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Multiple Landau level filling for a large magnetic field
limit of 2D fermions

Denis PERICE
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Unité de mathématiques pures et appliquées
Ecole normale supérieure de lyon

Abstract :

Motivated by the quantum hall effect, we study N two dimensional interacting fermions in
a large magnetic field limit. We work in a bounded domain, ensuring finite degeneracy of the
Landau levels. In our regime, several levels are fully filled and inert: the density in these levels
is constant. We derive a limiting mean-field and semi classical description of the physics in the
last, partially filled Landau level.
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I Context and result

1.1 Model

We consider a system of N interacting fermionic particles in two dimensions. They are placed
under a homogeneous magnetic field perpendicular to the domain. In this context the kinetic
energy of the particles is quantized into discrete energy levels called Landau levels, separated by
a finite energy gap. This problem has initially been studied by Lieb Solovej and Yngvason in
[12], [14], [15], [16], [17] and more recently by Fournais, Lewin and Madsen in [7], [8].

Our goal is to study the mean field and semi-classical limit under high magnetic field so the
Landau level quantization plays an important role. This setup is related to that of [17] where
three regimes are studied. In the first one, the energy gap is small with respect to the potential
contributions in the energy so particles occupy all Landau levels and a standard Thomas—Fermi
model is obtained in the limit. In the second one, the energy gap is comparable to the potential
energy terms, particles optimise both their Landau level and their position in the potentials and
the limit is a magnetic Tomas-Fermi model. For the last scaling, the gap is large compared to the
potential energies so all particles occupy the lowest Landau level and the limit is described with
a classical continuum electrostatic theory in this level. We want to deal with the intermediate
situation where only a finite number of Landau levels are completely filled. Precisely, our result
is a limit where the ¢ first Landau Level are fully filled, the next Landau level is partially filled
with filling ratio » < 1 and all higher Landau levels are empty. We also provide a model for the
physics in the partially filled Landau level. This setup is physically motivated by the quantum
hall effect which mostly takes place in a partially filled Landau level while lower Landau levels
are filled and inert, and higher levels are empty, see [9].

In this perspective we want to fix the limit ratio of the number of particles to the degeneracy
of Landau levels. On the whole space R? this degeneracy is infinite. To ensure finiteness of the
Landau levels’ degeneracy (see Proposition I1.9), we work on a bounded domain. For simplicity,
we would like to consider a torus with periodic boundary conditions. But, in the presence of a
magnetic field the periodic boundary conditions must be modified. This is a well known issue,
for example see [9: Section 3.9]. As explained in Subsection II.1, we define magnetic translation
operators to ensure commutation with the magnetic momentum. These magnetic translations
operators define the so called magnetic periodic boundary conditions.

— Notation I.1: Model

We work on the domain 2 = [0, L]? of fixed size L > 0. The one body kinetic energy
operator, also called magnetic Laplacian, is

Ly = (ihV + bA)? (1.1)
We work in the Coulomb gauge:
V-A=0
where A € C* (R% R?) is the vector potential generating the constant magnetic field

V A A=(0,01) (1.2)




b is the magnetic field amplitude with associated magnetic length

h
ly =Al—
b b

We identify R? with C and use complex notation for the variables (z,y) € R? namely
(x,y) =x+iyeC
Let zg € C, by (1.2)
VAA—-A(e—2))=0
so we can choose ¢, € C” (R? R) such that
A— Ao — 2) = 2V, (L.3)

For some usual expressions see (I1.3) and (II.4). As detailed in Subsection II.1, for a
wave-function ¢ € L*(€) the magnetic periodic boundary conditions are

L 4 it) = eiwn(L+i) (g
vielo r), { VE T = el (L.4)
Y(t +iL) = e tFilly(¢)
and the domain of the magnetic Laplacian is
Dom (Zp4) = {¢ € H*(2) such that (1.4) holds} (L5)
Now, the N-body Hamiltonian is
N , 9
A= 3 (0, +bA@) + V(@) + 55 D, wla;— o) (L6)
j=1 1<j<k<N

acting on the space of N-body fermionic wave-functions

L2 (9~) = N\ L3(Q).

We denote T :== R?/LZ% V € L*(T) is the external potential and w € L*(T) the interaction
potential assumed to be radial for the metric on the torus:

reLZ?

The domain of the N-body Hamiltonian (1.6) is

N
Dom () = /\ Dom ()
We define the N-body ground state energy

By = inf {(Yn[Hn) , ¥n € Dom () such that [[¢x]|. = 1} (L.7)



There are N(N — 1)/2 interacting pairs of fermions. Thus, we divide the interactions term
by (N — 1)/2 so that the order of the contribution coming from interactions is O(N) and
comparable to the contribution coming from the external potential.

As we will see in Subsection I1.2, the self adjointness of the magnetic Laplacian and the
existence of its eigenvectors require the magnetic field flux bL? going through the domain to be
quantized in multiples of 27h:

b, L?
dd € N such that 27rd=ﬁL :l—2
b

We will prove in Proposition 1.9 that d is the degeneracy of Landau levels. Now, we can fix the
number of filled Landau levels by choosing a scaling for which the ratio N /d is fixed.

— Notation 1.2: Scaling

We take Planck’s constant to be h := (hy), such that
N :«h« N7 (L.8)

Let ge N, €[0,1),b = (by)nen be such that

L2
d=—— N* 1.
272 - (1.9)
and
N 1
E Niooq +r+o (%> (IlO)

% where E* := E\{0} for £ < R.

q will give the number of fully filled Landau levels and r the filling ratio of the ¢'* Landau
level. Note that the lowest Landau level index is 0 in our convention. With this notation,

N  2rmllN N d 1 b 2rN
= — rand 5 =—- ~ ———
d L? N—’OOQ lg h N—w (q + r)L?

(L11)

With this scaling, we find that the order of the magnetic field is b = O(hN). It is known (I11.14),
that the order or the kinetic energy is

hb = O(R*N) » 1 (1.12)

The kinetic energy contribution needs to be of leading order compared to the potential terms if
we want to impose the number of filled Landau level and this is true if and only if

2N > 1

hence the upper bound in (I.8). The condition 2 » N ~2 s necessary in our approach to control
some error terms coming from the kinetic energy. This is also the reason why we impose the
convergence rate in (1.10). This scaling is a semi-classical limit because Planck’s constant goes
to 0.



To satisfy (1.10), one can take for example

N
q+r
SO
N N N N q+r 1
—1<d< <= < - - —
s 1<d q+T:>q+r g N » 1_q+TN—>OOq+T+O(N>
q+r

Note that if 7 is rational one can take sequences such that there is no error in (1.10), and if r is
irrational (see [6: Proposition 1.4]) it is always possible to have

N 1
ENjooq—i_T—’—O(m)

1.2 Semi-classical limit model

In the limit, we obtain a semi-classic model where the energy no longer depend on the wave-
function but on the density in phase space. This comes with a non linearity in the interaction
term. The phase space is N x €2. This means that particles have two degrees of freedom: the first
one is n € N the quantum number representing the Landau Level index and R € €) representing
the position of particles in space. In classical mechanics, one can think of R as the center of
the cyclotron orbit of the particles and n as the index of the quantized angular velocity of the
cyclotron orbit. This model is semi-classical in the sense that the Pauli principle still holds as a
bound on the density.

— Notation 1.3: Semi-classical functional

We consider the measure on phase space

neN

where \q is the Lebesgue measure on 2. For a phase space density m € L' (N x Q,R, ), the
semi-classical energy is

Esenv [m] = J E,m(n, R)dn(n, R) + J Vmdn + f wm®?dn®* (I.13)
NxQ NxQ (Nx)2

where, as we will see in Section II,

1
E, == 2hb <n + 5) (L14)

is the energy of the n** Landau level. Define the semi-classical domain

1

D, = meLl(NxQ) such that J malnzland()<m<—(q_i_r)L2

Nx )

(L.15)




and the semi-classical ground state energy

0 3
Esc,hb = Inf 5807517 [m]
meD,

sc

We also define the electrostatic model for the partially filled Landau level that only depends
on the density.

— Notation 1.4: FElectrostatic model for the partially filled level

Define
Eqrrlp] = pr + ” w(z —y)p(x)p(y)dzdy (1.16)
Q 02
with domain
1
Dyrr = L'(£2) such that = d0<p< ——= 117
n = {9 D) sueh that [ p— L and0<p< (117)
Q
The associated ground state energy is
ESLL = inf quL
Dyrr
We define the following energies:
2
2
por . 2Tt (1.18)
q+r
q
EY" = Vv I.19
=L f (1.19)
Q
242
por = L2 f w (1.20)
(q+7)
QQ
Let p € D1, define
1
mp(n,x) = 1n<qm + 1n=qp($) (121)

m, is a phase space density constructed with the ¢LL lowest Landau levels saturating the
Pauli principle in (I.15) and (I.17) and with the density p in the partially filled Landau level.
The ratio of particles in the partially filled Landau level is

r
q+r

This corresponds to the normalization constraint in (1.17). With this we see that the Pauli



principle is indeed the correct bound on the densities to have

f mydn =1

NxQ

We will see in Proposition VI.1 by a direct computation that
gsc,hb [mp] = hbE?T + E&T + Eg}r + quL [p]

where

e hbEY" is the kinetic energy contribution from the ¢ + 1 lowest Landau levels
e Bl is the external potential energy contribution from the ¢ lowest Landau levels

e [27 is the energy contribution from interactions between the g lowest Landau levels and
the interactions between the ¢ lowest Landau levels and the (¢ + 1) Landau level. in
other words, it contains all the interactions except the ones inside the partially filled level.

The particles in the partially filled Landau level try to optimise their localisation with
respect to the self consistent potential V' + w * p:

Eqrr [p] :J(V+W*P)P

Q

1.3 Main results

We can now state our main result:

Theorem 1.5: Mean field limit with magnetic periodic conditions

EO
WN oo OB + BV + BT+ EQ +0(1)

This means that in the limit, the first order in the quantum many body energy per particle
is the trivial energy hbE9". Then for terms of order 1, the only non trivial contribution to the
energy are the external potential term and the interaction term inside the partially filled Landau
level. The lower Landau levels are totally filled and therefore their contribution to the energy is
constant. The interaction of the partially filled level with all other level will also be a constant.
For higher Landau levels, their contribution to the energy is null because they are totally empty.

The regularity assumptions on the potentials are not minimal, we expect this result to hold
true if potentials have a L! positive part and a L? negative part. Under these assumptions,
one needs to prove that the particles will not concentrate in the L' positive singularities of the
potentials. This has been done in [17] for the repulsive 1/ |z| Coulomb potential. We will not
deal with this issue in this paper.

The number of variables of the densities is going to infinity in our limit. As usual for a
large number of particles, obtaining a convergence of densities requires to work in a space with
a finite number of variables and therefore look at reduced densities.



— Notation 1.6: Reduced densities

We denote LP the set of p-Schatten class operators along with [|e|| ., the p-Schatten norm.
Let vy € £ (L% (QV)) a positive operator (thus self adjoint) of trace 1. We call such an

operator a N-body density matrix. By the spectral theorem, vy is diagonalizable in a Hilbert
basis of L (QV):

”YNZE)\JUD (u;] with 0 < \; <1 and Z)\iz 1

€N ieN

We will denote in the same way operators and their integral kernel. We introduce compact
notation for lists:

The density associated to vy is

Pryn (xliN) =N (xI:Nu xl:N)

Let Tr; be the partial trace that traces out coordinates in I < [1, N] of L2(2)®V, it is
defined by

YAy € £ (L))", Tr,

b1 -wfea| @

iel i¢ T
Let 1 < k < N, we define the k' reduced density matrix associated to vy by

(k)

Vv = Trpgrn [7w] (1.22)
with the convention that VJ(VN) = yy. For a N variables symmetric density py we denote ,055)
its k" marginal. If one starts from a wave-function ¢y € L2 (QV) we use the notation
Yon = |Un) (]
2
% Py = Py = [UN] (1.23)
Note that with this notation
P =Pl (1.24)

In (1.22), we have integrated the last N — k variables but the result does not depend of the
choice of these variables. Indeed, a permutation of coordinates brings a sign + in front of of
each |u;) and this keeps 7y invariant.

() is a compact metric space, the set of Radon measures on it is the dual of continuous
functions

M(Q) = CO(Q)*

We denote M, (€2) the set of positive Radon measures. Let P(Q) be the set of probabilities on

9



P(Q) = { e M.(Q) such that u(Q) = 1}

On this space the weak star topology is metrizable using a Wasserstein metric. Moreover 2 is
compact so P() is also compact, thus it is possible to iterate and define the space of probability
measures on P(£2) namely P (P(2)).

Now, we have the following theorem for the convergence of reduced densities:

— Theorem 1.7: Densities convergence with magnetic periodic conditions

Let (¢n) be a sequence of minimizers of (1.7), then 3 € P (D,rr) such that
e 4 only charges minimizers of the limit energy functional (1.16)

e Vk e N*, in the sense of Radon measures

®%k
& = S d 1.25
mmNﬁwJ~<L%Q+m+wJ w(p) (1.25)

DyrLrL

The density of particles converge to a convex combination of densities of the form

q

—+
L2(qg+7) P

From the Pauli principle in (1.17) we see that the constant term in this expression corresponds
to particles in the ¢ lowest and fully filled Landau levels. Then the density of particles in the
partially filled Landau level is given by a minimizer p of the limit functional (I.16).

1.4 Scaling

Another way to obtain the scaling in Notation [.2 is to observe that we have two characteristic
length-scales:

L

e —— measuring the mean distance between particles
/N 9
e [,, the magnetic length, which, in classical mechanics corresponds to the radius of a
cyclotron orbit. Due to the Pauli principle, [, will be the order of the minimum distance
between particles inside a Landau level. More precisely the Pauli principle takes the form
of an upper bound on the density in phase space.

The square ratio of these length is

L* bL?
=== (1.26)
N2~ N

If this ratio goes to zero, the mean distance between particles is very small compared to the
minimal length-scale between two particles in a fixed Landau level. This implies that the

10



particles must fill many Landau levels and this corresponds to the scaling in [17] where the
energy gap between Landau level is small compared to the potential terms.

If this ratio goes to infinity, the mean distance between particles is very large compared to
the minimal length-scale between two particles in a fixed Landau Level. As a consequence, all
particles can be placed in the lowest Landau level and this corresponds to the regime in [17]
where particles only occupy the lowest Landau level and do not feel the Pauli principle.

In the limit we study, we see from (I.11) that the ratio (I.26) has been fixed to be

L? 2m
N2 N—w g+

(L.27)

in order to fill a finite number of Landau levels. In our limit we fixed L and took [, going to
zero, but one can also ensure (1.27) by fixing a magnetic length [, > 0 and taking a domain
length L going to infinity as

L=2L (1.28)

In this limit the density of particles in the domain {2 is fixed:

Z2 l~2 2T

N Nooo "’ q+r

(1.29)

Those limits are equivalent in the sense that the N-body Hamiltonian (I1.6) is unitarily equivalent
to

1 1 (Y, 2
;%”NJ == (Z ((ih,V; + by AL (1)) + Vi(z;)) + N1 Z wy(x; — a:k)> (1.30)
j=1 1<j<k<N
where
h 1 3
h, = — A, = —A(Te) b, = T2b V, =71V (Te) w, = TWw (Te)
VT T

he _ Ll _ >
b, L
Moreover if one chooses
1 1
A= Aran Vi) =0* — w(r) = —
|| 2]

then the vector potential and the interaction potential are not rescaled :

A=A Wy =w

11



If we assume that the external potential is generated by a background charge density o € L'(Q)
it transforms as

Vi(z) = f ro(ra —y) = dy = f o(r (y - x))@dy g

[yl ]
o]’
The re-scaling preserves the total charge
J o-dr = fgdx
o]’ "

and

a 1 2

. 2
%N,T = Z ((ZhTVj + bTA(I])) + pr o* m) + m Z w(xj — l’k)
j=1 1<j<k<N

We conclude that our initial scaling is equivalent to a thermodynamic limit.

I.5 Organisation of the paper

The next two sections contain preparations and necessary tools. Section II is about the
diagonalisation of the magnetic Laplacian (I.1). In Section III we define the orthogonal
projection on Landau levels and localise it in space, this will be the central object in the
definition of the semi-classical densities. Then we prove a Lieb-Thirring inequality in Section [V
to deal with L? potentials. The last two sections contain the proof of Theorem 1.5 and Theorem
[.7. In Section V we justify the semi-classical approximation and express the energy in terms of
semi-classical densities. Finally, in Section VI we prove the mean-field approximation giving an
upper and a lower energy bound.
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IT Quantization

In this Section, we recall the diagonalization of the magnetic Laplacian (I.1). We construct
an orthonormal basis of L?(Q) adapted to the Landau levels in terms of magnetic periodic
eigenstates of .3 ;. This result is stated in Proposition II.14. This fact is already well known in
the literature, see [1], [2] or in [9: section 3.9]. Thus the reader may go directly to Proposition
[1.14 and accept its statement.

To prove Proposition I1.14 we will see that on a finite domain, the degeneracy of Landau
levels is finite in Proposition 11.9. We use the fact that the Landau levels are isomorphic and we
study the lowest Landau level for which we prove the following properties:

e the wave-functions have a finite number of zeros inside the domain (Proposition I1.8)

e the degeneracy is the number of zeros of the wave-functions (Proposition 11.9)

Then, we will prove another expression for the eigenfunctions in Proposition I1.16 using the
Poisson summation formula.

II.1 Magnetic translation operators

In this subsection we explain the definition of the boundary conditions (1.4). Let zy € C, define
T.,u == u(e — zp) the translation by zy. If we try to commute the magnetic momentum with a
translation we get

[ihV + bA, T, ] = b[A, T,y = b(A — A(e — 2))) T,

Thus we cannot impose periodic boundary conditions, which would mean finding joint eigen-
functions of %%, and of the translation operators with eigenvalue 1. The remedy is to compose
the translation operator with a change of phase chosen to ensure commutation with &7, ;. Thus,
Z» and the magnetic translations can be diagonalized jointly. This means that we can

— Notation II.1

We define the magnetic translation operators as
Ty = €207, (I1.1)

They define the conditions (1.4) on 0€2. Let k > 1, we define the magnetic periodic Sobolev
spaces as

HY,(Q) = {y) € H*(Q2) such that (I.4) hold}

We will use similar notation for other usual functional spaces where the subscript mp stands
for magnetic periodic and p for periodic. The domain of the magnetic momentum

!@h,b = ihV + bA
is

Dom(@mb) = Hrlnp(Q)

13



On Coulomb gauge, there exists ¢ € C* (R% R) such that the vector potential satisfies

a=vio= (1) (1L2)

For k > 1, H*(Q2) — C°(Q), so the conditions (I.4) are well defined. For k = 1 they are
defined with the trace operator 1" and 1 = T.

For some examples of Coulomb gauges, one can take the symmetric gauge:

|2[* 1 . ZoY — Yo
b= B As = @0 = 5(03) = U ()
or the Landau gauge:
y? Yox
¢Lan = ? ALan = (—?/»0) Pzo,Lan = _l_2 (114)
b

If we insert the Landau gauge (I1.4) in (1.4) we get the boundary conditions in Landau gauge:

(L + i) = oit)

Vt € [0, L], Lt (I1.5)
W(t+il) = e T y(t)
In complex notation, the vector potential Definition (I1.2) becomes
200590 = A (I1.6)
and with (1.2),
Ap =1 (I1.7)

In the next proposition we also emphasize the importance of the flux quantization. The magnetic
translations in the two directions L and iL defining the lattice commute if and only if the flux is
quantized (1.9). Therefore when the flux is quantized, we are able to impose magnetic periodic
boundary conditions in both directions L and iL.

— Proposition I1.2: Commutation between magnetic Laplacian and magnetic translations

The magnetic Laplacian (I.1) commutes with the magnetic translations defined in (1.3) and
(IL.1):

L@mb, Tzo] = (0 and I:gh,lHTZO] =0

Moreover,

2

[T0,7i0] =0 < = e 2nZ
b

14



— Proof:

We compute
Py pe' 0 = 0 (ihV + bA — hV p.,)
SO
0T, Pry = (ihV + bA(e — 2) + hV g, )e?0T,,
With the definitions (I.3), (II.1) this ensure that [ %, 7., ] = 0. Next, we compute
[TL,TiL] _ ei@LTLei%LTiL _ ei‘PiLj"iLeigoLTL _ (ei(ch+TLsoiL) _ ei(wHTiL%)) T, T, (H.S)
So
[0, 7iL] =0 < 3d e Z such that ¢ + Trpir — wir — Tirer = 2md

and it is sufficient to prove

L2

- (1L.9)
lb

or + Trpir — i — Tinr =
With the Stokes theorem:

JA.dl = st =L? (11.10)
Q

o2

Using (1.3) we get another computation for this integral

JA.dl _ J(A(u) — Alu+iL)) - (1,0) du—i—zj (L + iu) — Aiu)) - (0, 1)du

L
17 J Oppir,(w 4 1L) + i0ypr (L + tu)) du = B [—pir(u+iL) + ¢ (L + w)]g

0
=1y (o1 + Trpir — i — Tinpr) (L +iL)

4 but because of (I1.10) this quantity is constant. Dividing by I gives (I1.9).

II.2 Landau Level quantization

In this subsection, we set up the usual formalism for the description of the magnetic Laplacian
in term of annihilation and creation operators. More details about these operators and the
properties of Landau levels can be found in [20].

15



— Notation I1.3

We denote by m,, m, the coordinates of the magnetic momentum:

thoy +bAL\ (7,
Pny = (may + bAy) - <7ry>

and define the annihilation and creation operators respectively as

Ty — 1Ty t Ty + 1T,
a = — a _ ————-- 11.11
v 2hb v 2hb ( )

# and the number of excitation operator N := ala.

The quantization of the magnetic Laplacian comes from the following commutation relations:

[y, Ty ] = ihb (I1.12)
la, aT] = Id (canonical commutation relation)
[T a] = [12,0"] = 0 (IL.13)
and the magnetic Laplacian is diagonal in terms of creation and annihilation operators:
Ly = 2hb <N + %) (I1.14)

In the next lemma we prove that the magnetic Laplacian .} 5, defines a Sobolev space whose
norm turns out to be equivalent to the H'(2) norm.

— Lemma 11.4

3. defines the Sobolev space (Dom (%), (e) ) with

XY g = (Znax|¥)

which is equivalent to (H,,(€2),{(e);;1). The quadratic form defined by (e), is continuous,
Hermitian and coercive on Dom (%% ).

®
— Proof:

First, we prove a Green formula for the magnetic momentum. Let x € H'(Q),4 € H'(Q, C?),
we use the Stokes theorem:

| i atyn = [ (i) = [oxe i |90
o Q Q Q
where 7i(x) is the outer normal vector of © when x € 0. So

XN Pnp ) =

x(@) (ihV + bA) - ¢ (x)dx

—

O(z) - (ihV + bA) x(x)dx + ih J (@) () - 7i(x)da

D O

16



3

~l 0+ in [ it

o2

Further assume Yy, 15 are magnetic periodic, then Xﬁ is periodic so the boundary term vanishes.
Thus Y, is symmetric. The symmetry of %, follows from

%,benp(Q) c H;wm, C?)

Indeed, if ¢ € anp(Q), Prpb € HY(Q,C?) and P, 1) is magnetic periodic since the magnetic
translations commute with 27, ,. We deduce that 7, and 7, are symmetric on H7, (), so a
and a' are adjoint of one another and

WINY) = (aplayy) = 0 (I1.15)

Let ¢ € H?, (), now we prove that the norm

¥l = /W)y = | Zredll

is equivalent to the H' norm. A and its gradient are bounded so (HZ (Q),{(e):) is
continuously embedded in (H7, (), [|e]|,). Moreover

[Znpdll 2 2RIVl 2 = [0AY]| 2 = RV 2 = DI All Lo [[0]] 2
And ||2|| ;> can be controlled with (I1.14) and (II.15)
1015 = @1 (2hON + kb)) = b [¢][7 (1L.16)

SO

b
1BV 2 < (|9l + N 1Al 191l

Therefore we have the desired continuous embedding;:

[0l < C0,0) 9] » (IL17)

Finally to prove that (Dom (%) ,{®) ) is a Hilbert space we need to prove that it is closed
in H2(Q2). Let ¢, € Dom (%) such that ¢, — v in H*(Q), the limit also satisfies magnetic
periodic boundary conditions because

Tzown = % = ||Tzo¢ - ¢||L2 < ||Tzow - Tzod}nHL2 + ||wn - ¢|‘L2 =2 ||¢n - Q/}HLZ n:)ooo
e Tz0¢ = w

Continuity and coercivity are trivial, if x, 4 € Dom (%),

(Xl e = KProx| Pns)l < | Pnaoxl 2 | Zntdll 2 = Xl 2 191l & (IL18)
Wy =Wl = W%
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The proposition implies spectral properties of . .

— Corollary I1.5: Spectral analysis of the magnetic Laplacian

Ly 18 a closed positive self-adjoint operator and the embedding Dom (%) — L*(Q) is
continuous and compact.

©-
— Proof:
The positivity of %, follows from that of A'. Using the Lax-Milgram theorem, see results
of [5: Section 2.5], and Lemma I1.4 the operator £ of domain
Dom(L) == {u € Dom (%), such that Yv € Dom (%, ;) [{ulv) | < C(u) ||v]| 2}
defined by
Vv e Dom(L),u € Dom (L), (ulv) , = (Lu|v)

is closed and self adjoint. But this operator is equal to (%, Dom (%)) because it coincides
with %, on Dom (%) and the required inequality in the definition of Dom(L) is satisfied
taking C(u) = || Lppatl 2, thus Dom (%) = Dom(L).

The continuity of Dom (%) < L*(Q) has been proved in (I1.16). Then, we have the
canonical embeddings

(Dom (Lp) — L*(Q)) = (H'(Q) — L*(Q)) o (Dom (L) — H'(Q))

The boundary of €2 is Lipschitz so the left embedding is compact due to the Rel-
lich-Kondrachov theorem and the right one is continuous from Lemma [1.4. Thus, the
4 composition is compact.

H?,,(€) contains the smooth and compactly supported functions, so it is dense in L*(Q).
We can conclude using the Lax-Milgram theorem [5: Corollary 4.26] that the resolvent of .24,
is well defined and compact. Applying the spectral theorem to the resolvent of %, proves
that its spectrum is punctual and L?(f2) is a Hilbertian direct sum of eigenspaces of % ;. The
same conclusions also holds for the N-body Hamiltonian (1.6) since the magnetic Laplacian is
of dominant order in it.

N inherits the properties of %, in Corollary I1.5 and it is well known that

sp(N) =N

— Notation I1.6: Landau levels

We define the n'” Landau level as the eigenspace associated to n € N:
nLL = {¢ € Dom (%) such that Ny = ni}

% The ground level, denoted LLL for Lowest Landau Level has energy Ey = hb.

It is well known that the Landau levels are isomorphic, and that the operator af/v/n + 1 is
a unitary mapping from nLL to (n+1)LL of inverse a/y/n + 1. Using the creation operator, if

18



we find a basis of the lowest Landau level we will be able to generate a basis of any Landau
level. This is why, in the next session we start with a study of the lowest level.

I1.3 Lowest Landau level
We start with the following characterisation:

— Proposition I1.7: Lowest Landau level

Denote by O(€2) the set of holomorphic functions, then

LLL < ker(a) € O(Q)e

where ¢ is defined in (11.2).

— Proof:
Take ) € LLL, then ay) = 0, using (11.6)

(1, — im)1h = (ihy + hdy + bA, — ibAy )b = (2105 — ibA) = 2(hés + bosd)ih =

_9%
£ So 3f € O(Q) such that ¢ = fe .

This proves that the zeros of a wave-function of LLL are given by the zeros of an holomorphic
function. Since zeros of an holomorphic function must be isolated, the compactness of the
domain implies that wave-functions have a finite number of zeros. Actually, the next proposition
says that this number of zeros is d defined in (1.9), and therefore independent of the choice of
wave-function. One can see [1: section 1] as a reference.

— Proposition I1.8: Zeros of LLL wave-functions
If v € LLL, then ¥ has exactly d zeros inside (2.

— Proof:
Let
®

Y= fe % e LLL

and ng be the number of zeros of ¢ which can be computed with the logarithmic derivative
through

1 (o.f
= 5.— f{? In(f dz (I1.19)

227?
oQ

With Definitions (I1.2) and (1.3)

A-T, A= (_aifj:rfzjaif) = V., (I1.20)
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If 7,4 = 1, the boundary condition on f is

12 +ipzg ¢7l7;zo¢ +ipzg
f=e bw =eh T,W=e % T.f (I1.21)
Using equation (I1.20), we get
O Pzo — 104 —i0, — 0 10y + O
Boups, = Rt O 2 gy g, Ty o+ iTy0e  (11.22)

2 2
With equations (I1.21) and (I1.22), the boundary condition on 0, f takes the form

o=Tzgd .

Ro.f—e B O (Tol20.f + 2 (06 — Tey0o0) Tey f)

As for lg/zT, we have

Oy plf
f f

Finally, we can compute the integral in (I1.19):

2m2no=zbf(af<> iy &
0

12 =T} +20.(¢p — Ty d)

(t+iL)—i ;Cf( )) dt

f

L L
- J 20.(6 — T d)(t + iL)dt + if%z(gb ~Tu) (L + it)dt
0 0

L

= J (20.0(t) — 20.¢(t + iL) + 2i0.¢(L + it) — 2i0,¢(it))dt

0

= J 20,¢0dz =i f A(z)dz (I1.23)
o0 o0
where the last equality comes from Equation (II1.6) which implies 20,0 = iA. But the

integral of A over a complex loop can be related to the integral of A over a loop in R2. Let
v = Yy + iy 1 [0, 1] — 092 be a parametrization of 0€2:

| Az = | A0 T @i
X 0
= JPA(W(U)) 7 (u)du + @f (Az (v (W) () — Ay (v(w))7z(w)) du
= JP A-dl + ZJ (Aa(y(u) (1) — Ay(y(u))va(u)) du = JA dl+ 1 J At dl

o2 0 o2 o2
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zfA-dH—iJV-A:fA-dl

o002 Q o2

Combining this with (I1.23) and (I1.10) we get

ls

27T7”L0 = ﬁ

¢ so with (1.9), we conclude that ny = d.

TN

An elliptic function can be expressed as a rational function in terms of the Weierstrass
elliptic function and its derivative. In the case of magnetic periodic boundary conditions we
will see that we have a decomposition in terms of theta functions from which we construct our
basis of LLL. A similar proof of the following proposition can be found in [2] or [4: Chapter V
Theorem 8§|.

— Proposition 11.9: Degeneracy of Landau levels

Landau levels have a finite degeneracy and

Vn e N, Dim(nLL) = d

— Proof:

Since all Landau levels are isomorphic, a proof for the lowest Landau level is sufficient. The
Landau level dimension is independent of the gauge, for simplicity we use the Landau gauge
in this proof.

In Landau gauge (I1.4), the boundary condition on f in Equation (I1.21) becomes

2
v2—(y—v0)? .woz Y0 _ ;Y02

fz)=e % g flz—2z)=e % g f(z—2)

using equation (1.9), this can be rewritten as
flz=1L) = f(2)

L2

Fz—iL) = f()e™

The periodicity along the real axis allows us to expand in Fourier series:

f(2) =) exly)e™™ i (I1.25)

kezZ

- L

= f(z)emdtndi (I1.24)

+

The holomorphy of f implies that

2k . ik
20cf =0 3 (27t + i) 24
k

Solving the EDO in y that we obtain by identifying the Fourier coefficients gives

cr(y) = cx(0)e>*E
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Plugging this in (I1.25) leads to
f(z) =) er(0)e”™E (I1.26)

Finally we impose the pseudo-periodicity along the imaginary axis (11.24):
Z Cp(0) 2L 2T Z cp(0)e™H2imE (+d)
k k

Identifying the Fourier coefficients

€™ = cp_ge™ (I1.27)

¢ implies that they are only d independent Fourier coefficients.

We will prove in the next Section that the above relation between Fourier coefficients gives
a decomposition of f in terms of theta functions.

11.4 Magnetic periodic eigenfunctions

This Section contains computations of the eigenfunctions of .3 , with magnetic periodic boundary
conditions.
Notation I1.10: Theta functions

Let 7 be a complex parameter in the upper half plane, we define
6(2,7’) — Z eiﬂ"l‘k}2+2iﬂ'k’z
keZ
Theta functions are pseudo-periodic:

0(z+1,7)=0(z,71)

0(z+71,7) = 0(z,7)e " TH2)
We complete the computation of Proposition I1.9 and express the wave-functions of the magnetic
Laplacian (I.1) in term of theta functions.

— Proposition 11.11: LLL wave-functions

The following family, indexed by [ € [[0,d — 1], is an orthonormal basis of the lowest Landau
level in Landau gauge:

1 2
- . irkdE — L (y+kL+1L
Yo(z) = Ty 3 e k) (11.28)
Ll,  f
cZ
w*i —%—;—i—%%ﬁrl% < z . >
= 0d— l,1d 11.29
p b 7 Tl (11.29)
@
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— Proof:

With the same notation as in the proof of Proposition 1.9, we prove by induction that

Clikd = Cl(‘3_27rkl_7rdl€2 (1130)

This is satisfied for £ = 0. Using (11.27) and assuming the relation (11.30) for k € N,

wd—2m(I+[k+1]d)

_ _ 2_rd—
= e 2nkl—ndk? —nd—2m (I+kd)

—2m(k+1)l—7md(k+1)2
Cly(k+1)d = Cl+kd€ = qe (k+1) (k+1)

. . 2
at this point we are done for k > 0, but ¢; = ¢4 pge>™ 7% 50

_ 2 _ 2 o (BN e d( 1) 2
g = €2k +mdk? L amkiomdk? _ o =2n(=k)l=md(—F)

and we obtain (I1.30) for k£ < 0. Inserting (I1.30) in (I11.26) gives

— d—1

_ Z il % 2 Zzwkd% _ Z Cl62i7rl% 2 e—27rkl—7rdk:2+2i7rkd%
=0 keZ =0 keZ
d—1

.z 2
CleZ'Lﬂ'lL 2 ewr(zd)k +2mk d% +7,l Z a 6217Tl (d +il Zd>
keZ

=0

We found a family of the lowest Landau level indexed by [ € [[0,d — 1]] with expression in

Landau gauge. We need to normalise this family and to verify that the wave-functions are
orthogonal. We start by proving that

2 2
— Y 42wl 2 z 2, 2imkd % — L (y+kL+1L
3 3 o fud e x T 2 d
e % 0 (dz + @l,zd) — g a T2 Z e 2%( )
keZ
Using (1.9),
+2inl 2 z v | 9im 2
. LT R . — 5 1Tl + _ 2 . z
e 212 Ty (dz —i—zl,zd) _ o 2 2 Z o~k —2mhl+2imkd
keZ
. 27rli—7rdk2 2mkl— 27rkdy+227rkdz
_ eszl% Z e 21%
keZ
2 21.2 L
_ i3 Z 6217rkd b( +oly Ly L2k ok +2kLy)
kezZ
2 ; z_ 1 L2
_ i Z e2mde a7 (y+kL+1%)
keZ

Finally we check the orthonormality. Let 0 <[ < ¢ < d,

Z [ 2i7r(q—l)%+2i7rd(p—k)%—2l% (y+/€L+l%) 212 <y+pL+q d)
b

1
<1/)01 ’¢0q> = €
VLl k,peZ

dxdy

J
Q
L L , )
1 [ . o 12 (y+kL+15)" = Lr (y+pL+ak
_ 7 Z 6217r(q—l+d[p k]) Ldl‘ ) 2lb< ) dy
VT b kpez 5
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Since 0 < ¢ — | < d we have a simplification:
L
J€2iﬁ(q_l+d[p_k])zdw _ Lélq(skp
0

Therefore

& (y+kL+iL

L
1 ~1 )’

iy l dy =6

oi|tog) lqﬁlb,éofe b Y = 04

One can check that the above wave-functions satisfy the boundary conditions (I1.5). Using

(I1.28) we observe the L-periodicity along the real axis. Along the imaginary axis we increment
the index k by 1:

i s
'lb(]l(Z + ZL) = \/TZb
keZ

PN

. 2imkd® — L (y+(k+1)L+1%)° .
e217rl% Z e TR 22 (y+( 1)L+ d) _ ef2z7rd%¢01(z)

and obtain the magnetic periodic boundary conditions in Landau gauge (I1.4). The lowest
Landau level is generated by successive magnetic translations:

— Corollary I1.12: Generation of nLL with magnetic translations

If I e [[0,d — 1],
l
Yo = (Tﬂ-%) Yoo = 712-1%1?00 (IL.31)
&
— Proof:
O Lan = _ylo_f defined in (I1.4) is linear in zy and independent of y, thus with (II.1),
b
il e
T.L=¢€ dlg T_Z‘L _ 6227TIT_7;L
d d d

and

¢ With this, (I1.28) can be written as (I1.31).

In order to obtain a full basis of L?, we only need to apply successively a' to generate the
Landau levels and 7_, L to generate the wave-functions inside a Landau level. The successive

applications of a' bring out Hermite polynomials.
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Notation I1.13: Hermite polynomaials

For n € N, we define the n'* Hermite polynomial by

2 d\" 2
H = (—1)"e" —_ T I1.32
= e () (11.32)

We recall some basis properties of Hermite polynomials that will be useful: Hy = 1 and for
all n € N we have the relations

H,,1 =2zH, - H, (11.33)
H,(—z) = (=1)"H,(z) (I1.34)
H, =2nH, (I1.35)

Using this, we can give expressions for the full basis.

— Proposition 11.14: nLL wave-functions

The following family indexed by (n,1) € N x [[0,d — 1]] is a Hilbert basis of eigenfunctions of
% in Landau gauge:

Y = % ( ,Z,> Yoo

z L imkd L LQ kL+1%
_ C" i N H, ( lwaHdD ’ (viti)’ (I1.36)
keZ

with the normalization factor

— Proof:

Due to (I1.13) the order of application of the magnetic translations and the creation operators
does not matter. Also, due to Corollary 11.12; it is enough to deal with [ = 0. In order to
lighten the computations we define the dimensionless variable

y+ kL
ly

Yr =

We proceed by induction in n. The initialisation is given by Hy = 1 and (I1.28):

V2
217rkd£ — =k
¢00 = Z HO

k:eZ

In complex notation a' (I1.11) becomes in Landau gauge

—2ho, — o ; Y
al = W = \flb \/7lb \/i ( lb( 10y + O ) lb)
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SO

TnH Cn+1 Yy 2 kdﬂ——z
\/71?00 \/71%0 \/—b; < L(i0, + 0y) + lb) H,(yx)e

CTL dl ! a7 5——
= 7= Z ([QW—b + e+ ly] H(yx) — Hn(yk)) 2y

Cn+1 / 27,7rl<:d£——2
= [2yx Hy(yr) — H,, (ye)] e
Nioh kZ

c u2
o n+1 227rkd£ — =k
n+l

keZ

% where the last equality uses (I11.33).

As expected with our boundary conditions the modulus of the wave-functions:

imkdZ L)?
ZH ( [y+kL+l§D 2imhdf 5 (v+hL+15) (IL.37)

k:eZ

’wnl‘

is periodic on the lattice LZ2, but the periodicity along the real axis is even shorter. Indeed we
see in (I1.37) that |t¢,y| is L/d-periodic in z.

We can write another useful form of equation (I1.36) using the Poisson summation formula.
The advantage of the expression in Proposition I1.16 is the fact that the index [ is decoupled
from the polynomials and the Gaussian factors which is not the case in (11.36). This will simplify
the computation of the Landau level’s projector when we will sum over [ in (I11.5).

— Notation I1.15: Fourier transform

We use the convention

Folv) = iv mf e 7da

for which F is unitary on L?(R). And denote the Hermite function

N

x

Py hn(x) = H,(z)e” = (I1.38)

In this convention the Poisson summation formula is

D g(k) = V2 ) g (2nk) (11.39)

keZ kezZ

h., are the eigenfunctions of the one dimensional harmonic oscillator and of the Fourier transform:
Fhy, = (=1)"hy, (I1.40)
with the following normalization

| hnll3e = v/72"n) (I1.41)

With this we are ready for the next computation:
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— Proposition 11.16: Poisson summation of eigenfunctions

ly —i% 1 L —2imk( L4 L) =L (a+kl)?
@Dnl(Z):En\[{:be i ZHn (l_ [[L’-{—kg])e (L+d> 21%( + d)
2 keZ b

with the normalization factor

— Proof:

We start from (I1.36) expressed in terms of h,:

wnl(Z) _ Cn 2iml % Z h, (_ ly + kL + l—]) p2imkd

—e
v/ Ll = I d
Define
1 L s
g(u) = h, <— ly +ul + l—]) emduy
Iy d
so we have
Cn 21wl E
n = — k 11.42
n(z) = et Y gl (1142

in order to apply the Poisson summation formula to g. To do so, we compute § with a change
of variable and equations (1.9) and (I11.40):

1 1 I ' )
g(V) = \/_2—7_(_ Jhn (E ly +ul + ZE]> e—Zu(u—anf)du
R

_ ei(%+é)(y—2wd%) Jhn(u)e i (1/—27rd%)du

so by using (1.9) again:

9(271.’[{;) _ ﬂei(%+é)(2ﬂ'k72ﬂd%)hn (27T]€l—b . f)

L L 1
—7)" —13Y —2im v, L 1 L
_ ( 22 lbe Ly —2iml ¢ 2mk(L+fi)hn (E [kg _$]>

To conclude the computation we insert this after applying the Poisson summation formula
(I1.39) to (II.42):

Cn 2l ¥ ~
n = — 2 2k
bule) = e EY wk;zgw)

27



cn N2m(=i)", —i% 11, L dimk(L+1)— 2y (kE—a)?
- . Hn ' k— — 21
= En\/zbe_Z% Z H, <l lx + k£]> 6_2mk(%+é)—ﬁ(2¢+k§)2

Lz kez by d

by changing the sum index k to —k, using the parity of Hermite polynomials and the relation

a2 (—i)" = C,
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III Projectors on Landau levels

From the construction of a L*(2) basis adapted to Landau levels, we define the projectors on
Landau levels in Notation III.1. Since the phase space is N x €2 we also want to localise the
projectors in space. Then we prove some properties of the projector that will be needed for
the semi-classical analysis. In Proposition [11.4 we give an equivalent for the diagonal of the
projector’s integral kernel, and in Corollary II1.6 an equivalent for its trace.

II1.1 nLL projectors
— Notation III.1: Projectors

The orthogonal projector on nLL is

d—1
Hn = Z |¢nl> <¢nl|
=0

Let g € C*(R?,R;) radial with support included in the ball B(0, L/2) such that ||g||,. = 1.
Let A > 1, define the localizer g, € C*(T) defined by

o (z) = {)\g()\x) if ze B(0,%)

0 else
Note that
lgallp2 =1
Then define the localised projector
Ik =ga(e = R)II,gx(e — R) (I11.1)

We assume the following scaling for A .= (Ax)n:

NI

1« )\«

2 (I11.2)
This localised projector was introduced by Lieb and Yngvason in [13] and [22] where it
has been called coherent operator. We take the bounds (I11.2) in order to have g -~ so the
projector is well localised and

h2

— A =hbA\l, « 1

by
This is necessary because hbAly, is the order of some error terms coming from the kinetic energy
(for example in Proposition VI.7).
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— Property I11.2
I1,, and II,, p are positive and satisfy the following resolution of identity:

DI, =1d f Mxdn(X) =1d (I11.3)

neN NXQ

— Proof:
Let ¢ € L?(Q)
<w|Hn,Rw> = <g(. - R)¢|Hng(. - R)¢> =0

because II,, is a projector. The first resolution of the identity is a consequence of the
completeness of the basis and implies the second one:

f Ixdn(X) = ng(' - R) <Z Hn) ga(- — R)dR = Jg,\(‘ — R)*dR =1d

neN Q

II1.2 Integral kernels of the projectors

The computations of Section II lead to the following expression of the nLL-projector’s kernel.

— Proposition 111.3: Kernel of the nLL-projector
With notation (I1.38) and x = 1 + iza, ¥y = y1 + 1Yo,

1 S Y1Y2—T] T
g )

1 L 1 L
M,(z,y) = ——>——¢ & Hy (= oy + k2| ) Hy (= |y + gL + k=
T o CRE  EN AR ])

. — . 2 2
2imk¥2772 42indq 2 — oy (w1+k5 )"~y (y1+qL+k%)

e g 8 (ITL.4)
L
— Proof:
From Proposition I1.16:
by imemnn d-1 1 I 1 I
20 12 _ - — =
Hn(‘r7y) _CnLge b lzl Z Hn (lb l$1+kd])Hn (lb [y1+pd:|)
=0 k,peZ
' eZiwl%—&-in%—%(m1+k§)2_%(yl+p%)2
Then, we use
a1
Z e™T = dlp_p (modd) (ITL.5)

=0
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to conclude. The computation of the normalization factor can be performed with (I1.41):

pb g, G 1 _ L 1 _ 1
"3 T o Ty ymeml I helBa Lk

The above simplification for the sum in [ is the reason why we used the Poisson formula on
wave-functions. The argument does not work on the expression in (I1.36) since the Gaussian
terms depend on [.

If we consider the same setup on the whole space R? instead of 2, the expression of the
projector in Landau gauge becomes (see [9: Section 3.2]):

- 1 _|z2?2yl+ilrr;[lﬂ§§] +Z-y1y22;2ﬂ°211
5 (@, y) = gpme *  " '
T
b

The next proposition states that the diagonal of the projector’s kernel on €2 converges to that
of the projector on the whole space. This is expected since the limit is equivalent to a scaling

where the size of the domain goes to infinity. This result will be important to estimate the trace
of Hn,R'

— Proposition II1.4: Convergence of the integral kernel

The kernel (I11.4) satisfies

uniformly in z with the convergence rate

1

1

Hn(’ZVZ) - m

< I11.
< (I1L6)

Moreover with notation (I1.38),
(Pl (z2) — 20— L J (‘hn(“)) ho(w)e dul| <Cmp (1LY

b 2w hafe ) \tha(w) iy

The proof needs the following technical lemma.
— Lemma II1.5

Let m € N, ¢ > 0, the following series are uniformly bounded in «;, a, b:
VaeR,a,be[-1,1],« Z la+b+ qulmcfc(“”‘q)2 < C(e,m) (IT1.8)
qeZ*

Vae [0,1],aeR,be[-1,1],a 2 la + b+ ak|™ e R’ < Cle,m) (I11.9)
keZ
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Moreover, if P,, (),, are complex polynomials of degree n, the function

E(Z) = 2 P <l1b ll‘ + k— ]) Qn ( [ZE + qL + k§]> 2”qu 2112) (ac+k ) 2b(m+qL+k%)

k,qeZ

1
is of order A and can be uniformly approximated as
b

L
2’/le

(1]

(2) — P (w)Qn(uw)e “dul| < C(n) (I11.10)

R L©

— Proof of Proposition III.4:
We start from (I11.4):

IL(z,2) = 75— hy, ( [x + k— ]) hy, (— [:v +qL + k—]) e2imady
|nll32 Ly kZZ h d A J

We apply Lemma I11.5 and thus compute

1 I\ 1 L 1
——— | I + 27mu duy= — — = —
||hnHig leRf (lb L) le 271'[(, 271'[%

and obtain (I11.6). Starting again from (I11.4) and using notation (II1.11), we compute in
Landau gauge

(P plln) (7, y)

; y1y2 2122

o zh&ml — bxo 1 h k’ l{ ) 217rlcy2 2+217rdqyz

= iho e Ll ber) P (Kbyi1qr) - €
*2 I nHL2 b k,qeZ

1 ZM h ( ih/ (kb ) ) 21 ky2 %2 4 9irda¥2
=—F¢€ % — n X1 h'n (k:b, L) . el +2imdq %2
thHi2 le k;%elz lb kbvzl hn (kb,m) yita

So

(Pl (2, 2) = L 2 ( ihy, (ko) > By (Kosar) p2imda
T Dhallge L fog \Fvalin (Ro) wha

and with Lemma [11.5,

L d ihy, (u) w)e ™ du n
Futl)z2) = g e [ () el < coop

" Lo

Finally, we compare the trace of 11, r to the trace of the projector on the whole space.
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Corollary II1.6: Approzimation of the projector’s trace

1

oml?|

- C(n)

Tr [Hn,R] — lb

Proof:

This is a direct consequence of Proposition I11.4 after integrating on z € {2

o

Tr [I1, 5] — fnnﬂ(z Dds =

1
2l2

We end this section with the proof of the technical Lemma.

— Proof of Lemma III1.5:
Let a e Ry a,be -1

and

—c(a+aq)?

a2|a—|—b+aq|

q=2

the term for ¢ = 1 is

P

Vuelg—1.q),la+b+ag"e

2 then ¢ <2(¢—1) so

—c(a+ag)?

gz — R) dz+(9<l1b> =

< (2 + 2au)™e

1

272

—cla+au)?

1

ly

)

o0
J(Q + 20m)meelaren)’ < f(2 + 2u)™e T duy < Ce, m)
1

R

ala+b+ame @)’ < ¢

for the negative ¢, we see that

a Z la + b+ aq™

q<—1

because —a, —b € [—1,1].

For (I11.9), let « € [0,1],a € R, b € [—
a < 1 and use (I11.8) and for k& = 0:

can assume 0 <

e—c(a+aq)2 —a Z |—CL b4 aq’m 6—c(—a+a¢1)2 < O(C, m)

g>1

ala+ ™ <2

1,1]. We see that the series is a-periodic in a so we

Now we use this result to prove the approximation of =. Due to the Gaussian factor, all
terms for which ¢ # 0 have a fair chance to vanish when [, — 0. Thus, we focus first on the
term indexed by ¢ = 0. To simplify notation we introduce

Up g = l1b<x—|—u§)=lxb 27Tulzb
§(u) = P (w, )Qn(ubm)

) = E(z }:f
keZ

2
—Up,x

“Iq#J
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;25 ];ZP (— [x+k: ])Qn< l“kﬂ) b (k)

is the term for ¢ = 0 and Zj4.0(2) contains the other terms.
Note that = is L/d-periodic in = so we can choose z € [0, L/d] and

l
<o oo (IIL.12)

lb L N>

For ¢ = 0, if we replace the sum in & by the associated integral we obtain:

ff =5 lb P, (1)Qn(u)e ™ du

which is the approximation in (II1.10). For the convergence of the Riemann sum, we compute
the derivative of the integrand. There exists R, a polynomial of degree 2n + 1 such that

! )
(1) = 22 R, (upg) €

L
Now, use the mean value theorem:
k41 |
fﬁ f 1£(k) w)| du < <o Z sup |Ry, (ups)| e~"=" (I11.13)
keZ keZ L keZ k<u<k+1

To control this we only need to control monomials. If k <u <k + 1,

|ub,x|m €_Ub7z2

< ko™ e Fee" 4 ‘(k +1),,

2
_kb,z

m m
e+ Doa” 4 | |™ e (FHDoa” 4 ‘(k +1),.| e

e (k+1)y .7 —kb,z”

= [k ™ 7" |k 1), | D0 [+ 1),

b,x-i—%

Thus after some change of indices,

by _ Ly m _
27Tzz sup  Jup|™ e 27Tzz <2|k‘bx|m+‘k‘bx_£ —I—’kbﬁg >e Fo.a
I’ ki y d Pl d
kez Fsushtl kez

L’ L

kEZ J S )

We next control Zj,.0. Let € > 0, with Young’s inequality:

Iy L ¢ I 1/ L\?
+ 27k g= < = + 27k — | g=—
(zb 4 L) 7 S (zb 4 L) T 5 (qzb)
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Using (I11.9) with o = 27rzb —0,a = lf’ be {O, 2m— —27r—b} c=1:
b



SO

I i e R e e
g0,k 110 L b
by using
. . L 1
e (IIL1.8) for the sum in ¢ with o = l—,a =0,b=0,c= 5
b
. . ly x 1
e (II1.9) for the sum in k with o« = 27— — 0,a = — - 0,b=0,¢ = -
L Iy 4
We conclude that
_ L 1
|Zjgr0| < C(n)g T C(n)
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IV A Lieb-Thirring inequality

In this section we prove a Lieb-Thirring inequality for the magnetic Laplacian with magnetic
periodic boundary conditions:

— Theorem IV.1: Kinetic energy inequality

Let v € L1(L*(Q2)) a positive operator, then

v S

C =
JP2 ”;”ﬁ [gh,bﬂ (IV.l)

Q

Moreover if ¢y € L2 (QN) with ||¢Yn|,. = 1,

C
(1)
HP %Tr [.i”n b (i) vy, f < [.ﬁfh b(:vz)va] V1| 12 (IV.2)
Q
@ < 2[4 X V.3
Whyy S 33 1"[ 7o(23) W] [wl| 2 (IV.3)
QQ

We follow the proof of [11: Chapter 4]. To achieve this goal we prove the following sequence
of inequalities: a Kato inequality (Lemma IV.2), a diamagnetic inequality for Green functions
(Proposition IV.5), a Lieb-Thirring inequality (Theorem IV.6) from which we deduce the
inequality on the kinetic energy (Theorem IV.1).

IV.1 Reduced densities

We give some usual properties of the reduced density matrices, see Notation [.6. Let vy be a
N-body density matrix, since the Hamiltonian only contains one-body and two-body terms, the
quantum N-body energy in the state vy only depends on the two first reduced densities:

Tr |7
—r[ NNVN] =Tr [(Xh,b +V) 'y](\})] + Tr [w%(v)] (IV.4)
moreover, reduced densities inherit trace and Pauli principle from ~y:
k' (N — k)!
k k
Tr [%(V’] =1 o< < = (IV.5)
We can also express the reduced density matrices in term of integral kernels:
Y (@1, Yre) = J YN (T1cks Tt 1:N5 Y1k, Thp1:N ) ATk 4 1.8 (IV.6)

QN-k

The reduced density matrices are symmetric under permutation of coordinates:
k k
Vo € S,y (To(1h) Yo(1k)) = V) (21, y1k)
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and consistent:

Vq € [[]- : k]] a’YJ(\?) (xl:qa yl:q) = f '7N<1'1:q7 Lg+1:k5 Y:q5 $q+1:k)dxq+1:k
Qk—a

Note that the reduced densities pg]fv) inherit the symmetry and the consistency from the reduced
density matrices.

IV.2 A Kato inequality with periodic boundary conditions

One can look at [21: Theorem X.27| for a proof of the Kato inequality in the non magnetic case.

— Lemma IV.2: Periodic Kato inequality

Define the complex sign

s(u) = 4 Tl it u#0
0 if uwu=0
Let v € C*() then |u| € H'(Q) and
AV ul| < | Pyl (IV.7)
Moreover if |u| is periodic, then
—h2Au| < Re[s(u) L pul (IV.8)

in the weak sense on CX(€2), or equivalently, Yo € C° (Q2,R ),

—h? f lu] Ap < JRe [s(u)ZLhpu] @
)

Q
©»
— Proof:
1 9 1 _ _ _ .
§hV lul” = §hV(uu) = Re[uhVu] = Re[u (RV — ibA) u]
so taking absolute values
2
n% < u| | Paul (IV.9)
Define
ue = A/ Jul* + €2 e CF(Q,RY)
Using (IV.9),
AV |uf”
|hVue| = % < |u£| |:@ﬁ,bu| < |<@h?bu| (IVlO)
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So Vu, is bounded in L?(2,R?) and converges weakly to v € L?(, R?) up to sequence of e.
Let ¢ € C (int(Q),R?), since p € L? (Q,R?) and 0 < u. — |u| <€

fv.gpzlimJVuewp:—limfuev-sf):—f\uww
Q Q @

Q

so v = V |u| and the bound (IV.10) passes to the limit and we obtain (IV.7).
To prove (IV.8) we use polar coordinates

u = |u|e”
Let z € Q, if |u| (x) # 0, |u] is smooth on a neighbourhood V,. of x where |u| > 0 and thus

Vue = MV |u| = V |u| pointwhise on V
u

€

e’ = u/ |u| is also smooth and up to another restriction of V, we can invert the complex

exponential so 0 is smooth. Under these conditions, we can do a direct computation and use
Cauchy-Schwarz:

Re [s(u)Zhpu] =Re [e™ (—=h2A + 2ihbA - V + ihb(V.A) + [DA[*) |u| ¢”]
= — W*Alul + Re [ |u| e h*Ae” — 2ih>V |u| - VO + 2ihbA - V |ul]
— 2hb|u| A - V6 + |u] [pA|?
= — R2AJu| + Re [—ih? [u| AQ + [u| h* |VO|*] — 2D |[u| A - VO + [u] [pA|?
= — R2A Ju| + B2 u] |VO]* — 2hb [u| A - VO + |u] [pA]” = —h2A |ul
Note that if u(z) = 0 then z is a local minimum of u, so

Auc(z) =0

Let o € CF (Q2,Ry), since u. and ¢ are periodic, the boundary terms vanish in the following
integration by parts:

fueAgo = J@Aue > f AU, (IV.11)
Q Q Q\vw({0})
Now we take ¢ — 0, u, converges uniformly to |u| so

JueAgo _)oj lu| Ay (IV.12)
Q Q

Using |u| < u,, when u(z) # 0,

2 2 2
\Y% A Vv
PP a7 e PN il R v
u

Ue Ue € €

38



so (IV.11) implies that

NS (IV.14)

Ue

JueAs0> f ®
Q Q\u~1({0})

With dominated convergence using inequality (IV.13),
Jul
o—A |ul - ©A |u| (IV.15)
U e—
Q\u=1({0}) Q\u=1({0})
With (IV.14), (IV.12) and (IV.15) we have
I e N
Q Q\u=t({0})
we can conclude that

—h? J lu| Ap < — K2 J PA |ul < J Re [s(u)ZLhpu] p = JRe [s(u)ZLhpu]
% Q Nu=1({0}) Nu~1({0}) Q

IV.3 Diamagnetic inequality

The main lemma for the Lieb-Thirring inequality in the magnetic case is the diamagnetic
inequality in term of Green functions because it allows to restrict ourselves to the non magnetic
case.

— Notation IV.3: Green functions

The resolvents of —h*A with periodic boundary conditions and 24 are well defined for
A >0

Goar = (Lp+ N7 Gy=(—R*A+ N

% Their integral kernels define the corresponding Green functions.
They have the following properties:
— Property 1V.4

Let z € Q, then Gyay(z,0),G(z,e) € L?(Q2) and

\

1 I
GA(33>ZJ)=G,\(£U—y)=G,\(y—x)=ﬁ Z k2+)\elk( ¥) >

ke 25k 72
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— Proof:

2
The periodic Laplacian is diagonalizable in the plane wave basis indexed by k € %ZZ:

1.
er(z) = Ze””

Indeed

“RPA+ A= YT (PR + ) Jex) (e

ke2r 72

SO

Ga(z,y) = T2 22 [ Y

ke Zz2

A change of index k = —k gives G)\(z,y) € R. Let f € L*(Q2), since G f solves
(—R*A+ Nu = f,ue H2(Q)

by the Lax-Milgram theorem, GG f is the unique minimizer of the following functional

J(u) = J (7* |Vul® + A |u® = fu) do
Q
Assuming f > 0, we see that J(u) > J(|u|) and conclude that G,f > 0. This implies
Gx(z,y) = 0. Finally,
~RPA+ A= Nand Gy + A=\
S0

|Gl <+ and [[Gran|l e <

> =

1
A

¢ and Gya (2, ), Ga(e,y) € L*(Q).
Now we prove a diamagnetic inequality:

— Proposition 1V.5: Diamagnetic inequality for Green functions

For all z € Q2 and for almost every y € 2,

|Gran(z,y)| < Ga(z,y)
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— Proof:
Let ¢ € C*(Q2), by definition

beA,A (z,0) (fh,b + )= Gpan (fh,b + )=
Q

so, in the distributional sense
(Zhp + A) Goan(z, @) =0, (IV.16)

Let p e C*(R?,R;) radial with support included in the ball B(0, L/2) such that ||p||,, = 1.
Let n € N*, define the localizer p,, € C*(T) defined by

o) = {g p(nz) ifxe B(0,£)

else
Since p,, is periodic, the regularisation
Uy = Goax(@, ®) * pp € G ()
Thus, equation (IV.16) becomes
(Lop + \) Uy = 0 % p = pula — o) (IV.17)
We estimate
Re[s(ua) (Lo + A) ue] = Re[s(ug)pn(z — o)] < pn(z — o)

Then we apply Kato’s inequality (IV.7) to u,, use s(u;)u, = |u,| and obtain

(—th + )\) lu,| < Re[s(uy) Zhpts] + Mg < pn(z —o) (IV.18)

in a weak sense on C°(€2)*.
Similarly as (IV.17),

(—h*A + N)pn = Ga(e,y) = pu(y — o)

Thus testing inequality (IV.18) on p, * Gx(e,y) € C°(Q2,Ry) we get
f 0(2)] iy — )2 f pule = 2)pn + Ga(o,)(2)d2

With the changes of variables t .=t +z —y, 2 = 2 + x — y and Property [V.4,

|Grax(x, ®) # pp| = pnly prn 2)pn(z — )GA(t — y)dzdt

_ H (28 =y — 2)pul(z — D)CA(t — 2)dzdt
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=Pn * Pn * GA(L 0)(21‘ - y) (IV.19)
If ¢, — ¢ in L?(Q), by Young’s inequality

1o * n — @2 < lpn* (00— Q)2 + llon * 0 — @l 12
|

<
<lleallpallon = @llzz + llon = = ¢l — 0

Fix z € Q, with Property IV.4 up to a subsequence, |p, * Gya(x, ®)| = |Gpa(z, )| in L*(Q)
S0

(Goax(x, @) pn| * pn = |Gra(z, o)
in L2(Q2) and up to another subsequence almost everywhere. Similarly, almost everywhere
Pr* pnx Gr(7,0) — Gi(z,0)
n—0oo

So passing to the limit in (IV.19), for almost every y € Q,

P Gran(z,y)| < Ga(z,22 —y) = Gi\(y — z) = Gi(z,y)

IV.4 Lieb-Thirring inequality

We would like to prove a kinetic inequality of the form

C
Tr [’)/jﬁ’b] = JP?Y
e )

with v € L1(L?(Q)) a positive operator. We will deal with the magnetic field with the diamagnetic
inequality and use Lieb-Thirring inequality for the Laplacian. But the previous inequality for
the Laplacian is false if we take v = |eg) (€|,

C C
Tr[-Ay] =0< —:—Jp2
L? ||7||£ooQ !

To avoid this, we add 1 to the Laplacian so that the constant mode has a non-zero energy.

— Theorem IV.6: Lieb-Thirring Inequality
Let Ve L*(Q,R,),

—Tr Izl(fh,bJFl*V)gO (Lhp+1— V)] < — JV(:E)%lx (IV.20)
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— Proof:

We denote N, the number of eigenvalues of %, + 1 less than or equal to A. From [11:
Section 4.3],

T |11 vy<0 (G + 1= V)| = f NydA
Ry

Define the Birman-Schwinger operator
Ky = VVGparVV

and let By be the number of eigenvalues of K, greater or equal to 1. We use the diamagnetic
inequality to restrict to the non magnetic case. Since G4 ) is positive, we can define its
square root. Using the arguments of [11: Theorem 4.4] we can deduce from Proposition V.5

the diamagnetic inequality for /Gpa x:

’\/%(w,y)‘ <V/G(x,y)

Hence with Proposition V.5,

Ghaale)] = | [ Guaste v/ Guaa(z s < | Galar 21/ Galz iz = Gw.w

Q

So taking m = 3/2 and using an inequality on the traces of powers (see [11: Theorem 4.5]),

Ny=B) <Tr[KP] < Tr[VEKVe] < JV(x)m |G} yi1 (2, @) | da

Q
< JV(m)m Vo (2, x)dx
Q
So we obtain
0
—Tr [1(0%’1)“7‘))<0 (Lhp +1— V)} < fJV(x)mGT(x, x)drdA\ (IV.21)

01

The kernel of GY' is
A= 4 Gayg

ke 27 72

We use the integral bound for the sum

1 1
I T N S
Z(k?+A)m +J(u2+/\)m v

keZ R
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SO

aG™(0) = — m = 7o (_) "
N0 =72 ge:z ((m)2 (k2 +¢?) + A) B ’%:Z (kz +a o+ () A)

We estimate the integral

[ [y

with
>— = )—J ! du < o0
m = (1 +u2)™ B
R
Similarly
1/ L\ 1 I(m)
0 < (55) 2 . :
L? \ 27h 2 m—1
)iz \ (R ()N (k2 + (5)* )
<)\—m + [(m> —m+%
L? 2mh L
1/ L\ 1 I
+ﬁ (%) f 2 mdu—kf (m) mildu
(G R (e ()t
AT I(m) 1 1 _
<— A S I T _ m+1
et g™ <m 2>A
C(m), .,
< 5 >\ +1

since A = 1. We need m > 1 for the integrals to converge. We use the same trick as [11]
changing the potential to

) (3.0
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Combining this with (IV.21) and the change of variable

_ v x) _2V(x)

we obtain

—Tr [1(fn,b+1—v)<0 (gh,b +1-— V)] <

) (o[-
=2 gV(m) ! e dp |dz

The integral in p converges if 3 —m > 1. To conclude we need 1 < m < 2 hence the choice
¢ m = 3/2 is convenient.

This leads to proof of the Fundamental inequality of kinetic energy:
— Proof of Theorem IV.1:
With the variational principle and the Lieb-Thirring inequality (IV.20),

Tr[(Lhp + 1) 9] =Tr [(Lp + 1= V) v] + Tr V]
||’7||£oo Tr [1($h p1— V)< (o%h,b +1— V)} + Tr [V’Y]

> Crr “’YHL:OC J vav
Q

Then choose V == Cn1, <cpy:

Tt [(Zhs +1)7] = Cy (1 - CNM> f "

h2
pysc
The constant preceding the integral is maximal when
h2
Cny = —F—F7——
201 |17/l 20
and we get
hZ
Ly + 1 — J 02 IV.22
(%o + )72 g | o V22

pysc
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Since %5, = hb,
Tr [ L py] = RO T[]

so because hb — o0,

1
Tr[(Zhp +1)7] < <1 + hb) Tr[Lhpy] < CTr [ L]

With this and monotone convergence we take the limit ¢ — o0 in inequality (IV.22) and
obtain (IV.1). Applying this to (IV.5), we have

1

_ >CN12 p(l) 2
hb - b|Fv

2
(1)
NllL ZC'Hpr L2

[2 2

1 1

wlntt]> o ]
H%N c

For the second reduced density, by symmetry

Then using (IV.2) and then Young’s inequality,

Tr [thb%(z)l]\)f] —Tr [w’yfj\)]]

2
NJ Chb(N — 1) prN(w. —wa(x—y)pf;;(x’.)dy dx

Q
> emlpv |7 - wlz—y)pL, dy|de
= Pyn(z,e) 12 Y)Pyn (a,0)?Y
Q Q
1 2 C
>f <Chb Hpgjg(w - <2Chb w]22 + 2CTb pr )) dz > = w7
Q
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Changing w to ew, dividing by € and using (IV.4) gives

9 _ 1 1 c
prfpj)v < gTr [‘gﬁ,b%(mi] + e [wl]
QQ

hb
—, We get

To optimise in €, we choose € =
[w]] -

1 C
prgj)v < <%Tr [Zh,ﬂfplzi] + C) Jwl > < %Tr [Zhvwfﬁlzi] 1wl

QQ

because £, = hb. Similarly with Young’s inequality and (IV.2),
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V Semi-classical limit

In this section we introduce the Husimi functions representing densities in the phase space. The
fundamentals properties of these functions can be found in Property V.3. Then we prove that
the N-body quantum energy can be approximated by a semi-classical functional depending only

on Husimi functions in Proposition V.4.

V.1 Husimi functions
— Notation V.1

Husimi functions or lower symbol as

with X1 € (N x Q)

k
My, (X1x) = Tr [’Yk X Ix,

=1

Conversely, if my, € L! ((N X Q)k), define the associated density matrix

= (2n2)* J my(Xi:x) ®HX dn®* (X1.1,)

(NxQ)k

We call my, the upper symbol of 7,,, . We also associate a density to my:

b= S i o)

nl:kENk
we extend the definition (I.13) to Husimi functions, if £ > 2

Esenv [Mi] = J Enm,(:)(n, R)dn(n, R) + J Vm,(:)dn+ J unn,(g)dn®2

Nx 2 Nx (Nx)?2
and we also extend (1.16) to p € L' (QF):
Eorr [pe] = pr;(f) + f wpy!
Q Q2

If one starts from a wave-function ¢y € L? (QN ) we use the notation

% My = My,

Let k € N* v, € L1(L?(92%)), recalling Notation I11.1 and (1.23) we define the associated

(V.1)

For another discussion and further references about lower and upper symbols one can look

at [19: Definition 3.13].

The k-body Husimi function is the joint probability distribution for £ particles in phase

48



space. Similarly as for (1.24), we have
m{) =m o and pl) = p 0w

The next lemma provides a translation between Husimi functions and density matrices.

— Lemma V.2: Relations between Husimi functions and reduced densities

Let v, € £' (L? (%)) be a positive operator, then m., € L' (N x Q)¥) and

Vil g
0<m,, < %(1 +0O(ly)) f M, dn®* = Tr [7]
b (NxQ)*

Conversely if my, € L' ((N x Q)¥) is positive, then 7,,, € £L1(L*(2F)) and

k
0 < Yoy, < (2785)" Il e Tr [ ] = llmll pr + O(l)
Moreover if vy € £} (L2_ (Qk)) and 1 < k < N, then

W _ (N—F)

w S WTY [yl (1 + O (ly))

— Proof:
m., is positive because VX € N x €2, IIx and v, are positive. With Corollary II1.6,
) < elge [0 = vl (55 40 (1)) = Dellez 4 1 o
&) < w T | = w | —= — ==

Then, with the resolution of identity (II1.3) we have

f My, d77®k = Tr []
(NxQ)k

Since VX € N x Q, IIx and my are positive 7,,, is also positive. (II1.3) also implies

(NxQ)k

Finally, using Corollary II1.6,

Tr [y, = (25)" f my(X1:x)Tr l@ HX] dn®* (X 1.1, J mydn® + O(ly)
i=1
(NxQ)k

= [lmall . +O0)
[y € LY(L*()) is positive, thus it can be diagonalized:

HX = Z)\LX |wi,X> <’¢Z’7x| with /\i,X = 0 and Z)\Z’X =Tr [Hx]

€N €N

(NxQ)F
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We have

k
m (X1x) = Z (H >\7:‘7'7Xj> Tr (k)
= Z (H Aij,xj> Tr | yw

i1:,ENF

®?r

¢Zj,Xj

0.2

® ¢ij7Xj> <® @Dij,
j=1 j=1

—

Xj ®IdL2(QN—k)] (VB)

Let ¢1.x € L?(2) be an orthonormal family, we claim that

@) (@

WPt o (L% (2Y)) (V.4)

® Isz(Qka) < N

i=1

Indeed, if we consider the Slater state

then

>< %@Id“m—k)) XN>
(@l e (®)®>

1=1
k !
UT) (1_[ 60'(1'),1'57'(1'),1') H 50’@)7"'@ N' 2 1_[6 (3),0 = )
i=1

i=k+1 ceSy i=1

.

<1 (¢

Z
:%Z

" 0,7ESN

.
= |I®w
—

If the Slater determinant does not contain the ;. then the result of this computation is 0,
thus we obtain (V.4). Then with (V.3) and Corollary I11.6,

mwxc)(Xl:k) < (]V— Z <H Ala ) TI' ")/N] = WTF [’}/N] HTI‘ [HXj]

1. kENk j=1 Jj=1

(N —F)!

A (2rl2)* NI

We have the following properties for the Husimi functions coming from reduced density
matrices.

Tr[ ] (1+ O (b))

— Property V.3: Husimi functions

Let vy be a N-body density matrix, then m%’fv) are symmetric, consistent and satisfy
) _ (N —k)!

0 < mw < W + O(lb> (V5)
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f m®d® = m®)] |, =1 (V.6)

(NxQ)k
o) = (g * plt) (V.7)

®
— Proof:

Let k> ¢ > 1 and Xy, € (N x Q). Recalling the results of Subsection V.1, we prove that
the N-body Husimi functions are consistent marginals using (I11.3):

k
J m(jﬁ?(Xlzk)dn(XqH:k) =Tr f 7](\];:) @Hxidn(XqH:k)

(NxQ)F—4 (NxQ)’“—q
q
= Tr )®HX ®1d5V? ] =Tr [’y](\[;') @HXZ.]
i=1 =1
= m'?(X,) (V.8)

Let o € Sk, the symmetry of the Husimi measures follows from the symmetry of the reduced
density matrices:

anaeefedn ] ol g ol
= m{) (Xug) _
(V.5) and (V.6) follow from
Te 2] = 1

and Lemma V.2.
For the last point we perform a straightforward computation:

k
>, m) (nags Rig) = [ > ®Hm ] = Jﬁ)/](\’;)(mlzkaxlsk)ng)\(mi_Rz’)Zd-Il:k

n1.,=0 nq.,=0 =1 Ok i=1

% = (g3)%* = p) (Ra)

Equation (V.7) tells us that summing the densities inside every Landau level approximate
the total density.

V.2 Semi-classical energy

We now prove that the quantum energy can be approximated by the following semi-classical
energy, only depending on the one body and two body Husimi functions.

51



— Proposition V.4: Semi-classical approrimation

Let ¢y € L2(QY), [[¢n]| ;2 = 1, the quantum energy can be approximated with the semi-
classical energy (V.1)

w Nioo gsc,hb [mwN] + @) (%Tr [gh,b’}/](\})]> + O ((h)\)Q) (Vg)
where
f(A) = max (Hgi «V — VHL2 , H(gi)®2 W — wHLQ) — 0 (V.10)

A—00

@
The term kinetic energy

1

%Tr [,2”571,%(;]3]

will be bounded when we will take a sequence of minimizers of the N-body quantum energy.
Recalling (I.8) and (I.11),

bly = O (hNT,) = O (hN%) > 1
so with (I11.2)

(hA)* « hA < BbAL, « 1 (V.11)

Moreover, A — oo so the error terms in (V.9) will be small.

— Proof of Proposition V.4:

We start with the kinetic term. Inserting the resolution of identity (II1.3) we have

Tr [o?mb%(;,\),] = f Tr [fh,ngb — R)I1,gx(e — R)%(pﬂ dn(n, R)
NxQ

Now, we use the diagonalization of the magnetic Laplacian %3 11, = E,II, by commuting
Ly with gy(e — R) to obtain

P
[ L] =T | | Bl don. B)

Nx

+Tr 75;13 f [ZLhvs gr(® — R)] IL,gx(s — R)dR
NxQ

= | Bl 0 Ry B + T ) [ (00, 0a(o ~ B gn(o — R)IR
NxQ Q
(V.12)
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We compute
[Php: gr(® — R)] = ihVg\(e — R)
and

[Zhp, gr (0 = R)] = [Php, ga(® — R)] - Prp + Php - [Prp, gr(e — R)]
= 2ihVgx(e — R) - Ppp — h*Aga(e — R)
= Py - 2ihV ga(e — R) + h*Aga(e — R) (V.13)

inserting this in (V.12), we find

Tr [.,zﬂh,wg;] _ J E,m{") (n, R)dn(n, R)
NxQ

+ 20 Tr | L) Py - JVgA(o — R)ga(e — R)dR
Q

+ A Tr 71([)1]\), JAg,\(o — R)gx(e — R)dR
Q

But because ¢ has a fixed L? norm and is periodic

ngA(. —~R)?dR =0 = 2fng(. — R)gr(e — R)dR

Moreover

f Aga(s — R)ga(s — R)IR = — f (V)2 = — A j (Vo(Ae)Pdr = 32| Vgl (V.14)
Q

Q Q
Therefore
T [ Znl)] = [ Bl o Ry B) — (00 V] (V.15)
NxQ

If we take a k variable potential Vj, € L* (QF),
Tr [Vk%(p]j\),] = J 1(;2 (@105 21:8) Vie(@ 1) dre = JP;RVI@
Ok ok

To express this in terms of Husimi functions we use (V.7):

T [Viall)] = [ ol Vet | (A8 - (@)% ) v

TN
QFk Qk
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k
= fpﬁ,’fiva + f P (Vi = (60)%" = V3)
QFk Ok

Thus applying (IV.4) and using (V.15),

(Un|HNYN) (1) 2)
— N = Tr [(,Zh,b + V)%pN] + Tr [wwa]
_ f E,m!)) (n, Rydn(n, R) + f WOy f 22w — (W) [Vl
Nx Q 02
= Emlmon] + [ o8 [V =&V + | 62 Lo = @D ] - (h0? |Vl
Q 02

Using V,w € L?(Q) and the fact that w and thus

(g3)%% * w(x,y) = Jf B ()Gt w(x —y + t — 2)dzdt
QQ

only depends on x — y we can use the kinetic energy inequalities (IV.2) and (IV.3) to control
the errors terms:

(Un|HNYN)

v < prjfv [V —gi=V]|+ prffv [0 = (g3)%* # w]

w 02

+ (AN Vg7

C
<= Tr | Ll | FO) + (0?99l

- Esc,hb [mw N]

and we have

f) = 0

A—00
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VI Mean field limit

In Section V we went from the quantum N-body energy to the semi-classical energy (V.1)
(Proposition V.4). The last step needed to obtain the limit models (I1.13) and (I1.16) out of (V.1)
and (V.2) is to remove correlations. Indeed we see that for m € L' (N x Q) and p € L'(Q)

gsc,hb [m®2] = gsc,hb [m]
quL [P®2] = quL [p]

For fermionic states there are always some correlations due to anti-symmetry. Therefore
the objective of this section is to prove that all other correlations are negligible. Neglecting
correlations except those coming from the anti-symmetry is called the mean field approximation.
We prove that this approximation holds in the mean field limit using Lieb’s variational principle
(Theorem VI.5) for the energy upper bound in Subsection VI.1 and the De Finetti Theorem
VI.11 for the lower bound in Subsection VI.2.

The next proposition is a computation of the semi-classical energy when the low Landau
levels are saturated. In this case the semi-classical energy is a sum of constant energies and of
the semi-classical functional (I1.16) for particles in gL L.

— Proposition VI.1: Saturated low Landau level energy

Let p € Dyr1,, using Notation 1.4 and Notation V.1

5567;11, [mp] = hbE?" + E%T + Eg},r + quL[p] = hbE?" 4 5qLL[pmp]

— Proof:

With a straightforward computation:

Evcw [mp] = D Bn fmp(n, v)dr + ) JV(m)mp(n, x)dzx

neN neN

+ Z Jw(x — y)my(n, x)m,(n, y)dedy

02
RS r q ¢
= E, + E,+ V+|vp+ w
q+rnz_;) q+r ! (q+r)][ f P (q+'r)2][
0 0 o

+—4@——[ﬂwx—wmm¢My+fwu—ymmm@Mmm

02 Q2

Mb g 11\ r2hb 1
. B O T . -
QMM+ww2 @ +2+Q+qw~@+9
2

2
+ d ][V+ q fw+ ar ][w
q+r (q+r)? (q+1r)?
Q Q Q
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2 2
+ 2qr + +2
whmij[wu][w
q+r q+r (q+7r)?
Q Q

= Erlp) + ROET" + EY" + ELT

= quL [p] +

We obtain the second equality with

Eqrr [pm, ] ZJ z)m,(n, r)dx + Z J w(x —y)m,(n, x)m,(n, y)dedy

nEN n, nEN

% = CqLL [p] E{l; Eg;

V1.1 Energy upper bound

In this part we prove the energy upper bound:

Proposition VI1.2: Upper energy bound

EX

NS ROET" + EL" + EXT + &1 [p] + DO (1 — W) + O (f(N) + O (hbAl)

©r

The main tool for this proof is the Hartree-Fock theory obtained when one only consider
Slater trial states. For Slater states, many energy computation are simplified (see Wick’s
Theorem VI.4): the second reduced density matrix can be reconstructed from the first reduced
density matrix. The second reduced density matrix is given in term of a perfectly uncorrelated
term and an exchange term that will reduce the energy in the case of repulsive interactions.
The exchange term contains the correlations due to anti-symmetry, these are the minimal
correlations fermionic states can have. Thus Hartree Fock theory is a way to assume that
all other correlations are negligible. The Hartree-Fock energy gives a canonical upper bound
for the N-body quantum energy since the variational ensemble is restricted to Slater sates.
Hartree-Fock theory can be extended to one body operator (see Notation VI.3), and using Lieb’s
variational principle (Theorem VI.5) one can show that the theory still provides an approximate
upper bound for the N-body quantum energy. Then we show that the Hartree-Fock energy is
an approximation for the semi-classical energy (Proposition VI.7).

— Notation VI.3: Hartree Fock theory

Let s,t,u,v e L?(Q), if one define the exchange operator on £! (L? (0?)) as
Ex|s®t) (u®uv| = [s®1) (v u| (VI.1)
Let v € £ (L*(Q)), define

N

1 (1 — Ex)~®? (VI1.2)

T2 =
Define the Hartree-Fock energy
% Enr 7] = Tr [(Lhp + V)] + Tr [wre] (VL.3)
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With Wick’s theorem definitions (VI.2) and (VI1.3) are actual statements for Slater states.

Theorem VI1.4: Wick’s theorem

1
Let ¥y = W /\;V=1 ¢; € L* (QN) with (¢;); an orthonormal family, then
m_1xy
AN Y PALA
i=1
and

2 N 1 ®2
Tow =57 (1~ Ex) (%(v))

1 N
=N & 4@ (i@ — 6, @

i,j=1

Thus for a Slater state 7y,
My _~?
(71/11\/)2 T YN
and the Hartree-Fock energy is exactly what we obtain for the quantum N-body energy:
Enr [71(;13] =Tr [(‘Zh,b +V) 'yz(;]i] + Tr [w%(fji]

Lieb’s theorem [10] extends the usual variational principle for operators of the form (VI.2).

— Theorem VI1.5: Lieb’s variational principle

Let v € £ (L*(Q)) satisfying

1

Tr[y] =1 0<7<N

there exits a N-body density matrix vy and a positive operator Ly such that
1
-

%(VQ) =Y — Lo

We start with Lieb’s variational principle to get an energy upper bound in term of the
operator 7,. An important remark here is that we don’t assume that the interaction potential
is repulsive to get the upper bound as it is usually done when dealing with Lieb’s variational
principle. The reason why we where able to relax the assumption w > 0 is the computation
(VL.6). Lieb’s variational principle has also been recently generalised in [3].
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— Proposition VI.6
1
Let v € £ (L*(Q)) such that Tr[y] =1 and 0 < v < N then

E? Tr[.%4
WN ggHF ['7]+ [ h,b7]

— Proof:

First we prove a lower bound for the interaction term. Using The Gagliardo-Nirenberg
inequality for ¢ € L*(Q),

[l < Con (19l 190, + 1191,

along with Holder’s, Young’s and Kato’s (IV.7) inequalities,
(VO] < 9]l VI g < IV 2 101170 < Con VI (16012 1V 190111 + 190172)
1
< Can Vs (5 19 12001 + 1012

)1l

| (thalwide)| < f|UJ(9€ — )| 12 (2, )| dady < ||wl] . J (e, )7
02 Q

1
2
< Cax Wl (el 2mantie + (1+

So for ¢y € L*(Q) ® Dom (%),

1
< Canlul,s [ (e1@nmte e+ (14 ) lonte o)l ) o (VL)
Q

1
~ Con lulls (e1® Pratalls + (14 153 ) vl
Thus
(o] (Can l[wll 2 € (d20) ® Zhp) + w) o) =Can [[wl] 2 € |1 ® Prpthall]2 + (Who|wihn)

1 2
>~ Can ol (1+ 7 ) Il

and

1
ECGN ||'LU||L2 (IdL2(Q) ®gh,b> +w = _CG’N ||w||L2 (1 + 46ﬁ2> (VI5)

Let vn and Ly be the operators in Theorem VI.5. Now we use (IV.4), and (VI.5):

E_?V <T1" [%N’YN]
N N

=Tr [(gh,b + V) ’yj(vl)] + Tr [w’y](\?)]
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=Tr[(Zp + V)] + Tr[w (2 = L2)] = Enr [7] = Tr{wls]

1
<&Epr 7] + Can ||w]| 12 ((1 + 1 hz) Tr [Ls] + €Tr [ (Idr2(0) ® %) Lz]) (VL.6)

€

To conclude we need to estimate the error terms. If A is an operator on L%(Q) it follows
from (VI.1) that

Tr [(Idz2(0) ® 4) Exy®?] = Tr [A4?] (VL7)

Indeed, if we decompose 7 in an orthonormal family:
v = i) ()
ieN
then
Tr [(IdLQ(Q) ) A) EX’}/®2] = Z )\i)\jTI' [IdL2(Q) ) A |Uz ® Uj> <Uj ® Ul‘]
i,7EN
= 7 AT () (uy]) ® (A fuy) (wi])]
2,7€N
= > NN T [fug) (] Te [Afug) (us]] = > AT [A fu) ]
1,JEN ieN

=Tr [A72]
Taking A == Id;2(q), we obtain
Tr [EX7®2] =Tr [72]
and since v is positive, with (VI.2) we can estimate

(2) N 2 2 N N 2
TI'[LQ]ZTI'[’}/Q]—TI'[’YN] = N_lTrh® —Exy®?| -1= N—l_N—lTrh]_l
1

N -1

~

If € — 0, we can control the first error term in (VI.6) with

C
Neh?

(VL8)

4eh

1
0 < <1+—2) Tr[Ly] <
For the second error term, using Theorem VI.5, (VI.2) and (VL.7) for A = Z,,

0 <T1“ [(IdL2(Q) ® Dfmb) LQ] =Tr [(Isz(Q) ® gﬁ,b) (’72 — ’y](\?))]

N

=7 T [(1dezo) © ) (1 - Ex) %] — Tt [(Isz(Q) ® L) 7](3)]
N

ol -

Tr [(IdL2(Q) ® gm(,) EX’}/®2] —Tr [gh,bf}/]
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1
:N o 1TI' [gh,bﬁ)/] -

Tr [.Zh,bff] < Tr [ 7]

N -1 N -1

When the kinetic energy is minimised Tr [.Z}, ;7] is of order hb so the second error term in
(VI.6) will be of order:

ehb Tr [-ﬁ/ﬂh,b’}/]

0 < €eTr|(Idzein) @ L) Lo] < C— (VL9)
’ N hb
We optimise in € so the bounds in (VI.8) and (VI.9) are of the same order:
1 ehb 1 1 1 ehb 1
- = — =N¥":2 =91 —— =—=-—=0() (VLI10
N€h2 N = € \/ﬂ 2 0( ) = N€h2 N le ( b) ( )
so (VI.6) becomes
EY Tr [ L7 Tr [Zp7]
— <& 1+ —)0l,) =€ ——F——=0(
Now we go from Hartree-Fock energy to the semi-classical energy.
— Proposition VI.7: Semi-classical approximation of Hartree-Fock enerqgy
Let ng € N, m e L'(N x Q) such that Vn > ng,m(n,e) = 0 and
0<m< ! (VI.11)
SMs —55 .
22N
then
Enr [vm] = Esenn [m] + O (F(N)) + O (hbAL)
— Proof:

We start by proving that we recover the semi-classical functional from the direct terms. We
compute the kinetic term using the commutation relation (V.13) and Corollary I11.6:

Tr [Zh 4] 2712 J m(X)Tr [Zh,TTx] d(X)
NxQ
=27l; | m(X)E,Tr[lx]dn(X)

N

+ 2012 f m(n, R)Tx [Zhp, gr(o — R)] Tuga(s — R)]dn(n. R)

_ f Eum(X)dn(X) + O(hbly)

Nx
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+ 2nl} f m(n, R)Tr [2ihV gy(e — R) P p11,9x(e — R)| dn(n, R)
—2nl? f m(n, R)Tr [A*Agy(e — R)IL,g\(s — R)] dn(n, R) (VL.12)

Using (I11.6), 3€ : N x © — R such that

271, (2, 2) = 1 + [L,E(n, x)
E(n, )| < C(n)

With (V.14),

— 2rl} f m(n, R)Tr [A*Agx(e — R)IL,g\(e — R)] dn(n, R)

f m(n, R) (J Aga(z — R) (1 + [,E(n, x)) ga(z — R)dx) dn(n, R)

Nx )

~ (0N Vgl [l 2y [ (o ) ( | eagoam.s + R)Agux)da:) dn(n, R)
NxQ Q
= (W) [V lz Imllz + (5A)* O (1) = O ((1A)?) (VL.13)
And by (IIL.7), 3€ : N x © — R such that
Prpll,(x,7) = Z (n) + b€ (n, z)
E(n,2)| < C(n)

SO

2rl} f m(n, R)Tr [2ihV gy(e — R) P pll,gx(e — R)] dn(n, R)

Nx

=4inlZh f m(n, R) (ng)\ r— R) (C’( )Z + bE(n, R)> AT — R)dx) dn(n, R)

Nx

—O (hbAl) (VL.14)

Inserting (VI.13) and (VI.14) in (VI.12), we obtain

Tr [ 25 57m] J E,m(X)dn(X) + O (hbAl,) + O ((h)\)Q) (VI.15)

NxQ
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Let k e N* and W}, € L? (Qk), with the Fubini theorem

Tr [WiySF] =(2nl;)* J m®*(X1.,) Tr [Wk®l'[x]dn (X1)
i=1

NXQ

k
(27le J m®* (X1.x) JWk T1k) (@ HX1-> (@10, T10) A1 dn®* (X k)
i=1

(NxQ)F

:fWk(IELk) 1_[27rl2 J (X)Tx (x4, x;)dn (X) | dxq.k
Ok

(NxQ)

:fwk(m) I1 f m(n, R (s — R) (1 + LE(n,2)) dn (n, R) | dsy
)

=1 (NxQ

JWk )dx

k no
+ 1 f Wi (z1.x) 1_[ Jgi(mz —R) Z m(n, R)E(n, z;)dR | dxy.y
i=1 n=0

But m has finitely many filled Landau level so with the Pauli principle (VI.11), p,, € L*(Q)
and

Tr [Wiy ] = f WipSF + O ([|[Wi = Wi« (g3)%| ) + O () (VI.16)

Now we need to control the exchange term. It follows from (VI.1) that
Ex2?(2, 95 2,1) = Y (2, )y (Y, 2)
so with (VI.4) for v, € L*(Q) ® Dom (%) as an integral kernel,

1 [ 2] =| [ (e =) o) P dody
QQ

1
<Cax Lol [ (12mmte ol + (14 25z ) Il )1 ) do

Q
(VL17)

With an integration by part,

j | Pririm(, )| dz = f P, 9) () - Py 9 (g)daedy
Q 2
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_ f LoV, 9) () (@ gy = f (2, 9) o (o, ) (y) drdly

QZ

_ f oo, 9) (Lo) (4, 2)dady = Tr [T Zose]
QZ

Inserting this in (VI.17), using the cyclicity of the trace we get

1
‘Tr [wExfy%” _ ‘Tr [wEX'y—m@]‘ <Cen |w|| 2 (eTr [thbﬁz] + (1 + 4€h2) Tr [7,2,1])

Cen |[w]] 2

1
<T <€Tr [gfhb")/m] + (1 + E) TI' [7m]>

With (VI.15), Tr [ZhYm] = O (hb) and using Lemma V.2, Tr [v,,,] = [|m||.. + O(l) so the
choice of € is the same as in (VI.10) thus

Tr [wExy&?] = O(Ly)

To conclude, with (VI.3) and (VI.2) then (VI.15) and (VI.16) applied to V' and w

Eur [vm] =Tr [Lhpym] + Tr [Vym] + N 1Tr [wy®?] + N 1Tr [wEx2?]
N
~ | B0 + [ Vo + 57 [0 O (IV -V 6)],0)
NXQ Q Q2
N
+

~—© (Jw = w = (g3)%2]] ;) + O (I) + O (AbAl) + O ((hN)?)
Recalling (V.10), the semi-classical energy expression (1.13), (V.11) and hbA » 1,

gHF [’}/m] = gsc,h [m] + f()\) + O (hb)\lb)

With the notation of equation (I.21), we would like to define a one body operator with
saturated low Landau levels:
L*q+r
Yp = % f m,(X) xdn(X)
QxN

We need to prove that the direct term gives the limit model for qLL and to control the exchange
terms. But we cannot apply directly Lieb’s principle because with Lemma V.2 we have an error

on the trace

1

Tr[v,] =1+ o(1) andOé%éN

To cure this we modify m,, slightly.

63



— Proposition VI.8: Corrected Husimi function
Let ng € N, m € LY(N x Q) such that Vn > ng,m(n,e) = 0,|m|/,, =1+ o(1) and

1

0<m< —ge
S 9PN

there exist m € LY(N x Q),n; € N such that Vn > ny, m(n, e) = 0 such that

1
Tr[’)/m]zl 0<7m<ﬁ

and

gsc,hb [m] = gsc,ﬁb [m] +0 (hblb) + O (hb (1 - ||m||L1)) (Vllg)

— Proof:
First, by Corollary I11.6, 3€ : N x €2 — R such that

2rTr [Tlx] = 1 + LL,E(X)
I€(n, R)| < C(n)

So

T[] = f m(X) (1 + LEX)) dn(X)

If Tr [,,] = 1 then m has the desired properties. If Tr[7,,] < 1 we add some mass to m
where it is possible without breaking the Pauli principle. Let n; € N and

1

0<T< 5o
TS9N

we define

(r ) = m i (7, < ) 1
m(r,ny) =m+min |7, —— —m | 1<,
o "2nlZN s

By construction
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0<m<m(r,ng) < 27BN and 71,<,, < m(7,n) (VL.19)
We choose ny > ng and remark that
Tr o] (5 s [ e (0 BECD 000 > S )
r 'ﬁ”l a_ 19 AT = nsni = 5 19 AT -
T\ oz N ™) T 2N < b " orlPN T A
Nx )
Since dn; € N such that
L2
—_— 1
2PN



for large enough NV,

1
Tr [van] (Wﬂh) > 1
and
Tr [vi] (0,n1) = Tr [ym] < 1

and Tr [vs] is Lipschitz in 7, so by the intermediate value theorem we can conclude 37 > 0
such that if we define

m = m(T,nq)

then

Thus we can estimate

: 1 ~ ~
Z Jmln (T,W—m(n,x)) dx = f (m—m)dn=1-1, J mé&dn — f mdn
Q

nsn NxQ NxQ NxQ

= O() + O (1 = [Iml[ 1)

SO

1 . 1
T =73 | min (T, W — m(nl,x)> de < O(ly) + O (1 — ||m]| ;1) (VI.20)
Q

Now if Tr [7,,] > 1 we remove some mass to m:
m(7) == max (0,m — 7) = m — min(m, 7)

by construction

1

< —— VI.21
2ml2N ( )

0o<m<m
We see that

Tr [y] (0) = Tr [y] > 1 and Tr ] <ﬁ) 0

so 47 = 0 such that if one defines

m = m(T)



we find that

Twm=fﬁ@m+MMW%Wﬂ

and like before,

fmin(m,T)dnz f (m =) dn = |mll. —1+1, f mEdy = O) + O (1 — |ml|,)

Nx Nx NxQ
= f mdn + J Tdn = ||m|| ;. + J (1 —m)dn
m<Tt T<m T<m
So

1
Il + O) + O (1~ [Iml] 1) = J (m =) < g Lol
Tm

and
1 1
T < T min(m, 7)dn = - (O(ly) + O (1 = [[m||;1))
TSM N3O TSM
1 Oy) + O (1 — |lmll 1)
< : =0l)+0 (1 —|m| ) (VI.22)
N[l + O(l) + O (1= [[ml| 1) ' g
With inequalities (VI.20) and (VI.22) we know that
lm = 7| o = O(ly) + O (1 — [|ml[ 1) (V1.23)

Finally we prove the estimate on semi-classical energies (VI.18):
ni ni
oo 1] = Eunml] < 3. B, [ Ai(r,9) = mln, o)+ Y. [ V][Ai(n,9) = m(n )]
n=0 Q n=0 Q

* Z lw(z —y)| [M(n, x)m(, y) —m(n, z)m(n,y)| dedy

n,ﬁ=092

ni
<L) By llm =l o + (00 + 1) V]| o [lm — 7]l 0

n=0

1
+ L wllp D) (1W(n, ), o) — m(n, ©)m(R, o)|
n,n=0

Moreover

[772(n, o)(7, @) —m(n, &)m(7i, )| oo <[, @) oo [[712(72, @) — (70, @)| o

+ [m(7, o)l = (|12, @) —m(n, o) o
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~ ~ ~

<l g [l = ml| g + [lmfl o [0 = m]] oo
so with (VI.19) and (VI.21)
2

~ S L
|Ese.n [M1] = Eseny [m]| < <L2 Z En+ (i + 1) [V + W Jwll g (e + 1)2)

n=0

: ||m - mHLOO

¢ We conclude with (VI.23).

Putting all of this together we obtain the upper bound.
— Proof of Proposition VI.2:

Recalling (1.21), let p € Dy, and define

d(g+r)
N

m, (VI.24)

Mp,N =

then

d 1
I2N 27N

d(qg +
m, Ndn = (qN ) =1+ o(1)

A

0<mpn <

Nx

We consider m, y the corrected Husimi function in Proposition VI.8 associated with m,, x, it
satisfies

d
Esenv [MpN] = Esenv [Mpn] + O (RDl) + RO <1 - (q]\j; r)) (VI.25)

1
and Tr [vmmN] =1,0< Ym,y < N Moreover by (VI.15),

Tr [gh,b’}/mpw] =0 (hb)

Thus, we can apply Propositions Proposition V1.6, Proposition V1.7 and (VI1.25):

0

WN <Exr [Ym, v | + O (Ib) = Ese [Arpn] + O (F(N)) + O (RDAL)
d(g+r)

=Csc,hb [mva] + th <1 — ) + O (f()\)) + O (hb)\lb)

d(g+r)

—hbE®" + EY" + B9 + £y { ,0] + hbO (1 - W) + O (F(N) + O (hbAL)

—hbE™" + E% + B2 + €11 [p] + hbO (1 - w> + O (F(N) + O (hbAl)
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For the last equality we use the estimate

e | M| ] < 1= AL i o + (1 - (%)) ol 1
and
A e K

V1.2 Energy lower bound

In this part we prove the Energy lower bound :

Proposition VI.9: Lower bound

Let (¥)n)n be a sequence of minimizers of (1.7),

Eseyib [Myy] = ROEY + EY" + ES™+ EXp + o(1)

O

The main tool here is the De Finetti Theorem VI.11. Husimi functions are symmetric and
consistent measures. The De Finetti theorem states that such measures are indeed reduced to
trivial measure of this kind, namely tensorized products of one body measures and their convex
combinations. This result plays an important role in the justification of the decorrelation of
densities for the lower bound.

We start by extracting some limit Husimi functions and give their fundamental properties.
Similar arguments can be found in [7: Section 2|. With Notation V.1,

— Proposition VI.10

Let (¢n)n be a sequence of minimizers of (I.7), up to a subsequence

a) there exists limit Husimi functions M®*) e L ((N x Q)*) such that

mff}i Nj*:oo M® in the weak star topology on L* ((N X Q)k) (VI.26)
0<M® < ;k (V1.27)
(L*(q + 7))
b) MY (q,e) e D, and
MWD (n,e) =1 + 1, MY (q, e) (V1.28)

"SI2(q )
¢) M®) are the reduced densities of a symmetric measure M on (N x Q)N and HM (k)H =1

d) in the sense of Radon measures

P P (V1.29)

N—oo
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e) we have convergence of the potential terms:

EqLL [me N] N Eqrr [pu] (VIL.30)

— Proof:

a) From inequality (V.5) the Husimi functions are uniformly bounded, with a diagonal
extraction we obtain (VI.26) and the bound (V.5) with (I.11) induce (VI.27) in the limit.

b) Now since we took a minimizer of the energy, with the upper bound Proposition VI.2
and the Kinetic energy inequalities (IV.2) and (IV.3),

~ —Tr nb%p Vp¢ wpw Tr[ n,b%m] 1+0 I

<Eoomy [m,] + RO <1 _ W) +O(F(N) + O (hbAL)

so by Proposition VI.1 we know that
Tr [,th D) ] O (hb) (VL31)
Since the contribution of the potential are bounded, the only thing we have to look at are

the kinetic terms. Let m, be the Husimi function with saturated low Landau levels defined
here (1.21). We denote

By definition of m, and Lemma V.2 we have

Zan—fm(l) Jmp—l—l—O

neN

Nx NxQ
L? 1 d(g+r)
n<q = cy, 2l2N+(’)() - (’)(b)—i-(’)( I >
n>q = Cnp= HmwN(n, o) B >0
Since (E,), is increasing
q q—1
N Enenn = Y Enenn + By Y enn = — Y (EBy— Eyn)enn
neN n=0 n>q n=0
d
> O (Tibly) + TbO (1 - %) (V1.32)
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Now we compute

gscﬁb [deN] - Sc hb mp Z E nCN.n T f Vv ( 'E[;) - mp) dn
neN NXQ
+ J w (mffl)v — m§2> dn®? (VI.33)
(NxQ)2

From the semi-classical approximation (Proposition V.4), (VI.31) and the upper bound
(Proposition VI.2),

P _nDvin) _ g,y fmg,] + 0 (FO)) + 0 (03)?)

<Esenp [Myp] + RO (1 — d(q]\j T)) + O (f(N) + O (hbAly)
so with (V.11),
Evoms [ ] — Eseny [m,] < HHO (1 - w> + O (f(N) + O (hbAL,) (V1.34)

All the potential terms in (VI1.33) are of order 1, therefore the sum in (VI.32) is bounded
and we have

q—1

d(g+r)
O (hbly) + hbO (1 - T) < —nz_:O(Eq — E))enn < ;:\lE N <
So
g—1
E, — B, 1
S B o(L) iz

With a similar inequality as (V1.32) but with E,, instead of E, we deduce

q

q
C = Z EnCN,n = Z EncN,n + Eq+1 Z CNn = Z(En - Eq+1)CN,n

neN n=0 n>q n=0
>ZQ:EC + B, e = O (hbly) + hbO o datr) (VI.36)
= | ntNmn q N,n = b N .

n= n>q

Then

n>q
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and

Cng = ng\l,)(q, R)dR — Jp(R)dR - ng\l,)(q, - : -0 (%) (VL.37)

Q

k)

From the consistency of mpr in Property V.3,

:f f mffji(nl,fﬂl;X2:k)d77®(k_1)(X2:k) dxy
Q  \(NxQ)k—1

frticn.

It

k
= > |m (niae) . (V1.38)
nQ:kGNk71
Since
k . .
N\ [0 2 g = | [N 5 (N\ [0 : g]) x N+
i—1
by the symmetry of mff}i, (VI.38) and (VI.35),
1
(k) _ (1) -
O LTINS o [FX T OHOS! [re (%) (V1.39)
n1.5ENF\[0:q] n=q

Q is bounded, thus testing (VI.26) against 1, ,jx0 € L' ((N X Q)k),

— ”M(k)(nl:k;’)HLl

k
qu(’/”\)[ (nl:k§ .) L1 N—w
So (VI.37) gives

r

(1) -
HM (Q7.>HL1 - q+7‘

and with (VI1.39), if nyy € NF\ [0 : ¢]*, then M®)(n;,;, o) = 0 and we see that the norm (V.6)
passes to the limit:

MO = S sl = i Y o

k N—o k
nl:keﬂo:qﬂ nl:k:EIIO:Q]]
(k)

= lim D [, °)‘ o >

n1.5€[0:q]" n1..ENF\[0:q]"

=1

Ll

‘ ml(pkj\), (nlzlm .)

Lt

i ]
N—0 Nl

If n <0, by (VL.35),

1
22N

(1) B 1
H%N(n") L%(q+)

N

< Hmf,g(n,q

+o<1_M>

Lt Lt
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(g~ mien) w0 (1-%452)

o 252) 0 () 0(1-212)

1
S L2Ag+r)

¢) Testing (V.8) against ¢, € C? ((N x )?), we have

so MM (n,e)

f gﬁqmgpq]zrdn@@q: f Soq(Xqu)miz;k]\),(Xlzk)dn®k(X1:k) (VI.40)

(NxQ)? (NxQ)F

Since ¢, € L! ((N x Q)k>, with (V1.26),

N—o
(NxQ)? (NxQ)?

f pami i — f MV (V1.41)

In order to pass to the limit in the right term of (VI1.40), for the low Landau levels we use

(VI.26) on
k

and for the high Landau levels we use (V1.39) and ¢, € L* ((N X Q)k>

k k
(NxQ)* Qk

+ Z J wq(nlzqamlzq)mq(/,k]\),(nlzkaxl:k)dxlzk
nlszNk\[[O:q]]ka

N—o0
Qk

- [ A ) (VL)

(NxQ)F

Thus passing to the limit in (V1.40) and inserting (VI.41) and(VI1.42) we obtain

vqu € Cg ((N X Q)q)7 J QDqM(q)anDq = f Soq(Xlzq)M(k)(Xlzk)dTI@k(Xl:k)

(Nx)? (NxQ)F
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and this proves that the limit Husimi functions are also consistent. Testing against ¢,
we also obtain that the symmetry of Husimi functions passes to the limit. Then we can
conclude with the Kolmogorov extension theorem that there exists M a symmetric measure
on (N x Q)" whose marginals are (M®)),..

d) Let ¢, € C°(QF), ¢y, is bounded and
L+ @ pr e L' <(N x Q)k>

so using (VI1.26) and (VI1.39)

k k
[otl, = [ (ppoa)ullass ¥ [om)

Qk (NxQ) n1xeNF\[0:q]" gk
k
e J <1[[0:qu ® sok) MW dy = fsokp(M)
(NxQ)* QF

e) Let Vi, € L*(Q%), and (Vin)n © CP(QF) a sequence regularised with a convolution to a
regular function so that

Vi = Viewl| 12 njwo

we have
f Vi (pmw - pﬁ?) f Vi (pmfp - pﬂ?) + Jpﬁr’fi (Vi = Vi) + fp(f? (Ve — Vi)
Qk Qk Qk Qk

For a fixed n, since Vj,,, € C°(Q¥) by (VI.29) the first term goes to 0 when N — oo. For the
second term we use (IV.2) if V; =V, (IV.3) if V5 = w and (V.7)

L2

J o i = | (60 <) (0= i < €0 = Vi) » (6)°
Ok Q2

<C[(Ve = Vi)l 12

For the third term we use Holder’s inequality since pg\];) e L® (Qk) so we have

lim ka (), — o) < ClIVi ~Valla = 0

N—
5 0k

Now we want to apply the De Finetti theorem to M:
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— Theorem VI1.11: De Finetti or Hewitt-Savage

Let X be a metric space, u € Ps(XN) be a symmetric probability measure with marginals

(1) 12
1P, € P(P(X)) such that:

Vn e N*, u(™ = f p®"dP,(p) (V1.43)

P(Q)

For a proof of this via the the Diaconis-Freedman theorem see [18: Section 2.1.] and for
some further context one can look at [19: Section 2.2.].

Recalling the definition of the semi-classical domain (I.15), we obtain:

— Proposition VI.12: Low Landau level filling of the limit factorised densities
There exists Py € P (Ds.) such that

Vke N*, M® — J m® APy (m) (V1.44)

Dsc

Let 1 be the push-forward measure of P,; by the application

L'(NxQ) — LY(Q)
m = m(q,e)

then € P (D,r) and

P = f (mm)@kdmp) (VL45)

DyrLL

q q,r q,r
Eqrr [pm] = f EqrL [mﬂ)] du(p) = EV" + B + f Eqrr [p)dulp)  (V1.46)

DyLL DyLL
g

— Proof:

Applying Theorem VI.11 to M obtained in Proposition VI.10 gives the existence of Py, €
P (P (N x Q)) such that

Vke N*, M® — J m® APy (m) (V1.47)
P(NxQ)
Let p e C9(N x Q,R;), 0 # 0,¢ > 0,k € N*, and
1+e€
A(p) =<meP(NxQ)| gpdmZLQ— ©

(¢ +7)
Nx Nx
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If me A(p), then

k

L? L?

1< (g +7) f pdm < (g +7) f pdm
(L+€) [lellpig (L+€) [lellpi

NxQ NxQ

so with (VI.27),

k

L*(q+ ) f
wdm | dPp(m)
T+l J N

Puldie) = | LawdPu< |

P(NxQ) P(NxQ)

_ L*(q+7) * @k gy @k .
((1+e) Hcpl\wm) P(Nf f p®rd APy (m)

xQ) \(NxQ)*

k
2 k
o . s f 90®de<’“)<< ! ) ~ 0
(L+ ) llell 1 L+e) koo

(NxQ)"

we proved that Py (Ac(¢)) = 0 and therefore

Pus 1 PINxQ\Alp) [=1-Puy U Adp)|=1
peCO(NxQ,R,) peCO(NXQ,RS)
e>0 e>0

therefore for P, almost every m € P (N x ),

1+e€
O(N x Q,R f d —J 1.4
\VISOECC< X 3, +)7E>07 ‘Pm<L2(q+T) ¥ (V 8)
NxQ NxQ

So for P, almost every m € P (N x ), m is the density of a probability measure thus a
positive function such that ||m||;, = 1 and by (VI.48), m € L*(N x Q) and

1
< —
mn L2(q+1)

We have shown Py € P (D), therefore (VI1.47) implies (VI.44).
Moreover if n < ¢ by (VI.28),

(V1.49)

J#dx: f Ly xodMWY = J Jm(n,x)dx dPp(m)
Q

q+r)
NxQ P(NxQ) \Q

SO

f J <m - m(”’x)) dx | dPy(m) =0

P(NxQ)
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By (VI1.49) the integrand is positive thus null Py, almost everywhere, we conclude that for
Py almost every m

1

n<q = m(n,e) =

If n > q by (VI.28),

0= f LnyxodM® = J Jm(n,x)dx dPpr(m)

Nx P(NxQ) \Q
Once again by (VI1.49) the right integrand is positive and thus null so for Py, almost every m
n>q = m(n,e)=0 (VL51)

Finally if n = ¢, since m € P (N x ) we conclude using (VI.51) and (VI.50): for Py, almost
everywhere m

fm(Q,o): f m—ZJm(n,o)—ZJm(n,o)zl—qir - q:r (VL52)

Nx©Q n<q n>q

Gathering (VI.49), (VI.50), (VI.51) and (VI1.52), we now know that for Py, almost every m
we have m(q, ®) € Dyrr. This means that u e P (DyLr).
Finally we compute

Kk
ng? - Z M® (nyy; @) = f Z m (155 @)dPas (m) = J (Z i .)) Pt

N1k ni.k D.. neN
q ok q ok
- J <L2(q n 7“) +m(q; ')) dPM(m> = J (Lz(q+ 7“) +p) dﬂ(p)
Dsc DyrLL
q ok
— S d
J (L2<q it p) ule)
DyrLL
and
q \ .
Eqrr o] = J &Lt lm+p] du(p) = f (EV" + B+ & [p]) du(p)
DyLL DyLL
=EY + B + f Eqrr [p] dp(p)
DyrLrL

Now we are ready for the proof of the lower bound.
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.

— Proof of Proposition VI.9:

Let p € Dy11, starting from (VI.33), using inequality (V1.36) and Proposition VI.1 we have

dlg+r
s [Mun] = e [my] + gt [pmw] — &gt [pm, ] + O (Bbl) + HHO (1 - %)

d
—WDEqy + Eqtt [P, | + O (W) + HO (1 - <q]\j T))

We conclude with (VI.30) and (V1.46) and that
d(q +
Evcin (M) ZHOE s + Eqns | P, | + O (ble) + RHO (1 - _(qN T)>

=hbE,, + &L [pm] + o(1) = hbEY" + EY" + EL" + f Eq.r [p) di(p) + o(1)

Dyrr

(VL53)
A >hOE + EY + EL" + EXpp + o(1)

V1.3 Conclusion
— Proof of Theorem 1.5:

Let (¢)5)n be a sequence of minimizers of (1.7), by (V.9)

EE\][V) _ <¢N|’fN¢N> = Ese,nb [Myy] + 0(1)

Since the lower bound is true up to a subsequence for which the have Proposition VI.10, for
every adherence value of E(N)/N we conclude by gathering Proposition VI.2 and Proposition
* VI.9.

— Proof of Theorem 1.7:
With (VI.45) and (VI.29) we get

Rk
(k) q
Privgy oo f ( T2+ 1) + p) dp(p)

DyLr
Let ¢ € C* (%) with (V.7),
k k k k
Jso (o) =) = fso (g2« ok, — pf)) = fﬁfpi () =9 =) — 0 (VL54)
QFk Ok Ok
by Holder’s inequality since

(k)’ 1

prw

Ll

7



and ¢ is Lipschitz. Up to a subsequence pl(f]\)f converges Vk € N* in the sense of Radon

measures. But with (VI.54) this limit coincides with the one of pﬁfiN so we obtain (1.25).
Moreover by (VI.53) and Proposition VI.2

&> | Eurlildu(o) + o)

Dyrr

¢ thus p only gives mass to minimizers of &,z

o2
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