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Abstract
A system subject to degradation is considered. The degradation is
modelled by a gamma process. A condition-based maintenance policy
with perfect corrective and an imperfect preventive actions is proposed.
The maintenance cost is derived considering a Markov-renewal
process. The statistical inference of the degradation and maintenance
parameters by the maximum likelihood method is investigated. A
sensibility analysis to different parameters is carried out and the
perspectives are detailed.
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Introduction

Since few decades, more sensor data are available and complex systems
monitoring has received a lot of attention. Complex systems undergo
degradation and their health condition evolves in time. Monitoring these
latter permits to make maintenance decisions according to the usage,5

operation conditions and degradation level of the system. In order to make
sensible maintenance decisions, it is important to be able to predict the
future evolution of the system. The prediction allows to decide whether
the system should be maintained correctively or preventively. For such
predictions and therefore maintenance decisions, the degradation of the10

system should be modelled according to expert knowledge or historical
data. To this aim the development of a mathematical model accurately
describing the system’s behaviour is essential. However, to be useful,
the chosen model should be credible, incorporate the major features of
collected data and evolve with time. It is important to remind that health15

or degradation indicators, are usually influenced by several factors, which
are not necessarily known, and their impacts cannot be modelled through
a deterministic expression. Since the degradation undergoes different
unknown factors due to the environmental conditions, usage, etc. this
phenomenon can be considered as random. Stochastic processes, such as20

Lévy processes, Markov processes, counting processes, birth processes
are complex and exhaustive models to describe the degradation indicator
evolution in time (1; 2). Frequently, gamma and Wiener processes are
considered to model the evolution of gradual degradation for monotone
and non-monotone phenomenon respectively (3; 4; 5). In the framework25

of this paper, a gamma process is adopted for monotonous degradation
modelling. Once the behaviour of a deteriorating system is modelled, its
future failure time can be estimated and it is possible to plan efficient
maintenance rules.

In presence of degradation model and data, maintenance decision30

making is an important issue which can be addressed correctly by
analysing maintenance historical data. Maintenance actions can be
corrective or preventive. In this paper, a condition-based maintenance
policy is considered where maintenance operation is triggered if the
monitored health condition indicator exceeds a critical threshold, refer35

to (6; 7; 8; 9; 10; 11; 12). One considers both perfect (”as good as
new”) and imperfect maintenance which means after maintenance, the
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system is not necessarily restored to as good as new. For instance, steel
structures such as tanks or bridges, are covered by an organic coating
in order to protect them from corrosion due to outdoor conditions. The40

coating layer deteriorates in time, maintenance actions are carried out to
improve the condition of the coating, refer to (13). The main concern in
imperfect maintenance policies is to model the impact of maintenance
actions on the system. Most of the imperfect maintenance models lead
to the reduction of age or impact the failure intensity, refer to (14; 15; 16).45

Imperfect maintenance models reducing the degradation level are still
a broad field to explore. Kijima in (17) propose a cumulative damage
shock model with imperfect periodic maintenance actions reducing the
degradation level by a percentage of the total damage. An extension of
this model is developed later in Kijima 1992 (18). Since then, there are50

maintenance models considering a deterministic maintenance efficiency
for degradation reduction (19; 20). Authors in (21; 13; 22; 23; 24;
25; 26) consider imperfect maintenance impacting the degradation level
with a random maintenance efficiency modelled by a random variable
with a uniform, beta, exponential, gamma, gaussian, truncated gamma55

or gaussian distribution. Authors in Ponchet et al 2009 (27) consider
degradation based imperfect maintenance where the efficiency is random
and depends on the residual life time. Authors in (28; 29) give a large panel
of important measures and other properties for an imperfectly repaired
gamma deteriorating system.60

Long run average maintenance cost calculation in the framework of
imperfect maintenance is not an easy task. Since the preventive actions
are not replacements, the renewal theory cannot be applied to preventive
cycles, (30; 31). To bypass this problem dynamic programming (13)
or Markov renewal theory (21) is used. These calculation methods are65

possible if the degradation parameters as well as maintenance efficiency
are known. In presence of historical data, first the parameters should be
estimated and then propose an optimal maintenance rule.

Statistical Inference, in presence of large set of monitoring data very
often rely on Maximum Likelihood Method. Inference in presence of70

degradation data has already received a lot of attention (32; 5; 33;
34). However, inference in the framework of condition-based imperfect
maintenance is not extensively studied. For instance, Authors in (25; 35;
26) consider statistical inference in the case of imperfect maintenance
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where Wiener, diffusion or jump diffusion process are considered75

as degradation model. The case of gamma process and imperfect
maintenance is scarcely studied, refer to (36; 37; 38). Authors in (36)
focus on semi-parametric estimation of the maintenance efficiency. In (37)
an exponential distributed degradation reduction is considered and the
parameter of the exponential distribution is estimated via MLE method80

based on degradation data just after maintenance.
In this paper, a condition-based maintenance policy is considered.

The preventive imperfect maintenance under consideration reduces the
degradation level of the system. The maintenance efficiency is not
random but is considered as unknown. That is why statistical inference85

is considered. The main contribution of the paper is as follows:

• Point out the robustness of maintenance decision rules in presence of
unknown degradation and maintenance parameters.

• Parameter estimation in presence of degradation data with imperfect
maintenance.90

• Sensitivity analysis of the maintenance long run average cost to
degradation and maintenance parameters.

The remainder of the paper is as follows. The first part of the paper
is devoted to the model description and maintenance cost calculation. The
next section discusses the statistical inference in presence degradation data95

with imperfect maintenance. Eventually based on numerical examples,
the properties of a maintenance policy based on parameter estimates are
discussed.

Degradation process and maintenance model

Degradation process100

A system undergoing a monotonous degradation is considered. It is
assumed that the degradation process is a gamma process, {Xt, t ≥ 0},
with shape parameter a(t) = αtβ , α > 0, β > 0, and scale parameter
b > 0. The gamma process {Xt, t ≥ 0} is a continuous-time stochastic
process such that:105

• X(0) = 0 with probability one,
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• X(t)−X(s) ∼ G(a(t)− a(s), b) for all t > s ≥ 0, with density
function ∀x ∈ R+:

fa(t)−a(s),b(x) =
ba(t)−a(s)

Γ(a(t)− a(s))
xa(t)−a(s)−1e−bx, (1)

• {Xt, t ≥ 0} has independent non-overlapping increments.

Maintenance model110

Let {Yt, t ≥ 0} denotes the stochastic process of the maintained system. It
is considered that the system is inspected at times τ, 2τ, . . .. Let us denote
by {tj = jτ, j ∈ N} the set of inspection times. It is referred to tj− and tj+

as the time just before and just after the inspection time tj respectively.
Let be M the failure threshold beyond which the system does not fulfil115

correctly its missions. The failure is not self announced and can be only
detected by inspection. Let L be the preventive threshold triggering the
preventive action, 0 < L < M . At each inspection t−j , a decision is taken
respect to the observed degradation level:

• if Yt−j ≥M , then a Corrective Maintenance (CM) is performed and120

the system is replaced by a new one (As Good As New): in such a
case, both the degradation level and the time set to zero;

• if L ≤ Yt−j < M , then a Preventive Maintenance (PM) is performed.
We consider here an imperfect PM, and more precisely, an ARD∞
model, parameterized by ρ, i.e. the degradation level just after the125

inspection (at time tj) is reduced by a proportional quantity of the
degradation level just before the inspection: Ytj+ ≈ (1− ρ)Ytj−;

• if Yt−j < L, no action is performed Ytj+ ≈ Ytj− .

There is a difference between a CM and a perfect PM: in the second
case, only the degradation level is set to zero.130

Let us denote Ui = 1L≤Y(iτ)−<M . Between the inspection at time (i−
1)τ and the inspection at time iτ , the system is assumed to evolve
according to i.i.d. copies (X

(i)
t )t≥0 of the gamma process (Xt)t≥0.

Thus, before the first inspection, we have ∀t ∈ [0, τ), Yt = X
(1)
t . At the

first inspection, we could have:135

• if Yτ− < L, no action is performed and then Yτ = Yτ− = X
(1)

τ− .
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• if L ≤ Yτ− < M , an imperfect PM (ARD∞) is performed and then
the degradation level is reduced of ρX(1)

τ and thus Yτ = (1− ρ)X
(1)

τ− .
• if Y −τ > M then the system is replaced by a new one.

After the first inspection without replacement, we have ∀t ∈ [τ, 2τ),

Yt = Yτ +X
(1)
t −X(1)

τ = (1− ρ)U1X(1)
τ +X

(2)
t −X(2)

τ

At the second inspection at time 2τ , we have140

• if Y2τ− < L, no action is performed, and

Y2τ = Y2τ− = (1− ρ)U1X(1)
τ +X

(2)
2τ −X(2)

τ .

• if L ≤ Y2τ− < M , an imperfect PM (ARD∞) is performed and then
the degradation level is reduced of ρ(X

(1)
2τ −X

(1)
τ ) and thus

Y2τ = Y2τ− − ρ(X
(2)

2τ− −X
(2)
τ )

= (1− ρ)U1X(1)
τ + (1− ρ)(X

(2)

2τ− −X
(2)
τ )

• if Y2τ− > M then the system is replaced.

By induction, we can conclude that after i inspections without
replacement, we have ∀t ∈ [iτ, (i+ 1)τ)

Yt = Yiτ + (X
(i+1)
t −X(i+1)

iτ )

and if we denote i = bt/τc, then we get

Yt =
i∑

j=1

(1− ρ)Uj(X
(j)
jτ −X

(j)
(j−1)τ ) +X

(i+1)
t −X(i+1)

iτ

Finally, we obtain

Y(i+1)τ = Yiτ + (1− ρ)Ui+1(X
(i+1)
(i+1)τ −X

(i+1)
iτ )

=
i+1∑
j=1

(1− ρ)Uj(X
(j)
jτ −X

(j)
(j−1)τ ) (2)
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Maintenance cost evaluation

Let CI , CP and CC denote respectively the cost of an inspection, a
preventive maintenance and a corrective maintenance. The maintenance
cost at time t is given as follows:

C(t) = CI [
t

τ
] + CP

[t/τ ]∑
i=1

1L≤Yiτ−<M + CC

[t/τ ]∑
i=1

1Yiτ−≥M

As the corrective maintenance actions are perfect (replacement), by the
renewal theory we can compute the long run average maintenance cost as
follows:

lim
t→∞

C(t)

t
=
E(C(T ))

E(T )
=
E(CC + [T/τ ]CI +

∑T/τ
i=1 1L≤Yiτ−<MCp)

E(T )

Cc + E([T/τ ])Ci +
∑T/τ

i=1 P(L ≤ Yiτ < M)CP
E(T )

(3)

where T is the length of a renewal cycle which means the period between
two corrective maintenance actions:

T = min{ti > 0, Yti ≥M}

and the expectation of the length of a renewal cycle is:

E(T ) =
∞∑
k=1

kτP(Ykτ > M) (4)

However, the due to presence of imperfect maintenance actions,
deriving the probabilities in equations (3) and (4) is not an easy task. To145

bypass this problem, the markovian renewal property of the maintained
degradation process between two inspections is used to calculate the long
run average maintenance cost. Let’s consider the Markov renewal cycle
[t−i−1, t

−
i ], x and y respectively the degradation level of maintained system

at the beginning and the end of the cycle. Let’s consider the Markov150

process (Zi = (Yti , t
−
i ))i∈N the process describing the system state just

before each maintenance action. If the Markov process is stationary, let π
be its stationary distribution. The long run average maintenance cost can
be derived as follows:
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lim
t→∞

C(t)

t
=
Eπ(C(τ))

Eπ(τ)
=
CI + CpPπ(L ≤ Yτ− < M) + CCPπ(Yτ− ≥M)

Eπ(τ)

=
CI + CpPπ(L ≤ Yτ− < M) + CCPπ(Yτ− ≥M)

τ
. (5)

where Eπ and Pπ are the expectation and the probability under the steady-155

state distribution π respectively. Under π the probability of corrective and
preventive maintenance during a Markov renewal cycle are as follows:

Pπ(L ≤ Yτ− < M) =

∫ M

L

∫
[0,M ]×R+

fa(τ+t)−a(t),b(dy − x)π(dx, dt)

(6)

Pπ(Yτ− ≥M) =

∫ L

0

∫
[M,+∞[×R+

fa(τ+t)−a(t),b(dy − x)π(dx, dt). (7)

The stationary distribution is obtained by numerical iteration and the
integrals are calculated by Monte Carlo simulations.160

Stationary distribution of the Maintained System

For the Markov process (Zi = (Yti , ti))i∈N the underlying stationary
distribution, π is the solution of :

π(·) =

∫
[0,L]×R+

p(·, x, s)π(dx, ds) (8)

where p is the transition density of the Markov process. Let us denote by
p(dz|u) the transition kernel for state u = (x, s) to dz = (dy, dt) which
can be written by :

p(B, t, x, s) = P(Yt ∈ B|Ys = x) =

∫
B

fa(t)−a(s),b(y − x)1x<Ldy

+

∫
B

fa(t)−a(s),b(y − (1− ρ)x)1L≤x<Mdy +

∫
B

fa(τ),b(y)1x>Mdy,

(9)

where fa,b is the density function of gamma distribution with shape
parameter a and scale parameter b defined in equation (1).165

Prepared using sagej.cls



Corset, Fouladirad, Paroissin 9

Let us consider the homogeneous case, β = 1, let us denote by
π(dx, τ) = πτ (dx). Thus, we have

πτ (dy) =

∫ min(L,y)

0

πτ (dx)fατ,b(dy − x))dx

+

∫ min(
y

1− ρ
,M)

min(
y

1− ρ
,L)

πτ (dx)fατ,b(dy − (1− ρ)x)dx

+ fατ,b(y)

∫ +∞

M

πτ (dx) (10)

We can solve this last equation by fixed-point iteration algorithm by
considering that π(x) is the solution of πτ (y) = g(πτ (y)), where g is a
continuous function. Thus, for all y, we approximate eq. (10) at iteration
k by

wk(y) =

∫ min(L,y)

0

wk−1(x)fατ,b(y − x) dx+ fατ,b(y)

∫ +∞

M

wk−1(x) dx

+

∫ min(
y

1− ρ
,M)

min(
y

1− ρ
,L)

wk−1(x)fατ,b(y − (1− ρ)x) dx. (11)

We set the initial value of wk as w1(x) = x exp(−x).
For the non-homogeneous case, as explained in (39; 40), under

some specific hypotheses the process will be K-ergodic or ergodic and
therefore an asymptotic regularity behavior can be considered and by
equations (8) and (9) a distribution can be derived. Since, for some cases,170

these hypotheses are valid for gamma kernel distribution the proposed
cost calculation methodology can be applied for maintenance policy
optimisation in specific cases proposed in this paper.

Statistical inference

It is supposed that maintenance policy proposed in the previous section is175

applied on a system for a given operational period. Consequently some
data and information are available. According to the information level
in disposal, statistical inference methods can be applied on available
data. In this paper, it is considered that for statistical inference, the
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type of maintenance action and the inspection times are known but the180

maintenance efficiency and the degradation dynamic are unknown. This
section is devoted to the estimation of the different parameters involved in
this model: on one side, the parameters α, β and bwhich correspond to the
degradation part and, on the other side, the parameter ρwhich corresponds
to the maintenance part. Here it is assumed that the delay τ between two185

successive inspections is known. In addition, in our setting, it is assumed
that only one system is observed and its degradation is measured n times
(n inspections), just before performing, eventually, a maintenance action.
It means that the degradation level after an imperfect maintenance is
not observed, and thus the efficiency of this action is not measured. In190

other words, the observations are Yt−0 = 0, Yt−1 , Yt
−
2
, Yt−3 , . . . , Yt

−
n

with tj =

jτ for any j ∈ {0, . . . , n}. There exists other possible sample schemes,
for instance, unknown maintenance, only observation after maintenance
actions are available, etc.

In order to estimate the four parameters, we will write the likelihood195

function associated to the observations from sampling scheme considered
here. Since there is no explicit solution for the maximum likelihood
estimator, it has to be computed numerically. Since most of numerical
optimization procedures are iterative, some initial values for the
parameters are provided. Numerical illustrations are presented in the next200

Section.

Maximum likelihood function

We observe a system subject to the maintenance policies as described
above. We assume that the system is observed at calendar times tj = jτ
for j ∈ {0, . . . , n}. We will denote by y0 = 0 and y1, . . . , yn the observed
degradation levels corresponding to Yt−1 , . . . , Yt−n . Let us recall that, when
a corrective maintenance (CM) is performed, the system is replaced by a
new one (both degradation level and age reset to zero). We will denote
by N the number of CM performed between 0 and nτ . In addition, let us
denote tj1 , . . . , tjN the instants when a CM is applied. We set j0 = 0 and
(except in the special case where jN is already equal to n, meaning that
the last observed degradation level is above the threshold M ). The fact
to replace the system by a fully new one after a CM leads to consider a
modified time scale. Here now the observed age is (s1, . . . , sn) defined
as follows. If N = 0 (no CM is performed on the observed time span),
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sj = tj for all j ∈ {0, . . . , n} and, if N > 1,

∀k ∈ {0, . . . , N},∀j ∈ {jk, . . . , jk+1}, sj = tj − tjk .

It follows that, from any j ∈ {1, . . . , n}, the random variable ∆Yj =
Yt−j − Yt+j−1

is gamma distributed with shape parameter with shape
parameter205

∆aj = a(sj)− a(sj−1)

= α
(
sβj − s

β
j−1

)
= α

N∑
k=0

{
(tj − tjk)β − (tj−1 − tjk)β

}
Ijk6j6jk+1

and scale parameter b. The probability density function of ∆Yj is denoted
by f∆aj ,b. In addition, these increments are independent. While Yt−j
is observed (and yj corresponds to its realization), it is not the case
for Yt+j−1

. However, we have enough information of Yt−j−1
that can be

used to overcome it. If Yt−j−1
6 L, no maintenance action is performed

and thus, thanks to the stochastic continuity of the gamma process, we
have P[Yt+j−1

= Yt−j−1
] = 1 and hence Yt+j−1

≈ Yt−j−1
. If L 6 Yt−j−1

6M ,
an imperfect maintenance action is performed. Similarly as above, we
can write that Yt+j−1

≈ (1− ρ)Yt−j−1
. If Yt−j−1

>M , a perfect maintenance
action is performed and thus the system restart as a new one, so that
Yt+j−1

= 0. From these observations and using the independence of the
increments, the likelihood function L can be written as follows:

L(α, β, b, ρ; s0, y0, s1, y1, . . . , sn, yn) =
n∏
j=1

f∆aj ,b(yj − (1− ρj−1)yj−1)

where

ρj−1 =


0 if yj−1 6 L

ρ if L 6 yj−1 6M

1 if yj−1 >M.

We can next derive the log-likelihood function ` = logL and expand the
expression using the expression of the probability density function of the
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gamma distribution :

`(α, β, b, ρ; s0, y0, . . . , sn, yn) = α log b
n∑
j=1

(
sβj − s

β
j−1

)
−

n∑
j=1

log Γ
(
α
(
sβj − s

β
j−1

))
− b

n∑
j=1

(yj − (1− ρj−1)yj−1)

+
n∑
j=1

(
α
(
sβj − s

β
j−1

)
− 1
)

log (yj − (1− ρj−1)yj−1) .

No closed-form expression for the maximum likelihood estimator can be
expected, but it could be computed numerically through a well-suited
numerical procedure. Notice that these above computations can be easily
extended to the case where the degradation of several systems is observed.
It can also be adapted for other kind parametric shape function or for the210

framework of a semi-parametric approach.

Initial guess

We propose here an initial guess for the estimation parameters when using
an iterative numerical method to compute the maximum of the likelihood
function, if an initial point is required. For the degradation part, we
propose to start with an homogeneous gamma process. Hence, we propose
β̂init = 1. The two other parameters α and b can be estimated by applying
a kind of moments method (see (5), for instance) to all inspection times tj
for which the degradation level is lower than L (nothing is done) or larger
than M (replacement by a new system). In this way, these observations do
not depend on the parameter ρ. Upon the assumption of a homogeneous
gamma process, for any j ∈ {1, . . . , n}, we have :

µ = E[∆Yj] =
ατ

b
and σ2 = var[∆Yj] =

ατ

b2
.

We can then express both α and b in function of µ and σ2 as follows :

α = µ/σ2 and b = µ2/σ2.
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We can then express both α and b in function of µ and σ2 as follows :

α = µ/σ2 and b = µ2/σ2.

Thus we can get a simple estimator for a and b as follows:

α̂init = µ̂/σ̂2 and b̂init = µ̂2/σ̂2

where

µ̂ =
1

ñ

n∑
j=1

ωj∆Yj and σ̂2 =
1

ñ

n∑
j=1

ωj (∆Yj − µ̂)2

where ωj = IY
t−
j−1
6∈[L,M ] and where ñ is the number of inspection times

during which no action or a perfect maintenance is done :

ñ = #
{
j ∈ {1, . . . , n} such that Yt−j−1

6∈ [L,M ]
}

=
n∑
j=1

ωj.

We now consider the parameter ρ (maintenance part of the model). For
any inspection time tj such that Yt−j−1

∈ [L,M ] (imperfect maintenance),
we have considered the increment Yt−j − (1− ρ)Yt−j−1

.215

This must be positive and thus we have the following lower bound for ρ
:

ρ > ρ∗ = max

{
0; max

{
Yt−j−1

− Yt−j
Yt−j−1

; j such that Yt−j−1
∈ [L,M ]

}}
.

Since 1 is an obvious upper bound, a good initial guess for ρ can be:

ρ̂init =
ρ? + 1

2
.

Numerical implementation

In this Section, we illustrate the different developments achieved above
throughout numerical computations and simulations.
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Optimal maintenance policy

In this first subsection, we have computed the optimal threshold L for220

several cases reflecting different situations. Before reporting these results,
we will illustrate the stationary distribution as described above, since the
computations of the cost of a policy depend on this latter.

Stationary distribution For a given set of parameters M = 50, ρ =
0.8, α = 1, β = 1, b = 1, in Figure 1, the stationary distribution of the225

underlying Markov renewal process is depicted. In left hand side of Figure
1, for a given preventive threshold L = 40, the stationary distributions
associated to three different values of inspection interval τ ∈ {1, 5, 10}
are illustrated. The right hand side figure shows different stationary
distributions associated to τ = 1 and six different values of preventive230

threshold L ∈ {20, 25, 30, 35, 40, 45}.
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Figure 1. The stationary distribution in function of the inspection interval τ (left) and the
preventive threshold L (right) for α = 1, β = 1, b = 1, ρ = 0.5

Computations of the optimal preventive threshold For different
scenarios of degradation, maintenance and cost parameters, according
to the method described in previous sections the long run average
maintenance cost is optimised and the optimal values of the preventive235

thresholds are obtained. In Figure 2, for two different parameters setting
the long run average costs are depicted and the optimal preventive
threshold can be deduced. Since in comparison to the corrective cost, the
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preventive and inspection costs are low, therefore the preventive threshold
is high and very close to the corrective threshold. Indeed, in this case,240

with frequent inspections, the risk of failure between two inspections is
very low and a high preventive threshold is far enough to avoid failure.
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Figure 2. The optimal long run average maintenance cost in function of the preventive
threshold, α = 0.5, β = 1, b = 1, τ = 10,ρ = 0.5 (Left), α = 2, β = 1, b = 1, τ = 1, ρ = 0.8
(Right) for Ci = 1, Cp = 10 and Cc = 50.

In the following paragraphs, for different parameters a sensitivity
analysis is carried out.

Sensitivity analysis to the inspection interval In Figure 3, for two245

cases of slow and fast degradation, the optimal long run average
maintenance cost is depicted in function of the inspection interval. The
figure in the right hand side corresponds to α = 1, β = 1, b = 1, whereas
the figure in the left hand side corresponds to α = 2, β = 1, b = 1. When
the degradation is slow the maintenance actions rare and the total cost250

is mostly impacted by the inspection cost. That is why the optimal cost
reduces with less frequent inspections (larger inspection interval). It can be
noticed that when the degradation rate is high, it is possible to find a trade-
off between inspections and maintenance operations. For a large ratio of
corrective and preventive cost the maintenance policy can be optimised255

according to the inspection interval.
Sensitivity analysis to degradation parameters In Table 1 the

variations of the optimal long run average maintenance cost and the
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Figure 3. The optimal long run average maintenance cost versus the inspection interval,
α = 1, β = 1, b = 1 (Left), α = 2, β = 1, b = 1 (Right) for Ci = 1, Cp = 10 and Cc = 50.

optimal preventive threshold for different values of α are presented. It
can be noticed that the optimal long run average maintenance cost is260

an increasing function of α and therefore an increasing function of the
degradation rate. For small values of α, where the degradation is slow and
the risk of failure is low, especially with frequent inspections the optimal
preventive threshold is very close to the corrective threshold. In these
cases, the maintenance cost units could be key determinant. This latter265

will be studied in the next paragraphs.

H
HHH

HHα
τ

1 5 10

0.5 0.46(43) 0.57(45) 1.04(32)
1 4.45(50) 2.07(32.5) 1.09(7)
2 6.66(43) 2.19(7) 3.5(7.5)

Table 1. The optimal maintenance cost (the optimal preventive threshold) for β = 1, b = 1,
ρ = 0.8, Ci = 1, Cp = 10 and Cc = 50.

In Figure 4 the variations of the optimal long run average maintenance
cost in function of the degradation parameter β are depicted. It can be
noticed that the optimal long run average maintenance cost is a non-
decreasing function of β. Indeed as β increases the degradation rate270

increases which leads to higher probability of maintenance actions and
induces more costs.
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Figure 4. The optimal long run average maintenance cost versus the parameter β, α = 1,
b = 1, Ci = 1, Cp = 10 and Cc = 50.

Sensitivity analysis to the maintenance efficiency For different
cases of inspection interval and α ≤ 1, the variations of the optimal
long run average maintenance cost in function of the maintenance275

efficiency is depicted in Figure 5. It can be noticed that in these cases,
the variations of the maintenance efficiency don’t impact the optimal
maintenance cost and preventive maintenance threshold. Indeed in this
case, the system is inspected very often and the degradation level increase
between two inspections is not very significant, therefore the risk of280

corrective action is not meaningful. The optimal maintenance threshold
is very close to the failure threshold and even with high corrective
cost the optimal maintenance cost remains insensible to maintenance
efficiency. If the preventive cost was dependent to the maintenance
efficiency, more variations could have been noticed. For α > 1 and285

large inspection intervals the variations of the optimal long run average
maintenance cost in function of the maintenance efficiency are given
in Table 2. It can be noticed that in these cases, the variations of
the maintenance efficiency impact the optimal maintenance cost and
preventive maintenance threshold. For a small maintenance efficiency,290

the optimal policy does not recommend the preventive maintenance.
Indeed, when α > 1 the degradation is fast and the risk of exceeding
the failure threshold between two inspections is very high. Therefore,
if the preventive maintenance does not decrease the degradation level
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Figure 5. The optimal long run average maintenance cost versus the maintenance efficiency,
β = 1, b = 1, Ci = 1, Cp = 10 and Cc = 50.

significantly, the maintenance operations will be mainly corrective295

actions.
PPPPPPPPP(τ, α)

ρ 0.2 0.5 0.8

(10, 1) 2.1(50) 1.13(3.5) 1.09(7)
(5, 2) 4.2(50) 1.26(3.5) 2.19(7)

Table 2. The optimal long run average maintenance cost (the optimal preventive threshold)
versus the inspection interval and α for β = 1, b = 1, Ci = 1, Cp = 10 and Cc = 50.

Sensitivity analysis to cost units In Table 3, The optimal long run
average maintenance costs and the optimal preventive thresholds for
different cost ratio variations are given. As expected by increasing the
corrective cost the optimal long run average maintenance cost increase.300

Since the probability of corrective or preventive maintenance don’t
depend on the inspection cost, the corrective to inspection cost ratio does
not impact the optimal preventive threshold. However, the preventive
to corrective cost ratio impact significantly the costs and the optimal
preventive threshold. In cases depicted in Table 3 the probability of305

corrective maintenance is maximum 0.1 during an inspection cycle and
the preventive maintenance does not reduce significantly the deterioration.
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Ci = Cc
20

Ci = Cc
50

Ci = Cc
100

Ci = Cc
500

Cc = 5Cp 11.82(45.5) 4.4(45) 7.82(45.5) 35.11(45.5)
Cc = 10Cp 8.6(44) 28.27(44) 4.65(44) 19, 24(44)
Cc = 50Cp 28.79(42) 13.79(42) 8.79(42) 8.8(42)

Table 3. the optimal long run average maintenance costs (the optimal preventive thresholds)
for different cost ratio when α = 1, β = 1, b = 1,ρ = 0.2.

Parameter Estimation

First, we will introduce the different cases we have studied. These nine
cases aim at recovering various situations with respect to the gamma310

process and with respect to preventive maintenance actions. Next we
present the results we have obtained.

Benchmark cases In order to study the quality of the maximum
likelihood estimator, we have defined a set of nine cases. More precisely,
we have set α = 1 and b = 1 for all cases, but β ∈ {0.75, 1, 1.2} in315

order to recover various cases for the shape function (concave, linear
and convex) and ρ ∈ {0.2, 0.5, 0.8} in order to consider different degrees
of the efficiency for the maintenance action. The different cases are
summarized in the table 4. The level for a perfect maintenance has been
set to M = 10. The characteristic of the maintenance action scheme was320

: L = 5 (level for performing an imperfect maintenance) and τ = 1 (the
delay between two successive inspection times).

Case 1 2 3 4 5 6 7 8 9
α 1.0 1.0 1.0 1.00 1.0 1.0 1.0 1.0 1.0
β 1.0 1.0 1.0 0.75 0.75 0.75 1.2 1.2 1.2
b 1.0 1.0 1.0 1.00 1.0 1.0 1.0 1.0 1.0
ρ 0.2 0.5 0.8 0.20 0.5 0.8 0.2 0.5 0.8

Table 4. Benchmark for simulation

Applications For each cases, we have simulated N = 1, 000 sample
paths of the degradation process subject to the maintenance policy as
defined in Section 2. For each of simulation, we have estimated the325

four parameters. Hence, for each cases, we get 1, 000 estimates of the
parameters. We have plotted the empirical distributions on Figures 6 to 14.
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Figure 6. Estimation results for case 1: histogram of the estimator and the true value in blue

We can observe that the empirical distribution for α̂ is quite asymmetric
and right-tailed, whatever the case. For β̂, its empirical distribution is330

always relatively symmetric. For the two other parameters, it depends on
the case. The empirical distribution for b̂ is in general symmetric, except
when the shape function of the gamma process is concave (cases 4 to 6),
while the empirical distribution for ρ̂ is mostly asymmetric, except when
the shape function of the gamma process is convex (cases 7 to 9). In order335

to get more symmetric distributions with a reduced variance, one can apply
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Figure 7. Estimation results for case 2: histogram of the estimator and the true value in blue

a suitable transformation to the estimator. For instance, for α̂, β̂ and b̂,
one can use a logarithmic transformation while for ρ̂, one can apply a
logit or a probit transformation. Notice that, for some cases and for some
parameters, there are some atypical estimations which affect naturally the340

empirical distributions.
To analyze the performance and the quality of the estimators, we have

computed the empirical mean square errors (MSE) of the estimators, see
Table 5. The results point out the very good performance of estimators
specially in the case of β̂ and ρ̂. The efficiency of estimates permits to rely345
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Figure 8. Estimation results for case 3: histogram of the estimator and the true value in blue

on the parameters estimates in presence of maintenance data in order to
propose an optimal preventive threshold.

Estimation-based maintenance optimisation

This section gives a short study of a maintenance policy based on
parameter estimators.350

Optimal preventive threshold evaluation based on ρ and α estimator
With the large variability of α̂ noticed in the previous examples, even

for α = 1 there is a high probability that α̂ takes values lower than one.
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Figure 9. Estimation results for case 4: histogram of the estimator and the true value in blue

In these cases as noticed in our sensitivity analysis the optimal costs
and thresholds are insensitive to the maintenance efficiency. Whereas the355

optimal results can vary for different maintenance efficiency when α̂ takes
values higher than 1. Therefore according to estimation error of α, the
impact of the estimation error of the maintenance efficiency can be very
different from negligible to very significant.

Moreover, as it has been pointed out in the previous paragraphs the360

optimal threshold is very sensitive to the value of α. As it can be noticed in
Tables 6 and 7, the estimation errors α can induce a large difference in the

Prepared using sagej.cls



24 Journal of Risk and Reliability XX(X)

α

D
en

si
ty

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
0

0.
2

0.
4

0.
6

0.
8

β
D

en
si

ty

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

0
1

2
3

4

b

D
en

si
ty

0 1 2 3 4 5

0.
0

0.
4

0.
8

1.
2

ρ

D
en

si
ty

0.480 0.485 0.490 0.495 0.500

0
50

0
15

00
25

00

Case 5: α= 1.0, β= 0.75, b= 1.0, ρ= 0.5

Figure 10. Estimation results for case 5: histogram of the estimator and the true value in blue

optimal preventive threshold but do not change significantly the optimal
cost.

Since the ρ̂ has a relatively small variability and its influence on the long365

run average maintenance cost depends mainly on the values of α, one can
consider that the estimations errors of ρ has not a substantial impact on
the optimal cost.

Optimal preventive threshold evaluation based on β estimator The
previous observations seem not always valid for the estimation error of β370

when β > 1. As it can be noticed in Tables 8 and 9, the variations of β can
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Figure 11. Estimation results for case 6: histogram of the estimator and the true value in blue

induce a large difference in the optimal optimal cost. Hence the impact of
the estimation error is non negligible. For instance for β = 1.2 if β̂ = 1,
using the optimal threshold for β = 1 the optimal maintenance cost will
double. Since the variability of β̂ seems relatively small, the maintenance375

policy based on the β̂ could still be reliable.

Conclusions

In this paper, a system deteriorating according to a gamma process is
considered. In the framework of a condition-based maintenance policy,
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Figure 12. Estimation results for case 7: histogram of the estimator and the true value in blue

imperfect preventive maintenance actions and perfect corrective actions380

are studied. A maintenance optimisation procedure based on the cost is
proposed and a sensitivity analysis is carried out. Parameter estimation
in presence of maintenance data is considered and their efficiency is
discussed through numerical implementations.

This work can be extended with the following perspectives: statistical385

inference in the case of a random maintenance efficiency, maintenance
optimisation considering the availability cost, maintenance optimisation
with respect to three parameters, the maintenance efficiency, the
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Figure 13. Estimation results for case 8: histogram of the estimator and the true value in blue

inspection interval and the preventive threshold, considering semi-
parametric estimation results in maintenance optimisation, estimation390

uncertainty propagation on the optimal maintenance parameters.
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Figure 14. Estimation results for case 9: histogram of the estimator and the true value in blue
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