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A General Weak Law of Large Numbers for Sequences

of Lp Random Variables

Yu-Lin Chou∗

Abstract

Without imposing any conditions on dependence structure, we give a seemingly

overlooked simple sufficient condition for Lp random variables X1, X2, . . . with

given 1 ≤ p ≤ +∞ to satisfy

1

an

bn∑
i=1

(Xi − EXi)
Lp

→ 0 as n→∞,

where (an)n∈N, (bn)n∈N are prespecified unbounded sequences of positive integers.

Some unexpected convergences of sample means follow.
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A law of large numbers is usually obtained by controlling both the dependence

structure and the distributional homogeneity (including moment conditions here) of

the underlying sequence of random variables. For classical treatments, one may refer to

Etemadi [5] or Folland [6]; for more recent treatments, Chen and Sung [3] or Seneta [9].

The prototypical, most popular version of a weak law of large numbers is certainly the

classical weak law asserting in-probability vanishment of sample means of independent

identically distributed L2 centered random variables.

In the related literature, there are works giving weak laws that are “nontypically”

general in different directions. For instance, Loève [7] (p. 26) gives a necessary and

sufficient condition for sample means of Bernoulli random variables, not necessarily

independent, to obey a weak law; and Adler et al. [1] gives a weak law (in a suitable

sense) for a class of independent random elements, whose moments need not exist, of a

class of Banach spaces.

On the other hand, there are known laws of large numbers asserting Lp-vanishment

of suitably scaled partial sums of centered random variables for special values of p. For
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instance, the classical Khintchine’s theorem ensures L1-vanishment of sample means of

centered L1 random variables under suitable conditions controlling both dependence

structure and distributional homogeneity; the classical Markov’s theorem asserts (under

suitable conditions) the L2-vanishment of the n−2-scaled partial sums of centered L2

random variables; and Lemma 1.5.1 in Chandra [2] asserts L2-vanishment of sample

means of uniformly bounded pairwise-independent centered L2 random variables.

However, except possibly for the simple cases such as Bernoulli random variables,

there seems not a general weak law for random variables, in the present evident sense,

completely dropping control over dependence structure and at the same time offering a

tractable sufficient condition. For instance, Theorem 1.2.2a in Révész et al. [8] asserts

(in particular) in-probability vanishment of sample means of arbitrary random variables

X1, X2, . . . under the condition that the series
∑

i i
−1Xi converges almost surely.

Independently of the related existing literature, we wish to give an overlooked law of

large numbers suggested instead by the mathematical nature of the summation operat-

ors, which, without any dependence assumption, asserts in particular a generic weak law

for random variables with finite mean (a condition being “negligible” in general) under

precisely one simple distributional homogeneity condition in terms of the absolute first

moments of the underlying random variables:

Theorem 1. Given a probability space with P denoting the given probability measure,

let 1 ≤ p ≤ +∞; let X1, X2, · · · ∈ Lp(P); let (an)n∈N, (bn)n∈N be unbounded sequences

of positive integers. If a−1n

∑bn
i=1 |Xi|Lp → 0 as n→∞, then

1

an

bn∑
i=1

(Xi − EXi)
Lp

→ 0 as n→∞.

Proof. By Minkowski’s inequality we have∣∣∣∣ bn∑
i=1

(Xi − EXi)

∣∣∣∣
Lp

≤
bn∑
i=1

|Xi − EXi|Lp

for all n ∈ N.

Since |f |Lr ≤ |f |L∞ for all 1 ≤ r ≤ +∞ and all f ∈ Lr(P), Minkowski’s and Jensen’s

inequalities (whenever suitable) jointly imply1

|Xi − EXi|Lp ≤ |Xi|Lp + |EXi| ≤ |Xi|Lp + |Xi|L1 ≤ 2|Xi|Lp

for each i ∈ N. It follows that

1

an

bn∑
i=1

|Xi − EXi|Lp ≤ 2

an

bn∑
i=1

|Xi|Lp

1This observation appears in another preprint (Chou [4]) of the author for another purpose. At that

time I did not observe the present observation, and it is evidently illogical to incorporate one of these

works into the other. Mathematics happened to show itself in that way; I wrote it down.
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for all n; but then the convergence assumption implies

1

an

bn∑
i=1

(Xi − EXi)
Lp

→ 0 as n→∞.

This completes the proof.

Remark 1. In Theorem 1, if an = bn = n for all n, then the sufficient condition may

be replaced by the convergence |Xi|Lp → 0 as i→∞.

Moreover, Theorem 1 also holds for (an) an unbounded sequence of positive real

numbers.

Corollary 1. Given any probability space Ω with P denoting the given probability

measure, let X1, X2, . . . be uniformly bounded random variables on Ω, i.e. such that

supi∈N |Xi| ≤ M on Ω for some (fixed) real M ; let (an)n∈N, (bn)n∈N be unbounded se-

quences of positive integers. If

bn
an
→ 0 as n→∞,

then

1

an

bn∑
i=1

(Xi − EXi)
Lp

→ 0 as n→∞

for all 1 ≤ p ≤ +∞.

The potential utilities of Theorem 1 are further suggested in the following

Example 1. For each x ∈ R, let δx be the Dirac measureB 7→ 1B(x) on the Borel sigma-

algebra of R concentrated at x. Let (Xi)i∈N be a sequence of Rademacher-type random

variables (on the same probability space) such that each Xi has i−1δ−1 + (1− i−1)δi−1

as its distribution. Then E|Xi| = 2i−1 − i−2 → 0 as i→∞, and so

1

n

n∑
i=1

E|Xi| → 0 as n→∞.

Since (Xi) is not necessarily independent and is by construction not identically dis-

tributed, no known law of large numbers seems to immediately assert a convergence of

the sequence (n−1
∑n

i=1(Xi − EXi))n∈N, if not logically impossible. However, Theorem

1 asserts that

1

n

n∑
i=1

(Xi − EXi)
L1

→ 0 as n→∞

and hence certainly

1

n

n∑
i=1

(Xi − EXi)→ 0 in probability

as n→∞.
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Example 2. Consider a sequence of normal random variables (Xi)i∈N with mean zero

such that each ξi has variance i−2. Then E|Xi| = i−1
√

2/π for all i, and so the sequence

X1, X2, . . . of random variables satisfies the assumptions of Theorem 1.

The random variables X1, X2, . . . are not necessarily independent and are by con-

struction not identically distributed, and hence the known laws of large numbers seem

unable to assert a convergence of the sample mean of the centered random variables

Xi − EXi. But its L1-convergence and convergence in probability are ensured by The-

orem 1.

Example 3. For a given sequence of Lp random variables X1, X2, . . . (with 1 ≤ p <

+∞) that are identically distributed, Theorem 1 need not imply a convergence of the

sample mean of the centered random variables Xi − EXi (except for the trivial cases).

However, since

1

na

n∑
i=1

|Xi|Lp =
1

na−1
|X1|Lp → 0 as n→∞

for all real a > 1, Theorem 1 does assert the Lp-convergence of the sequence (n−a∑n
i=1(Xi − EXi))n for all real a > 1. This covers some cases where the known laws of

large numbers need not apply, e.g. where the dependence structure of (Xi) is unspecified.

Having given the above example, we construct another example for comparison. Let

there be given some identically distributed sequence of nonnegative L1 random variables

ξ1, ξ2, . . . with nonzero mean, and define Xi := iξi for all i ∈ N. Then each Xi is L1,

and the sequence (Xi) is by construction nonidentically distributed with an unspecified

dependence structure; moreover, we have E|Xi| = iEξ1 →∞ as i→∞. Since

1

n2+a

n∑
i=1

|Xi|L1 → 0 as n→∞

for all real a > 0, Theorem 1 asserts for all real a > 0 the L1-convergence of the random

variables n−2−a
∑n

i=1(Xi − EXi) as n goes beyond every bound. The existing laws of

large numbers seem unable to assert this same conclusion.

For potential practical matters, we draw the following

Remark 2. The situations considered in the above examples would not be artificial.

For instance, one may naturally consider certain types of observational (in contrast with

“experimental”) data as obtained from a time series of samples with finite mean for which

it would be reasonable to assume that the absolute means of the samples vanish (at

least in average) due to some systematic exogenous chronological structural factor such

as continual technological advances over time. Thus Theorem 1 would also contribute

to estimation or testing problems in the context of structural equation modeling.
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For technical matters, we draw the following

Remark 3. One of the weak laws that are both technically friendly and application-

friendly is the weak law for uncorrelated L2 random variables, not necessarily identically

distributed, whose n−2-scaled partial sums of the variances of the first n random vari-

ables vanish, the conclusion being that the sample means of the centered random vari-

ables converge in probability. This weak law is certainly a special case of the Bernstein-

Khintchine weak law (Theorem 1.5.1 in Chandra [2]).

The reader would then compare this common version of weak law with the implica-

tions of Theorem 1.
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