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Introduction and related works

Diagnosability analysis is one of the fundamental verification problems in Discrete Event Systems (DES) [START_REF] Cassandras | Introduction to discrete event systems[END_REF]. The first formulation of the diagnosability feature in DES was introduced in the seminal work of Sampath et al. [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF] while considering a Finite State Automaton (FSA) framework. The authors of [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF] define diagnosability as the ability to diagnose (detect and identify) any fault (or fault class) occurrence within a finite delay (i.e., a bounded number of events) after its occurrence. The early works that addressed DES diagnosability issues mostly considered FSA models [START_REF] Dallal | On most permissive observers in dynamic sensor activation problems[END_REF][START_REF] Sampath | Diagnosability of discrete-event systems[END_REF]. Then, diagnosability analysis was extended to the Petri Net (PN) formalism [START_REF] Basile | On K-diagnosability of Petri nets via integer linear programming[END_REF][START_REF] Basile | Sensors selection for K-diagnosability of Petri nets via integer linear programming[END_REF][START_REF] Boussif | A semi-symbolic diagnoser for fault diagnosis of bounded labeled Petri nets[END_REF][START_REF] Paola Cabasino | A new approach for diagnosability analysis of Petri nets using verifier nets[END_REF][START_REF] Paola Cabasino | Diagnosability of bounded Petri nets[END_REF][START_REF] Liu | On-thefly and incremental technique for fault diagnosis of discrete event systems modeled by labeled Petri nets[END_REF][START_REF] Ning Ran | K-codiagnosability verification of labeled petri nets[END_REF][START_REF] Wen | Diagnosability analysis based on T-invariants of Petri nets[END_REF][START_REF] Wen | A polynomial algorithm for checking diagnosability of Petri nets[END_REF], taking advantage of its mathematical and graphical representations. On the one hand, the idea behind the works that investigate the graphical representation of PN state set consists in extending the FSA based techniques (i.e., diagnoserbased and verifier-based techniques) by considering the ★ This work is part of the ELSAT2020 program co-funded by the European Union with the European Regional Development Fund, the French state and the Hauts-de-France.

Email addresses: amira.chouchane@univ-eiffel.fr (Amira Chouchane), mohamed.ghazel@univ-eiffel.fr (Mohamed Ghazel), abderraouf.boussif@railenium.eu (Abderraouf Boussif).

behavior of the PN captured by its reachability graph (in the case of bounded systems) or coverability graph (in the case of unbounded systems). Such approaches are referred to as graph-based [START_REF] Boussif | A semi-symbolic diagnoser for fault diagnosis of bounded labeled Petri nets[END_REF][START_REF] Paola Cabasino | A new approach for diagnosability analysis of Petri nets using verifier nets[END_REF][START_REF] Paola Cabasino | Diagnosability of bounded Petri nets[END_REF][START_REF] Liu | On-thefly and incremental technique for fault diagnosis of discrete event systems modeled by labeled Petri nets[END_REF][START_REF] Ning Ran | K-codiagnosability verification of labeled petri nets[END_REF]. On the other hand, some further works are based on the mathematical representation of PN in order to reformulate the diagnosability problem as a linear optimization problem, which can be then tackled by means of existing optimization techniques, particularly, Integer Linear Programming (ILP). Such approaches are referred to as algebraic techniques [1-3, 28, 29]. To get a general overview of the literature attending to DES diagnosability, the reader can refer to the reviews in [START_REF] Boussif | Intermittent fault diagnosability of discrete event systems: an overview of automaton-based approaches[END_REF][START_REF] Christoforos | Estimation and Inference in Discrete Event Systems: A Model-Based Approach with Finite Automata[END_REF][START_REF] Lafortune | On the history of diagnosability and opacity in discrete event systems[END_REF][START_REF] Zaytoon | Overview of fault diagnosis methods for discrete event systems[END_REF].

Beside the classic diagnosability, a quantified variant of this feature (called -diagnosability), was discussed and formulated in [START_REF] Basile | On K-diagnosability of Petri nets via integer linear programming[END_REF][START_REF] Paola Cabasino | A new approach for diagnosability analysis of Petri nets using verifier nets[END_REF][START_REF] Dallal | On most permissive observers in dynamic sensor activation problems[END_REF][START_REF] Liu | On-thefly and incremental technique for fault diagnosis of discrete event systems modeled by labeled Petri nets[END_REF][START_REF] Pan | Diagnosability test for timed discrete-event systems[END_REF][START_REF] Qiu | Decentralized failure diagnosis of discrete event systems[END_REF][START_REF] Ning Ran | K-codiagnosability verification of labeled petri nets[END_REF][START_REF] Ning Ran | An improved approach to test diagnosability of bounded Petri nets[END_REF][START_REF] Gustavo | Codiagnosability of discrete event systems revisited: A new necessary and sufficient condition and its applications[END_REF][START_REF] Yoo | Computation of fault detection delay in discrete-event systems[END_REF]. Generally, -diagnosability refers to the ability to diagnose any fault with certainty, provided that at least events have occurred following the fault occurrence. In fact,diagnosability can be of particular interest in practice, since, in some applications, the delay required for detecting and identifying fault occurrences may have considerable impact in terms of safety and/or performance.

In this paper, we are interested in the test ofdiagnosability of DES modeled by a partially observed Labeled Petri Net (LPN). Faults are modeled by means of unobservable transitions. We also assume that different observable transitions can share the same label. Moreover, the fault transitions are divided into various fault classes. Hence, -diagnosability can be investigated w.r.t these various classes.

In the context of PNs, -diagnosability was investigated in [START_REF] Paola Cabasino | A new approach for diagnosability analysis of Petri nets using verifier nets[END_REF][START_REF] Liu | On-thefly and incremental technique for fault diagnosis of discrete event systems modeled by labeled Petri nets[END_REF] in graph-based setting and in [START_REF] Basile | On K-diagnosability of Petri nets via integer linear programming[END_REF][START_REF] Basile | Sensors selection for K-diagnosability of Petri nets via integer linear programming[END_REF] in an algebraic setting. In [START_REF] Paola Cabasino | A new approach for diagnosability analysis of Petri nets using verifier nets[END_REF], the authors provided necessary and sufficient conditions for the classic diagnosability anddiagnosability. They also proposed a technique to compute the bound based on the analysis of the reachability/coverability graph of a structure, called modified verifier (which is a synchronous composition of the PN model with itself). In this work, the value refers to the number of observable transitions/events after the fault occurrence. In [START_REF] Liu | On-thefly and incremental technique for fault diagnosis of discrete event systems modeled by labeled Petri nets[END_REF], the authors provided necessary and sufficient conditions for -diagnosability and -diagnosability (the minimum value of ensuring -diagnosability) and proposed an on-the-fly and incremental technique for computing the diagnoser automaton and checking the diagnosability properties, in parallel.

In [START_REF] Basile | On K-diagnosability of Petri nets via integer linear programming[END_REF], the authors discussed -diagnosability and proposed necessary and sufficient conditions to checkdiagnosability for labeled bounded PNs, based on ILP problems. The established ILP formulation depends on a parameter, denoted by J , which is necessary for stating the condition for -diagnosability. A lower bound of J , denoted by J , was characterized, which permits to fully describe the set of markings reachable from the initial marking, which enable the considered fault transition for the first time. An overestimation of J is equal to the number of reachable markings. In [START_REF] Basile | On K-diagnosability of Petri nets via integer linear programming[END_REF], the established necessary and sufficient condition fordiagnosability requires that J ≥ J , which may lead to a large and computationally complex ILP problem.

In the present paper, we build on the work of Basile et al. [START_REF] Basile | On K-diagnosability of Petri nets via integer linear programming[END_REF], and we discuss three main contributions: First, a new algebraic formulation of the -diagnosability problem for both bounded and unbounded LPN is proposed. Such a formulation provides a necessary and sufficient condition for -diagnosability, and allows for investigating this feature by means of linear optimization techniques. Moreover, our formulation makes it possible to consider each fault class as a whole, instead of a single fault transition. Furthermore, if the fault class is -diagnosable, the minimum value ≤ ensuring -diagnosability is determined all at once. Our ILP formulation involves a parameter , and we show that it suffices to take a value of that is at least equal to a value that depends on . The value of corresponds to the maximum length of some particular faultfree sequences that enable the considered fault class. The above results are firstly derived under the assumption that the unobservable subnet is acyclic. The case of LPN with unobservable cycles is then discussed and a sufficient condition for -diagnosability is provided. In this first contribution, the value of parameter is assumed to be known (as in [START_REF] Basile | On K-diagnosability of Petri nets via integer linear programming[END_REF] for parameter J ). Secondly, a variant of the above technique is then developed. The technique compacts the fault-free sequences that precede the first occurrence of the fault (from the considered fault class). This second contribution does not involve parameter , and establishes a sufficient condition for -diagnosability, based on a new ILP formulation of the problem. The advantages of this technique are twofold. On the one hand, it dispenses with parameter , which can be difficult to determine, enabling to reduce the number of variables of the ILP problem formulated to test -diagnosability. If the established sufficient condition for -diagnosability is fulfilled, a value that is potentially lower than , and which ensures ( )-diagnosability, is given, where ≤ ≤ . On the other hand, the compression of the interval preceding the fault occurrence allows the characterization of parameter , which is necessary to implement the first approach.

The paper is organized as follows. In section 2, we introduce some relevant preliminary notions and algebraic concepts pertaining to LPN. Useful definitions related to -diagnosability are also given. In section 3, we expose the principle of our ILP based approach to investigate -diagnosability. A characterization of the length of some prefix sequences that precede the fault occurrence, which are relevant for -diagnosability is also discussed. Such a characterization is fundamental to establishing the algebraic model used for -diagnosability test. In section 4, a necessary and sufficient condition to check -diagnosability of a fault class is established.

-diagnosability is also discussed. In section 5, using a compacted horizon, a sufficient condition fordiagnosability is established. A characterization of parameter which is necessary to implement the first approach is also accomplished. In section 6, computational complexity analysis and comparative results are presented. A railway benchmark is used to illustrate the effectiveness of the proposed techniques. Section 7 concludes the paper and provides a number of perspectives for the present work.

Preliminaries

Background on LPN

A Petri net (Place/Transition net) is a 4-tuple N = ( , , -, + ), where and are non-empty finite sets of places and transitions, respectively. -: × → N and + : × → N are the pre-and post-incidence matrices, respectively.

= + --is the incidence matrix of N . For a given transition ∈ , an input (output) place of is a place ∈ such that -( , ) > 0 ( + ( , ) > 0). A marking is a vector ∈ N | | that assigns a non-negative integer (a number of tokens) to each place. We denote by ( ) the marking of place . A marked PN (N , 0 ) is a PN N with a known initial marking 0 . For short, a marked PN 

[ , if ∃ 1 , 2 , . . . , -1 s.t. 0 [ 1 1 [ 2 • • • -1 [
. We denote by (N , 0 ) the set of sequences resulting in all the reachable markings of N from 0 .

Suppose that is ordered as = { 1 , . . . , | | }, function : * → N | | assigns to each sequence ∈ * its count vector ( ), where the ℎ element of vector ( ) represents the number of firings of transition in . For a given marking that is reachable from marking 0 through a transition sequence (i.e., 0 [ > ), the state equation = 0 + • holds with = ( ). However, if the state equation above is satisfied for some positive integer vector ∈ N | | , this does not necessarily imply that there exists a corresponding sequence ∈ * of count vector , such that 0 [ . In the context of partially observed PN, the set of transitions is partitioned as = , where is the set of observable transitions, and is the set of unobservable ones. Given a sequence ∈ * , ( ) (resp. ( )) corresponds to the projection of over * (resp. * ). We define the restriction of the function on the set of observable transitions (respectively unobservable transitions) as

: * → N | | (respectively : * → N | | ).
For the set of observable transitions , we define the observable subnet of PN N by N = ( , , -, + ), with -= - | , and + = +

|

. Similarly, the unobservable subnet is defined by N = ( , , -, + ), with -= - | , and + = + | . Additionally, we write ∈ to denote that ∃ ∈ such that ∈ .

An LPN is a structure N L = ((N , 0 ), , L), where (N , 0 ) is a marked PN, is a finite set of events (i.e., labels) and L : → ∪ { } is the labeling function, which assigns to each transition ∈ either a label from if ∈ , or if ∈ . It is worth noting that two observable transitions may share the same label. The labeling function L can also be extended to transition sequences, L : * → { { }} * . It is also possible to define the projection of ∈ * in the set of observable labels * as ( ) = L ( ( )). For ∈ * , the inverse projection operator is defined as (Explanations and explanation vectors [START_REF] Paola Cabasino | Diagnosability of bounded Petri nets[END_REF]). Given a marking and an observable transition ∈ , we define Σ( , ) = { ∈ * | [ >} as the set of explanations of at , and ( , ) = (Σ( , )) as the set of explanation vectors, i.e., firing vectors associated with the explanations in Σ( , ).

-1 ( ) = { ∈ * | ( ) = }.
In the context of fault diagnosis, the set of unobservable transitions is partitioned into two disjoint subsets = , where corresponds to the set of fault transitions while corresponds to the regular (i.e., non-faulty) unobservable transitions. Furthermore, the set of fault transitions can also be partitioned into disjoint subsets ( = =1 ) that represent the different fault classes. Without loss of generality and for the sake of clarity, one single fault class, denoted as , will be considered. A sequence ∈ * is said to be faulty if contains at least one fault transition of (i.e., ∃ ∈ such that ∈ ). In the remainder of the paper, we say that fault class occurred to mean that there exists a fault transition ∈ which has fired.

We denote by ( ) the set of sequences that enable fault class for the first time. Formally:

( ) = { ∈ * |( ∉ ) ∧ (∃ ∈ : 0 [ )}.

Algebraic modeling of LPN

In this section, a number of algebraic derivations of LPN concepts are provided. Such formulations allow us to outline our contributions subsequently.

Modeling of firing sequences

Let us consider a feasible firing sequence from the initial marking 0 . If we consider an estimation horizon ℎ ∈ N * with ℎ ≥ | |, then we can derive a sequence as = <1> <2> ... <ℎ> where < > ∈ ∪ { } for all ∈ 1, ℎ , and stands for the empty step sequence. That is, we interleave the transitions in with empty step sequences so as to fill all the indexes of the estimation horizon, i.e., from 1 to ℎ. Therefore, there exists a list of markings <1> , <2> , . . . , <ℎ+1> such that <1> [ <1> <2> [ <2> <3> . . . <ℎ> [ <ℎ> <ℎ+1> where <1> = 0 .

In the sequel, we denote ( < > ) as by < > , ∈ 1...ℎ . Based on the fundamental equations of markings and the firing conditions of transitions <1> , <2> , ..., <ℎ> respectively, we get the following relationships specifying the evolution of count vectors:

-• <1> ≤ 0 -. -1 =1 < > + -• < > ≤ 0 ; ∀ ∈ 2, ℎ (1) 
Let us define augmented vector ≥ 0 as follows:

= ( <1> ) ( <2> ) . . . ( <ℎ> ) (2) 
In view of equations (1), we get the system:

Γ. ≤ Θ (3) 
where Γ= 

Modeling of explanation vectors

Let us consider a feasible firing sequence from 0 , and let = ( ) be the observable projection of . Similarly to section 2.2.1, we can derive a sequence from as = <1> <2> ... <ℎ> , where < > ∈ ∪ { } for all ∈ 1, ℎ with ℎ ≥ | | being the estimation horizon. We denote by < > = ( < > ) the count vector corresponding to < > . Let <1> , <2> , • • • , <ℎ> be a set of unobservable explanations that are coherent with transitions <1> , <2> , • • • , <ℎ> , respectively. That is, <1> <1> <2> <2> ... <ℎ> <ℎ> is a feasible firing sequence from 0 . Then, there exists a suite of markings

<1> , • • • , <ℎ> such that 0 = <1> [ <1> <1> <2> • • • <ℎ> [ <ℎ> <ℎ> <ℎ+1> .
We denote by < > = ( < > ) and < > = ( < > ) where ∈ 1...ℎ to represent the rearrangement of the LPN transitions with respects to and , respectively. Based on the fundamental equations of markings and the firing conditions of sequences <1> , <1> , <2> , <2> , ..., <ℎ> and <ℎ> , we get the following relationships specifying the evolution of count vectors:

-. <1> + -. <1> ≤ 0 - . =1 < > - . -1 =1 < > + -. < > ≤ 0 ; ∀ ∈ 2, ℎ (4) 
Let us consider the augmented vector in (2) where < > , ∈ 1, ℎ is defined as follows:

< > = [( < > ) ( < > ) ] (5) 
In view of equations ( 4) and by ordering the transitions in as

= { 1 , • • • , | | , 1 , • • • , | |
} so that we can write as = ( | ), the following system can be formulated:

Γ . ≤ Θ where (6)

Γ = -- 0 • • • 0 - -- . . . . . . . . . 0 - • • • - -- . The dimensions of matrix Γ is ℎ.| | × ℎ.| |.
Note that vector Θ is as defined in (3).

Note that, when the estimate of count vector < > corresponds to a sequence that can be executed by the LPN (from < > ), we can say that this count vector is an explanation vector of < > from < > (cf. Definition 1), i.e., < > ∈ ( < > , < > ).

Modeling indistinguishable observable transitions

Let us now establish the relationship between < > and < > , ∈ 1, ℎ where < > is the count vector of the observed label associated with the ℎ iteration. To this end, let us consider that

= { 1 • • • | | } and = {ℓ 1 • • • ℓ | | }. Then, we can define the labeling matrix ℘ ∈ {0, 1} | |×| | whose general term ℘ with ∈ [1...| |] and ∈ [1...| |]
and which is defined by:

℘ = 1 L ( ) = ℓ ℘ = 0 ℎ (7)
Hence, we get the following relation relating < > to < > :

< > = ℘ • < > ; ∀ ∈ 1, ℎ (8) 
Finally, we can deduce the following relationship between the count vector of observed labels = (( <1> ) ...( <ℎ> ) ) and the count vector defined in (2) and ( 5):

. =

where

= ℘ 0 0 • • • 0 0 . . . . . . . . . . . . 0 0 • • • 0 ℘ 0 . The boxes in D represent the concatenation of matrix ℘ of dimention | | × | | with a zero matrix of dimension | | × | |. is a block-diagonal-matrix of dimension ℎ.| | × ℎ.| |.

-diagnosability of LPN

The classic definition of diagnosability (as initially introduced by Sampath et al. [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF]) can be formulated in the context of LPN for a fault class as follows:

Definition 2. (diagnosability of a fault class [START_REF] Paola Cabasino | A new approach for diagnosability analysis of Petri nets using verifier nets[END_REF]) An LPN system, having no deadlock after the occurrence of any faulty transition in fault class , is diagnosable with respect to if the following holds:

(∀ ∈ ( ) (∃ ∈ N * ) (∀ | 0 [ ; ∈ ) : | | ≥ ⇒ Diag
where the diagnosability condition Diag is:

∈ -1 [ ( )] ⇒ ∈ .
The above definition can be explained as follows: Let 1 be a non-faulty sequence (with respect to fault class ) generated by the LPN, which reaches a marking that enables a fault transition from class . Condition Diag requires that there exists a finite delay upon which one can detect the occurrence of a fault from with certainty. Note that the bound in definition 2 may depend on the particular sequence .

Let us now define the notion of diagnosability in steps, also called -diagnosability.

Definition 3. ( -diagnosability of a fault class) An LPN system, having no deaddlock after the occurrence of any faulty transition in fault class , is diagnosable with respect to if the following holds:

(∀ ∈ ( )) (∀ | 0 [ ; ∈ ) : | | ≥ ⇒ Diag
The above definition means that the firing of any fault 1 In the sequel, (resp.

) stands for the prefix (resp. suffix) preceding (resp. following) the first transition of the considered fault class.

k k-diagnosable non k-diagnosable 3 2 1 K = k +1 K ᵏ Fig. 1. Principle of -diagnosability of fault class = { 1 , 2 , 3 }

transition

∈ can be detected with certainty provided that at least transitions have been fired since the firing of .

The following definition of -diagnosability which is equivalent to Definition 3 can also be introduced. This reformulation will be used in the sequel to develop our technique for -diagnosability analysis. Proposition 1. An LPN is -diagnosable with respect to a fault class iff there do not exist two firing sequences , ∈ * such that:

• = , with ∈ • ∈ ( ) • | | ≥ • ∉ • ( ) = ( ) Proof.
the above result is a reformulation of thediagnosability feature as stated in Definition 3.

According to Proposition 1, a fault class is said to be -diagnosable iff for any feasible faulty sequence having at least transitions following the first fault class occurrence, there does not exist any fault-free sequence that generates the same observation as . Therefore, checking -diagnosability of a fault class amounts to checking that no such couple ( , ) of transition sequences exists for the LPN.

Approach principle

Given an LPN and a fault class , the -diagnosability problem can be reformulated as follows: "Is there

≤ such that is -diagnosable and is not ( -1)-diagnosable? If so, is - diagnosable."
Therefore, checking -diagnosability of consists in determining whether or not there exists a specific minimum value ≤ that ensures the diagnosability of (see Figure 1).

Reformulation of the and -diagnosability problems

It is straightforward that for non -diagnosable models, there is no ≤ ensuring -diagnosability. How-ever, in the case of -diagnosable fault class, there exists some ∈ 1; , that ensures -diagnosability. Two cases should be distinguished: -If = 1 then there does not exist any value ∈ 1;

such that is not -diagnosable. -If ∈ 2; then ∀ ∈ 1; -1 , is not -diagnosable, and ∀ ∈ ; , is -diagnosable.
We suppose that is -diagnosable where 1 ≤ ≤ . To determine the value of , we identify the maximum value of ≤ , denoted as such that the following set is not empty:

( ) = { ( , ) ∈ 2 (N , 0 ) | = , ∈ ( ), ∈ , | | = ; ∉ ; ( ) = ( ) }
In fact, ( ) represents the set of couples of indistinguishable sequences ( , ) where is a feasible faulty sequence with exactly transitions (with ≤ ) following the first fault class occurrence, while is a faultfree sequence. Therefore, can be deduced (from the value of ) as follows:

• If ∈ 1; such that ∃( , ) ∈ ( ) (i.e. does not exist), then = 1. • If ∃ ∈ 1; such that ∀ ∈ 1; , ( ) ≠ ∅ and ∀ ∈ ; , ( ) = ∅ then = + 1. • If ∀ ∈ 1; , ( ) ≠ ∅, then = which implies is not -diagnosable.
In the following section, we will show that we can verify the existence of such ∈ 1, and, if so, determine its value, by solving one single linear optimization problem. However, before that, we need to characterize the set of sequences ( ) that enable fault class for the first time.

In the remainder of the paper, we consider the following assumption: H0. The considered LPN does not reach a deadlock after firing any fault transition.

Preliminary results

In order to reduce the computational complexity and the memory requirements needed to solve the -diagnosability problem, we have every interest to restrict, as much as possible, the scope of the firing sequences to be considered. Unlike in [START_REF] Basile | On K-diagnosability of Petri nets via integer linear programming[END_REF], to perform the -diagnosability test we do not consider all the sequences in ( ) (sequences that lead to the first occurrence of some fault in ). Indeed, we need to investigate only a subset of faulty sequences that have some fault-free indistinguishable sequence.

Firstly, for a given value ∈ 1; , we define the following subset ( , ) ⊆ ( ) which holds the sequences that lead to a first firing of some transition in , and which fulfill the following:

(i)
is the prefix of some feasible faulty sequence = , and (ii) is associated with some indistinguishable fault-free sequence such that ( , ) ∈ ( ). Thus, ( , ) can be formally defined as follows:

( , ) = { ∈ ( ) | ∃( , ) ∈ ( ) ℎ = , ∈ }
Finding one pair ( , ) ∈ ( ) is sufficient to infer that the net is not -diagnosable. Hence, we can seek for a particular couple ( , ) ∈ ( ) such that corresponds to a shortest faulty sequence. In fact, for some fixed ∈ 1; , a shortest fault sequence = is also associated with a shortest sequence . Therefore, for a given ∈ 1;

we can further reduce the scope of our investigation by considering only the set of shortest sequences in ( , ), which is defined as follows:

( , ) = { ∈ ( , ) | ∈ ( , ) s.t | |>| |}
Hence, to check -diagnosability based on the verification of the existence of between 1 and , it is necessary to verify the existence of such couple ( , ) ∈ ( ) for each ∈ 1; . Consequently, it suffices to characterize the following subset of ( ), denoted as ( ):

( ) = 1≤ ≤ ( , ) = 1≤ ≤ -1 ( , )
The problem formulation we propose for analyzingdiagnosability allows us to characterize the set ( ) without resorting to explicit enumeration of the feasible sequences of this set. In fact, it suffices to determine the maximum length of the sequences in set ( ), as will be shown in Section 4. Consequently, the following result can be stated: Proposition 2. For an LPN without any deadlock following the firing of any transition of fault class , checking -diagnosability of can be determined only for a subset of ( ) that includes sequences of maximum length denoted defined as follows:

= max 1≤ ≤ min ∈ ( , ) | | ( 10 
)
Proof. is -diagnosable iff there exists a minimum value

∈ 1, that ensures -diagnosability of . Therefore, ∀ ∈ 1; -1 , is not -diagnosable and ∀ ∈ ; , is -diagnosable. For a fixed ∈ 1; , ( is not -diagnosable) iff (∃( 1 , 1 ) ∈ ( ) such that 1 = 1 1 and 1 ∈ ( , )). The length of 1 is = min ∈ ( , ) | |. Since
≤ is not known a priori, we have to consider all ∈ ( , ) for all ∈ 1; to find a couple ( 1 , 1 ) ∈ ( ) if there exists. Therefore, a sufficient maximal length of for -diagnosability analysis is = max 1≤ ≤ .

In other terms, represents the maximum length among the set of sequences in ( ). Or, phrased differently, stands for the maximal length of the shortest sequences leading to the firing of some faulty transition in , that admit a continuation of length 1 to , such that there exists a corresponding indistinguishable fault-free sequence.

Remark 1. It is straightforward that the theoretic value of is finite even for unbounded nets. Indeed, is the solution of a optimization problem, and corresponds to the maximum value among a finite number of integers. In fact, although Proposition 1 does not provide an operative way to determine a value for , this result is crucial in our approach for -diagnosability analysis, that will be discussed in section 4. Indeed, the finiteness of allows the applicability of our technique to both bounded and unbounded LPN.

In general, the computation of (or an overestimate ≥

) is not trivial. Of course, this value depends on the net structure and can be very large. It is worth noting that an overestimation of can lead to a too much complex ILP problem to be solved, being given that the resolution of an ILP problem is exponential in the worst case w.r.t. the number of variables. On the other hand, an under-estimation of can yield an erroneous verdict regarding -diagnosability. In the remainder of the paper, -diagnosability analysis will be performed while considering the two cases of known and unknown value of ≥ .

Analysis of / -diagnosability

The main result discussed in this section is a necessary and sufficient condition for -diagnosability of a fault class under the hypothesis of acyclicity of unobservable subnet (denoted later by assumption H1 ). An appropriate value of ≥ is supposed to be known. In case is -diagnosable, the value of is also given. The developed technique is based on the resolution of an ILP problem that will be formulated in what follows.

Assume that fault class is -diagnosable with > 1, then there exists at least one firable sequence = <1> . . . < > < +1> . . . < + > from 0 such that:

• < > ∈ ( \ ) ∪ { } for 1 ≤ ≤ ; • < +1> = ∈ ; • < +2> , . . . , < +
> ∈ ; and • there exists at least one sequence ∈ ( \ ) * enabled from 0 , such that ( ) = ( ).

Modeling the faulty sequence

Since

≤ is not known a priori, for the computation of the count vector associated with faulty sequence = <1> <2> ... < > ... < + > , we expand the firing sequence over horizon + + 1 by taking < + +1> , • • • , < + +1> as empty step sequences. Therefore, we can write

= <1> <2> • • • < + +1>
, where < > , ∈ 1, + + 1 can correspond to an observable transition, an unobservable transition or even the empty step sequence .

We denote by < > = ( < > ) and < > = ( < > ) to represent the rearrangement of the LPN transitions with respect to and respectively, yielding

< > = [( < > ) ( < > ) ]
. The firing count vector of faulty sequence is defined as follows:

= ( <1> ) ( <2> ) . . . ( < + +1> ) (11) 
Vector satisfies (3) with ℎ = + + 1.

At every iteration < > from < 1 > to < + + 1 >, at most one transition is fired. Therefore, 0 ≤ . < > ≤ 1 ; ∀ ∈ 1, + + 1 where is a row vector of 1 s of dimension | |. This can be expressed as follows:

0 ≤ 1 . ≤ - → 1 ( 12 
)
where 1 = 0 • • • 0 0 . . . . . . . . . . . . 0 0 • • • 0
From iteration < 1 > to iteration < >, no fault transition of fault class occurs. Therefore, the firing number of fault transitions from iteration < 1 > to iteration < > is equal to zero. The first occurrence of a fault transition from appears at the ( + 1) ℎ iteration. Therefore, < >

=1

. < > = 0 and . < +1> = 1 where is a row vector of dimension | |, of which all the elements are null, except the elements that are associated with fault transitions in , which are equal to 1. Hence, we get:

1 . = 0 2 . = 1 (13) 
where

1 = • • • 0 1× | | ( +1)
, and

2 = 0 1× | |. 0 1× | |. . Regarding iterations < + 2 > to < + + 1 >, iteration < + + 1 >
is the point from which the sum of the count vector elements irrevocably switches from 1 to 0, i.e., remains equal to 0 till the final iteration < + +1 >, which implies . < > -. < +1> ≥ 0 ; ∀ ∈ + 2; + . The underlying idea of the previous relationship is to ensure that exactly one transition is actually fired at each iteration from the < +2 > ℎ to < + > ℎ iteration, (i.e., no void iteration), and that does not hold further transitions. Hence, we can count the maximum number of firable transitions following the fault occurrence while assuming that there is at least one corresponding faultfree sequence that generates the same observation. The previous relation can be written using the following matrix/vector form: . < > ≤ which can be expressed as a dot product, as follows:

2 . ≤ 0 (14) 
1 ≤ . ≤ (15) 
with = 0 1× | |.( +1) • • • .
According to relations (3) for ℎ = + + 1, (12), ( 13) and ( 14), the count vector ∈ N ( + +1). | | of faulty sequence fulfills the following polyhedron:

, . ≤ , (16) 
where

, = Γ 1 -1 2 -2 1 -1 2 - and , = Θ 0 0 1 -1 - → 1 0 0 -1 Theorem 3. [22]
Consider a marked PN (N , 0 ) with reachability space R (N , 0 ) and let R ℎ (N , 0 ) denote the set of markings ∈ R (N , 0 ) that are reachable from 0 through some firable transition sequence with | | ≤ ℎ, ℎ ∈ N. Also, let ℎ (N , 0 ) denote the set of solution vectors ∈ N | | of the following system of linear inequalities, in variables and , ∈ {1, . . . , ℎ}:

                       = 0 + . <ℎ> =1 0 + . < -1> =1 ≥ -. ∀ ∈ {1, . . . , ℎ} 1 • • • 1 . ≤ 1 ∀ ∈ {1, . . . , ℎ} ∈ {0, 1} | | ∀ ∈ {1, . . . , ℎ} (17) 
Then, R ℎ (N , 0 ) = ℎ (N , 0 ).

Based on Theorem 3, let us introduce the following lemma.

Lemma 4. Under H0, system ( 16) is satisfied iff there exists a feasible faulty sequence with at most transition firings after the first occurrence of fault class .

Proof. System ( 16) is the state equation that describes a faulty sequence (with | | ≤ + + 1) by considering at most one transition firing at each iteration (vector satisfies (3) with ℎ = + + 1). Therefore, according to Theorem 3, ( 16) is satisfied iff there exists a corresponding feasible faulty sequence with at most transition firings after the first occurrence of . , where < > is the label produced at iteration < >. Here, < > can be either a label from or the the empty step label expressing the non-occurrence of an observable event at the < > ℎ iteration. Let = ( ) be the observable projection of . We can then write as = <1> <2> ... < + +1> where < > ∈ L -1 ( < > ). We denote by < > = ( < > ) to represent the count vector corresponding to < > . Let <1> , <2> , ...., < + +1> be the unobservable sequences (explanations) that are coherent with transitions <1> , <2> , ...., < + +1> , respectively. An ordering of the set of transitions with regards to and yields < > = (( < > ) ( < > ) ) . The firing count vector of the fault-free sequence = <1> <1> <2> <2> ... < + +1> < + +1> can then be expressed as follows:

= ( <1> ) ( <2> ) . . . ( < + +1> ) (18) 
Vector satisfies relation ( 6) as well, with ℎ = + + 1, for to be feasible.

Sequence must not include any fault transition. This can be expressed by the relation

+ +1

=1

. < > = 0 , which can be written in vector dot product form as:

3 . = 0 (19) 
where 3 = • • • .

According to (6) for ℎ = + + 1 and (19), the count vector of the fault-free sequence fulfills the following polyhedron:

, . ≤ , The two sequences and have the same observable projection, this can be formulated as:

. = . ( 21 
)
where is as defined in relation ( 9) and ℎ = + + 1.

Assuming that vector in ( 21) satisfies ( 16), the integer solutions of system (20) satisfying ( 21) form a set of vectors that includes the count vectors of sequences which fulfill condition , ( ) with ∈ 1; . Theorem 5. [START_REF] Murata | Petri nets: Properties, analysis and applications[END_REF] In an acyclic PN, marking is reachable from 0 iff there exists a non negative integer solu-tion satisfying = 0 + . .

The theorem ensures that, in an acyclic PN, every positive solution of state equation = 0 + . corresponds to a count vector of an actual feasible firing sequence. However, in the presence of cycles in the net, the above result does not apply. That is, the solution does not necessarily correspond to feasible firing sequences. Based on Theorem 5, the following result can be inferred. Lemma 6. Under hypotheses H0 and H1, equation ( 20) is satisfied if and only if there exists a feasible fault-free sequence .

Proof. We recall here that we suppose that the LPN does not include any cyclic unobservable subnet. Therefore, by propagating the result of Theorem 5 at every iteration successively from < 1 > to < + + 1 >, every sequence of vectors <1> , . . . , < + +1> associated with a solution of ( 20) coincides with a sequence of valid explanation vectors of respectively <1> , . . . , < + +1> having, respectively, as count vectors <1> , . . . , < + +1> in (20).

Main results

As already mentioned, our technique for -diagnosability analysis under assumptions H0 and H1 is based on the verification of the existence of the minimum value of in 1; ensuring -diagnosability. Therefore, based on linear optimization techniques, we aim to determine the maximum value of such that there exits a couple of feasible firing sequences ( , ) belonging to ( ) where 1 ≤ ≤ . Firstly, let us introduce the following proposition.

Proposition 7. The existence of a couple ( , ) ∈ ( ) under assumptions H0 and H1 is equivalent to the existence of a couple of vectors ( , ) ∈ N ( + +1). | | × N ( + +1). | | satisfying the following polyhedron: Proof. This is a direct result of Lemma 4 (by referring to system ( 16)), and Lemma 6 (by referring to systems (20)), while considering relation [START_REF] Ning Ran | An improved approach to test diagnosability of bounded Petri nets[END_REF]. Therefore, is the cost function of the following optimization problem when system ( 22) is feasible:

, . ≤ , (22) 
           max N ( . ) such that (22) , ∈ N ( + +1). | | (23) 
Remark. In the sequel, we simply write max() and min() 23) has a solution and max( . ) < ) iff (for = . = max( . ) < , ( 22) admits a solution and for = . = max( . ) + 1 ≤ , ( 22) has no solution) iff (according to proposition 7, for = max( . ) < , ∃( , ) ∈ ( ) and for = max( .

to
( )∀ ∈ 1; ) iff ( is 1-diagnosable). -ii-((
) + 1 ≤ , ( , ) ∈ ( ) iff ( is -diagnosable with = max( . ) + 1) iff ( is -diagnosable.)
Based on the proof of Theorem 8, we can derive the following corollary giving the value of ≤ if the -diagnosability is fulfilled.

Corollary 1. Consider an LPN under hypotheses H0 and H1. If fault class is -diagnosable then is -diagnosable where is defined as follows: 23) is feasible and max( . ) < .

- = 1 if (23) is not feasible. - = max( . ) + 1 if (
Let us now relax assumption H1 of acyclicity. We shall show that a sufficient condition for -diagnosability can be established, as stated in the following theorem. Theorem 9. Consider an LPN under hypothesis H0. For a given ∈ N * , is -diagnosable if at least one of the two following conditions is satisfied: -i- [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF] has no solution, or -ii-( 23) admits a solution and max( . ) < . 23) has no solution, then there does not exist any couple of vectors ( , ) satisfying [START_REF] Reveliotis | A necessary and sufficient condition for the liveness and reversibility of process-resource nets with acyclic, quasi-live, serializable, and reversible process subnets[END_REF]. Thus, there does not exist any couple ( , ) ∈ ( ) for all ∈ 1; , and consequently is 1-diagnosable. -If ( 23) admits a solution and max( . ) < , then for = max( . ) + 1 ≤ , there does not exist any couple of vectors ( , ) satisfying [START_REF] Reveliotis | A necessary and sufficient condition for the liveness and reversibility of process-resource nets with acyclic, quasi-live, serializable, and reversible process subnets[END_REF]. Hence, for = max( . ) + 1 ≤ , there does not exist any couple ( , ) ∈ ( ). Therefore, is -diagnosable with = max( . ) + 1 ≤ and consequently, isdiagnosable.

Proof.

According to the proof of Theorem 9, when the sufficient condition of -diagnosability is fulfilled, although the minimum value ensuring -diagnosability cannot be determined, we can provide a value potentially lower than , such that is -diagnosable and ≤ ≤ . In fact, the case ≠ is possible since some solutions of ( 22) can be spurious solutions, i.e., do not correspond to any (fault-free) sequence. This is due to the relaxation of (H1 ) which implies that the result of Theorem 5 does not apply anymore.

Corollary 2. Consider an LPN under hypothis H0.

If fault class

is -diagnosable then is diagnosable where is defined as follows:

- = = 1 if (23) is not feasible. - = max( . ) + 1 ∈ , if (23) 
is feasible and max( . ) < in [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF].

Example 1. Let us consider the LPN of Fig. 2, where

= { 2 , 3 }, = { 3 }, = { 1 , 4 }, L ( 1 ) = L ( 4 )
= and 0 = [6 0 0 0 0] . We assume to be given, = 6 and we aim to investigate the -diagnosability of the net with = 5. Thus, the horizon is ℎ = + + 1 = 12. The results of the -diagnosability analysis are presented in Table 1.

The unobservable subnet of the LPN is acyclic and we get = max( . ) = 5. Thus, is not 5-diagnosable. Indeed, the results of Table 1 can be interpreted as follows: the maximum value of such that is not -diagnosable is = 5. Namely, this is due to the existence of two feasible firing sequences 1 = 1 1 1 1 1 1 3 2 2 2 2 2 (faulty) and 1 = 1 1 1 1 1 1 (normal) such that ( 1 , 1 ) ∈ (5). Table 1 Results of diagnosability test for = 5.

Let us now investigate -diagnosability with = 10. Thus, the horizon is ℎ = + + 1 = 17. The results of the -diagnosability analysis are presented in Table 2. Here, we get = max( . ) = 6. Thus, is diagnosable with = 7. Indeed, the results of Table 2 can be interpreted as follows: the maximum value of such that is not -diagnosable is = 6. Namely, this is due to the existence of two feasible firing sequences 1 = 1 1 1 1 1 1 3 2 2 2 2 2 2 (faulty) and

1 = 1 1 1 1 1 1 (normal) such that ( 1 , 1 ) ∈ (6).

-diagnosability test on a compacted horizon

The determination of an appropriate value for can be burdensome. Moreover, this value can be high, which impacts the computational effectiveness of the approach discussed in section 4 (which will be called Approach 1 in the sequel). In this section, we will develop a variant of Approach 1, where parameter is no more involved for the checking of -diagnosability, hence significantly reducing the size of the ILP problem to be solved. In fact, the vectors from iteration < 1 > to < > will be compressed without needing to know the value of . Assumption H1 will also be relaxed. A sufficient condition for -diagnosability is then provided based on a new ILP formulation of the problem. In the sequel, this variant of Approach 1 based on horizon compression will be referred to Approach 2. In the last part of this section, we will show how the ILP formulation we develop in Approach 2 can be advantageously used to characterize the value of , which is necessary in Approach 1.

Modeling the faulty sequence

The compression of count vector , corresponding to the faulty sequence (defined as [START_REF] Ghazel | A customizable railway benchmark to deal with fault diagnosis issues in DES[END_REF]), on the interval 1, gives the following new vector ∈ N ( +2). | | :

= ( <1→ > ) ( < +1> ) . . . ( < + +1> )
where the compressed part <1→ > is as follows:

<1→ > = =1 < > = <1→ > <1→ > = =1 < > =1 < >
while < +1> , . . . , < + +1> remain unchanged compared to . To establish the model of the faulty sequence under horizon compression, we consider the following relations:

-Applying the positivity constraint to marking < +1> and the firing condition in (1) for all ∈ + 1; + + 1 12), ( 13), ( 14) and ( 15) which can be rewritten on a compacted horizon while replacing =1 < > by <1→ > and by . Therefore, while setting to 1, 1 , 1 , 2 , 2 and are replaced with 1 , 1 , 2 , 2 and , respectively. Hence, we obtain the following polyhedron:

. ≤

= Γ 1 -1 2 -2 1 -1 2 - and = Θ 0 0 1 -1 - → 1 0 0 -1 (24) with 

Modeling the fault-free sequence

The compression of the count vector of the fault-free sequence defined as [START_REF] Rackoff | The covering and boundedness problems for vector addition systems[END_REF] on the interval [1... ] gives the following new vector ∈ N ( +2). | | :

= ( <1→ > ) ( < +1> ) . . . ( < + +1> )
where the compressed vector <1→ > is defined as:

<1→ > = =1 < > = <1→ > <1→ > = =1 < > =1 < > (25) 
while < +1> , . . . , < + +1> remain unchanged. The model of fault-free sequence under horizon compression satisfies the following constraints: -Positivity constraint of marking < +1> = 0 + . <1→ > and the firing conditions defined in (4) for ∈ + 1; + + 1 , give Γ . ≤ Θ with:

Γ = - 0 • • • 0 - -- . . . . . . . . . 0 - • • • • • • - -- The dimensions of matrix Γ is (2 + ).| | × (2 + ).| |.
-Sequence does not include any fault transition of class , then we get 3 . = 0 with 3 = • • • . Finally, we obtain the following polyhedron:

. ≤ Faulty sequence and fault-free sequence have the same observable projection, this can be expressed as:

. = . ( 27 
)
where is the adaptation of the vector defined in (9) to the horizon ℎ = + 2. The dimension of is then

( + 2).| | × ( + 2).| |.

-diagnosability condition

According to [START_REF] Tarski | A lattice-theoretical fixpoint theorem and its applications[END_REF], ( 26) and ( 27), if there exists a couple of sequences ( , ) ∈ ( ) where 1 ≤ ≤ under hypothesis H0, then there exists a couple of corresponding count vectors ( , ) ∈ N (2+ ). | | × N (2+ ). | | that fulfills the following polyhedron:

. ≤ The dimensions of matrix and vector are

(2| |( + 2)) × (( + 2).(2| | + 2| | + | | + 3) + 5) and (2| |( + 2)) × 1, respectively.
Let us consider the following optimization problem:

max( . ) such that (28) , ∈ N (2+ ). | | (29) 
We can now introduce the following result:

Theorem 10. Consider an LPN under hypothesis H0 and fault class . Given ∈ N * , is -diagnosable if either of the following two conditions is fulfilled: -i- [START_REF] Wen | A polynomial algorithm for checking diagnosability of Petri nets[END_REF] has no solution, or -ii-(29) has a solution and max( . ) < .

Proof. i-If (29) has no solution, then [START_REF] Sampath | Diagnosability of discrete-event systems[END_REF] has no solution either. Thus, according to Theorem 9 and Corollary 2, is -diagnosable and in particular 1-diagnosable. ii-If (29) has a solution and max( . ) < , then for = max( . ) + 1 ≤ , there does not exist a couple of vectors ( , ) satisfying [START_REF] Wen | Diagnosability analysis based on T-invariants of Petri nets[END_REF]. Thus, for = max( . ) + 1 ≤ , there does not exist a couple ( , ) ∈ ( ) and then is -diagnosable with = max( . ) + 1 ≤ . Consequently, is -diagnosable.

Corollary 3. If the sufficient condition for diagnosability in Theorem 10 is satisfied, then not only we can conclude that is -diagnosable but also that it is -diagnosable where: a)

= 1 if (29) has no solution. b) = max N ( . ) + 1 if (29) has a solution.
In addition, we can infer that ≤ ≤ ≤ .

Remark 2. Under hypothesis H1, the possible difference between and (i.e., the case when < ) is due to the spurious solutions of state equation ( 28) as a consequence of the horizon compression.

Example 2. Again, let us consider the LPN of Fig. 2 and let = 10. If we aim to test the -diagnosability of by compacting the interval 1, , we obtain a compacted horizon h = + 2 = 12. The resolution of the ILP problem [START_REF] Wen | A polynomial algorithm for checking diagnosability of Petri nets[END_REF] gives = max( . ) = 6 < . Therefore, we can conclude that is 7-diagnosable and, hence, 10-diagnosable. 

Characterization of

As highlighted in [START_REF] Basile | On K-diagnosability of Petri nets via integer linear programming[END_REF], the determination of a bound for the length of the relevant sequences leading to a fault ( that is necessary in Approach 1 discussed in section 4 in our case , or J in [START_REF] Basile | On K-diagnosability of Petri nets via integer linear programming[END_REF]) is not an easy task, and no method is available yet to determine such a value. Although we do not provide a systematic method to compute a value of bound , the contribution we discuss in this section aims to provide some characterization of this bound. Namely, we show that using the compressed system (28), we can determine a lower bound -of . In fact, in the case when [START_REF] Wen | Diagnosability analysis based on T-invariants of Petri nets[END_REF] has no solution, we get = = 1 in (29) and therefore determining a value for to checkdiagnosability is useless. Therefore, we restrict the following analysis to the case when (28) admits a solution. In this case, let us denote by = max( . ) the computed cost function of system [START_REF] Wen | A polynomial algorithm for checking diagnosability of Petri nets[END_REF]. The assumption H1 of acyclicity is also considered in this subsection.

For some given ∈ 1; , let us consider the two following sets:

1 ( ) = { ( ) ∈ N | | | ∈ ( , ) } 2 ( ) = { <1→ > ∈ N | | | (28) ∧ ( . = ), with = ( <1→ > < +1> . . . < + +1> ) }
Set 1 ( ) corresponds to the count vectors of the sequences in ( , ) (as introduced in section 3.2), while set 2 ( ) holds the vectors <1→ > which are components of some vector , which satisfies the following conditions: i)There exists such that( , ) satisfies [START_REF] Wen | Diagnosability analysis based on T-invariants of Petri nets[END_REF] ii) .

= . It is clear that 1 ( ) ⊆ 2 ( ). Therefore, min

1( ) ( ) 1 ≥ min 2( ) <1→ > 1 with ∈ 1; and then = max 1≤ ≤ min 1( ) ( ) 1 ≥ max 1≤ ≤ min 2( ) <1→ > 1 .
On the other hand, we have

max 1≤ ≤ min 2( ) <1→ > 1 = max 1≤ ≤ min 2( ) <1→ > 1 .
Consequently, we get a lower bound of , defined as follows:

       = max 1≤ ≤ min <1→ >
1 such that [START_REF] Wen | Diagnosability analysis based on T-invariants of Petri nets[END_REF] and . =

Furthermore, given the lower bound of , we can determine a lower bound -for as follows:

- = max( . ) such that (22) = (31) 
We denote -the minimal value of allowing the generation of -such that -≤ Therefore, -is determined once -in ( 31) is computed, as follows:

             -= min( =1 < > 1 ) such that (22) = . = - (32) 
Now that lower bounds for and , namely - and -, respectively, have been determined analytically, we shall show how we can improve these bounds, empirically. Figure 4 represents a possible evolution of cost [START_REF] Reveliotis | A necessary and sufficient condition for the liveness and reversibility of process-resource nets with acyclic, quasi-live, serializable, and reversible process subnets[END_REF] admits some solution (i.e., is not 1-diagnosable). Let us denote by the variable used to increment the value of to improve (increase) the lower bounds of and . Then, starting from = , we can increment the value of iteratively, and we solve successively the two ILP problems [START_REF] Yoo | Computation of fault detection delay in discrete-event systems[END_REF] and [START_REF] Zaytoon | Overview of fault diagnosis methods for discrete event systems[END_REF] while replacing by in these systems. Based on the fix-point theorem [START_REF] Tarski | A lattice-theoretical fixpoint theorem and its applications[END_REF], one can be sure that the cost function of (31) will reach the value ( ) if keeps increasing ( = -1 if is -diagnosable with ≥ 2 and = if is not -diagnosable). It is however not possible to determine analytically when ( ) shall be reached (since is unknown). Therefore, in practice, unless the solution of ( 31) reaches (such a case is considered in Remark 3), we can take as a lower bound of the value ( -) which is the cost function of [START_REF] Yoo | Computation of fault detection delay in discrete-event systems[END_REF] while replacing by the last (highest) taken value of . In addition, we can take as a lower bound of , the cost function ( -) of (32) while replacing by the last (highest) taken value of .

Remark 3. In case the solution of ( 31) reaches , we are sure that:

-If 1 < < , then is determined, = ; -If = , then is not -diagnosable.
--converges to the value of , which is an optimal value of parameter that is necessary in Approach 1. Such solution corresponds to the cost function of [START_REF] Zaytoon | Overview of fault diagnosis methods for discrete event systems[END_REF] while replacing by the last (highest) taken value of , and -by .

Example 3. Let us consider the LPN of Figure 3 (used in both [START_REF] Basile | On K-diagnosability of Petri nets via integer linear programming[END_REF] and [START_REF] Paola Cabasino | A new approach for diagnosability analysis of Petri nets using verifier nets[END_REF]), where 22)). We recall here that the resolution of an ILP problem is NP-hard and can be done in an exponential time in the worst case w.r.t the system size. As we have mentioned earlier in the paper, the determination of the value of is not an easy task, and such a value can be very large, which directly affects the complexity of the procedure. In fact, The number of variables and constraints of the above ILP formulation are as a function of . To tackle this issue, we developed a second technique to investigate -diagnosability while compacting the interval preceding the first fault class occurrence, therefore reducing the ILP system dimension and making the resolution procedure independent of . This second ILP formulation involves 2| |( + 2) unknowns and ( + 2).(2| | + 2| | + | | + 3) + 5 constraints (cf. ( 28)).

= { 2 , 3 }, = { 2 }, = { 1 , 4 , 5 , 6 , 7 } with L ( 1 ) = , L ( 4 ) = L ( 6 ) = , L ( 7 ) = , L ( 5 ) = ,
In the following, we present a comparison between our approach (Approach 1 ) for / -diagnosability analysis and a number of efficient relevant methods from the related literature. We firstly consider graphbased techniques, then algebraic approaches. In fact, it is worth noting that substantial improvements in terms of complexity have been brought by diagnosability techniques, that consider an FSA setting. In recent years, polynomial time algorithms w.r.t the number of states of the FSA model have been proposed in [START_REF] Qiu | Decentralized failure diagnosis of discrete event systems[END_REF][START_REF] Ha Tomola | Robust disjunctive-codiagnosability of discrete-event systems against permanent loss of observations[END_REF]. In [START_REF] Viana | Codiagnosability analysis of discrete-event systems modeled by weighted automata[END_REF], Viana et al. proposed an even more efficient (polynomial) algorithm for (co)diagnosability analysis and then -(co)diagnosability computation using a verifier model. The aforementioned approaches can be adapted to investigate / -diagnosability issues in bounded PNs. Nevertheless, this would require building the reachability graph of the net, and then to build some dedicated models for performing / diagnosability analysis (verifier, etc.). We should also mention that some approaches have already been developed to tackle / -diagnosability issues in bounded PNs using graph-based settings. For instance, in [START_REF] Ning Ran | Codiagnosability analysis of bounded petri nets[END_REF], a subset of the reachability graph, namely the Basis Reachability Graph (BRG), is computed to perform (co)diagnosability analysis of a bounded LPN, and then to determine -(co)diagnosability. A main issue is related to the combinatorial explosion when building the reachability graph (or the BRG) this computation raises. This motivates the use of algebraic techniques to deal with / -diagnosability issues in PNs. In fact, these techniques exploit the mathematical representation of PNs, and do not require computing the state space of the net. We can also mention that, based on ILP formulations, some techniques can be brought into play to improve the efficiency of the -diagnosability analysis, such as, for instance, by achieving some relaxation of the ILP.

For unbounded PNs, an interesting approach is proposed in [START_REF] Paola Cabasino | A new approach for diagnosability analysis of Petri nets using verifier nets[END_REF] to check / -diagnosability by investigating the coverability graph of a verifier net. A procedure to compute the value of (and when possible) was proposed based on a modified verifier net. The procedure determines the desired value of directly from the marking of a new place that is added to the net structure. In [START_REF] Ning Ran | K-codiagnosability verification of labeled petri nets[END_REF], the authors investigate the -(co)diagnosability of bounded/unbounded LPNs on the basis of a verifier established from the reachability/coverability graph of the net, and then the -(co)diagnosability analysis is performed. The main drawback of the aforementioned approaches lies in the need of computing the coverability graph (for unbounded PNs), for which the computational complexity is not even in primitive recursive space (i.e., it requires more than exponential space) [START_REF] Rackoff | The covering and boundedness problems for vector addition systems[END_REF][START_REF] Yin | On the decidability and complexity of diagnosability for labeled petri nets[END_REF].

From the above discussion, the approach in [START_REF] Basile | On K-diagnosability of Petri nets via integer linear programming[END_REF] remains one of the most efficient approaches for checkingdiagnosability, and it is also the closest one to our work. Thus, here-below, we provide a detailed comparison with our approach. Besides, in [START_REF] Basile | Efficient diagnosability assessment via ilp optimization: a railway benchmark[END_REF][START_REF] Boussif | An experimental comparison of three diagnosis techniques for discrete event systems[END_REF], we have carried out some comparative experimental studies that showed the advantages of algebraic approaches to investigate PN diagnosability issues, comparatively to graph-based ones, in terms of memory and time consumption.

In [START_REF] Basile | On K-diagnosability of Petri nets via integer linear programming[END_REF], the defined ILP problem involves the parameter J . A lower bound of J , denoted as J , was defined that permits to fully describe the set of markings reachable from the initial marking and which enable for the first time the considered fault transition. The value of J is determined only for live and bounded nets. In addition, an upper bound of J is defined as a function of the initial marking and the minimal -invariants of the LPN, and can be then very large, which directly impacts the complexity of the computation. In [START_REF] Basile | On K-diagnosability of Petri nets via integer linear programming[END_REF], the -diagnosability test of a given fault transition is then carried out by solving an ILP problem of 2(| | + | |) ( + ) unknowns and 3( + )| | +3| | +1 constraints, thus at a comparable order of complexity as the first technique discussed in the present paper. However, in the case where the LPN is -diagnosable, the technique in [START_REF] Basile | On K-diagnosability of Petri nets via integer linear programming[END_REF] does not provide the minimum value ensuring -diagnosability. To compute such a value, several executions of the -diagnosability test are required, using for instance incrementation of from 1 onwards. In contrast, the algebraic formulation developed in the present paper allows for performing thediagnosability test of a given fault class, considered as a whole, and if this fault class is -diagnosable, the minimum value ≤ that ensures diagnosability is also determined directly, all at once. It is worth noticing here that the sufficient maximal length of that we consider for -diagnosability analysis in Approach 1 (the value ) is potentially much lower than the value defined in [START_REF] Basile | On K-diagnosability of Petri nets via integer linear programming[END_REF]. Indeed, while parameter J in [START_REF] Basile | On K-diagnosability of Petri nets via integer linear programming[END_REF] corresponds to an upper bound of the length of all the prefixes that enable a fault transition for the first time, we only consider a subset of these aforementioned prefixes in our analysis. Namely, we restrict the analysis to the subset of prefixes that have some continuation (of length 1 to ) upon the fault occurrence, in such a way that at least one corresponding indistinguishable fault-free sequence exists.

More importantly, we have shown that the length of the longest sequence of this subset is finite even for unbounded PN. As a consequence, the established results are not limited to the case of bounded PNs. Besides, replacing the value of in [START_REF] Basile | On K-diagnosability of Petri nets via integer linear programming[END_REF] by allows for extending the results of [START_REF] Basile | On K-diagnosability of Petri nets via integer linear programming[END_REF] to the case of unbounded nets.

Experimental results

In this section, we report the experimental results of the -diagnosability techniques developed in this paper. The railway benchmark proposed in [START_REF] Ghazel | A customizable railway benchmark to deal with fault diagnosis issues in DES[END_REF] is used.

It is about a railway level crossing system with railway tracks ( variable). To assess the three approaches experimentally, and perform a comparison with that of [START_REF] Basile | On K-diagnosability of Petri nets via integer linear programming[END_REF], a Matlab® code was developed, which calls the FICO™ Xpress optimization solver (Note that the technique of [START_REF] Basile | On K-diagnosability of Petri nets via integer linear programming[END_REF] is also encoded as a Matlab® program calling FICO™ Xpress). The experiments were carried out on a dual core Intel(R) Xeon(R) CPU with a clock of 3.30 Ghz each, and 32 GB of RAM. We fix to 125 and test the / -diagnosability of fault transition 6 while incrementing the number of tracks from 1 to 18, so as to increase the size of the model. To compare Approach 1 with the approach in [START_REF] Basile | On K-diagnosability of Petri nets via integer linear programming[END_REF], we perform the tests using the same values of parameters and J . The obtained re- 4 Obtained results for the 3 approaches sults are presented in Table 4. The benefits of the two developed approaches can be clearly noticed from the computation times. It should also be noted that the values of determined in [START_REF] Basile | Efficient diagnosability assessment via ilp optimization: a railway benchmark[END_REF] for the cases = 11 and = 12 are not valid. This is indeed due to the underestimation of the value of J (fixed to 12) considered in the experiments performed in [START_REF] Basile | Efficient diagnosability assessment via ilp optimization: a railway benchmark[END_REF].

Conclusion

In this paper, we proposed a number of algebraic approaches for -diagnosability analysis in DES, modeled as partially observable LPN, that can be unbounded. The first approach is based on ILP optimization techniques, and provides a necessary and sufficient condition for -diagnosability of a fault class, under the hy-pothesis of acyclicity of the unobservable subnet. If the investigated fault class is -diagnosable, the minimum value ≤ ensuring -diagnosability is also computed, simultaneously. Moreover, the parameter defined in our approach to characterize the subset of faulty sequences that are relevant for investigatingdiagnosability allows for extending the approach of [START_REF] Basile | On K-diagnosability of Petri nets via integer linear programming[END_REF] to the case of unbounded LPNs. The relaxation of the acyclicity hypothesis on the unobservable subnet is also discussed. Namely, we show that based on the developed formulation, a sufficient condition for -diagnosability can be established in this case. A second approach using a compacted horizon is then developed, reducing the system dimension and, above all, dispensing with the parameter that characterizes the number of possible events preceding the first fault occurrence. Such a parameter being not easy to determine. In the second approach, we relax the acyclicity hypothesis regarding the unobservable subnet. A sufficient condition for -diagnosability is established and can be checked as an integer optimization problem. If the condition is fulfilled, a value that is potentially lower than ( ∈ ; ) ensuring ( -)diagnosability is also determined. A characterization of the parameter used in Approach 1 is performed based on horizon compression.

In future work, the characterization of parameter will be pursued. Moreover, an extension of our techniques to the case of intermittent faults will be investigated.
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 661 and 0 = [1 0 0 0] . We aim to verify the -diagnosability with = 30, on a compacted horizon h = + 2 = 32. The cost function of system (29) gives = max N ( . ) = 30 = . In this case, we cannot conclude on the -diagnosability of using a compact horizon. The resolution of the ILP problem (30) gives = 30 which is a lower bound of . The resolution of the ILP problem (31) on the horizon ( + + 1 = 61) gives -= 30 = . Then, according to Remark 3, is not 30-diagnosable and = = 30. Computational remarks and comparisons The ILP formulation of the -diagnosability test of Approach 1 (see Section 4) involves 2| |( + +1) unknowns and ( + + 1).(2| | + 2| | + | | + 2) + + 7 constraints (cf. (
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