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Abstract

We propose an algebraic approach to investigate  -diagnosability of partially observed labeled Petri nets which can be either
bounded or unbounded. Namely, a necessary and sufficient condition for  -diagnosability is established based on the resolution
of an Integer Linear Programming (ILP) problem. When the system is  -diagnosable, our approach also yields the minimal
value  <8= ≤  that ensures  <8=-diagnosability. The value of  <8= is calculated directly, using the same ILP formulation,
i.e., without testing 1, ..., ( <8= − 1)-diagnosability. A second  -diagnosability approach, which is derived from the first one, is
also developed on a compacted horizon providing a sufficient condition for  -diagnosability. This second technique allows for
reducing the system dimensionality yielding a higher computational efficiency and allowing the characterization of the length
of the sequences that lead to the fault occurrence, which is necessary to perform the  -diagnosability test of the first approach.

Key words:  / <8=-diagnosability; Petri nets; Discrete-event systems; Integer linear programming.

1 Introduction and related works

Diagnosability analysis is one of the fundamental veri-
fication problems in Discrete Event Systems (DES) [9].
The first formulation of the diagnosability feature in
DES was introduced in the seminal work of Sampath
et al. [23] while considering a Finite State Automaton
(FSA) framework. The authors of [23] define diagnos-
ability as the ability to diagnose (detect and identify)
any fault (or fault class) occurrence within a finite delay
(i.e., a bounded number of events) after its occurrence.
The early works that addressed DES diagnosability is-
sues mostly considered FSA models [10,23]. Then, diag-
nosability analysis was extended to the Petri Net (PN)
formalism [1, 2, 5, 7, 8, 14, 19, 28, 29], taking advantage
of its mathematical and graphical representations. On
the one hand, the idea behind the works that investi-
gate the graphical representation of PN state set consists
in extending the FSA based techniques (i.e., diagnoser-
based and verifier-based techniques) by considering the
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behavior of the PN captured by its reachability graph
(in the case of bounded systems) or coverability graph
(in the case of unbounded systems). Such approaches are
referred to as graph-based [5, 7, 8, 14, 19]. On the other
hand, some further works are based on the mathemati-
cal representation of PN in order to reformulate the di-
agnosability problem as a linear optimization problem,
which can be then tackled bymeans of existing optimiza-
tion techniques, particularly, Integer Linear Program-
ming (ILP). Such approaches are referred to as algebraic
techniques [1–3,28,29]. To get a general overview of the
literature attending to DES diagnosability, the reader
can refer to the reviews in [4, 12,13,32].

Beside the classic diagnosability, a quantified variant of
this feature (called  -diagnosability), was discussed and
formulated in [1, 7, 10, 14, 16, 17, 19, 21, 26, 31]. Gener-
ally,  -diagnosability refers to the ability to diagnose
any fault with certainty, provided that at least  events
have occurred following the fault occurrence. In fact,  -
diagnosability can be of particular interest in practice,
since, in some applications, the delay required for de-
tecting and identifying fault occurrences may have con-
siderable impact in terms of safety and/or performance.

In this paper, we are interested in the test of  -
diagnosability of DES modeled by a partially observed
Labeled Petri Net (LPN). Faults are modeled by means
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of unobservable transitions. We also assume that dif-
ferent observable transitions can share the same label.
Moreover, the fault transitions are divided into various
fault classes. Hence,  -diagnosability can be investi-
gated w.r.t these various classes.

In the context of PNs,  -diagnosability was investigated
in [7, 14] in graph-based setting and in [1, 2] in an alge-
braic setting. In [7], the authors provided necessary and
sufficient conditions for the classic diagnosability and  -
diagnosability. They also proposed a technique to com-
pute the bound  based on the analysis of the reacha-
bility/coverability graph of a structure, called modified
verifier (which is a synchronous composition of the PN
model with itself). In this work, the value  refers to
the number of observable transitions/events after the
fault occurrence. In [14], the authors provided neces-
sary and sufficient conditions for  -diagnosability and
 <8=-diagnosability (the minimum value of  ensuring
 -diagnosability) and proposed an on-the-fly and incre-
mental technique for computing the diagnoser automa-
ton and checking the diagnosability properties, in par-
allel.

In [1], the authors discussed  -diagnosability and pro-
posed necessary and sufficient conditions to check  -
diagnosability for labeled bounded PNs, based on ILP
problems. The established ILP formulation depends on
a parameter, denoted by J , which is necessary for stat-
ing the condition for  -diagnosability. A lower bound
of J , denoted by J<8=, was characterized, which per-
mits to fully describe the set of markings reachable from
the initial marking, which enable the considered fault
transition for the first time. An overestimation of J<8=
is equal to the number of reachable markings. In [1],
the established necessary and sufficient condition for  -
diagnosability requires that J ≥ J<8=, which may lead
to a large and computationally complex ILP problem.

In the present paper, we build on the work of Basile et
al. [1], and we discuss three main contributions: First, a
new algebraic formulation of the  -diagnosability prob-
lem for both bounded and unbounded LPN is proposed.
Such a formulation provides a necessary and sufficient
condition for  -diagnosability, and allows for investigat-
ing this feature by means of linear optimization tech-
niques. Moreover, our formulation makes it possible to
consider each fault class as a whole, instead of a sin-
gle fault transition. Furthermore, if the fault class is
 -diagnosable, the minimum value  <8= ≤  ensuring
 <8=-diagnosability is determined all at once. Our ILP
formulation involves a parameter �, and we show that
it suffices to take a value of � that is at least equal to
a value � that depends on  . The value of � corre-
sponds to the maximum length of some particular fault-
free sequences that enable the considered fault class.
The above results are firstly derived under the assump-
tion that the unobservable subnet is acyclic. The case
of LPN with unobservable cycles is then discussed and

a sufficient condition for  -diagnosability is provided.
In this first contribution, the value of parameter � is
assumed to be known (as in [1] for parameter J ). Sec-
ondly, a variant of the above technique is then devel-
oped. The technique compacts the fault-free sequences
that precede the first occurrence of the fault (from the
considered fault class). This second contribution does
not involve parameter �, and establishes a sufficient con-
dition for  -diagnosability, based on a new ILP formu-
lation of the problem. The advantages of this technique
are twofold. On the one hand, it dispenses with param-
eter �, which can be difficult to determine, enabling to
reduce the number of variables of the ILP problem for-
mulated to test  -diagnosability. If the established suf-
ficient condition for  -diagnosability is fulfilled, a value
 2 that is potentially lower than  , and which ensures
( 2)-diagnosability, is given, where  <8= ≤  2 ≤  . On
the other hand, the compression of the interval preced-
ing the fault occurrence allows the characterization of
parameter �, which is necessary to implement the first
approach.

The paper is organized as follows. In section 2, we in-
troduce some relevant preliminary notions and algebraic
concepts pertaining to LPN. Useful definitions related
to  -diagnosability are also given. In section 3, we ex-
pose the principle of our ILP based approach to investi-
gate  -diagnosability. A characterization of the length
of some prefix sequences that precede the fault occur-
rence, which are relevant for  -diagnosability is also dis-
cussed. Such a characterization is fundamental to es-
tablishing the algebraic model used for  -diagnosability
test. In section 4, a necessary and sufficient condition
to check  -diagnosability of a fault class is established.
 <8=-diagnosability is also discussed. In section 5, us-
ing a compacted horizon, a sufficient condition for  -
diagnosability is established. A characterization of pa-
rameter � which is necessary to implement the first ap-
proach is also accomplished. In section 6, computational
complexity analysis and comparative results are pre-
sented. A railway benchmark is used to illustrate the
effectiveness of the proposed techniques. Section 7 con-
cludes the paper and provides a number of perspectives
for the present work.

2 Preliminaries

2.1 Background on LPN

A Petri net (Place/Transition net) is a 4-tuple N =

(%,),,−,,+), where % and ) are non-empty finite sets
of places and transitions, respectively. ,− : % × ) → N
and ,+ : % × ) → N are the pre- and post-incidence
matrices, respectively. , = ,+ − ,− is the incidence
matrix of N . For a given transition C ∈ ) , an input (out-
put) place of C is a place ? ∈ % such that ,− (?, C) > 0
(,+ (?, C) > 0). A marking is a vector " ∈ N |% | that
assigns a non-negative integer (a number of tokens) to
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each place. We denote by " (?) the marking of place ?.
A marked PN (N , "0) is a PN N with a known initial
marking "0. For short, a marked PN will be called PN
in what follows.

A transition C ∈ ) is enabled by marking ", denoted
by " [ C �, iff " (?) ≥ ,− (?, C),∀? ∈ %. An enabled
transition may fire, yielding marking " ′ = " +, (·, C).
Hence, marking " ′ is said to be reachable from marking
" by firing transition C, also denoted by " [ C � " ′. A
sequence of transitions f = C1C2 . . . C: is firable at mark-
ing "0, denoted by "0 [ f �, if ∃ "1, "2, . . . , ":−1 s.t.
"0 [ C1 � "1 [ C2 � · · · ":−1 [ C: �. We denote by
! (N , "0) the set of sequences resulting in all the reach-
able markings of N from "0.

Suppose that ) is ordered as ) = {C1, . . . , C |) |}, function
c) : )∗ → N |) | assigns to each sequence f ∈ )∗ its count
vector c) (f), where the 8Cℎ element of vector c) (f)
represents the number of firings of transition C8 in f. For
a given marking " that is reachable from marking "0

through a transition sequence f (i.e., "0 [f > "), the
state equation " = "0 +, · G holds with G = c) (f).
However, if the state equation above is satisfied for some
positive integer vector G ∈ N |) |, this does not necessarily
imply that there exists a corresponding sequence f ∈ )∗
of count vector G, such that "0 [f �.

In the context of partially observed PN, the set of tran-
sitions is partitioned as ) = )>])D, where )> is the set of
observable transitions, and )D is the set of unobservable
ones. Given a sequence f ∈ )∗, %> (f) (resp. %D (f)) cor-
responds to the projection of f over )∗> (resp. )∗D). We de-
fine the restriction of the function c) on the set of observ-
able transitions (respectively unobservable transitions)
as c)> : )∗> → N |)> | (respectively c)D : )∗D → N |)D |).
For the set of observable transitions )>, we define the
observable subnet of PN N by N> = (%,)>,,−> ,,+> ),
with ,−> = ,−|)> , and ,+> = ,+|)> . Similarly, the un-
observable subnet is defined by ND = (%,)D ,,−D ,,+D ),
with ,−D = ,−|)D , and ,

+
D = ,

+
|)D . Additionally, we write

) 5 ∈ f to denote that ∃C ∈ ) 5 such that C ∈ f.

An LPN is a structure NL = ((N , "0), �,L), where
(N , "0) is a marked PN, � is a finite set of events (i.e.,
labels) and L : ) → � ∪ {Y} is the labeling function,
which assigns to each transition C ∈ ) either a label
from � if C ∈ )>, or Y if C ∈ )D. It is worth noting
that two observable transitions may share the same
label. The labeling function L can also be extended
to transition sequences, L : )∗ → {�⋃{Y}}∗. It is
also possible to define the projection of f ∈ )∗ in the
set of observable labels �∗ as %; (f) = L(%> (f)). For
F ∈ �∗, the inverse projection operator is defined as
%−1
;
(F) = {f ∈ )∗ | %; (f) = F}. The vector c� (F) is

called the count vector of word F, where c� : �∗ → N |� |
is the function that assigns to any word F ∈ �∗, the
vector H = c� (F) ∈ N |� | of elements representing the

number of occurrences of each label of set � in F.

Definition 1. (Explanations and explanation vec-
tors [8]). Given amarking" and an observable transition
C ∈ )>, we define Σ(", C) = {fD ∈ )∗D | " [fDC >} as the
set of explanations of C at ", and � (", C) = c(Σ(", C))
as the set of explanation vectors, i.e., firing vectors
associated with the explanations in Σ(", C).

In the context of fault diagnosis, the set of unobserv-
able transitions is partitioned into two disjoint subsets
)D = ) 5 ] )A46, where ) 5 corresponds to the set of fault
transitions while )A46 corresponds to the regular (i.e.,
non-faulty) unobservable transitions. Furthermore, the
set of fault transitions ) 5 can also be partitioned into A
disjoint subsets () 5 = ]A8=1�8) that represent the differ-
ent fault classes. Without loss of generality and for the
sake of clarity, one single fault class, denoted as ) 5 , will
be considered. A sequence f ∈ )∗ is said to be faulty if f
contains at least one fault transition of ) 5 (i.e., ∃C 5 ∈ ) 5
such that C 5 ∈ f). In the remainder of the paper, we say
that fault class ) 5 occurred to mean that there exists a
fault transition C 5 ∈ ) 5 which has fired.

We denote by k() 5 ) the set of sequences that enable
fault class ) 5 for the first time. Formally:

k() 5 ) = {f ∈ )∗ | ( ) 5 ∉ f) ∧ (∃ C 5 ∈ ) 5 : "0 [fC 5 �)}.

2.2 Algebraic modeling of LPN

In this section, a number of algebraic derivations of LPN
concepts are provided. Such formulations allow us to
outline our contributions subsequently.

2.2.1 Modeling of firing sequences

Let us consider a feasible firing sequence f from the
initial marking "0. If we consider an estimation hori-
zon ℎ ∈ N∗ with ℎ ≥ |f |, then we can derive a se-
quence f̃ as f̃ = C<1>C<2> ...C<ℎ> where C<8> ∈ ) ∪ {Z }
for all 8 ∈ È1, ℎÉ, and Z stands for the empty step se-
quence. That is, we interleave the transitions in f with
empty step sequences so as to fill all the indexes of the
estimation horizon, i.e., from 1 to ℎ. Therefore, there
exists a list of markings "<1>, "<2>, . . . , "<ℎ+1> such
that "<1> [C<1> � "<2> [C<2> � "<3> . . . "<ℎ> [C<ℎ> �
"<ℎ+1> where "<1> = "0.

In the sequel, we denote c) (C<8>) as by G<8>, 8 ∈ È1...ℎÉ.
Based on the fundamental equations of markings and
the firing conditions of transitions C<1>, C<2>, ..., C<ℎ> re-
spectively, we get the following relationships specifying
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the evolution of count vectors:

,− · G<1> ≤ "0

−,.
9−1∑
8=1

G<8> +,− · G< 9> ≤ "0 ; ∀ 9 ∈ È2, ℎÉ
(1)

Let us define augmented vector - ≥ 0 as follows:

- =

(
(G<1>)> (G<2>)> . . . (G<ℎ>)>

)>
(2)

In view of equations (1), we get the system:

Γ.- ≤ Θ (3)

where Γ=

©­­­­­­­­«

,− 0 . . . . . . 0

−, ,−
.
.
.

.

.

. 0

−, −, . . . −, ,−

ª®®®®®®®®¬
and Θ =

©­­­­­­­«

"0

"0

.

.

.

"0

ª®®®®®®®¬
.

The dimensions of matrix Γ and vector Θ are ℎ.|% |×ℎ.|) |
and ℎ.|% | × 1, respectively.

2.2.2 Modeling of explanation vectors

Let us consider a feasible firing sequence f from "0,
and let f> = %> (f) be the observable projection of f.
Similarly to section 2.2.1, we can derive a sequence f̃>
from f> as f̃> = C<1>> C<2>> ...C<ℎ>> , where C<8>> ∈ )> ∪ {Z }
for all 8 ∈ È1, ℎÉ with ℎ ≥ |f> | being the estimation
horizon. We denote by G<8>> = c)> (C<8>> ) the count vec-
tor corresponding to C<8>> . Let f<1>D , f<2>D , · · · , f<ℎ>D be
a set of unobservable explanations that are coherent
with transitions C<1>> , C<2>> , · · · , C<ℎ>> , respectively. That
is, f<1>D C<1>> f<2>D C<2>> ...f<ℎ>D C<ℎ>> is a feasible firing se-
quence from "0. Then, there exists a suite of markings
"
′<1>, · · · , " ′<ℎ> such that "0 = "

′<1> [f<1>D C<1>> �
"
′<2> · · ·" ′<ℎ> [f<ℎ>D C<ℎ>> � " ′<ℎ+1>.

We denote by G<8>D = c)D (f<8>D ) and G<8>> = c)> (C<8>> )
where 8 ∈ È1...ℎÉ to represent the rearrangement
of the LPN transitions with respects to )D and )>,
respectively. Based on the fundamental equations
of markings and the firing conditions of sequences
f<1>D , C<1>> , f<2>D , C<2>> , ..., f<ℎ>D and C<ℎ>> , we get the
following relationships specifying the evolution of count
vectors:

−,D .G<1>D +,−> .G<1>> ≤ "0

−,D
9

.
∑
8=1

G<8>D −,> .
9−1∑
8=1

G<8>> +,−> .G
< 9>
> ≤ "0 ; ∀ 9 ∈ È2, ℎÉ

(4)

Let us consider the augmented vector - in (2) where
G<8>, 8 ∈ È1, ℎÉ is defined as follows:

G<8> = [(G<8>> )> (G<8>D )>]> (5)

In view of equations (4) and by ordering the transitions
in ) as ) = {C>1 , · · · , C>|)> | , CD1 , · · · , CD|)D | } so that we can
write , as , = (,> |,D), the following system can be
formulated:

Γ′.- ≤ Θ where (6)

Γ
′
=

©­­­­­­­­­­­«

,−> −,D 0 · · · 0

−, ,−> −,D
.
.
.

.

.

.
. . . 0

−, · · · −, ,−> −,D

ª®®®®®®®®®®®¬
.

The dimensions of matrix Γ′ is ℎ.|% | × ℎ.|) |. Note that
vector Θ is as defined in (3).

Note that, when the estimate of count vector GD<8> cor-
responds to a sequence that can be executed by the LPN
(from " ′<8>), we can say that this count vector is an
explanation vector of C<8>> from " ′<8> (cf. Definition 1),
i.e., G<8>D ∈ � (" ′<8>, C<8>> ).

2.2.3 Modeling indistinguishable observable transi-
tions

Let us now establish the relationship between G><8> and
H<8>, 8 ∈ È1, ℎÉ where H<8> is the count vector of the ob-
served label associated with the 8Cℎ iteration. To this end,
let us consider that)> = {C1 · · · C |)> |} and � = {ℓ1 · · · ℓ |� |}.
Then, we can define the labeling matrix ℘ ∈ {0, 1} |� |× |)> |
whose general term ℘@A with @ ∈ [1...|)> |] and A ∈
[1...|� |] and which is defined by:{

℘@A = 1 8 5 L(CA ) = ℓ@
℘@A = 0 >Cℎ4AF8B4

(7)

Hence, we get the following relation relating G><8> to
H<8>:

H<8> = ℘ · G><8> ; ∀8 ∈ È1, ℎÉ (8)
Finally, we can deduce the following relationship
between the count vector of observed labels . =

((H<1>)>...(H<ℎ>)>)> and the count vector - defined in
(2) and (5):

J .- = . (9)
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where J =

©­­­­­­­­­­«

℘ 0 0 · · · 0

0
. . .

.

.

.

.

.

.
. . . 0

0 · · · 0 ℘ 0

ª®®®®®®®®®®¬
.

The boxes in D represent the concatenation of matrix ℘
of dimention |� | × |)> | with a zero matrix of dimension
|� | × |)D |. � is a block-diagonal-matrix of dimension
ℎ.|� | × ℎ.|) |.

2.3  -diagnosability of LPN

The classic definition of diagnosability (as initially in-
troduced by Sampath et al. [23]) can be formulated in
the context of LPN for a fault class ) 5 as follows:

Definition 2. (diagnosability of a fault class [7]) An
LPN system, having no deadlock after the occurrence of
any faulty transition C 5 in fault class ) 5 , is diagnosable
with respect to ) 5 if the following holds:

(∀f1 5 ∈ k() 5 ) (∃^ ∈ N∗) (∀f0 5 |"0 [f1 5 C 5 f0 5 �
; C 5 ∈ ) 5 ) : |f0 5 | ≥ ^ ⇒ Diag

where the diagnosability condition Diag is: f ∈
%−1
;
[%; (f1 5 f0 5 )] ⇒ ) 5 ∈ f.

The above definition can be explained as follows: Let
f1 5

1 be a non-faulty sequence (with respect to fault
class) 5 ) generated by the LPN, which reaches amarking
that enables a fault transition from class ) 5 . Condition
Diag requires that there exists a finite delay upon which
one can detect the occurrence of a fault from ) 5 with
certainty. Note that the bound ^ in definition 2 may
depend on the particular sequence f1 5 .

Let us now define the notion of diagnosability in  

steps, also called  -diagnosability.

Definition 3. ( -diagnosability of a fault class) An
LPN system, having no deaddlock after the occurrence of
any faulty transition C 5 in fault class ) 5 , is diagnosable
with respect to ) 5 if the following holds:

(∀f1 5 ∈ k() 5 )) (∀f0 5 |"0 [f1 5 C 5 f0 5 � ; C 5 ∈ ) 5 ) :
|f0 5 | ≥  ⇒ Diag

The above definition means that the firing of any fault

1 In the sequel, f1 5 (resp. f0 5 ) stands for the prefix (resp.
suffix) preceding (resp. following) the first transition of the
considered fault class.

k��� 

k-diagnosable 

non k-diagnosable 
3 2 1 

K��� = k���+1 

K ᵏ 

	

� 	


� 	


 

Fig. 1. Principle of  -diagnosability of fault class
) 5 = {C15 , C

2
5
, C3
5
}

transition C 5 ∈ ) 5 can be detected with certainty pro-
vided that at least  transitions have been fired since
the firing of C 5 .

The following definition of  -diagnosability which is
equivalent to Definition 3 can also be introduced. This
reformulation will be used in the sequel to develop our
technique for  -diagnosability analysis.

Proposition 1. An LPN is  -diagnosable with respect
to a fault class ) 5 iff there do not exist two firing se-
quences f, f′ ∈ )∗ such that:

• f = f1 5 C 5 f0 5 , with C 5 ∈ ) 5
• f1 5 ∈ k() 5 )
• |f0 5 | ≥  
• ) 5 ∉ f′
• %; (f) = %; (f′)

Proof. the above result is a reformulation of the  -
diagnosability feature as stated in Definition 3. �

According to Proposition 1, a fault class ) 5 is said to be
 -diagnosable iff for any feasible faulty sequence f hav-
ing at least  transitions following the first fault class
occurrence, there does not exist any fault-free sequence
f′ that generates the same observation as f. Therefore,
checking  -diagnosability of a fault class ) 5 amounts
to checking that no such couple (f, f′) of transition se-
quences exists for the LPN.

3 Approach principle

Given an LPN and a fault class ) 5 , the  -diagnosability
problem can be reformulated as follows:
"Is there  <8= ≤  such that ) 5 is  <8=-diagnosable
and ) 5 is not ( <8= − 1)-diagnosable? If so, ) 5 is  -
diagnosable."
Therefore, checking  -diagnosability of ) 5 consists
in determining whether or not there exists a specific
minimum value  <8= ≤  that ensures the  <8=-
diagnosability of ) 5 (see Figure 1).

3.1 Reformulation of the  and  <8=-diagnosability
problems

It is straightforward that for non  -diagnosable models,
there is no  <8= ≤  ensuring  <8=-diagnosability. How-
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ever, in the case of  -diagnosable fault class, there exists
some  <8= ∈ È1; É, that ensures  <8=-diagnosability.
Two cases should be distinguished:
– If  <8= = 1 then there does not exist any value ^ ∈
È1; É such that ) 5 is not ^-diagnosable.
– If  <8= ∈ È2; É then ∀^ ∈ È1; <8= − 1É, ) 5 is not
^-diagnosable, and ∀^ ∈ È <8=; É, ) 5 is ^-diagnosable.

We suppose that ) 5 is  <8=-diagnosable where 1 ≤
 <8= ≤  . To determine the value of  <8=, we identify
the maximum value of ^ ≤  , denoted as ^<0G such that
the following set is not empty:

� (^) = { (f, f′) ∈ !2 (N , "0) | f = f1 5 C 5 f0 5 ,
f1 5 ∈ k() 5 ), C 5 ∈ ) 5 , |f0 5 | = ^;) 5 ∉ f′;
%; (f) = %; (f′) }

In fact, � (^) represents the set of couples of indistin-
guishable sequences (f, f′) where f is a feasible faulty
sequence with exactly ^ transitions (with ^ ≤  ) follow-
ing the first fault class occurrence, while f′ is a fault-
free sequence. Therefore,  <8= can be deduced (from the
value of ^<0G) as follows:

• If @^ ∈ È1; É such that ∃(f, f′) ∈ � (^) (i.e. ^<0G
does not exist), then  <8= = 1.
• If ∃^<0G ∈ È1; È such that ∀^ ∈ È1; ^<0GÉ, � (^) ≠ ∅
and ∀^ ∈É^<0G ; É, � (^) = ∅ then  <8= = ^<0G + 1.
• If ∀^ ∈ È1; É, � (^) ≠ ∅, then ^<0G =  which
implies ) 5 is not  -diagnosable.

In the following section, we will show that we can verify
the existence of such  <8= ∈ È1,  É and, if so, determine
its value, by solving one single linear optimization prob-
lem. However, before that, we need to characterize the
set of sequences k() 5 ) that enable fault class ) 5 for the
first time.

In the remainder of the paper, we consider the following
assumption:
H0.The considered LPN does not reach a deadlock after
firing any fault transition.

3.2 Preliminary results

In order to reduce the computational complexity
and the memory requirements needed to solve the
 -diagnosability problem, we have every interest to
restrict, as much as possible, the scope of the firing
sequences to be considered. Unlike in [1], to perform
the  -diagnosability test we do not consider all the
sequences in k() 5 ) (sequences that lead to the first
occurrence of some fault in ) 5 ). Indeed, we need to
investigate only a subset of faulty sequences that have
some fault-free indistinguishable sequence.

Firstly, for a given value ^ ∈ È1; É, we define the follow-
ing subset k� () 5 , ^) ⊆ k() 5 ) which holds the sequences
f1 5 that lead to a first firing of some transition in ) 5 ,
and which fulfill the following: (i) f1 5 is the prefix of
some feasible faulty sequence f = f1 5 n 5 f0 5 , and (ii) f
is associated with some indistinguishable fault-free se-
quence f′ such that (f, f′) ∈ � (^). Thus, k� () 5 , ^) can
be formally defined as follows:

k� () 5 , ^) = {f1 5 ∈ k() 5 ) | ∃(f, f′) ∈ � (^)
F8Cℎ f = f1 5 C 5 f0 5 , C 5 ∈ ) 5 }

Finding one pair (f, f′) ∈ � (^) is sufficient to infer that
the net is not ^-diagnosable. Hence, we can seek for a
particular couple (f, f′) ∈ � (^) such thatf corresponds
to a shortest faulty sequence. In fact, for some fixed ^ ∈
È1; É, a shortest fault sequence f = f1 5 C 5 f0 5 is also
associated with a shortest sequence f1 5 . Therefore, for
a given ^ ∈ È1; É we can further reduce the scope of
our investigation by considering only the set of shortest
sequences in k� () 5 , ^), which is defined as follows:

k<8=
�
() 5 , ^) = {f1 5 ∈ k� () 5 , ^) | @f′1 5 ∈ k� () 5 , ^)

s.t |f1 5 |>|f′1 5 |}

Hence, to check  -diagnosability based on the verifica-
tion of the existence of  <8= between 1 and  , it is neces-
sary to verify the existence of such couple (f, f′) ∈ � (^)
for each ^ ∈ È1; É. Consequently, it suffices to charac-
terize the following subset of k() 5 ), denoted as k 

�
() 5 ):

k � () 5 ) =
⋃

1≤^≤ 
k<8=� () 5 , ^) =

⋃
1≤^≤ <8=−1

k<8=� () 5 , ^)

The problem formulation we propose for analyzing  -
diagnosability allows us to characterize the set k 

�
() 5 )

without resorting to explicit enumeration of the feasible
sequences of this set. In fact, it suffices to determine
the maximum length of the sequences in set k 

�
() 5 ), as

will be shown in Section 4. Consequently, the following
result can be stated:

Proposition 2. For an LPN without any deadlock fol-
lowing the firing of any transition of fault class ) 5 , check-
ing  -diagnosability of ) 5 can be determined only for
a subset of k() 5 ) that includes sequences of maximum
length denoted � defined as follows:

� = max
1≤^≤ 

min
f1 5 ∈k� ()5 ,^)

|f1 5 | (10)

Proof.
) 5 is  -diagnosable iff there exists a minimum value
 <8= ∈ È1,  É that ensures  <8=-diagnosability of ) 5 .
Therefore, ∀^ ∈ È1; <8= − 1É, ) 5 is not ^-diagnosable
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and ∀^ ∈ È <8=; É, ) 5 is ^-diagnosable. For a fixed
^ ∈ È1; É, () 5 is not ^-diagnosable) iff (∃(f1, f

′
1) ∈

� (^) such that f1 = f
1
1 5
C 5 f

1
0 5

and f1
1 5
∈ k<8=

�
() 5 , ^)).

The length of f1
1 5

is �^ = min
f1 5 ∈k� ()5 ,^)

|f1 5 |. Since

 <8= ≤  is not known a priori, we have to consider all
f1 5 ∈ k<8=�

() 5 , ^) for all ^ ∈ È1; É to find a couple
(f1, f

′
1) ∈ � (^) if there exists. Therefore, a sufficient

maximal length of f1 5 for  -diagnosability analysis is
� = max

1≤^≤ 
�^ . �

In other terms, � represents the maximum length
among the set of sequences in k 

�
() 5 ). Or, phrased

differently, � stands for the maximal length of the
shortest sequences leading to the firing of some faulty
transition in ) 5 , that admit a continuation of length 1
to  , such that there exists a corresponding indistin-
guishable fault-free sequence.

Remark 1. It is straightforward that the theoretic value
of � is finite even for unbounded nets. Indeed, � is the
solution of a <0G−<8= optimization problem, and corre-
sponds to the maximum value among a finite number of
integers. In fact, although Proposition 1 does not provide
an operative way to determine a value for � , this result
is crucial in our approach for  -diagnosability analysis,
that will be discussed in section 4. Indeed, the finiteness
of � allows the applicability of our technique to both
bounded and unbounded LPN.

In general, the computation of � (or an overestimate
� ≥ � ) is not trivial. Of course, this value depends on
the net structure and can be very large. It is worth not-
ing that an overestimation of � can lead to a too much
complex ILP problem to be solved, being given that the
resolution of an ILP problem is exponential in the worst
case w.r.t. the number of variables. On the other hand,
an under-estimation of � can yield an erroneous verdict
regarding  -diagnosability. In the remainder of the pa-
per,  -diagnosability analysis will be performed while
considering the two cases of known and unknown value
of � ≥ � .

4 Analysis of  / <8=-diagnosability

The main result discussed in this section is a necessary
and sufficient condition for  -diagnosability of a fault
class ) 5 under the hypothesis of acyclicity of unobserv-
able subnet (denoted later by assumption H1 ). An ap-
propriate value of � ≥ � is supposed to be known. In
case ) 5 is  -diagnosable, the value of  <8= is also given.
The developed technique is based on the resolution of an
ILP problem that will be formulated in what follows.

Assume that fault class ) 5 is  <8=-diagnosable with
 <8= > 1, then there exists at least one firable sequence
f = C<1> . . . C<�>C<�+1> . . . C<�+ <8=> from "0 such that:

• C<8> ∈ () \ ) 5 ) ∪ {Z } for 1 ≤ 8 ≤ �;
• C<�+1> = C 5 ∈ ) 5 ;
• C<�+2>, . . . , C<�+ <8=> ∈ ) ; and
• there exists at least one sequence f′ ∈ ()\) 5 )∗ en-
abled from "0, such that %; (f) = %; (f′).

4.1 Modeling the faulty sequence

Since  <8= ≤  is not known a priori, for the com-
putation of the count vector associated with faulty
sequence f = C<1>C<2> ...C<�> ...C<�+ <8=>, we expand
the firing sequence f over horizon � +  + 1 by tak-
ing C<�+ <8=+1>, · · · , C<�+ +1> as empty step sequences.
Therefore, we can write f = C<1>C<2> · · · C<�+ +1>,
where C<8>, 8 ∈ È1, � +  + 1É can correspond to an ob-
servable transition, an unobservable transition or even
the empty step sequence Z .

We denote by G<8>> = c)> (C<8>) and G<8>D = c)D (C<8>)
to represent the rearrangement of the LPN transitions
with respect to )> and )D respectively, yielding G<8> =
[(G<8>> )> (G<8>D )>]>. The firing count vector of faulty
sequence f is defined as follows:

- =

(
(G<1>)> (G<2>)> . . . (G<�+ +1>)>

)>
(11)

Vector - satisfies (3) with ℎ = � +  + 1.

At every iteration < 9 > from < 1 > to < � +  + 1 >,
at most one transition is fired. Therefore, 0 ≤ 2.G< 9> ≤
1 ; ∀ 9 ∈ È1, � +  + 1É where 2 is a row vector of 1′s of
dimension |) |. This can be expressed as follows:

0 ≤ E1.- ≤
−→
1 (12)

where E1 =

©­­­­­­­­«

2 0 · · · 0

0
. . .

.

.

.

.

.

.
. . . 0

0 · · · 0 2

ª®®®®®®®®¬
From iteration < 1 > to iteration < � >, no fault transi-
tion of fault class ) 5 occurs. Therefore, the firing num-
ber of fault transitions from iteration < 1 > to iteration
< � > is equal to zero. The first occurrence of a fault tran-
sition from ) 5 appears at the (� + 1)Cℎ iteration. There-

fore,
<�>∑
9=1

2 5 .G
< 9> = 0 and 2 5 .G<�+1> = 1 where 2 5 is a

row vector of dimension |) |, of which all the elements are
null, except the elements that are associated with fault
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transitions in ) 5 , which are equal to 1. Hence, we get:{
51.- = 0

52.- = 1
(13)

where 51 =
(
2 5 2 5 · · · 2 5 01×|) | ¤( +1)

)
, and

52 =

(
01×|) |.� 2 5 01×|) |. 

)
.

Regarding iterations < � +2 > to < � + +1 >, iteration
< � +  <8= + 1 > is the point from which the sum of the
count vector elements irrevocably switches from 1 to 0,
i.e., remains equal to 0 till the final iteration < �+ +1 >,
which implies 2.G< 9> − 2.G< 9+1> ≥ 0 ;∀ 9 ∈ È� +2; � + É.
The underlying idea of the previous relationship is to en-
sure that exactly one transition is actually fired at each
iteration from the < �+2 >Cℎ to < �+ <8= >Cℎ iteration,
(i.e., no void iteration), and that f does not hold further
transitions. Hence, we can count the maximum number
of firable transitions following the fault occurrence while
assuming that there is at least one corresponding fault-
free sequence that generates the same observation. The
previous relation can be written using the following ma-
trix/vector form:

E2.- ≤ 0 (14)

with E2 =

©­­­­­­­­«
0( −1)×|) |.(�+1)

−2 2 0 · · · 0

0
. . .

. . .
.
.
.

.

.

.
. . .

. . . 0

0 · · · 0 −2 2

ª®®®®®®®®¬
The faulty sequence f holds at least one transition and
at most  transitions following the first occurrence of

the fault class. Therefore, 1 ≤
�+ +1∑
8=�+2

2.G<8> ≤  which

can be expressed as a dot product, as follows:

1 ≤ _>.- ≤  (15)

with _ =
(
01×|) |.(�+1) 2 2 · · · 2

)>
.

According to relations (3) for ℎ = � +  + 1, (12), (13)
and (14), the count vector - ∈ N(�+ +1) . |) | of faulty
sequence f fulfills the following polyhedron:

�
� , 

5
.- ≤ 1� , 

5
(16)

where �� , 
5

=

©­­­­­­­­­­­­­­­­­­­­­­­«

Γ

5 1

− 5 1
5 2

− 5 2
E1

−E1
E2

_>

−_>

ª®®®®®®®®®®®®®®®®®®®®®®®¬

and 1� , 
5

=

©­­­­­­­­­­­­­­­­­­­­­­­«

Θ

0

0

1

−1
−→
1

0

0

 

−1

ª®®®®®®®®®®®®®®®®®®®®®®®¬
Theorem 3. [22] Consider a marked PN (N , "0) with
reachability space R(N , "0) and let Rℎ (N , "0) denote
the set of markings " ∈ R(N , "0) that are reachable
from "0 through some firable transition sequence f with
|f | ≤ ℎ, ℎ ∈ N. Also, let !ℎ (N , "0) denote the set of so-
lution vectors " ∈ N |% | of the following system of linear
inequalities, in variables " and 48 , 8 ∈ {1, . . . , ℎ}:

" = "0 +,.
<ℎ>∑
8=1

48

"0 +,.
<8−1>∑
9=1

4 9 ≥ ,−.48 ∀8 ∈ {1, . . . , ℎ}(
1 · · · 1

)
.48 ≤ 1 ∀8 ∈ {1, . . . , ℎ}

48 ∈ {0, 1} |) | ∀8 ∈ {1, . . . , ℎ}

(17)

Then, Rℎ (N , "0) = !ℎ (N , "0).

Based on Theorem 3, let us introduce the following
lemma.

Lemma 4. Under H0, system (16) is satisfied iff there
exists a feasible faulty sequence f with at most  transi-
tion firings after the first occurrence of fault class ) 5 .

Proof. System (16) is the state equation that describes
a faulty sequence f (with |f | ≤ � + +1) by considering
at most one transition firing at each iteration (vector -
satisfies (3) with ℎ = � +  + 1). Therefore, according to
Theorem 3, (16) is satisfied iff there exists a correspond-
ing feasible faulty sequence f with at most  transition
firings after the first occurrence of ) 5 .

4.2 Modeling the fault-free sequence

Now that faulty sequence f has been formally charac-
terized, let us assume that there exists a correspond-
ing non-faulty (w.r.t. ) 5 ) indistinguishable sequence f′,
i.e., f′ generates the same observation as faulty se-
quence f (%; (f) = %; (f′) = F). Since f contains at
most � +  + 1 transitions (|f | ≤ � +  + 1), then F =

%; (f′) = %; (f) satisfies |F | ≤ � +  + 1. Hence, we can
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write F as F = ;<1>;<2> ...;<�+ +1>, where ;<8> is the
label produced at iteration < 8 >. Here, ;<8> can be
either a label from � or the the empty step label ex-
pressing the non-occurrence of an observable event at
the < 8 >Cℎ iteration. Let f′> = %> (f′) be the observ-
able projection of f′. We can then write f′> as f′> =
C
′<1>
> C

′<2>
> ...C

′<�+ +1>
> where C′<8>> ∈ L−1 (;<8>). We de-

note by G′<8>> = c)> (C
′<8>
> ) to represent the count vector

corresponding to C′<8>> . Let f′<1>D , f
′<2>
D , ...., f

′<�+ +1>
D

be the unobservable sequences (explanations) that are
coherent with transitions C′<1>> , C

′<2>
> , ...., C

′<�+ +1>
> , re-

spectively. An ordering of the set of transitions ) with
regards to )> and )D yields G

′<8> = ((G′<8>> )> (G′<8>D )>)>.
The firing count vector of the fault-free sequence f′ =
f
′<1>
D C

′<1>
> f

′<2>
D C

′<2>
> ...f

′<�+ +1>
D C

′<�+ +1>
> can then be

expressed as follows:

- ′ =
(
(G ′<1>)> (G ′<2>)> . . . (G ′<�+ +1>)>

)>
(18)

Vector - ′ satisfies relation (6) as well, with ℎ = � + +1,
for f′ to be feasible.

Sequence f′ must not include any fault transition. This

can be expressed by the relation
�+ +1∑
8=1

2 5 .G
′<8> = 0 ,

which can be written in vector dot product form as:

53.-
′ = 0 (19)

where 53 =
(
2 5 2 5 · · · 2 5

)
.

According to (6) for ℎ = � +  + 1 and (19), the count
vector of the fault-free sequence f′ fulfills the following
polyhedron:

�� , = .- ′ ≤ 1� , = (20)

where �� , = =

©­­­«
Γ′

53

− 53

ª®®®¬ and 1� , = =

©­­­«
Θ

0

0

ª®®®¬
The two sequences f and f′ have the same observable
projection, this can be formulated as:

J .- = J .- ′ (21)

where � is as defined in relation (9) and ℎ = � +  + 1.

Assuming that vector - in (21) satisfies (16), the inte-
ger solutions of system (20) satisfying (21) form a set of
vectors that includes the count vectors of sequences f′
which fulfill condition �f,f′ (^) with ^ ∈ È1; É.

Theorem 5. [15] In an acyclic PN, marking " is reach-
able from "0 iff there exists a non negative integer solu-

tion G satisfying " = "0 +,.G.

The theorem ensures that, in an acyclic PN, every
positive solution of state equation " = "0 + ,.G cor-
responds to a count vector of an actual feasible firing
sequence. However, in the presence of cycles in the net,
the above result does not apply. That is, the solution
G does not necessarily correspond to feasible firing se-
quences. Based on Theorem 5, the following result can
be inferred.

Lemma 6. Under hypothesesH0 andH1, equation (20)
is satisfied if and only if there exists a feasible fault-free
sequence f′.

Proof. We recall here that we suppose that the LPN
does not include any cyclic unobservable subnet. There-
fore, by propagating the result of Theorem 5 at every
iteration successively from < 1 > to < � +  + 1 >,
every sequence of vectors G

′<1>
D , . . . , G

′<�+ +1>
D asso-

ciated with a solution - ′ of (20) coincides with a
sequence of valid explanation vectors of respectively
C
′<1>
> , . . . , C

′<�+ +1>
> having, respectively, as count vec-

tors G′<1>> , . . . , G
′<�+ +1>
> in (20). �

4.3 Main results

As alreadymentioned, our technique for -diagnosability
analysis under assumptions H0 and H1 is based on
the verification of the existence of the minimum value
 <8= of ^ in È1; É ensuring ^-diagnosability. There-
fore, based on linear optimization techniques, we aim
to determine the maximum value ^<0G of ^ such that
there exits a couple of feasible firing sequences (f, f′)
belonging to � (^) where 1 ≤ ^ ≤  . Firstly, let us intro-
duce the following proposition.

Proposition 7. The existence of a couple (f, f′) ∈ � (^)
under assumptions H0 and H1 is equivalent to the ex-
istence of a couple of vectors (-, - ′) ∈ N(�+ +1) . |) | ×
N(�+ +1) . |) | satisfying the following polyhedron:

�� , .

(
-

- ′

)
≤ 1� , (22)

where �� , =

©­­­­­­«
�
� , 

5
0

0 �
� , 
=

J −J
−J J

ª®®®®®®¬
and 1� , =

©­­­­­­«
1
� , 

5

1
� , 
=

0

0

ª®®®®®®¬
The dimensions of matrix �� , and vector 1� , are
(2|) | (� + +1)) × ((� + +1).(2|% | +2|) | + |� | +2) + +7)
and (2|) | (� +  + 1)) × 1, respectively.
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Proof. This is a direct result of Lemma 4 (by referring
to system (16)), and Lemma 6 (by referring to systems
(20)), while considering relation (21). �

Therefore, ^<0G is the cost function of the following op-
timization problem when system (22) is feasible:
max
N
(_>.-)

such that (22)
-, - ′ ∈ N(�+ +1) . |) |

(23)

Remark. In the sequel, we simply write max() and
min() to denote max

N
() and min

N
(), respectively.

We can now establish the following result, which gives a
necessary and sufficient condition for  -diagnosability
based on the ILP problem (23):

Theorem 8. Consider an LPN under hypotheses H0
and H1, and fault class ) 5 . Given  ∈ N∗, ) 5 is  -
diagnosable iff either of the two following conditions is
satisfied:
-i- (23) has no solution, or
-ii- (23) has a solution and max(_>.-) <  

Proof. -i- ((23) has no solution) iff ((22) admits no
solution) iff (according to proposition 7, @(f, f′) ∈
� (^)∀^ ∈ È1; É) iff () 5 is 1-diagnosable).
-ii-((23) has a solution and max(_>.-) <  ) iff (for
^ = _>.- = max(_>.-) <  , (22) admits a solution and
for ^ = _>.- = max(_>.-) +1 ≤  , (22) has no solution)
iff (according to proposition 7, for ^ = max(_>.-) <  ,
∃(f, f′) ∈ � (^) and for ^ = max(_>.-) + 1 ≤  ,
@(f, f′) ∈ � (^) iff () 5 is  <8=-diagnosable with
 <8= = max(_>.-) + 1) iff () 5 is  -diagnosable.) �

Based on the proof of Theorem 8, we can derive the
following corollary giving the value of  <8= ≤  if the
 -diagnosability is fulfilled.

Corollary 1. Consider an LPN under hypotheses H0
and H1. If fault class ) 5 is  -diagnosable then ) 5 is
 <8=-diagnosable where  <8= is defined as follows:
–  <8= = 1 if (23) is not feasible.
–  <8= = max(_>.-) + 1 if (23) is feasible and
max(_>.-) <  .

Let us now relax assumption H1 of acyclicity. We shall
show that a sufficient condition for  -diagnosability can
be established, as stated in the following theorem.

Theorem 9. Consider an LPN under hypothesis H0.
For a given  ∈ N∗, ) 5 is  -diagnosable if at least one
of the two following conditions is satisfied:
-i- (23) has no solution, or
-ii- (23) admits a solution and max(_>.-) <  .

Proof.

a 

a 

��=�� 

�� 

�� �� 

�� 

�� 

��

��

��

6 

6 

6 

Fig. 2. A bounded LPN

��

��

a 
��

��=�� 

�� 

�� 

�� 

�	 

��

�	

�


b 

b 

d 

c 

Fig. 3. An unbounded LPN

8− If (23) has no solution, then there does not exist any
couple of vectors (-, - ′) satisfying (22). Thus, there does
not exist any couple (f, f′) ∈ � (^) for all ^ ∈ È1; É,
and consequently ) 5 is 1-diagnosable.
88− If (23) admits a solution and max(_>.-) <  , then
for ^ = max(_>.-) + 1 ≤  , there does not exist any
couple of vectors (-, - ′) satisfying (22). Hence, for ^ =
max(_>.-) + 1 ≤  , there does not exist any couple
(f, f′) ∈ � (^). Therefore, ) 5 is  2H2-diagnosable with
 2H2 = max(_>.-) + 1 ≤  and consequently, ) 5 is  -
diagnosable. �

According to the proof of Theorem 9, when the suffi-
cient condition of  -diagnosability is fulfilled, although
the minimum value  <8= ensuring  <8=-diagnosability
cannot be determined, we can provide a value  2H2 po-
tentially lower than  , such that ) 5 is  2H2-diagnosable
and  <8= ≤  2H2 ≤  . In fact, the case  <8= ≠  2H2 is
possible since some solutions - ′ of (22) can be spuri-
ous solutions, i.e., do not correspond to any (fault-free)
sequence. This is due to the relaxation of (H1 ) which
implies that the result of Theorem 5 does not apply
anymore.

Corollary 2. Consider an LPN under hypothis H0.
If fault class ) 5 is  -diagnosable then ) 5 is  2H2-
diagnosable where  2H2 is defined as follows:
–  2H2 =  <8= = 1 if (23) is not feasible.
–  2H2 = max(_>.-) + 1 ∈ È <8= ,  É if (23) is feasible
and max(_>.-) <  in (23).

Example 1. Let us consider the LPN of Fig. 2, where
)D = {C2, C3}, ) 5 = {C3}, )> = {C1, C4}, L(C1) = L(C4) = 0
and "0 = [6 0 0 0 0]>. We assume � to be given, � = 6
and we aim to investigate the  -diagnosability of the net
with  = 5. Thus, the horizon is ℎ = � +  + 1 = 12. The
results of the  -diagnosability analysis are presented in
Table 1.

The unobservable subnet of the LPN is acyclic and we get
^<0G = max(_>.-) = 5. Thus, ) 5 is not 5-diagnosable.
Indeed, the results of Table 1 can be interpreted as follows:
the maximum value of ^ such that ) 5 is not ^-diagnosable
is ^<0G = 5. Namely, this is due to the existence of two fea-
sible firing sequences f1 = C1C1C1C1C1C1C3C2C2C2C2C2 (faulty)
and f′1 = C1C1C1C1C1C1 (normal) such that (f1, f

′
1) ∈ � (5).
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j 1 2 3 4 5 6 7 8 9 10 11 12

GD
< 9> 0

0
0
0

0
0

0
0

0
0

0
0

0
1

1
0

1
0

1
0

1
0

1
0

G>
< 9> 1

0
1
0

1
0

1
0

1
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

f C1 C1 C1 C1 C1 C1 C3 C2 C2 C2 C2 C2

G′D
< 9> 0

0
0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

G′>
< 9> 1

0
1
0

1
0

1
0

1
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

f′ C1 C1 C1 C1 C1 C1 Z Z Z Z Z Z

Table 1 Results of diagnosability test for  = 5.

Let us now investigate  -diagnosability with  = 10.
Thus, the horizon is ℎ = � +  + 1 = 17. The results of
the  -diagnosability analysis are presented in Table 2.

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

GD
< 9> 0

0
0
0

0
0

0
0

0
0

0
0

0
1

1
0

1
0

1
0

1
0

1
0

1
0

0
0

0
0

0
0

0
0

G>
< 9> 1

0
1
0

1
0

1
0

1
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

f C1 C1 C1 C1 C1 C1 C3 C2 C2 C2 C2 C2 C2 Z Z Z Z

G′D
< 9> 0

0
0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

G′>
< 9> 1

0
1
0

1
0

1
0

1
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

f′ C1 C1 C1 C1 C1 C1 Z Z Z Z Z Z Z Z Z Z Z

Table 2 Results of diagnosability test for  = 10.

Here, we get ^<0G = max(_>.-) = 6. Thus, ) 5 is  <8=-
diagnosable with  <8= = 7. Indeed, the results of Ta-
ble 2 can be interpreted as follows: the maximum value
of ^ such that ) 5 is not ^-diagnosable is ^<0G = 6.
Namely, this is due to the existence of two feasible fir-
ing sequences f1 = C1C1C1C1C1C1C3C2C2C2C2C2C2 (faulty) and
f′1 = C1C1C1C1C1C1 (normal) such that (f1, f

′
1) ∈ � (6).

5  -diagnosability test on a compacted horizon

The determination of an appropriate value for � can be
burdensome. Moreover, this value can be high, which
impacts the computational effectiveness of the approach
discussed in section 4 (which will be calledApproach 1
in the sequel). In this section, we will develop a variant
of Approach 1, where parameter � is no more involved
for the checking of  -diagnosability, hence significantly
reducing the size of the ILP problem to be solved. In
fact, the vectors from iteration < 1 > to < � > will be
compressed without needing to know the value of �. As-
sumptionH1 will also be relaxed. A sufficient condition
for  -diagnosability is then provided based on a new ILP
formulation of the problem. In the sequel, this variant
of Approach 1 based on horizon compression will be re-
ferred to Approach 2. In the last part of this section,
we will show how the ILP formulation we develop in Ap-
proach 2 can be advantageously used to characterize the
value of �, which is necessary in Approach 1.

5.1 Modeling the faulty sequence

The compression of count vector -, corresponding to
the faulty sequence f (defined as (11)), on the interval

È1, �É gives the following new vector -2 ∈ N( +2) . |) |:

-2 =

(
(G<1→�>)> (G<�+1>)> . . . (G<�+ +1>)>

)>
where the compressed part G<1→�> is as follows:

G<1→�> =
�∑
8=1

G<8> =

(
G<1→�>>

G<1→�>D

)
=

©­­­«
�∑
8=1

G<8>>

�∑
8=1

G<8>D

ª®®®¬
while G<�+1>, . . . , G<�+ +1> remain unchanged compared
to -. To establish the model of the faulty sequence f
under horizon compression, we consider the following
relations:
– Applying the positivity constraint to marking "<�+1>

and the firing condition in (1) for all 9 ∈ È� +1; � + +1É

replacing
�∑
8=1

G<8> by G<1→�>, give Γ2 .-2 ≤ Θ2 with:

Γ2=

©­­­­­­­­«

−, 0 . . . . . . 0

−, ,−
.
.
.

.

.

. 0

−, −, . . . −, ,−

ª®®®®®®®®¬
and Θ2 =

©­­­­­­­«

"0

"0

.

.

.

"0

ª®®®®®®®¬
The dimensions of matrix Γ2 and vector Θ2 are (2 +
 ).|% | × (2 +  ).|) | and (2 +  ).|% | × 1, respectively.
– The vector -2 also fulfills relations (12), (13), (14)
and (15) which can be rewritten on a compacted horizon

while replacing
�∑
8=1

G<8> by G<1→�> and - by -2. There-

fore, while setting � to 1, E1, 51, 52, E2 and _ are replaced
with E12, 512, 522, E22 and _2, respectively.
Hence, we obtain the following polyhedron:

� 5 .-2 ≤ 1
 
5 (24)

with � 
5
=

©­­­­­­­­­­­­­­­­­­­­­­­«

Γ2

512

− 512
522

− 522
E12

−E12
E22

_>2
−_>2

ª®®®®®®®®®®®®®®®®®®®®®®®¬

and 1 
5
=

©­­­­­­­­­­­­­­­­­­­­­­­«

Θ2

0

0

1

−1
−→
1

0

0

 

−1

ª®®®®®®®®®®®®®®®®®®®®®®®¬
11



5.2 Modeling the fault-free sequence

The compression of the count vector - ′ of the fault-free
sequence defined as (18) on the interval [1...�] gives the
following new vector - ′2 ∈ N( +2) . |) |:

- ′2 =
(
(G ′<1→�>)> (G ′<�+1>)> . . . (G ′<�+ +1>)>

)>
where the compressed vector G ′<1→�> is defined as:

G ′<1→�> =
�∑
8=1

G ′<8> =

(
G
′<1→�>
>

G
′<1→�>
D

)
=

©­­­«
�∑
8=1

G
′<8>
>

�∑
8=1

G
′<8>
D

ª®®®¬ (25)

while G ′<�+1>, . . . , G ′<�+ +1> remain unchanged. The
model of fault-free sequence f′ under horizon compres-
sion satisfies the following constraints:
– Positivity constraint of marking " ′<�+1> = "0 +
,.G ′<1→�> and the firing conditions defined in (4) for
9 ∈ È� + 1; � +  + 1É, give Γ′2 .- ′2 ≤ Θ2 with:

Γ′2 =

©­­­­­­­­­­«

−, 0 · · · 0

−, ,−> −,D
.
.
.

.

.

.
. . . 0

−, · · · · · · −, ,−> −,D

ª®®®®®®®®®®¬
The dimensions of matrix Γ′2 is (2 +  ).|% | × (2 +  ).|) |.
– Sequence f′ does not include any fault tran-
sition of class ) 5 , then we get 532 .-

′
2 = 0 with

532 =

(
2 5 2 5 · · · 2 5

)
.

Finally, we obtain the following polyhedron:

� = .-
′
2 ≤ 1 = (26)

where � = =

©­­­«
Γ′2
532

− 532

ª®®®¬ and 1 = =

©­­­«
Θ2

0

0

ª®®®¬
Faulty sequence f and fault-free sequence f′ have the
same observable projection, this can be expressed as:

�2 .-2 = �2 .-
′
2 (27)

where �2 is the adaptation of the vector � defined in
(9) to the horizon ℎ =  +2. The dimension of J2 is then
( + 2).|� | × ( + 2).|) |.

5.3  2-diagnosability condition

According to (24), (26) and (27), if there exists a cou-
ple of sequences (f, f′) ∈ � (^) where 1 ≤ ^ ≤  under
hypothesisH0, then there exists a couple of correspond-
ing count vectors (-, - ′) ∈ N(2+ ) . |) | × N(2+ ) . |) | that
fulfills the following polyhedron:

� .

(
-2

- ′2

)
≤ 1 (28)

where � =

©­­­­­­«
� 
5

0

0 � =

J2 −J2
−J2 J2

ª®®®®®®¬
and 1 =

©­­­­­­«
1 
5

1 =

0

0

ª®®®®®®¬
The dimensions of matrix � and vector 1 are
(2|) | ( + 2)) × (( + 2).(2|% | + 2|) | + |� | + 3) + 5) and
(2|) | ( + 2)) × 1, respectively.

Let us consider the following optimization problem:{
max(_>2 .-2) such that (28)
-2 , -

′
2 ∈ N(2+ ) . |) |

(29)

We can now introduce the following result:

Theorem 10. Consider an LPN under hypothesis H0
and fault class ) 5 . Given  ∈ N∗, ) 5 is  -diagnosable if
either of the following two conditions is fulfilled:
-i- (29) has no solution, or
-ii- (29) has a solution and max(_>2 .-2) <  .

Proof. i- If (29) has no solution, then (23) has
no solution either. Thus, according to Theorem 9
and Corollary 2, ) 5 is  -diagnosable and in par-
ticular 1-diagnosable. ii- If (29) has a solution and
max(_>2 .-2) <  , then for ^ = max(_>2 .-2) + 1 ≤  ,
there does not exist a couple of vectors (-2 , - ′2) satis-
fying (28). Thus, for ^ = max(_>2 .-2) + 1 ≤  , there
does not exist a couple (f, f′) ∈ � (^) and then ) 5 is
 2-diagnosable with  2 = max(_>2 .-2) + 1 ≤  . Conse-
quently, ) 5 is  -diagnosable.

Corollary 3. If the sufficient condition for  -
diagnosability in Theorem 10 is satisfied, then not only
we can conclude that ) 5 is  -diagnosable but also that it
is  2-diagnosable where:
a)  2 = 1 if (29) has no solution.
b)  2 = max

N
(_>2 .-2) + 1 if (29) has a solution.

In addition, we can infer that  <8= ≤  2H2 ≤  2 ≤  .
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Remark 2. Under hypothesis H1, the possible differ-
ence between  2 and  <8= (i.e., the case when  2 <  <8=)
is due to the spurious solutions of state equation (28) as
a consequence of the horizon compression.

Example 2. Again, let us consider the LPN of Fig. 2
and let  = 10. If we aim to test the  -diagnosability of
C 5 by compacting the interval È1, �É, we obtain a com-
pacted horizon ℎ̃ =  + 2 = 12. The resolution of the ILP
problem (29) gives ^′<0G = max(_>2 .-2) = 6 <  . There-
fore, we can conclude that C 5 is 7-diagnosable and, hence,
10-diagnosable.

j 1→ 6 7 8 9 10 11 12 13 14 15 16 17

GD
< 9> 0

0
0
1

1
0

1
0

1
0

1
0

1
0

1
0

0
0

0
0

0
0

0
0

G>
< 9> 6

0
0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

f 6 × C1 C3 C2 C2 C2 C2 C2 C2 Z Z Z Z

G′D
< 9> 0

0
0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

G′>
< 9> 6

0
0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

f′ 6 × C1 Z Z Z Z Z Z Z Z Z Z Z

Table 3 10-diagnosability test based on a compacted horizon

5.4 Characterization of �

As highlighted in [1], the determination of a bound for
the length of the relevant sequences leading to a fault (�
that is necessary in Approach 1 discussed in section 4 in
our case , or J in [1]) is not an easy task, and no method
is available yet to determine such a value. Although we
do not provide a systematic method to compute a value
of bound �, the contribution we discuss in this section
aims to provide some characterization of this bound.
Namely, we show that using the compressed system (28),
we can determine a lower bound �− of �. In fact, in the
case when (28) has no solution, we get  2 =  <8= = 1 in
(29) and therefore determining a value for � to check  -
diagnosability is useless. Therefore, we restrict the fol-
lowing analysis to the case when (28) admits a solution.
In this case, let us denote by ^′<0G = max(_>2 .-2) the
computed cost function of system (29). The assumption
H1 of acyclicity is also considered in this subsection.

For some given ^ ∈ È1; É, let us consider the two fol-
lowing sets:
(1 (^) = { c(f1 5 ) ∈ N |) | | f1 5 ∈ k� () 5 , ^) }
(2 (^) = { G<1→�> ∈ N |) | | (28) ∧ (_>2 .-2 = ^),

with -2 = (G<1→�>
>
G<�+1>

>
. . . G<�+ +1>

>)>}

Set (1 (^) corresponds to the count vectors of the se-
quences in k� () 5 , ^) (as introduced in section 3.2),
while set (2 (^) holds the vectors G<1→�> which are com-
ponents of some vector -2, which satisfies the following
conditions: i)There exists - ′2 such that(-2 , - ′2) satis-
fies (28) ii) _>2 .-2 = ^. It is clear that (1 (^) ⊆ (2 (^).
Therefore, min

(1(^)
‖c(f1 5 )‖1 ≥ min

(2(^)
‖G<1→�>‖1 with

^ ∈ È1; É and then � = max
1≤^≤ 

min
(1(^)

‖c(f1 5 )‖1 ≥

max
1≤^≤ 

min
(2(^)

‖G<1→�>‖1. On the other hand, we have

max
1≤^≤ 

min
(2(^)

‖G<1→�>‖1 = max
1≤^≤^′<0G

min
(2(^)

‖G<1→�>‖1. Con-
sequently, we get a lower bound of � , defined as follows:
�;>F = max

1≤^≤^′<0G
min
^
‖G<1→�>‖1 such that (28)

and _>2 .-2 = ^
(30)

Furthermore, given the lower bound �;>F of � , we can
determine a lower bound ^−<0G for ^<0G as follows:{
^−<0G = max(W>.-) such that (22)
� = �;>F

(31)

We denote �− the minimal value of � allowing the gen-
eration of ^−<0G such that �− ≤ �;>F Therefore, �− is de-
termined once ^−<0G in (31) is computed, as follows:


�− = min(‖

�∑
8=1

G<8>‖1) such that (22)

� = �;>F

W>.- = ^−<0G

(32)

Now that lower bounds for ^<0G and � , namely ^−<0G
and �−, respectively, have been determined analytically,
we shall show how we can improve these bounds, empir-
ically. Figure 4 represents a possible evolution of cost
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Fig. 4. Evolution of cost function max(W>.-) of ILP problem
(23) as a function of � under assumption H1, when the fault
class is not 1-diagnosable

function max(W>.-) in ILP problem (23) as a function
of � having integer values from 0 onwards in case (22)
admits some solution (i.e., ) 5 is not 1-diagnosable).
Let us denote by �C4BC the variable used to increment
the value of � to improve (increase) the lower bounds
of � and ^<0G . Then, starting from �C4BC = �;>F , we
can increment the value of �C4BC iteratively, and we solve
successively the two ILP problems (31) and (32) while
replacing �;>F by �C4BC in these systems. Based on the
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fix-point theorem [24], one can be sure that the cost
function of (31) will reach the value (^<0G) if � keeps
increasing (^<0G =  <8= − 1 if ) 5 is  -diagnosable with
 ≥ 2 and ^<0G =  if ) 5 is not  -diagnosable). It is
however not possible to determine analytically when
(^<0G) shall be reached (since ^<0G is unknown). There-
fore, in practice, unless the solution of (31) reaches ^′<0G
(such a case is considered in Remark 3), we can take as
a lower bound of ^<0G the value (^−<0G);0BC which is the
cost function of (31) while replacing �;>F by the last
(highest) taken value of �C4BC . In addition, we can take
as a lower bound of �, the cost function (�−);0BC of (32)
while replacing �;>F by the last (highest) taken value of
�C4BC .

Remark 3. In case the solution of (31) reaches ^′<0G,
we are sure that:
–If 1 < ^′<0G <  , then  <8= is determined,  <8= =  2 ;
–If ^′<0G =  , then ) 5 is not  -diagnosable.
– �− converges to the value of � , which is an optimal
value of parameter � that is necessary in Approach 1.
Such solution corresponds to the cost function of (32)
while replacing �;>F by the last (highest) taken value of
�C4BC , and ^−<0G by ^′<0G.

Example 3. Let us consider the LPN of Figure 3 (used
in both [1] and [7]), where )D = {C2, C3}, ) 5 = {C2},
)> = {C1, C4, C5, C6, C7} with L(C1) = 0, L(C4) = L(C6) = 1,
L(C7) = 2, L(C5) = 3, and "0 = [1 0 0 0]>. We aim to
verify the  -diagnosability with  = 30, on a compacted
horizon ℎ̃ =  + 2 = 32. The cost function of system (29)
gives ^′<0G = max

N
(_>2 .-2) = 30 =  . In this case, we can-

not conclude on the  -diagnosability of C 5 using a com-
pact horizon. The resolution of the ILP problem (30) gives
�;>F = 30 which is a lower bound of �. The resolution of
the ILP problem (31) on the horizon (�;>F +  + 1 = 61)
gives ^−<0G = 30 = ^′<0G. Then, according to Remark 3,
C 5 is not 30-diagnosable and � = � = 30.

6 Discussion

6.1 Computational remarks and comparisons

The ILP formulation of the  -diagnosability test of Ap-
proach 1 (see Section 4) involves 2|) | (�+ +1) unknowns
and (� +  + 1).(2|% | + 2|) | + |� | + 2) +  + 7 constraints
(cf. (22)). We recall here that the resolution of an ILP
problem is NP-hard and can be done in an exponential
time in the worst case w.r.t the system size. As we have
mentioned earlier in the paper, the determination of the
value of � is not an easy task, and such a value can be
very large, which directly affects the complexity of the
procedure. In fact, The number of variables and con-
straints of the above ILP formulation are as a function
of �. To tackle this issue, we developed a second tech-
nique to investigate  -diagnosability while compacting
the interval preceding the first fault class occurrence,

therefore reducing the ILP system dimension and mak-
ing the resolution procedure independent of �. This sec-
ond ILP formulation involves 2|) | ( + 2) unknowns and
( + 2).(2|% | + 2|) | + |� | + 3) + 5 constraints (cf. (28)).

In the following, we present a comparison between
our approach (Approach 1 ) for  / <8=-diagnosability
analysis and a number of efficient relevant methods
from the related literature. We firstly consider graph-
based techniques, then algebraic approaches. In fact,
it is worth noting that substantial improvements in
terms of complexity have been brought by diagnosabil-
ity techniques, that consider an FSA setting. In recent
years, polynomial time algorithms w.r.t the number of
states of the FSA model have been proposed in [17,25].
In [27], Viana et al. proposed an even more efficient
(polynomial) algorithm for (co)diagnosability analysis
and then  <8=-(co)diagnosability computation using
a verifier model. The aforementioned approaches can
be adapted to investigate  / <8=-diagnosability is-
sues in bounded PNs. Nevertheless, this would require
building the reachability graph of the net, and then to
build some dedicated models for performing  / <8=-
diagnosability analysis (verifier, etc.). We should also
mention that some approaches have already been devel-
oped to tackle  / <8=-diagnosability issues in bounded
PNs using graph-based settings. For instance, in [20],
a subset of the reachability graph, namely the Basis
Reachability Graph (BRG), is computed to perform
(co)diagnosability analysis of a bounded LPN, and then
to determine  <8=-(co)diagnosability. A main issue is
related to the combinatorial explosion when building
the reachability graph (or the BRG) this computation
raises. This motivates the use of algebraic techniques to
deal with  / <8=-diagnosability issues in PNs. In fact,
these techniques exploit the mathematical representa-
tion of PNs, and do not require computing the state
space of the net. We can also mention that, based on
ILP formulations, some techniques can be brought into
play to improve the efficiency of the  -diagnosability
analysis, such as, for instance, by achieving some relax-
ation of the ILP.

For unbounded PNs, an interesting approach is proposed
in [7] to check  / <8=-diagnosability by investigating
the coverability graph of a verifier net. A procedure to
compute the value of  (and  <8= when possible) was
proposed based on a modified verifier net. The proce-
dure determines the desired value of  directly from the
marking of a new place that is added to the net structure.
In [19], the authors investigate the  -(co)diagnosability
of bounded/unbounded LPNs on the basis of a verifier
established from the reachability/coverability graph of
the net, and then the  <8=-(co)diagnosability analysis is
performed. The main drawback of the aforementioned
approaches lies in the need of computing the coverabil-
ity graph (for unbounded PNs), for which the computa-
tional complexity is not even in primitive recursive space
(i.e., it requires more than exponential space) [18,30].
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From the above discussion, the approach in [1] remains
one of the most efficient approaches for checking  -
diagnosability, and it is also the closest one to our work.
Thus, here-below, we provide a detailed comparison with
our approach. Besides, in [3,6], we have carried out some
comparative experimental studies that showed the ad-
vantages of algebraic approaches to investigate PN di-
agnosability issues, comparatively to graph-based ones,
in terms of memory and time consumption.

In [1], the defined ILP problem involves the parame-
ter J . A lower bound of J , denoted as J<8=, was de-
fined that permits to fully describe the set of markings
reachable from the initial marking and which enable
for the first time the considered fault transition. The
value of J<8= is determined only for live and bounded
nets. In addition, an upper bound of J<8= is defined
as a function of the initial marking and the minimal
)-invariants of the LPN, and can be then very large,
which directly impacts the complexity of the computa-
tion. In [1], the -diagnosability test of a given fault tran-
sition C 5 is then carried out by solving an ILP problem of
2( |)' | + |)'D |) (�+ ) unknowns and 3(�+ ) |% | +3|% | +1
constraints, thus at a comparable order of complexity as
the first technique discussed in the present paper. How-
ever, in the case where the LPN is  -diagnosable, the
technique in [1] does not provide the minimum value
 <8= ensuring  <8=-diagnosability. To compute such a
value, several executions of the  -diagnosability test are
required, using for instance incrementation of  from 1
onwards. In contrast, the algebraic formulation devel-
oped in the present paper allows for performing the  -
diagnosability test of a given fault class, considered as a
whole, and if this fault class is  -diagnosable, the mini-
mum value  <8= ≤  that ensures diagnosability is also
determined directly, all at once. It is worth noticing here
that the sufficient maximal length of � that we consider
for  -diagnosability analysis in Approach 1 (the value
� ) is potentially much lower than the value � defined
in [1]. Indeed, while parameter J in [1] corresponds to
an upper bound of the length of all the prefixes that en-
able a fault transition for the first time, we only consider
a subset of these aforementioned prefixes in our analysis.
Namely, we restrict the analysis to the subset of prefixes
that have some continuation (of length 1 to  ) upon the
fault occurrence, in such a way that at least one corre-
sponding indistinguishable fault-free sequence exists.

More importantly, we have shown that the length � of
the longest sequence of this subset is finite even for un-
bounded PN. As a consequence, the established results
are not limited to the case of bounded PNs. Besides, re-
placing the value of � in [1] by � allows for extending
the results of [1] to the case of unbounded nets.

6.2 Experimental results

In this section, we report the experimental results of
the  -diagnosability techniques developed in this pa-
per. The railway benchmark proposed in [11] is used.

It is about a railway level crossing system with = rail-
way tracks (= variable). To assess the three approaches
experimentally, and perform a comparison with that
of [1], a Matlab® code was developed, which calls the
FICO™ Xpress optimization solver (Note that the tech-
nique of [1] is also encoded as a Matlab® program call-
ing FICO™ Xpress). The experiments were carried out
on a dual core Intel(R) Xeon(R) CPUwith a clock of 3.30
Ghz each, and 32 GB of RAM. We fix  to 125 and test
the  / <8=-diagnosability of fault transition C6 while in-
crementing the number of tracks = from 1 to 18, so as to
increase the size of the model. To compare Approach 1
with the approach in [1], we perform the tests using the
same values of parameters � and J . The obtained re-
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Table 4 Obtained results for the 3 approaches

sults are presented in Table 4. The benefits of the two
developed approaches can be clearly noticed from the
computation times. It should also be noted that the val-
ues of  <8= determined in [3] for the cases = = 11 and
= = 12 are not valid. This is indeed due to the under-
estimation of the value of J (fixed to 12) considered in
the experiments performed in [3].

7 Conclusion

In this paper, we proposed a number of algebraic ap-
proaches for  -diagnosability analysis in DES, modeled
as partially observable LPN, that can be unbounded.
The first approach is based on ILP optimization tech-
niques, and provides a necessary and sufficient condi-
tion for  -diagnosability of a fault class, under the hy-
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pothesis of acyclicity of the unobservable subnet. If the
investigated fault class is  -diagnosable, the minimum
value  <8= ≤  ensuring  <8=-diagnosability is also
computed, simultaneously. Moreover, the parameter �
defined in our approach to characterize the subset of
faulty sequences that are relevant for investigating  -
diagnosability allows for extending the approach of [1]
to the case of unbounded LPNs. The relaxation of the
acyclicity hypothesis on the unobservable subnet is also
discussed. Namely, we show that based on the developed
formulation, a sufficient condition for  -diagnosability
can be established in this case. A second approach us-
ing a compacted horizon is then developed, reducing
the system dimension and, above all, dispensing with
the parameter � that characterizes the number of pos-
sible events preceding the first fault occurrence. Such
a parameter being not easy to determine. In the sec-
ond approach, we relax the acyclicity hypothesis regard-
ing the unobservable subnet. A sufficient condition for
 -diagnosability is established and can be checked as
an integer optimization problem. If the condition is ful-
filled, a value  2 that is potentially lower than  ( 2 ∈
È <8=; É) ensuring ( 2-)diagnosability is also deter-
mined. A characterization of the parameter � used in
Approach 1 is performed based on horizon compression.

In future work, the characterization of parameter � will
be pursued. Moreover, an extension of our techniques to
the case of intermittent faults will be investigated.
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