessor. We propose in this paper a software based method
that guarantees the real-time constraints while increasing the reliability of the task set. In
particular, our method consists of two steps: in the first step, by using a static analysis,
we compute the vulnerability profile of each task to find the best spots where to add
a protection mechanism to reduce the vulnerability while increasing the WCET. Then,
we propose two alternatives: in the first one, we invalidate the cache in some of these
spots using a software-only method; in the second one, we propose to modify the ISA
of the processor to selectively enable ECC to specific instructions. We show, by a set of
experiments on real benchmarks, a reduction of the task set vulnerability factor between
22% and 34% with cache block invalidation and of 50% while using ECC.

As future work, we plan to extend our method to data caches. Addressing data cache
would require a different kind of static analysis with respect to the must/may analysis we
use for instruction caches. Also, data caches bring in additional problems, like the write
policy (write-through vs. write-back). We also plan to adapt this method for schedulers
that allow preemptions. We think that our method can be more performant on such
systems as the vulnerable paths in the task may become larger due to preemptions.

26

References
[1] Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal Sainrat. Otawa:

An open toolbox for adaptive wcet analysis. In Sang Lyul Min, Robert Pettit, Peter
Puschner, and Theo Ungerer, editors, Software Technologies for Embedded and Ubiq-
uitous Systems, pages 35–46, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[2] Shuai Wang and Guangshan Duan. On the characterization and optimization of
system-level vulnerability for instruction caches in embedded processors. Micropro-
cessors and Microsystems, 39(8):686–692, 2015.

[3] Michail Mavropoulos, Thodoris Lappas, Georgios Keramidas, and Dimitris Nikolos.
Use them-don’t waste them. recruiting strong ecc in l1 caches for hard error recovery
without the penalty. In 11th European Dependable Computing Conference (EDCC
2015), 2015.

[4] Farrukh Hijaz, Qingchuan Shi, and Omer Khan. A private level-1 cache architecture
to exploit the latency and capacity tradeoffs in multicores operating at near-threshold
voltages. In 2013 IEEE 31st International Conference on Computer Design (ICCD),
pages 85–92. IEEE, 2013.

[5] Jeongkyu Hong and Soontae Kim. Smart ecc allocation cache utilizing cache data
space. IEEE Transactions on Computers, 66(2):368–374, 2017.

[6] Taniya Siddiqua, Vilas Sridharan, Steven E Raasch, Nathan DeBardeleben, Kurt B
Ferreira, Scott Levy, Elisabeth Baseman, and Qiang Guan. Lifetime memory reliabil-
ity data from the field. In 2017 IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT), pages 1–6. IEEE, 2017.

[7] Liviu Agnola, Mircea Vlăduţiu, and Mihai Udrescu. Self-adaptive mechanism for
cache memory reliability improvement. In 13th IEEE Symposium on Design and
Diagnostics of Electronic Circuits and Systems, pages 117–118. IEEE, 2010.

[8] Chris Wilkerson, Hongliang Gao, Alaa R Alameldeen, Zeshan Chishti, Muhammad
Khellah, and Shih-Lien Lu. Trading off cache capacity for reliability to enable low
voltage operation. ACM SIGARCH computer architecture news, 36(3):203–214, 2008.

[9] Chao Yan and Russ Joseph. Enabling deep voltage scaling in delay sensitive l1 caches.
In 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pages 192–202. IEEE, 2016.

[10] Makoto Sugihara, Tohru Ishihara, and Kazuaki Murakami. Task scheduling for re-
liable cache architectures of multiprocessor systems. In 2007 Design, Automation &
Test in Europe Conference & Exhibition, pages 1–6. IEEE, 2007.

[11] Shuai Wang, Jie Hu, and Sotirios G Ziavras. On the characterization and optimization
of on-chip cache reliability against soft errors. IEEE Transactions on Computers,
58(9):1171–1184, 2009.

[12] Jiguo Song, John Wittrock, and Gabriel Parmer. Predictable, efficient system-level
fault tolerance in c^ 3. In 2013 IEEE 34th Real-Time Systems Symposium, pages
21–32. IEEE, 2013.

27

[13] Anand Bhat, Soheil Samii, and Ragunathan Rajkumar. Practical task allocation
for software fault-tolerance and its implementation in embedded automotive systems.
Real-Time Systems, 55(4):889–924, 2019.

[14] Kevin Jeffay, Donald F Stanat, and Charles U Martel. On non-preemptive scheduling
of periodic and sporadic tasks. In IEEE real-time systems symposium, pages 129–139.
US: IEEE, 1991.

[15] C.A. Healy, R.D. Arnold, F. Mueller, D.B. Whalley, and M.G. Harmon. Bound-
ing pipeline and instruction cache performance. IEEE Transactions on Computers,
48(1):53–70, 1999.

[16] Chang-Gun Lee, Hoosun Hahn, Yang-Min Seo, Sang Lyul Min, Rhan Ha, Seongsoo
Hong, Chang Yun Park, Minsuk Lee, and Chong Sang Kim. Analysis of cache-
related preemption delay in fixed-priority preemptive scheduling. IEEE transactions
on computers, 47(6):700–713, 1998.

[17] Wei Zhang, Nan Guan, Lei Ju, and Weichen Liu. Analyzing data cache related
preemption delay with multiple preemptions. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 37(11):2255–2265, 2018.

[18] Shaun Clowes. Fixing/making holes in binaries. BlackHat USA, 2002.

[19] arm. Ic ivau, instruction cache line invalidate by va to pou. https://
developer.arm.com/documentation/ddi0595/2021-06/AArch64-Instructions/
IC-IVAU--Instruction-Cache-line-Invalidate-by-VA-to-PoU.

[20] arm. Point of coherency and unification. https://developer.arm.com/
documentation/den0024/a/Caches/Point-of-coherency-and-unification.

[21] Pedro Benedicte, Carles Hernandez, Jaume Abella, and Francisco J Cazorla. Laec:
Look-ahead error correction codes in embedded processors l1 data cache. In 2019 De-
sign, Automation & Test in Europe Conference & Exhibition (DATE), pages 818–823.
IEEE, 2019.

[22] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and Björn Lisper. The Mälardalen
WCET Benchmarks: Past, Present And Future. In 10th International Workshop on
Worst-Case Execution Time Analysis (WCET 2010), volume 15 of OpenAccess Series
in Informatics (OASIcs), pages 136–146, 2010.

[23] Heiko Falk, Sebastian Altmeyer, Peter Hellinckx, Björn Lisper, Wolfgang Puffitsch,
Christine Rochange, Martin Schoeberl, Rasmus Bo Sorensen, Peter Wägemann, and
Simon Wegener. TACLeBench: A Benchmark Collection to Support Worst-Case
Execution Time Research. In Martin Schoeberl, editor, 16th International Workshop
on Worst-Case Execution Time Analysis (WCET 2016), volume 55 of OpenAccess
Series in Informatics (OASIcs), pages 2:1–2:10, 2016.

[24] Enrico Bini and Giorgio C Buttazzo. Measuring the performance of schedulability
tests. Real-Time Systems, 30(1):129–154, 2005.

[25] Irina Alam, Clayton Schoeny, Lara Dolecek, and Puneet Gupta. Parity++:
Lightweight error correction for last level caches. In 2018 48th Annual IEEE/IFIP

28

https://developer.arm.com/documentation/ddi0595/2021-06/AArch64-Instructions/IC-IVAU--Instruction-Cache-line-Invalidate-by-VA-to-PoU
https://developer.arm.com/documentation/ddi0595/2021-06/AArch64-Instructions/IC-IVAU--Instruction-Cache-line-Invalidate-by-VA-to-PoU
https://developer.arm.com/documentation/ddi0595/2021-06/AArch64-Instructions/IC-IVAU--Instruction-Cache-line-Invalidate-by-VA-to-PoU
https://developer.arm.com/documentation/den0024/a/Caches/Point-of-coherency-and-unification
https://developer.arm.com/documentation/den0024/a/Caches/Point-of-coherency-and-unification

International Conference on Dependable Systems and Networks Workshops (DSN-W),
pages 114–120, 2018.

29

	Introduction
	Original contributions

	Related Work
	System model
	Real-Time task model
	Instruction Cache Structure
	WCET Analysis and Cache Memory
	Instruction cache and data cache
	Example

	Task Profile
	Computing the vulnerability factor of tasks
	Computing the baseline vulnerability
	Computing path vulnerability
	Example

	CB invalidation
	ICM and TAVF
	Transformation to a QP problem
	Using ECC SRAM memories

	Reducing Task Set Vulnerability Factor
	Evaluation
	Experimental setting
	Task profiles for the cache invalidation method
	TSVF reduction
	TSVF reduction with ECC
	Analysis time

	Conclusion

