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A B S T R A C T

Renewable energy planning is key to achieving target levels of renewable-energy penetration and electricity
demand in the European Union. Mean–variance analysis can be used to identify the optimal spatial and
technological deployment of variable renewable energy (VRE) sources in terms of maximizing VRE penetration
and minimizing supply risks. We investigate the extent to which optimizing capacities at the scale of
climate-data grid points, instead of administrative regions (a common approach due to data availability and
computation costs), helps generate more optimal renewable deployment scenarios. A finer description of
climate resources, and thus the VRE capacity factors, results in a better exploitation of complementarities,
partly due to the increased degrees of freedom in the optimization. A detailed analysis of the causes behind
these improvements shows that better describing local conditions leads to two advantages over less granular
counterparts: higher average capacity factors and generation combinations that offer lower covariances. This
analysis also reveals that more granular approaches significantly reduce variability in daily and annual climate
frequencies in renewable generation under the optimal scenario. These results provide evidence of the need to
account for detailed climate information to accurately identify optimal renewable deployment scenarios and
support stakeholders and policy makers when it comes to making sustainable commitments.
1. Introduction

The transition towards a society powered by low-carbon energy
generation systems has already begun, and it still represents a chal-
lenge for the near future. The European Union (EU) has set general
objectives and actions to be taken to meet its 2050 decarbonization
goals [1], though individual countries have to establish their own
specific, realistic measures.

In this study, we focus on the case of Spain. Following the EU
directives, the Spanish government has established a National Plan
for Adaptation to Climate Change (PNACC) 2021–2030 [2], which
sets a path towards the 2030 objectives, a stepping stone for the
more ambitious 2050 goals. An interesting aspect of this plan is its
multidisciplinary approach to mitigating climate change, setting am-
bitious objectives in multiple varied fields. When referring to energy,
the PNACC highlights the need for generating further knowledge, and
particularly the urgent need for research in the field of renewable
energy deployment planning. Systemic risks – as well as the need to
resolve or, at least, mitigate them – are also pointed out in the plan.

An even more concrete planning approach was set in Spain in the
National Integrated Energy and Climate Plan (PNIEC) 2021–2030 [3],
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which focuses the national energy strategy on the need to make the
transition. It promotes the installation of new renewable means of
energy generation and underlines the need to further understand the
challenges posed by incorporating renewable energy sources into the
electricity system.

The transition towards a highly renewable future is led by two main
variable renewable energy (VRE) sources, which aim to cover about
half of the Spanish energy demand due to their decreasing cost and
improving technology: solar photovoltaic (PV) and wind energy [4,5].
In the particular case of Spain, recent years have seen an encouraging
increase in the installed capacity (IC) of these sources. From the end
of 2018 to the end of 2020, there was an increase in the IC of PV and
wind IC of 156% and 17%, respectively [6,7]. For reference, the five
previous years saw increases in the IC of PV and wind of only 1% [7,8].

The climate is the sole generator of PV and wind energy, but multi-
ple unrelated factors usually go into the decision-making process when
planning for these kinds of renewable installations. Some instances of
atlases reflecting the generation potential of wind and PV have been
published (for wind, see [9] for Spain and [10,11] for Europe, the
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Nomenclature

2020REF 2020 distribution of solar photovoltaic and
wind installations

CF Capacity Factor
GRID Full climate grid modeling approach
IC Installed Capacity
PV Solar Photovoltaic
REE Red Eléctrica de España
REG Aggregated regions modeling approach
SES Spanish Electricity System
VRE Variable Renewable Energy

latter including a socio-technical approach; for PV see [12] for a global
approach and [13,14] for countries in the EU). Together with capital
and operation and management costs, the average capacity factors
(CFs) that can be derived from these atlases allow one to compute
levelized costs of energy for a given technology and location with some
degree of uncertainty (e.g. [15, Ch. 25]). However, these resources lack
a key element that should be considered in energy planning: the risk
posed by the intermittency of the resource and the complementarity
between the different components of the system. Since the main sources
of renewable generation are intermittent by nature, taking advantage
of the complementarity of the system is fundamental in order to meet
the demand and minimize electricity supply risks [16–18].

In this context, identifying scenarios that satisfy certain system re-
quirements becomes fundamental, and optimization methods are com-
monly applied. There is a wide variety of such methods that can
be applied to the renewable energy problem, each with its strengths
and weaknesses [19]. Some examples of commonly applied methods
can be found in recent applications: [20] for multi-criteria decision-
making, [21,22] for the swarm algorithms, [23] for game theory, [24]
for the harmony search method, and [25] for the use of neural net-
works. In addition to the wide variety of methods, objectives and
constraints also change significantly from one study to another, depend-
ing on their focus: [26] considers the profitability and visual impact of
wind farms; [27] explores the smoothest possible output from hydro,
wind and PV energy; [28] try to find the balance between economic
costs and environmental sustainability; [29] minimizes operational
costs and emissions pollution; [22] minimizes the total net annual
cost while keeping a constraint on the loss of load supply probabil-
ity; [30] tries to increase the exergy efficiency while reducing costs
and CO2 emissions; and [31] optimizes cost, grid electricity imports,
nd building electricity costs considering all relevant factors.

The goal with which the optimization systems are used can also
hange from one study to another. Most focus on the best way to deploy
enewable sources of energy generation (see [32] for a recent example
eeking a 100% renewable system and [33] for a recent application
o the electrification of buildings in rural areas). However, optimiza-
ion methods can be applied to investigate different scenarios. Some
articular purposes to which optimization has recently been applied
re: identifying the potential of adding wind power to cover energy
eficiencies in different countries [34], assessing the integration of a
ew element to the energy system [35,36], typifying different batteries
nd their usefulness [37], exploring the viability of rooftop PV in terms
f economics and grid-worthiness [31], and investigating how high
evels of penetration of VRE sources affect the system integration costs
nd emissions. In turn, any use of optimization in the renewable energy
ector may see its results only applicable to the near future only, as the
mpact of climate change and technological advances may create strong
ncertainties in future forecasts [38].

Seeing the vast assortment of elements that can change from one op-
2

imization to another, it becomes clear that when planning renewable
energy deployment strategies using quantitative models, configuration
is key. Multiple factors – such as constraints, time span, optimization
method, and region – affect the process and the end result [39]. In
this article we apply a common approach to the optimization of VRE
source deployment consisting of a simultaneous maximization of the
mean and minimization of the variance through modifications to the
spatial distribution of IC for each VRE source (see [40] for a wind only
configuration and [41] for a combination of wind and concentrated
solar power). This simple method allows us to find the lowest variance
(as a proxy for supply risk) possible for a given level of penetration,
and returns a set of optimal scenarios when multiple penetration levels
are considered. More realistic setups, such as considering the cost
optimization of the energy system [42], represent different approaches
to bi-objective optimizations that can also benefit from the study of the
effects of granularity carried out in this article.

When modeling the system, and before considering the use of
optimization algorithms, spatial processing and the representation of
generation and demand data is decisive. Many examples that make use
of regional aggregation of electricity and climate data can be found in
recent literature [14,43–48]. More specifically, this approach has been
used in combination with portfolio theory to optimize the deployment
of renewables between countries or large regions through various met-
rics. Instances of this include maximizing the return and minimizing the
risk of the system [44], and maximizing energy security and minimizing
emissions [49]. These optimal results are representative of very large
aggregated areas and do not provide information about where the in-
stallations should be put within these areas. An intermediate approach
consists of having the total regional IC fixed, for instance via the
optimization, and then identifying the possible deployment locations in
each region, taking into account climate resources and socioeconomic
constraints, but without carrying out another full optimization [50].

Inevitably, the aggregation of different renewable energy generation
sites and technologies has a smoothing effect on the generation curve,
similar to the effect that spatial aggregation has on electric load [51].
A clear reflection of this is highlighted by [44] when mentioning that
‘‘the hourly capacity factor of wind power production seems to be much
less volatile in larger countries’’, which implies that the generation
series are substantially smoothed by aggregation. However, the opti-
mization problem can be handled in unaggregated models of the system
with grids, or even by directly considering existing generation farms
as installation points [52,53]. When using higher spatial granularity,
the dimension of the problem increases significantly. Nevertheless,
the bi-objective optimization required for renewable energy planning
can be solved using multiple approaches, e.g., with a Monte Carlo
simulation [46,54, Ch. 5]. In the present study we actually solve
a direct discretization of the problem using quadratic programming
solvers. Despite the range of methodological possibilities, a grid-like
approach is often unrealistic because of its high computational cost,
and therefore, it is not common [55]. The need for high-resolution
data on electricity generation and demand makes this task even more
difficult, especially at very high resolutions, at which the topology
of the network can become relevant. However, the resolution used is
fundamental to the optimization results, especially if the aggregated
regions under consideration are very heterogeneous [56,57].

High-resolution climate data more accurately reflects the actual re-
sources that power renewables and thus more realistically models their
characteristics [58]. Moreover, this approach provides local data for
estimating CFs at an increasing number of locations at which capacity
can be optimized. Additionally, a higher level of granularity to model
the system allows us to more accurately account for relevant factors in
the identification of optimal scenarios. Features such as the feasibility
of installations, the distribution cost, and the geographical distribution
of demand gain significance when a more detailed and realistic system
is considered. This more precise representation of the system, combined
with the optimization method, has enormous potential to improve the

value and significance of the resulting deployment scenarios.
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Little research exists on the impact of using different spatial ag-
gregation approaches. Previous studies have focused on each form of
aggregation but fail to identify the specific effects of this change in
granularity on the optimal solutions [55]. More extensive research
exists on general optimization models and specially on the methodolo-
gies, optimization functions, and constraints that have been considered,
but their analyses still yield no clear answers to the challenges that
granularity raises [39,59].

During the current decade, over 240 billion euros are set to be in-
vested in the energy transition in Spain, more than 90 million of which
will be spent on the deployment of renewable energy sources [3]. Con-
sidering the heterogeneity between, and especially within, the regions
of Spain (Fig. 1), we designed our study to identify whether accounting
for this heterogeneity could help find better deployment scenarios.
Thus, the present study analyzes the impacts of spatial granularity in
optimal renewable energy deployment portfolio theory. We focus on
the improvements made in terms of higher penetration solutions and
more realistic mixes found using a grid-based approach, which benefits
from a higher resolution in the allocation of the renewable resources.
The novelty of this research lies in our analysis of the differences
between optimizations and our quantification of the improvements in
the description of the renewable deployment scenarios.

After an overview of the datasets and methods used, the differences
between regional and grid-based modeling of the system are presented.
Then, Section 3 disentangles the origins of such differences, and finally,
the main findings of our study are summarized in the conclusions
section.

2. Data and methodology

2.1. Optimization

The challenge that comes with implementing renewable energy
sources while guaranteeing supply to the network can be translated
into an approximate simplified problem of a maximizing the renewable
penetration and minimizing the risks of supply failure. If we consider
the risk to be the square root of the variance – and therefore the
variance the risk squared – it can be modeled as a bi-objective op-
timization problem, more specifically, a mean–variance optimization
scheme. The result of a mean–variance optimization is a set of optimal
solutions defining a so-called Pareto front. For a fixed mean (vari-
ance/risk squared), the minimum variance/risk squared (maximum
mean) is represented by the Pareto front. In a mean–variance diagram,
all possible configurations of the system are either suboptimal or lie on
the Pareto front.

When applying these optimization techniques to renewable energy
deployment, the vector of the ICs of PV and wind at each location is
the decision variable. Each spatial location is associated with a specific
CF for renewable energy generation, which quantifies the percentage of
the potential maximum technical production that is actually generated
over a period of time. The national demand is also considered, as the
real objective of the penetration of renewable energy sources is to find
the overall generation curve (combining information on CF and IC) that
best suits the demand and its fluctuations, not an arbitrarily high level
of generation.

In order to carry out the optimization, hourly penetration is defined
as the ratio of national hourly VRE generation to national hourly
demand, even though the adequacy between generation and demand
is not constrained in the model since the reason behind the mean–
variance analysis is to prevent having to model non-VRE producers
that would contribute to meeting the demand. From this, the total
penetration (hereafter simply penetration) is defined as the average
of the hourly penetration over the study period. Risk is defined as
he standard deviation of the hourly penetration time series, in which
e account for the specificities of the predictable and unpredictable

omponents of PV generation [60]. Two additional constraints are used:
3

positive ICs, which are used in all experiments, and total available
IC, which is limited to the actual 2020 Spanish renewable IC for PV
and wind technologies (Fig. 1, see Section 2.2 for further detail and
Appendix A for the full mathematical expressions that make up the
optimization), which is only applied in the experiments labeled con-
strained. We assume no limit on the available capacity to install in the
unconstrained experiments. Throughout the study, the optimizations are
applied under two different modeling approaches: one using aggregated
regions (REG) and another using the full climate grid (GRID). The
optimizations consist of maximizing penetration and minimizing risk
squared.

This setup is used to perform two experiments. By using the full
climate grid, the GRID approach increases the granularity of the model
with respect to REG, and thus the degrees of freedom of the op-
timization problem. This allows us to better represent actual local
characteristics and more accurately account for the climate and its
variability. Note that the only difference in the setup between both
experiments is the basic spatial unit considered (region versus grid
point), as the regions are assumed to be homogeneous and are therefore
represented by the average of the grid points they contain. The degrees
of freedom available for the optimization algorithm to identify optimal
IC deployment solutions are very different in each experiment (Fig. 1).

The Pareto front naturally is best displayed on a penetration-risk
diagram (consider the result in Fig. 2 as an illustrative example), which
allows us to represent all possible projections of spatial IC distributions
on the penetration-risk plane. Each possible IC distribution is repre-
sented by a single point in the diagram. The Pareto front is represented
by a curve defined by the IC distributions with the minimum risk attain-
able at each penetration level. The actual 2020 Spanish IC distribution
is also represented by a point. The region above and to the left of the
Pareto front is not in the range of possible solutions for that system,
so no spatial or technological IC combinations meet such high levels
of penetration and low levels of risk for the given available climate
resource.

The representation of the optimal solutions in the form of Pareto
fronts shows that the optimal penetration-risk ratio (the ratio between
the mean penetration and the standard deviation of the hourly penetra-
tion series) is linear at low levels of penetration, while the constrained
experiment shows curvature at higher levels of penetration, as the
limitation on the total available IC to install makes it impossible to
reach higher levels of penetration without assigning capacity to loca-
tions that carry much higher levels of risk. In the unconstrained case,
the penetration-risk ratio remains constant at all penetration levels
(see [60–63] for examples of these Pareto-front behaviors). The uncon-
strained front reveals the maximum mean-risk ratio possible for a given
climate resource and associated CFs, and is itself an intrinsic property
of the modeled system since it does not depend on the availability of
IC. In the unconstrained case, an increase in penetration is achieved
by multiplying the ICs by the corresponding constant factor. In this
case, and assuming no changes in installed technologies, the climate
resource is the only limiting factor. As mentioned, no IC distribution
can render lower levels of risk or higher levels of penetration than
the distributions that define the unconstrained Pareto front, since these
possibilities are limited by the distribution of CFs (in time, space and
technology), which are determined by the combination of spatial–
temporal climate conditions with specific technologies. The constrained
solutions overlap with the unconstrained ones as long as the total IC
constraint is not in effect (i.e. the assigned ICs in the optimization
solution do not exceed the upper bounds set by 2020 values). Beyond
this level of penetration, optimal solutions involve lower penetration-
risk ratios, and thus, suboptimal penetration returns for the increased
risk assumed.

Given the penetration and risk delivered by the 2020 distribution
of PV and wind installations (hereafter 2020REF ), three interesting
optimal scenarios emerge: high-penetration, low-risk and full repower-

ing. The high-penetration scenario highlights the IC distribution that
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Fig. 1. Observed 2020 IC for PV (left) and wind (right) using aggregated regions (top) and the climate grid (bottom). Grid points with ICs under 10 MW are represented by
empty circles and grid points with ICs over 10 MW show their ICs in reference to the color bar. ICs within a grid box are summed at the grid point that represents it. The top
left panel shows the regions mentioned in the text: GA, Galicia; CL, Castilla 𝑦 Leon; AR, Aragon; CT, Catalunya; IB. Illes Balears; AN, Andalucia.
Fig. 2. Penetration-risk diagram, points of interest and optimal Pareto fronts of the unconstrained (dark, dashed, straight) and constrained (light, solid, curved) scenarios for
REG (blue) and GRID (red). Circles represent 2020REF, diamonds show the high-penetration scenarios, pentagons indicate the low-risk scenarios, and small dark rotated squares
represent every increment of 25% along the unconstrained front in the total IC from 25% to 100% of the total observed 2020 IC. The 100%-point marks the full repowering
scenario.
would render maximum penetration at the 2020REF risk level. This
scenario is found on the Pareto front, above the 2020REF point in
the penetration-risk diagram (Fig. 2). Likewise, the low-risk scenario
is defined as the IC distribution that carries the lowest possible risk at
the 2020REF penetration level. This point is found on the Pareto front,
to the left of the 2020REF in the diagram. On top of that, both the
high-penetration and low-risk mixes for GRID and the low-risk mix for
REG fall on the linear range of the front, so they are virtually met even
without requiring all 2020REF IC. Indeed, the full repowering scenario
(marked with 100% in Fig. 2) corresponds to the optimal (highest
penetration-risk ratio) redistribution in Spain of the total 2020 IC.

The implementation of the portfolio theory, as well as the modeling
of generation and demand is performed with the e4clim model [63].
This model generates CF time series which give information on the
suitability of renewable generation, independent of the eventual IC,
and it creates a climate-dependent series of demand to be covered.
Hourly climatic time series and monthly electricity data are combined
4

to generate calibrated hourly CFs with realistic values. These calibrated
hourly CF series conserve climate variability but have reduced biases
with respect to observations, and they are used as fixed parameters in
the optimization problem. The demand series is generated following the
process described in the updated version of e4clim in its application to
Spain [60], and is explained in detail in the data section. Finally, we
perform an optimization that maximizes the penetration while minimiz-
ing the risk squared. This work represents the first application of e4clim
at the grid scale and more importantly, the first explicit analysis of the
differences between using two different levels of granularity. Indeed,
as a novelty, this setup allows for a direct comparison of the effects of
using two spatial configurations for the same optimization problem.

2.2. Data

Climate resources were assessed using ERA5 reanalysis data [64],
which has proven reliable for both solar radiation [65] and wind
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power [66] estimations, despite some issues related to underestimating
winds in mountainous areas [67] and potential improvements that
could be made at the local level concerning PV estimates [68]. This
climate dataset is particularly suitable for this study because it presents
high temporal and spatial resolutions over a long time period. We
use hourly climate data at surface levels from 1999 to 2020 at the
native ERA5 resolution of 0.25 degrees (the bottom panels of Fig. 1
show the grid points over Spain). The input data for the e4clim model
are the temperature at 2 m, wind components at 100 m, surface
pressure, mean sea level pressure, mean surface downward short-wave
radiation flux, and mean surface downward short-wave radiation flux
with clear skies. Electricity information is obtained from two different
Spanish national sources. On the one hand, IC data until the end of
2020 at the municipal level is available from the Spanish Ministry
for the Ecological Transition and the Demographic Challenge from the
time when renewable energy installations were first registered. These
municipal ICs are assigned to the nearest model grid point so that each
point aggregates IC from the municipalities around it. Then, regional
monthly energy generation and demand information, as well as yearly
regional IC data, were obtained from the Red Eléctrica de España (REE).
Since CFs are calculated from a combination of Ministry and REE data,
comparisons between monthly regional REE ICs and Ministry ICs are
used to validate the outcomes. The resulting IC is therefore an accurate
representation of the actual distribution of PV and wind installations
over the model domain, either in the regional or the grid point-based
approach (Fig. 1 illustrates this accuracy for 2020). As REE data is
only available since 2013, the calibration using electricity data in our
experiments covers the period from 2013 to 2020.

All of these data are combined in order to obtain the parameters
of the optimization: CFs and demand series. In the calibration, the
IC is directly assigned from the Ministry’s data to the nearest point,
and the CF is calculated using two approaches: an hourly estimation
at a grid point level directly from the climate data, and a monthly
calculation from electricity data, directly comparing generation to po-
tential generation given the IC. The climate-derived CFs have higher
temporal and spatial resolutions than the available observed data, but
show biases with respect to the observed mean grid box CF. Therefore,
a linear calibration of the national monthly CFs is applied to the hourly
climate-derived CFs in order to remove persistent biases.

Demand is also modeled in order to permit analysis over periods
with no observed demand data. Historical regional monthly demands
are disaggregated into hourly values by means of the national hourly
measures, which are readily available. This observed demand is then
fit to a function of the temperature at two meters and nine parameters
representing the part of the demand associated to heating, cooling,
and base demand on weekdays, Saturdays and Sundays. For the REG
approach, all of these approximations are averaged over Spain’s admin-
istrative regions, instead of climate grid boxes. This function is used to
fill demand series voids when necessary.

No information on the sub-regional scale is used in the REG ap-
proach. Thus, each regional CF is calculated as the uniform mean of the
corresponding climate grid CFs, and any assigned IC is assumed to be
evenly distributed within each region. This is done on purpose, because
we want to explore the role that the incorporation of information at the
sub-regional scale has on the results of the optimization. Thus, in the
GRID approach, all individual grid points are associated with a CF and
an IC. In both experiments, the pre-processing before the optimization
includes a calibration of the climate-derived CFs via the electricity-
derived CFs. Then, these individually calibrated CFs (for every grid
point in GRID and for every region in REG) combined with the demand
series are plugged into the optimization. The optimization then uses the
distribution of IC as the decision variable, which is modified in order to
identify the most optimal mixes in terms of the mean–variance analysis
using the total 2020 IC as the maximum IC constraint when necessary.
5

Mathematical definitions and expressions are discussed in Appendix A.
3. Results and discussion

Given the series of inputs (national hourly demand and hourly
calibrated CF) for the REG and GRID experiments, a Pareto front
describing the set of optimal IC scenarios in the Spanish electricity
system (SES) (Fig. 2) is found as a solution of the optimization problem.
Naturally, the 2020REF scenario is suboptimal, and thus, it is located
away from the Pareto front in a penetration-risk diagram (Fig. 2). The
simulated penetration and risk by current ICs line up quite well in
both experiments, meaning that assuming a uniform distribution of the
capacities within each region little affects the mean and the risk of the
observed mix. In both approaches, the calculated penetration for 2020
matches that which was reported by REE: slightly under 30% [6].

An additional test of the comparability of both approaches is an
analysis of the hourly penetration series. A comparison of the probabil-
ity density functions (PDFs) of hourly penetration under the 2020REF
scenario illustrates how the current mix not only presents similar values
of overall penetration and risk (Fig. 2) in both experiments but also
shares the overall distribution of hourly penetrations (Fig. 3 left-hand
panel). More specifically, the two experiments simultaneously share the
same hourly penetration at the vast majority of times (Fig. 3 right-
hand panel). This confirms that the representation of the observed
mix in both experiments is equivalent, and therefore, in the case of
the observed mix, assuming regions are homogeneous does not have a
strong effect on the penetration or risk.

When comparing optimal fronts, the first relevant feature that
stands out is that the GRID fronts are always above (or to the left of)
the REG fronts in the penetration-risk diagram. Indeed, optimal GRID
scenarios fall in the impossible region (left and above) of the REG front,
revealing the higher levels of achievable penetration (or lower levels
of achievable risk) given by more favorable combinations between the
selected installations. This effect is more apparent at high levels of
penetration, at which locations and technologies with a high mean
CF play an important role in meeting the high demand for renewable
penetration, regardless of the associated risks (see [61] Section 3 for a
mathematical justification). Under such circumstances, accounting for
climate resources on a local scale provides higher CFs and more options
for beneficial covariances than the aggregated regional averages.

The amount of IC that is installed at low levels of penetration –
where the total capacity is not an active constraint – is also representa-
tive of the differences between the two approaches. Both optimizations
have the same total IC constraint, but the diversity of CFs across the
GRID experiment reveals higher penetration scenarios with lower levels
of IC. For instance, only 75% of the current IC in the SES would be
necessary to reach approximately the 32% penetration level in the
GRID scenario, whereas 100% of the current IC would be required
under the REG scenario. This confirms the advantage of the GRID
method when it comes to identifying more beneficial CF combinations
in the optimization. Likewise, the maximum penetration level reachable
by the total available IC – at which all capacity is installed at the
one location and technology with the largest CF – is 70% in the
GRID approach and 50% in the REG approach. This result shows that
the same total amount of available IC can yield higher returns in
GRID compared to REG, as the smoothing effect of spatial aggregation
disappears. It is important to note that this result strongly depends on
a proper estimation of the maximum CFs, which are highly sensitive to
changes in the sampling resolution.

This difference between the methods is expected, as more degrees of
freedom are available in the GRID experiment and their combinations
could identify optimal scenarios in the penetration-risk sense between
a larger number of possible combinations. When using spatial aggrega-
tion, the averaging of the data alters the hourly penetration series, and
thus modifies the value of the renewable energy resource. For instance,
spatial aggregation changes the intrinsic maximum penetration-risk
ratio (previously discussed and visualized as different slopes in the

fronts at low levels of penetration). Similarly, the smoothing effect can
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Fig. 3. Representation of CF distribution for the national hourly penetration series of 2020REF for REG and GRID in a histogram estimate of the joint distribution (2D) of hourly
penetration (right) and the corresponding histogram estimates of both marginal distributions (1D) (left), both normalized so their integral is one. On the left, vertical dashed lines
show the mean of each distribution and vertical dotted lines show one standard deviation from the mean in each direction for REG (blue) and GRID (red). 𝜇 and 𝜎 indicate
the mean and standard deviation for each experiment, respectively. On the right, colors represent the density of total instances of hourly penetration and the gray dashed line
represents the diagonal where hourly penetrations between REG and GRID are unaltered.
Fig. 4. Full repowering scenario IC for PV (left) and wind (right) using REG (top) and GRID (bottom). Colors represent the IC in each grid point or region. Grid points with ICs
under 10 MW are represented by empty circles.
severely affect the complementarity between installations, as regional
series can have very different variabilities from those seen at each
of the grid points comprising them. The behavior and limits of the
Pareto fronts as the granularity of the system changes are explored in
Appendix B.

This effect can be seen clearly in the low-risk, high-penetration
(GRID only), and full repowering mixes (Fig. 4 for the full repowering
mix). For each experiment, these different mixes belong to the linear
part of the front, and are thus colinear. Indeed, when the capacity
constraint does not come into play (i.e., in the unconstrained case, or
the optimal risk for a penetration level is reached without all available
IC being assigned), the IC distribution is proportionally rescaled but no
reallocation of capacity occurs. For instance, the low-risk mix can be
obtained by scaling the full repowering mix by a factor of 0.680 in the
GRID experiment and 0.913 in the REG experiment, these factors being
calculated as the ratio between the IC in each scenario and the total
available IC. This IC pattern produces the minimum penetration-risk
ratio, and therefore returns the minimum risk at any positive level of
penetration.

Before focusing on the differences between the two mixes, let us
interpret the regional mix (Fig. 4 top panels) in terms of climate
patterns. First, focusing on the IC of wind, Galicia has a climate that
6

is strongly dominated by persistent winds from Atlantic depressions.
This is also the case for western Andalucia. Analogously, the channeling
effect produced by the Pyrenees and the Iberian system results in a
singularly high frequency of significant persistent winds in the Aragon
region, and thus represents a valuable asset for wind generation. An-
other region with wind IC in the linear optimal results is the Illes
Balears, which contain the particularly windy island of Menorca, with
multiple dynamic causes for highly persistent wind resources, such as
sea breezes and the Tramontana winds that get channeled between the
Pyrenees in northeastern Spain and the Massif Central in the middle
of southern France. In a similar fashion, the IC of PV is all located
in Andalucia, the southernmost region of Spain and the one with a
particularly high level of solar radiation.

The areas with wind IC in the full repowering scenario and all
colinear optimal scenarios are mostly consistent between the REG and
GRID scenarios (Fig. 4). We say that the REG and the GRID mixes are
consistent if regions with positive capacities are the same in both exper-
iments and they are strongly consistent when the regional capacities are
practically the same. The IC distribution for PV is consistent between
REG and GRID scenarios, as there is only PV in Andalucia. However, the
GRID approach concentrates all of that IC into one grid point, possibly
the most favorable one of the region in terms of penetration and risk.
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The IC distribution for wind is consistent in some regions (Andalucia,
Illes Balears, and Galicia) and very consistent in Aragon. However, two
regions (Castilla 𝑦 Leon and Catalunya) without a presence in the REG

ix, have one grid point with IC in the GRID mix. It is likely that the
ssumption of homogeneity in the REG scenario covered these points,
ut allowing heterogeneity within the regions in the GRID scenario
eveals their contribution to the mix.

We can use some information from the last decade of analyzed data
2011–2020) to visualize the differences between GRID and REG. The
otal demand over this 10-year period was 2534 TWh. Maintaining the
evel of risk from 2020REF, the GRID generation reaches 1098 TWh. In
omparison to only 875 TWh generated in REG throughout this decade,
he increment in the generation from VRE sources shown by GRID is
romising and manages to cover almost 10% of the total demand.

We would expect similar results in more realistic or complementary
odels of optimal investment in renewable capacities such as EOLES or
yPSA [69,70]. In fact, we would expect these results to be applicable
n the real world. Having climatic series that accurately represent
he potential of specific locations instead of a generic average can
ubstantially change the outcome. Our results reveal the impact of ac-
ounting for more precise information, as long as the spatial variability
s adequately captured by the data.

No assumption is made on the specifics of the Spanish case. There-
ore, this study is applicable to any location conditioned to data avail-
bility. Generation and installed capacity information make for more
recise estimations, but high frequency (i.e., hourly) climate and de-
and data are strictly necessary to run the optimization problem. Given
suitable location, we would expect similar results to the ones in this

tudy considering that the decorrelation scale of the meteorological
ields for that area is shorter than the scale of the high-resolution grid.

.1. Attribution of optimal scenario improvements between REG and GRID

The changes in the IC distributions have clearly modified the pene-
ration and risk values. For instance, the high-penetration mixes which
ave the same level of risk by definition (the standard deviation of the
ational hourly penetration series) in both scenarios, show higher levels
f penetration (mean) under the GRID scenario than the REG scenario
Fig. 2). Contrarily, the low-risk hourly penetration series share their
evels of penetration (mean), but the GRID solutions show lower levels
f risk (standard deviation) than in the REG scenario.

.1.1. Variance decomposition
A first approach to understanding these differences comes from

n analysis of the different terms that make up the variance (risk
quared). To this end, we use the national hourly penetration data in
oth experiments, and we analyze the variance (risk squared) of the
eries, as it can help pinpoint the mechanisms that have been exploited
n the optimization in order to achieve the lower levels of risk.

We specifically use the variance in order to take advantage of the
ecomposition into a linear sum of individual variances and covari-
nces. This provides an explicit expression of the different elements that
ontribute to the overall variance and a comparison between individual
ontributions in the REG and GRID scenarios. Considering 𝑃𝑘 as the

hourly penetration (generation divided by total demand) series for the
grid point-technology pair 𝑘 (and considering the alternative index 𝑟
for each region-technology pair), and 𝑃𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙 =

∑

𝑘 𝑃𝑘 =
∑

𝑟
∑

𝑘∈𝑟 𝑃𝑘,
then the total variance can be expressed as:

V(𝑃𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙) =
∑

𝑟

∑

𝑘∈𝑟
V(𝑃𝑘) +

∑

𝑟

∑

𝑘,𝑙∈𝑟;𝑘≠𝑙
Cov(𝑃𝑘, 𝑃𝑙)

+
∑

𝑟,𝑠;𝑟≠𝑠

∑

𝑘∈𝑟;𝑙∈𝑠
Cov(𝑃𝑘, 𝑃𝑙), (1)

where the first term is the sum of the individual variances of each grid
point-technology pair, the second term is the covariance between grid
7

point-technology pairs that share a region and the third term is the
covariance between grid point-technology pairs in different regions.
If we consider the division of each grid point-technology pair into
its corresponding grid point (𝑖) and technology, then we can further
expand each one of these terms. From this point on, the index 𝑅 will
refer strictly to the spatial division represented by regions, and is not
to be confused with each region-technology pair (𝑟). The first term of
the variance expression in Eq. (1) can be decomposed as
∑

𝑟

∑

𝑘∈𝑟
V(𝑃𝑘) =

∑

𝑅

∑

𝑖∈𝑅
V(𝑃𝑖,𝑃𝑉 ) +

∑

𝑅

∑

𝑖∈𝑅
V(𝑃𝑖,𝑤𝑖𝑛𝑑 ), (2)

which separates the sum of the individual variance of each grid point
into the contributions it sees from PV (first term) and wind (second
term). The second term in Eq. (1) refers to covariances between points
in the same region and can be decomposed as
∑

𝑟

∑

𝑘,𝑙∈𝑟;𝑘≠𝑙
Cov(𝑃𝑘, 𝑃𝑙) =

∑

𝑅

∑

𝑖,𝑗∈𝑅;𝑖≠𝑗
Cov(𝑃𝑖,𝑃𝑉 , 𝑃𝑗,𝑃𝑉 )+

+
∑

𝑅

∑

𝑖,𝑗∈𝑅;𝑖≠𝑗
Cov(𝑃𝑖,𝑤𝑖𝑛𝑑 , 𝑃𝑗,𝑤𝑖𝑛𝑑 ) +

∑

𝑅

∑

𝑖,𝑗∈𝑅;𝑖≠𝑗
Cov(𝑃𝑖,𝑃𝑉 , 𝑃𝑗,𝑤𝑖𝑛𝑑 )+

+
∑

𝑅

∑

𝑖∈𝑅
Cov(𝑃𝑖,𝑃𝑉 , 𝑃𝑖,𝑤𝑖𝑛𝑑 ),

(3)

where the first term represents the covariance between grid points
with PV technology in the same region, the second term represents
the covariance between grid points in the same region with wind
technology, the third term represents the covariance between the PV
technology at a grid point and the wind technology at a different
grid point in the same region, and the fourth term represents the
covariance between wind and PV technologies at the same grid point.
Therefore, this decomposition differentiates whether the technology is
the same (PV and wind are separate terms) or different and, in the
case of different technologies, whether the grid point is the same or
not. Finally, the last term in Eq. (1), which describes the covariances
between grid points in different regions, can be further broken down
as
∑

𝑟,𝑠;𝑟≠𝑠

∑

𝑘∈𝑟;𝑙∈𝑠
Cov(𝑃𝑘, 𝑃𝑙) =

∑

𝑅,𝑆;𝑅≠𝑆

∑

𝑖∈𝑅;𝑗∈𝑆
Cov(𝑃𝑖,𝑃𝑉 , 𝑃𝑗,𝑃𝑉 )+

+
∑

𝑅,𝑆;𝑅≠𝑆

∑

𝑖∈𝑅;𝑗∈𝑆
Cov(𝑃𝑖,𝑤𝑖𝑛𝑑 , 𝑃𝑗,𝑤𝑖𝑛𝑑 ) +

∑

𝑅,𝑆;𝑅≠𝑆

∑

𝑖∈𝑅;𝑗∈𝑆
Cov(𝑃𝑖,𝑃𝑉 , 𝑃𝑗,𝑤𝑖𝑛𝑑 ),

(4)

where the first term represents the covariance between grid points
in different regions with PV technology, the second term represents
the covariance between grid points in different regions with wind
technology and the third term represents the covariance between the
PV technology at a grid point in one region and the wind technology
at a grid point in a different region. This decomposition allows us to
discern which technology is associated with these terms (PV or wind)
or if it is a combination of the two.

The difference in the contribution to the total variance made by
each of these terms in the REG or GRID scenario (Fig. 5) can help us
better understand whether the improvements seen in the GRID scenario
come from the identification of better individual CFs or more beneficial
combinations of VRE sources. It is clear that the main improvement
in the GRID experiment is the reduction of covariances, although
different regions contribute less to the reduction of the total variance
than points within the same region, which is clearly a consequence
of the assumption made in REG of homogeneous regions, whereby
all grid points contained in a selected region have some allocated
IC. Additionally, although low levels of penetration show a strong
reduction of PV covariances, the effect becomes small in comparison to
the wind covariances as levels of penetration get higher. It is also worth
mentioning that although covariances between different grid points in
the same region dominate the change in variance, this is not the case
for covariances between different technologies at the same grid point
(see the narrow orange section at the top of Fig. 5). The change in

this effect is orders of magnitude lower than the rest, which possibly
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Fig. 5. Difference between the components of the variance for REG and GRID (GRID-REG) at each penetration level. Colors represent the relationship between two grid points:
blue for the variance of the same grid point and technology, orange for the covariance in the same grid point and with different technologies, red for covariances between different
grid points in the same region, and green for covariances between grid points in different regions. The patterns represent the relationship between a given technology at two
points: circles represent PV, diagonal lines represent wind and a squared mesh represents a combination of both. The thick black line represents the difference in total variance.
stems from the lower number of terms contributing to it. All in all, the
national variances for different penetrations in the REG scenario are
higher despite a decrease in grid point-technology variances, clearly
highlighting the fundamental role of covariances as fundamental in the
lower levels of risk associated with the GRID experiment.

3.1.2. Histogram analysis
In an additional step towards understanding the more optimal re-

sults obtained in the GRID experiment with respect to the REG ex-
periment, we compare the distributions of hourly penetrations for the
low-risk and high-penetration scenarios (Fig. 6). Analyzing the general
characteristics of these hourly time series beyond their means and
variances can provide additional insights into the underlying processes
that affect the penetration and risk values between experiments (other
than the direct increase in granularity). For the high-penetration sce-
nario, the marginal distributions (Fig. 6 top right) show that a general
shift of the GRID solution towards higher hourly penetrations with
respect to REG allows GRID to reach a higher overall penetration while
maintaining the level of risk.

The GRID experiment results in less variable penetrations than REG
by means of increasing the hourly penetrations that are below (or
decreasing the hourly penetrations that are above) the mean value of
nearly 30% (Fig. 6, top left). Indeed, a large portion of hourly instances
below the 30% level in the REG experiment show increased levels of
penetration in the GRID experiment (densities below the diagonal in
Fig. 6 bottom left). Similarly, instances in the REG experiment that are
above 30% are seen to be lower in the GRID experiment, and thus,
overall hourly penetration variability is reduced.

The overall shift in the distribution for the high-penetration mixes
(Fig. 6 top right) is attributed to a general increase in the hourly
penetrations achieved by the GRID optimization (i.e., the highest den-
sities below the diagonal in Fig. 6 bottom right). Therefore the higher
penetration achieved by GRID with respect to REG is not attributable
to changes in specific ranges of hourly penetration but to a mostly
homogeneous increase in penetration. This reveals the improved IC
distributions rendered by the GRID method, which achieve higher
levels of penetration without the cost of any additional risk.
8

3.1.3. Decomposition into cycles and spectral decomposition
A powerful tool for dissecting the variability of a time series and

analyzing its behavior is decomposition, and we take two different
approaches to breaking down the series into its components. The first is
a decomposition based on cycles that are not harmonic and the second
is a power spectral density estimate using the Welch estimator [71]
with a square one-year window and no overlapping. We perform these
analyses on the national hourly penetration series in both the REG
and GRID experiments. More specifically, we analyze and compare the
high-penetration mixes as they have fixed variance by definition and
therefore, the total power is constant between the experiments.

Our REG and GRID scenarios show similar distributions between
the cycles (Fig. 7 left), with a daily and a seasonal cycle that are
mainly attributable to the climate resource, a less important weekly
cycle coming from the demand, and very small inter-annual variability:
the most important contribution comes from all the other variability at
sub-annual scales.

An analysis of the cycles (Fig. 7 left) reveals that the main difference
in the GRID solution, with respect to REG, is the reduction of variability
in the two main climate-driven cycles. The variance of the seasonal and
diurnal cycles is reduced and moved to intermediate scales (e.g., the
rest of sub-annual variability).

To get further detail on how the variance is distributed between cy-
cles, we turn to the Welch estimate (Fig. 7 right). Despite the smoothing
effect at the one-year frequency (associated with the seasonal cycle),
it is clear that the most energetic frequencies belong to the seasonal
and diurnal cycles. Note that the frequencies associated with the rest
of the sub-annual scales are increased overall in the GRID scenario
with respect to REG, but none of them exceed the most energetic
climate-associated peaks. Therefore, the optimal solution achieved by
GRID can reach the same level of risk as its REG equivalent, while
reduced contributions of the most important climatic frequencies. This
lower variability in the frequencies with the strongest climatic forcing
allows the GRID method to identify more ambitious scenarios in terms
of penetration, while maintaining the same level of risk as the REG
method.
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Fig. 6. Same as Fig. 3 for the low-risk (left) and high-penetration (right) mixes. Representation of CF distribution for the national hourly penetration series of each mix for the REG
and GRID experiments in a histogram estimate of the joint distribution (2D) of hourly penetration (top) and the corresponding histogram estimates of both marginal distributions
(1D) (bottom), both normalized so their integral is one.
Fig. 7. Representation of the variance distribution in frequencies. On the left, the fraction of the variance of the high-penetration scenario explained by the daily, seasonal and
weekly cycles and for all other frequencies for REG (blue) and GRID (red). On the right, the Welch estimate of the power spectral density for REG (blue) and GRID (red).
4. Summary and conclusions

The need for an energy transition towards a more renewable future
is imperative, and thus, we must investigate the most favorable path-
ways for such a shift. Despite any political and social impacts on their
development, climate variability in space and time is a key factor in
deciding where and how much VRE capacity should be installed. Thus,
adequately accounting for climate conditions is crucial in planning the
deployment of this transition. Small modifications to the distribution
of capacities and the methods for finding them can severely affect the
success of any given scenario.
9

The combination of different technologies is key to reducing the
variability of the VRE production in the context of energy system
planning. Therefore, taking the highest possible resolution of infor-
mation provides a more concrete and realistic vision of the possible
combinations. The present study has shown how this consideration
affects optimal energy deployment scenarios in the mean–variance
sense. Using higher granularity and more detailed descriptions of actual
CFs leads to optimal higher penetration and lower risk mixes, this is
mainly attributable to the effect of complementarity in addition to the
obvious benefit of providing more precise locations of installations in
the optimal IC scenarios. Using the same total IC, scenarios with over
10% more penetration (e.g., from 32% to 44% in the case of the full
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repowering scenarios) are reachable only by more precisely describing
the system characteristics. A more refined representation of the climate
resources in order to optimize VRE capacities at finer scales allows us
to better account for and adapt to the challenges of variability posed
by the different scales of climatic variability.

In a direct comparison of modeling experiments, the high-granula-
rity grid-based approach results in optimal renewable deployment sce-
narios with higher levels of penetration and precision in the location
of installations than more highly aggregated approaches due to two
main factors. First, considering the complementarity between resources
identifies more instances for favorable generation, whether the goal is
to achieve a certain penetration level or to not exceed a given level of
risk. Secondly, this approach favors the allocation of capacity to sites
not contributing to the main energetic climatic frequencies of energy
production, thus reducing overall variability.

The effects of increasing granularity in the description of opti-
mal renewable energy deployment scenarios in our representation of
the Spanish system have particular bounds. The climate resource sets
an intrinsic limit to the attainable penetration-risk ratio, which can
be represented by an asymptotic Pareto front (finding an intrinsic
penetration-risk ratio of 2.22; intrinsic meaning independent of the
granularity used for the optimization, not necessarily independent of
the climate data and its resolution). This fundamental front provides
an estimate of what could be an upper limit in terms of renewable
penetration-risk pay off given the available resource. We identify the
frontier reached when using the full climate grid optimization as being
very close to the asymptotic behavior of increasing granularity, with
differences in penetration and/or risk under 1% at any given point.

These new findings show that higher granularity will provide more
informed and robust descriptions of optimal renewable deployment
scenarios to best support stakeholders and policy makers so that they
may safely and fully reach their sustainable commitments.

It is important to note that there is a limit to the level of granularity
that can be used in e4clim, as the model is designed under certain
assumptions. The feature that most limits the granularity is the power
distribution grid, since it is not considered at the scales used in this
study, but could become a key factor at higher resolutions. Therefore,
besides the intrinsic limit to the reachable levels of penetration es-
tablished by the asymptotic front, there is a limitation to the usable
granularity set by the very modeling assumptions themselves.

Additionally, sensitivity to the climate data changes along with
the changes in configuration. General climate data biases have the
same effect whether administrative regions are considered or the whole
climate grid is considered, as they represent a shift of the entire set
of climate data. However, spatially located errors in the climate data
become more important when the whole climate grid is considered.
This occurs because when administrative regions are considered, the
averaging processes can act as error compensation mechanisms in the
climate data. Therefore, when aiming for a high level of granularity,
rigorous quality control of the data is crucial.

Another consideration involves limitations to the maximum IC, as
the scenarios with very high levels of penetration (which have all
capacity allocated to one point and one technology) are unrealistic
in real-world applications. As an additional layer of realism, further
developments of the model will address limitations of maximum ICs
for reasons related to demographic, geographical, or political factors.
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Appendix A. The math of the optimization problem

Our approach to the optimization problem, shown here, follows
the process presented in [63]. Given the hourly capacity factor 𝐶𝐹𝑖,𝑡,𝑗 ,
the hourly generation at a given location 𝑖 and time 𝑡 by renewable
technology 𝑗 is:

𝑔𝑖,𝑡,𝑗 = 𝐼𝐶𝑖,𝑡,𝑗 ⋅ 𝐶𝐹𝑖,𝑡,𝑗 (A.1)

where 𝐼𝐶𝑖,𝑡,𝑗 is the installed capacity for that technology, location, and
ime.

Given the hourly demand 𝑑𝑖,𝑡, the hourly penetration at a given
ocation 𝑖 and time 𝑡 by technology 𝑗 is defined as the percentage of
he total demand covered by that method of generation:

𝑖,𝑡,𝑗 =
𝑔𝑖,𝑡,𝑗
∑

𝑖 𝑑𝑖,𝑡
(A.2)

The average penetration (or penetration) at a given location 𝑖 by
technology 𝑗 is defined as the average over time of the hourly

enetration:

𝑖,𝑗 =
1
𝑇

∑

𝑡
𝑝𝑖,𝑡,𝑗 (A.3)

where 𝑇 is the number of hours in the hourly series.
Similar to this, the overall hourly penetration of the system can be

defined as the sum of all of the penetrations of its components:

𝑃𝑡 =
∑

𝑖,𝑗
𝑝𝑖,𝑡,𝑗 (A.4)

Combining the two previous definitions, the overall penetration of
the system can be defined as:

𝑃 = 1
𝑇

∑

𝑖,𝑡,𝑗
𝑝𝑖,𝑡,𝑗 (A.5)

Since the demand 𝑑𝑖,𝑡 and the 𝐶𝐹𝑖,𝑡,𝑗 are independent of the installed
capacity, and they reflect the climatic and demographic behaviors as
well as the characteristics of the VRE technologies, we aim to find
the 𝐼𝐶𝑖,𝑗 that maximizes the coverage of the demand given the 𝐶𝐹𝑖,𝑡,𝑗
produced by the climatic conditions and given the technologies. Notice
how the 𝐼𝐶𝑖,𝑗 is no longer time dependent, as the aim is to find
the best combination given a specific climatic and demographic state.
Therefore, the first objective of the optimization is to find the following
maximum:

max
𝐼𝐶

𝑃 ≡ max
𝐼𝐶

1
𝑇

∑

𝑝𝑖,𝑡,𝑗 ≡ max
𝐼𝐶

1
𝑇

∑ 𝐼𝐶𝑖,𝑡,𝑗 ⋅ 𝐶𝐹𝑖,𝑡,𝑗
∑ (A.6)
𝑖,𝑗 𝑖,𝑗 𝑖,𝑡,𝑗 𝑖,𝑗 𝑖,𝑡,𝑗 𝑖 𝑑𝑖,𝑡
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Fig. B.8. Asymptotic Pareto front estimation (left) and corresponding finite granularity fronts. in Fig. 2 (right). In the left-hand panel, black points represent the penetration-risk
ratio (slope of the unconstrained Pareto front) for each number of grid points, the solid gray line represents the fitted function of all these points and the thin dashed black line
represents the asymptotic value of said function. The right-hand panel presents the same elements as Fig. 2 with the addition of a black dashed line representing the asymptotic
unconstrained Pareto front.
At the same time, the squared risk associated with a given selection
of 𝐼𝐶𝑖,𝑗 is defined using variance as a proxy, while considering the
predictable and unpredictable variability of the solar radiation [60].
Let us define a new index for each location-technology pair: 𝑘 = (𝑖, 𝑗).
Therefore, the overall systematic variance is:

𝜎2 = V

[

∑

𝑘
𝐼𝐶𝑘

𝐶𝐹𝑘,𝑡
∑

𝑖 𝑑𝑖,𝑡

]

(A.7)

The variance is the risk squared used for wind generation, but not
for PV. Therefore:

𝑟2𝑤𝑖𝑛𝑑 = V𝑡

[

∑

𝑖
𝐼𝐶𝑖,𝑗=𝑤𝑖𝑛𝑑

𝐶𝐹𝑖,𝑗=𝑤𝑖𝑛𝑑,𝑡
∑

𝑖 𝑑𝑖,𝑡

]

(A.8)

For the PV part of the risk, if we consider 𝑥 to be PV generation, then
it can be split into its predictable (derived from clear-sky radiation) and
unpredictable components:

𝑥𝑡 = 𝑥𝑃𝑡 − 𝑥𝑁𝑃𝑡 (A.9)

In order to avoid naturally variable differences from having any
influence on the risk, we take the spatial (𝑖) mean (∗) over the whole
system (i.e., all regions or all grid points, depending on the experiment
being considered) and apply the same predictable component for each
grid point in the definition of risk:

𝑥∗𝑡 = 𝑥∗𝑃𝑡 − 𝑥𝑁𝑃𝑡 (A.10)

where 𝑥∗𝑃𝑡 is the predictable national average component of PV gener-
ation and 𝑥∗𝑡 is the estimated PV generation using the national average
of the predictable component. Therefore, we can take the variance of
this variable, and separate its components:

𝜎2 = V(𝑥∗𝑡 ) = 𝜎2𝑥∗𝑃𝑡
+ 𝜎2𝑥𝑁𝑃𝑡

− 2cov(𝑥∗𝑃𝑡 , 𝑥𝑁𝑃𝑡 ) (A.11)

Finally, considering that the covariance term also contains the pre-
dictable variability, it can be averaged over all spatial elements 𝑖
(i.e. regions or grid points) in order to avoid any influence of differences
in predictable spatial variability on the definition of PV risk. This allows
us to consider only the contribution of unpredictable variability on the
risk, while maintaining comparability to the wind risk. Therefore, the
definition of risk associated with PV is:

𝑟2𝑃𝑉 = 𝜎2𝑥∗𝑃𝑡
+ 𝜎2𝑥𝑁𝑃𝑡

− 2⟨cov(𝑥∗𝑃𝑡 , 𝑥𝑁𝑃𝑡 )⟩𝑖 (A.12)

It is therefore the sum of both definitions of risk (which are of
comparable magnitudes, as just mentioned) that is minimized. It should
be noted that this correction is only applied to the variance of each PV
11
location and does not affect the covariances between different location-
technology pairs, which are calculated using the original series for PV
as well.

In addition to the risk and penetration definitions, given that in-
stalled capacity in the real world cannot not be negative, the installed
capacity is bounded:

𝐼𝐶𝑘 ≥ 0 ∀𝑘 (A.13)

Finally, in some experiments we impose a bound on the total
installed capacity so that it does not exceed the total of the reference
year 2020. Therefore:
∑

𝑘
𝐼𝐶𝑘 ≤ 𝐼𝐶2020 (A.14)

Appendix B. Asymptotic Pareto front

In order to better understand the impacts of effective spatial granu-
larity on the identification of optimal scenarios for deploying renewable
energy systems, we designed a set of academic experiments. In these
experiments we gradually modify granularity of the model and analyze
the effect on the results of the optimization. To this end, we change
the granularity of the data by averaging the grid climate values over
increasingly large grid boxes, starting at the full climatic grid resolution
and ending with only 4 total grid boxes over the domain. For each
level of granularity in the model, an optimization is performed and
an unconstrained Pareto front is computed. As the modeling gran-
ularity gets finer, the intrinsic penetration-risk ratio of the system
tends to increase (i.e., we see steeper Pareto front slopes), with our
GRID scenario setting the highest ratio. Since the system is driven by
climate resources, the observed increase in the penetration-risk ratio
is bounded by the level of correspondence between these resources
and the demand. This increasing and bounded behavior suggests the
existence of an asymptotic Pareto front, which is a reflection of an
intrinsic property of the underlying driving climate. By intrinsic, we
mean that it does not depend on the granularity of the grid used for
the optimization (although it could depend on the grid used for the
climate-model simulation).

We define this asymptotic front by extrapolating the fronts obtained
from the set of experiments with varying granularities. In particular,
we identify the penetration-risk ratio (slope of the Pareto front) for the
unconstrained case for each level of granularity. These points are then
fitted to a parameterized curve:

𝛺(𝑛) = 𝑎 + 𝑏 (B.1)

𝑛 − 𝑐
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where 𝛺 is the penetration-risk ratio; n is the number of grid points in
the domain; and a, b, and c are fitting parameters. The result of fitting
Eq. (B.1) using non-linear least squares can be seen in the left-hand
panel of Fig. B.8. Considering this fitted function, we can compute the
asymptotic penetration-risk ratio of 2.22. This allows us to represent an
asymptotic Pareto front on the penetration-risk diagram as a straight
line with the asymptotic penetration-risk ratio slope.

The resulting Pareto front is, by definition, located in the penetrat-
ion-risk diagram above all fronts computed at any other granularity,
and it represents an intrinsic characteristic of the system (Fig. B.8,
right panel). This front is basically determined by the climate resource,
though an important role is played by spatial and temporal covariances
in the climate region. Certainly, the calculation of this asymptotic front
is affected by the characteristics (e.g., resolution or spatial and tempo-
ral correlations) of the climate and demand data considered. However,
the existence of a systemic Pareto front intrinsic to a renewable energy
system is appealing as it suggests the existence of a limit to how
much penetration can be secured without assuming further risk given
specific climate data at a certain granularity. In the specific case of the
Spanish system considered in this study, it is clear, by the location of
the asymptotic front (Fig. B.8, right-hand panel), that the increase in
penetration achievable with respect to the GRID scenario is negligible.
This indicates that the level of granularity seen in the GRID experiment
approaches the limit in terms of the highest achievable penetrations (or
lowest achievable risks) in the SES.
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