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Abstract: A multi-scale modeling strategy is proposed that takes into account the temperature 

and cure dependence of the viscoelastic behavior of the constituent materials of a composite 

material and the effects of stress relaxation on thermal expansion and chemical shrinkage. A 

homogenization strategy is presented, which, starting from the constituent behaviors, yields 

the homogenized viscoelastic behavior of the composite with time-dependent expansion 

coefficients. This time-dependence is a direct consequence of the viscoelastic behavior of the 

constituents, as their expansion coefficients are supposed to be time-independent. In the 

simulation of a heating process, the model predicts sign changes in the thermal strain rate due 

to residual stress relaxation close to the glass transition temperature, which cannot be 

obtained with classical thermo-elastic homogenization methods. 

Keywords: Viscoelasticity; Thermal expansion; Chemical shrinkage; Homogenization 

1. Introduction 

Fiber reinforced composites with thermosetting polymer matrices are manufactured at much 

higher temperatures than typical in-service temperatures. During the curing process, the 

initially liquid resin polymerizes and forms a solid matrix material that holds the fibrous 

reinforcement together. At the end of the curing process, the composite part is cooled down 

to room temperature. As the coefficients of thermal expansion (CTE) of the fibers and the 

matrix material are not the same, residual stresses emerge within the composite, which may 

lead to part distortion and influence damage onset and evolution [1]. Furthermore, the resin 

shrinks during polymerization, which also contributes to the formation of residual stresses [2]. 

While the most common fiber materials (glass or carbon) are in a good approximation linear 

elastic and independent of temperature over the range of the cure cycle, the behavior of the 

polymer matrix is viscoelastic, leading to strain and stress evolutions in time even when 

temperature and degree of cure are constant [3,4]. This time-dependent component of the 

matrix behavior depends strongly on both temperature and degree of cure [4,5]. Therefore, in 

most recent published works on modeling residual stresses in composite materials, viscoelastic 

constitutive laws are used that take into account stress relaxation, which plays an important 

role in particular at the beginning of the cooling phase, when the matrix is still close to its glass 

transition temperature 𝑇𝑔 [6-8]. The models are either identified directly from experimental 

observations of the time-dependent behavior of the composite [3] or obtained by viscoelastic 

homogenization starting from the constituent behaviors [8-11]. 

To predict residual stresses and shape distortions, time-independent average CTE and 

coefficients of chemical shrinkage (CCS) are used for the composite [8,11]. This means that 
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locally, changes of temperature or degree of cure only cause an instantaneous deformation of 

the material, which does not further evolve in time when temperature and degree of cure are 

kept constant. However, when looking at the lower scales, it becomes clear that due to the 

viscoelastic behavior of the matrix, residual stresses caused by, e.g., a temperature change 

evolve in time due to relaxation and creep phenomena, even if the temperature is kept 

constant. This effect leads to an evolution of the average strain of the composite after a 

change of temperature that has to be taken into account by time-dependent CTE (and likewise 

by time-dependent CCS for the relaxation of the stresses caused by chemical shrinkage). 

In this contribution, we show how these phenomena can be taken into account in a multi-scale 

model of the thermo-viscoelastic behavior of polymer matrix composites with 3D woven 

reinforcements. The viscoelastic behavior is described in section 2. In section 3, it is shown 

how time-dependence can be taken into account in CTE and CCS using similar approaches as 

for the relaxation modulus of the viscoelastic behavior. A recently developed homogenization 

technique [12] is briefly outlined in section 4. It yields the homogenized viscoelastic behavior 

and the time-dependent CTE and CCS of the composite from the constituent behaviors. In 

section 5, the resulting model is used to predict the temperature dependence of the apparent 

elastic properties and the CTE of the composite. 

2. Viscoelastic behavior 

2.1 General formulation 

We start from the general integral form of linear viscoelasticity, in which the stress tensor is 

expressed as the Stieltjes convolution of a 4th order tensor of (in general) anisotropic relaxation 

moduli �̳� with the mechanical strain �̲�𝑣𝑒 over a reduced time 𝜉  

�̲�(𝜉) = ∫ �̳�(𝜉 − 𝜉′):
𝜕�̲�𝑣𝑒(𝜉′)

𝜕𝜉′ 𝑑𝜉′
𝜉

−∞
                (1) 

The mechanical strain is obtained by subtracting the strain due to thermal expansion �̲�𝑡ℎ and 

due to chemical shrinkage �̲�𝑐ℎ from the total strain tensor �̲�. 

�̲�𝑣𝑒(𝜉) = �̲�(𝜉) − �̲�𝑡ℎ(𝜉) − �̲�𝑐ℎ(𝜉)                (2) 

The reduced time 𝜉 accounts for horizontal shifts of the relaxation curves along the logarithmic 

time scale upon change of temperature and degree of cure if the time-cure-temperature 

superposition principle applies [13] 

𝜉(𝑡) = ∫
1

𝑎𝑇(𝑡′)
𝑑𝑡′

𝑡

−∞
,  𝜉′ = 𝜉(𝑡′)                (3) 

where 𝑎𝑇 is the shift factor, which, in general, depends on temperature and degree of cure. 

If the relaxation moduli can be approximated by a Prony series 

�̳�(𝜉 − 𝜉′) = �̳�∞ + ∑ �̳�𝑘𝑒
−

𝜉−𝜉′

𝜏𝑘𝑁
𝑘=1                 (4) 

with relaxation times 𝜏𝑘, the integral form resolves to a generalized Maxwell model given by 

�̲�(𝜉) = (�̳�∞ + ∑ �̳�𝑘
𝑁
𝑘=1 ): �̲�𝑣𝑒(𝜉) − ∑ �̳�𝑘

𝑁
𝑘=1 : �̲�𝑘

𝑣𝑒(𝜉)              (5) 
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with tensorial internal variables �̲�𝑘
𝑣𝑒 accounting for the strain history [14]. They evolve 

following the differential equations 

𝑑�̲�𝑘
𝑣𝑒(𝜉)

𝑑𝜉
=

1

𝜏𝑘
(�̲�𝑣𝑒(𝜉) − �̲�𝑘

𝑣𝑒(𝜉))                 (6) 

2.2 Viscoelastic model of the matrix 

The epoxy matrix used in the modeled composite was characterized experimentally by multi-

temperature relaxation tests on fully and partially cured specimens [4]. Relaxation master 

curves were built for different degrees of cure by shifting the relaxation curves observed at 

different temperatures along the logarithmic time scale. Below the glass transition 

temperature, the necessary shift factors can well be approximated by an Arrhenius model: 

𝑎𝑇(𝑇, 𝑐) =
𝐻(𝑐)

𝑅⋅ln 10
(

1

𝑇
−

1

𝑇𝑔(𝑐)
)                 (7) 

Fitting Prony series to the obtained master curves, it was shown that the coefficients plotted 

against the relaxation times follow closely a continuous function of the form 

𝐺(𝜏) = 𝐴 exp (− (
log10 𝜏−log10 𝜏𝑝𝑒𝑎𝑘

𝑙𝑝𝑒𝑎𝑘
)

2

) +
𝐵

2
(1 − erf (

log10 𝜏−log10 𝜏𝑝𝑒𝑎𝑘

𝑙𝑝𝑒𝑎𝑘
))           (8) 

This function reproduces a Gaussian peak of height 𝐴, width 𝑙𝑝𝑒𝑎𝑘, and center position 𝜏𝑝𝑒𝑎𝑘. 

For short relaxation times, the curve approximates a constant value of 𝐵. erf is the Gaussian 

error function, which makes the function tend towards zero for long relaxation times. Since 

this function is continuous, we may freely choose the relaxation times, as long as there is at 

least one relaxation time per decade. The corresponding weights of the Prony series are then 

given for the 𝑘th relaxation time by 

𝐺𝑘 =
log10 𝜏𝑘+1−log10 𝜏𝑘−1

2
𝐺(𝜏𝑘)                 (9) 

The parameters 𝐴, 𝐵, and 𝑙𝑝𝑒𝑎𝑘 are similar for the relaxation master curves obtained from 

partially cured specimens. The positions of the peaks for different degrees of cure superpose 

well, if the shift factors are defined with respect to the cure dependent glass transition 

temperature 𝑇𝑔(𝑐), as written in Eq. (7). 𝑇𝑔 as a function of cure is given by the DiBenedetto 

equation [15] 

𝑇𝑔(𝑐) = 𝑇𝑔0 + (𝑇𝑔1 − 𝑇𝑔0)
𝜆𝑐

1−𝑐(1−𝜆)
              (10) 

where 𝑇𝑔0 is the glass transition temperature of the uncured and 𝑇𝑔1 the glass transition 

temperature of the fully cured resin. The activation energy 𝐻 in Eq. (7) decreases with 

increasing degree of cure. A linear function was used in [9] to take into account this effect.  

A 3D version of this model developed in [4] was proposed in [9], based on the assumption of 

isovolumetric viscous effects. Thus, the tensors �̳�𝑘 in the time-dependent terms of Eq. (4) take 

a purely deviatoric form 

�̳�𝑘 = 𝐺𝑘 (�̳� −
1

3
�̲� ⊗ �̲�)                (11) 
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with the coefficients 𝐺𝑘 given by Eqs. (8) and (9). The (purely elastic) bulk modulus is included 

into the time-independent term using for �̳�∞ the general form for an isotropic elastic stiffness 

�̳�∞  = 𝐾
1

3
�̲� ⊗ �̲� + 𝐺∞ (�̳� −

1

3
�̲� ⊗ �̲�)              (12) 

Here, �̲� is the 2nd order identity tensor and �̳� the 4th order identity tensor with minor symmetry. 

The assumption of isovolumetric viscous effects implies that for long relaxation times at high 

temperatures the apparent Poisson ratio tends towards 0.5 [16]. The full list of parameters of 

the 3D model identified using the experimental data in [4] is given in [9]. 

3. Time-dependent expansion coefficients 

Different formulations were proposed to integrate time-dependent effects of thermal 

expansion into viscoelastic constitutive models [14,17,18]. They use integral forms similar to 

the viscoelastic formulation given in Eq. (1) to express the time-dependent effects of thermal 

expansion on stress or strain. We use the formulation of [18] to write the thermal strain as 

�̲�𝑡ℎ(𝜉) = ∫ �̲�𝑡ℎ(𝜉 − 𝜉′, 𝑇(𝜉′), 𝑐(𝜉′)):
𝜕𝑇(𝜉′)

𝜕𝜉′ 𝑑𝜉′
𝜉

−∞
            (13) 

with time-dependent CTE �̲�𝑡ℎ. The chemical shrinkage strain is written in an equivalent form 

�̲�𝑐ℎ(𝜉) = ∫ �̲�𝑐ℎ(𝜉 − 𝜉′, 𝑇(𝜉′), 𝑐(𝜉′)):
𝜕𝑐(𝜉′)

𝜕𝜉′ 𝑑𝜉′
𝜉

−∞
            (14) 

In the following, we will only show the expressions for the thermal strain, but the same 

formalism can be applied for the chemical shrinkage strain. 

In addition to the reduced time-dependence of �̲�𝑡ℎ that describes the influence of a 

temperature change at 𝜉′ on a later time 𝜉 > 𝜉′, we also allow for an explicit dependence of 

the CTE on temperature and cure at the moment of the temperature change. This is 

represented by the arguments 𝑇(𝜉′) and 𝑐(𝜉′). As in the case of the relaxation moduli, we 

suppose that the time-dependence of the CTE can be approximated by a Prony series 

�̲�𝑡ℎ(𝜉 − 𝜉′, 𝑇(𝜉′), 𝑐(𝜉′)) = �̲�∞
𝑡ℎ(𝑇(𝜉′), 𝑐(𝜉′)) − ∑ �̲�𝑘

𝑡ℎ(𝑇(𝜉′), 𝑐(𝜉′))𝑒
−

𝜉−𝜉′

𝜏𝑘𝑁
𝑘=1          (15) 

The evolution of thermal strain in reduced time is then given by [12] 

𝑑�̲�𝑡ℎ(𝜉)

𝑑𝜉
= (�̲�∞

𝑡ℎ(𝑇(𝜉), 𝑐(𝜉)) − ∑ �̲�𝑘
𝑡ℎ(𝑇(𝜉), 𝑐(𝜉))𝑁

𝑘=1 )
𝑑𝑇(𝜉)

𝑑𝜉
− ∑

1

𝜏𝑘
�̲�𝑘

𝑡ℎ(𝜉)𝑁
𝑘=1          (16) 

with tensorial internal variables �̲�𝑘
𝑡ℎ accounting for the history of temperature and the CTE. 

They evolve following the differential equations 

𝑑�̲�𝑘
𝑡ℎ(𝜉)

𝑑𝜉
= �̲�𝑘

𝑡ℎ(𝑇(𝜉), 𝑐(𝜉))
𝑑𝑇(𝜉)

𝑑𝜉
−

1

𝜏𝑘
�̲�𝑘

𝑡ℎ(𝜉)             (17) 

For time-independent CTE, the classical definition 

𝑑�̲�𝑡ℎ(𝜉)

𝑑𝜉
= �̲�∞

𝑡ℎ(𝑇(𝜉), 𝑐(𝜉))
𝑑𝑇(𝜉)

𝑑𝜉
               (18) 

of the CTE is recovered from Eq. (16). 
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4. Thermo-viscoelastic homogenization 

According to the viscoelastic correspondence principle, the Laplace-Carson (LC) transform 

𝑓(𝑝) = 𝑝 ∫ 𝑓(𝜉)𝑒−𝑝𝜉𝑑𝜉
∞

0
               (19) 

applied to a viscoelastic problem transforms it into an elastic problem in the LC-space [19] as a 

function of the transform parameter 𝑝. Applying Eq. (19) to Eqs. (1), (13), and (14) yields 

�̲̂�(𝑝) = �̳̂�(𝑝): (�̲�̂(𝑝) − �̲̂�𝑡ℎ(𝑝)�̂�(𝑝) − �̲̂�𝑐ℎ(𝑝)�̂�(𝑝))            (20) 

if the explicit dependence of �̲�𝑡ℎ and �̲�𝑐ℎ on 𝑇 and 𝑐 is momentarily ignored. This corresponds 

to a thermo-elastic problem as a function of the transform parameter 𝑝. Classical thermo-

elastic homogenization methods can therefore be applied in the LC-space to obtain the LC-

transforms of the relaxation modulus, CTE, and CCS of the homogenized material [12]. 

Applying the LC-transform to the Prony series expression of the relaxation modulus (Eq. 4) 

yields for a given value 𝑝𝑖  of the LC-transform parameter 𝑝 

�̳̂�(𝑝𝑖) = �̳�∞ + ∑ ℒ𝑖𝑘�̳�𝑘
𝑁
𝑘=1                (21) 

with 

ℒ𝑖𝑘 =
𝑝𝑖

𝑝𝑖+
1

𝜏𝑘

                 (22) 

Likewise, for a given temperature 𝑇 and a given degree of cure 𝑐, we obtain 

�̲̂�𝑡ℎ(𝑝𝑖, 𝑇, 𝑐) = �̲�∞
𝑡ℎ(𝑇, 𝑐) − ∑ ℒ𝑖𝑘�̲�𝑘

𝑡ℎ(𝑇, 𝑐)𝑁
𝑘=1              (23) 

We now assume that the relaxation modulus, CTE, and CCS of the homogenized thermo-

viscoelastic behavior can also be well fitted by Prony series, whose weights follow continuous 

functions if plotted against the relaxation times on a logarithmic time scale. In this case, we 

can choose to represent the homogenized behavior by the same relaxation times as the matrix 

behavior, distributing the 𝜏𝑘 uniformly on the logarithmic time scale at one relaxation time per 

decade [9]. Then, the LC-transforms of the homogenized properties can also be written in 

terms of Eqs. (21) and (23), with the same transform matrix given by Eq. (22). 

If this procedure is carried out for 𝑀 ≥ 𝑁 different 𝑝𝑖, the coefficients �̳�∞, �̳�𝑘, �̲�∞
𝑡ℎ, and �̲�𝑘

𝑡ℎ of 

the homogenized behavior can be obtained by solving the least-squares problems given by the 

equation systems in Eqs. (21) and (23) [9,12]. This problem is often ill-conditioned, causing 

oscillations in the coefficients of the �̳�𝑘 if plotted against the relaxation times [9], which may 

lead to non-positive definite tensors �̳�𝑘. The proper choice of the 𝑝𝑖  [9,19] improves the 

condition of the least squares problem, which reduces the oscillations [9]. If this is not 

sufficient, Tikhonov regularization can be used [12] to ensure positive definite �̳�𝑘 and thus a 

thermodynamically admissible homogenized behavior. 

5. Results 

Two scale changes are needed to obtain the homogenized behavior of a 3D woven composite. 

In a first step, the homogenized behavior of the warp and weft yarns is determined using a 

hexagonal representative volume element (RVE) [9] and the thermo-viscoelastic behavior of 
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the matrix and the fibers (taking zero �̳�𝑘, as the fibers are considered as linear elastic). Time-

independent CTE and CCS are taken for the matrix and the fibres [12]. In the second step, the 

homogenized behaviors of the warp and weft yarns and the matrix behavior are used for 

thermo-elastic homogenizations on a mesoscopic RVE obtained from micro-tomography 

images of the composite material [9]. The thermo-elastic homogenizations in the LC-space are 

carried out by Finite Element (FE) calculations. The resulting homogenized behaviors 

reproduce accurately the average stresses and strains obtained from full-scale thermo-

viscoelastic FE simulations on the respective RVEs using the same FE meshes [9,12]. 

The homogenized behavior of the composite was used to calculate the evolution of the secant 

moduli under tensile and shear loading as a function of temperature. The results are compared 

to experimental data in Figure 1. Up to about 120°C, the model only slightly underestimates 

the experimental observations. This difference may be due to the influence of the fibers on the 

polymerization of the resin during composite cure, which is not taken into account, as the 

predictions were made using exclusively the constituent properties identified on pure matrix 

specimens. Differences become more significant around 𝑇𝑔, at which the matrix 

characterization was less accurate due to the very soft and fragile specimens. Above 𝑇𝑔, the 

resin becomes very soft, and direct interactions between the fibers like friction, which are not 

take into account in the model, may influence the apparent properties of the composite. 

 

Figure 1. Secant moduli obtained with the homogenized viscoelastic behavior at strain rates of 

0.001s-1 and 0.0001s-1 compared with experimentally measured moduli of the composite at 

0.001s-1. The moduli are normalized by the measured tensile modulus in warp direction at 25°C. 

The evolution of the average composite strain upon heating at 3°C/min from room 

temperature to 200°C predicted by the homogenized thermo-viscoelastic behavior is shown in 

Figure 2. The thermal expansion in the out-of-plane direction is significantly larger as in the 

plane, where it is limited by the fibers. The out-of-plane expansion increases considerably 

around 𝑇𝑔, as the CTE of the matrix increases. In the plane of the reinforcement, the thermal 

expansion is initially positive, but gradually slows down at growing temperatures. Close to 𝑇𝑔, 

the model yields a strong contraction, which is due to the relaxation of the matrix stresses. As 

a consequence, the composite strain becomes dominated by the fibers, which have a slightly 

negative CTE. The initially positive strain of the composite disappears when the internal 

stresses relax, leading to a strongly negative apparent CTE. The model also yields small average 

shear strains, as the RVE identified from tomography images of the composite, is not perfectly 

orthotropic with the axes of the coordinate system. These complex evolutions of the average 

https://doi.org/XXXXXXXXXXXXXX
https://doi.org/XXXXXXXXXXXXXX
http://creativecommons.org/licenses/by/4.0/


Composites Meet Sustainability – Proceedings of the 20
th

 European Conference on Composite Materials, 
ECCM20. 26-30 June, 2022, Lausanne, Switzerland 

7 / 8 ©2022 1
st

 Author et al. https://doi.org/ 10.5075/978-X-XXX-XXXXX-X published under CC BY-NC 4.0 license 

 

thermal strain with sign changes of the apparent CTE cannot be predicted by purely thermo-

elastic homogenization or by viscoelastic homogenization without taking into account time-

dependent effects of the average CTE. 

 

Figure 2. Average strain evolution of the fully cured composite upon heating at 3°C/min 

predicted by the homogenized thermo-viscoelastic behavior. The strains are normalized by the 

final out-of-plane strain at 200°C. 

6. Conclusions 

The viscoelastic behavior of the composite obtained with the presented homogenization 

method captures well the evolution of the apparent elastic properties with temperature. The 

time-dependent CTE that take into account stress relaxation at the lower scales predict a sign 

change of the in-plane average differential CTE of the composite that are not obtained with 

thermo-elastic or purely viscoelastic homogenization techniques. Experimental validation of 

the predicted effects is in progress. The presented methodology will be used in multi-scale 

simulations of the formation of residual stresses and shape distortions of composite parts. In 

particular, it can give indications on whether the shape of a composite part will evolve in time 

after the end of the curing process [8] and on relaxation of internal stresses when the parts are 

reheated. 
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