TOPOLOGICAL MODULI SPACE FOR GERMS OF HOLOMORPHIC FOLIATIONS II: UNIVERSAL DEFORMATIONS
David Marín, Jean-François Mattei, Éliane Salem

To cite this version:
David Marín, Jean-François Mattei, Éliane Salem. TOPOLOGICAL MODULI SPACE FOR GERMS OF HOLOMORPHIC FOLIATIONS II: UNIVERSAL DEFORMATIONS. 2022. hal-03842130

HAL Id: hal-03842130
https://hal.science/hal-03842130
Preprint submitted on 7 Nov 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Abstract. This work deals with the topological classification of singular foliation germs on \((\mathbb{C}^2, 0)\). Working in a suitable class of foliations we fix the topological invariants given by the separatrix set, the Camacho-Sad indices and the projective holonomy representations and we prove the existence of a topological universal deformation through which every equisingular deformation uniquely factorizes up to topological conjugacy. This is done by representing the functor of topological classes of equisingular deformations of a fixed foliation. We also describe the functorial dependence of this representation with respect to the foliation.

Contents

1. Introduction 2
2. Group-graphs 4
2.1. Notion of group-graph 4
2.2. Group-graph associated to a sheaf 7
2.3. Cohomology of a group-graph 8
2.4. Pruning 11
2.5. Direct image of a \(\mathbb{C}\)-graph 11
2.6. Regular group-graph 12
2.7. Tensor product 14
3. Equisingular deformations of foliations 14
3.1. Deformations of foliations 14
3.2. Equisingular deformations 16
3.3. Good trivializing system 18
3.4. Deformation functor 22
4. Group-graphs of automorphisms and transversal symmetries 27
4.1. Group-graph of \(\mathcal{C}^{\text{ex}}\)-automorphisms 27
4.2. Sheaf of transversal symmetries 30
4.3. Group-graph of transversal symmetries 33
5. Finite type foliations and infinitesimal transversal symmetries 35
5.1. Finite type foliations 35
5.2. Sheaf of infinitesimal transversal symmetries 36
5.3. Group-graph of infinitesimal transversal symmetries 39
5.4. Exponential group-graph morphism 41
5.5. Characterization of finite type foliations 43
6. \(\mathcal{C}^{\text{ex}}\)-universal deformations 45
1. Introduction

This work inserts in a series of three papers whose goal is to obtain a topological classification of singular foliation germs on \((\mathbb{C}^2,0)\) through the construction of a topological moduli space, the description of its algebraic and topological properties and the construction of a family containing all topological types with minimal redundancy.

In the article [6], completed by [13] and [7, Appendix], the authors give for a generic germ of foliation \(F\) on \((\mathbb{C}^2,0)\) a list of topological invariants:

a) the combinatorial reduction of singularities of \(F\),

b) the Camacho-Sad indices of the singularities of the reduced foliation \(F^\sharp\),

c) the holonomies of \(F^\sharp\) along the invariant components of the exceptional divisor \(E_F\) of the reduction.

We call this collection of invariants the semi-local type of \(F\) and \(\text{SL}(F)\) will denote the set of foliations having same semi-local type as \(F\). In the present paper we are interested in “germs of families” in \(\text{SL}(F)\) at \(F\), that we call equisingular deformations of \(F\). For any generic foliation we prove the existence of a “topological universal deformation” through which any equisingular deformation of \(F\) uniquely factorizes. We also provide an infinitesimal criterion of universality. These results will allow us to study in a forthcoming paper [8] factorizing properties of the global family constructed in [7] that contains all topological types in \(\text{SL}(F)\).

Classically a deformation of a foliation \(F\) over a germ of manifold \(P = (P, t_0)\) is a germ of foliation \(F_P\) on \((\mathbb{C}^2 \times P, (0, t_0))\) defined by a germ of holomorphic vector field \(X(x,y,t)\) that coincides on \(\mathbb{C}^2 \times \{t_0\}\) with a vector field defining \(F\) and moreover is tangent to the fibers of the canonical projection \(pr_P : \mathbb{C}^2 \times P \rightarrow P\). If \(\lambda : (Q,u_0) \rightarrow P\) is a germ of holomorphic map, the pull-back of \(F_P\) by \(\lambda\) is the deformation \(\lambda^*F_P\) of \(F\) over \((Q,u_0)\) defined by the vector field \(X(x,y,\lambda(t))\). Two deformations \(F_P\) and \(F'_P\) are topologically conjugated if there exists a \(C^0\)-automorphism \(\Phi\) of \((\mathbb{C}^2 \times P, (0, t_0))\) that sends the leaves of \(F_P\) on that of \(F'_P\), and satisfies

\[\text{pr}_P \circ \Phi = \text{pr}_P, \quad \Phi(x,y,t_0) = (x,y,t_0). \]

As in [7] we say that the deformation \(F_P\) is equisingular if the foliations given by the vector fields \(X_t(x,y) := X(x,y,t)\) on the fibers \(\mathbb{C}^2 \times \{t\}\) can be “simultaneous reduced” and belong to \(\text{sl}(F)\), see the precise definition 3.6. We will prove:

Main Theorem. Every finite type generalized curve\(^1\) foliation possesses a topological universal deformation.

Topological universality of a deformation \(F_Q\) of \(F\) means that for any germ of manifold \(P^*\) and any equisingular deformation \(F_P\) of \(F\) over \(P^*\), there exists a unique holomorphic

\(^1\) i.e. a germ of foliation \(F\) such that the foliation \(F^\sharp\) obtained after reduction is without saddle-node (i.e. singularity given by a vector field germ whose linear part has exactly one non-zero eigenvalue); however \(F^\sharp\) may have nodal singularities (i.e. defined by a vector field germ such that the ratio of the eigenvalues of its linear part is strictly positive) and the exceptional divisor of the reduction may have irreducible components non invariant by \(F^\sharp\). For more details we refer to [2].
map germ $\lambda : P \to Q$ such that \mathcal{F}_P is topologically conjugated to $\lambda^* \mathcal{F}_Q$. In fact we will prove the stronger result that the topological conjugacy between \mathcal{F}_P and $\lambda^* \mathcal{F}_Q$ is realized by an excellent (or C^{ex}) homeomorphism, i.e. it lifts through the equireduction maps of \mathcal{F}_P and $\lambda^* \mathcal{F}_Q$ and its lifting fulfills a regularity property, see Definition 3.3.

We obtain a universal deformation of \mathcal{F} by representing the functor Def that associates to any germ of manifold P, the set Def_F^P of C^{ex}-conjugacy classes of deformations of \mathcal{F} over P. To describe the dependence of this representation with respect to \mathcal{F} we define, up to excellent conjugacy, the pull-back of an equisingular deformation of \mathcal{F} by a C^{ex}-conjugacy $\phi : G \to F$. We thus get a contravariant deformation functor

$$\text{Def} : \text{Man} \times \text{Fol} \to \text{Set}, \quad (P', \mathcal{F}) \mapsto \text{Def}_F^P,$$

which associates to a foliation \mathcal{F} and a germ of manifold P', the set Def_F^P. Here Man is the category of germs of complex manifolds, the morphism sets $\mathcal{O}(P, Q)$ consisting of holomorphic map germs compatible with the pointing, and Fol is the category whose objects are the germs of foliations which are generalized curves of finite type, the morphisms being C^{ex}-conjugacies. In fact, we will construct a suitable (pointed by 0) cohomological \mathbb{C}-vector space $H^1(A, \mathcal{T}_F)$ associated to \mathcal{F} and an isomorphism of functors

$$\text{Def} \sim (P', \mathcal{F}) \mapsto \mathcal{O}(P, H^1(A, \mathcal{T}_F)).$$

The paper is organized in the following way:

- In Chapter 2 we further develop the key notion of group-graph already introduced in [7]. We define the notion of regular group-graph and we describe its cohomology (see Theorem 2.15).

- The notion of equisingular deformation is introduced in Chapter 3. Its characteristic property, stated in Theorem 3.8, is the triviality along each irreducible component of the exceptional divisor of the equireduction. This allows (Theorem 3.11) to define for a C^{ex}-conjugacy $\phi : G \to F$, the pull-back map $\phi^* : \text{Def}_F \to \text{Def}_F^P$, and the functor Def.

- In Chapter 4 we consider the group-graph Aut_F^P, over the dual graph A_F of \mathcal{E}_F, of excellent automorphisms of the constant deformation of \mathcal{F} over P. For an equisingular deformation, the trivializing maps given by Theorem 3.8 provide a cocycle with values in this group-graph. In this way we obtain a natural transformation from the functor Def to the functor that associates to \mathcal{F} and P the cohomology space $H^1(A_F, \text{Aut}_F^P)$. This transformation is an isomorphism of functors (Theorem 4.4)

$$\text{Def} \sim (P', \mathcal{F}) \mapsto H^1(A_F, \text{Aut}_F^P).$$

By taking the quotient of Aut_F^P by the normal subgroup-graph of automorphisms fixing each leaf, we obtain a simpler group-graph Sym_F^P with same cohomology as Aut_F^P (Proposition 4.11).

- The notion of finite type foliation is defined and cohomologically characterized (Theorem 5.15) in Chapter 5. For such a foliation the cohomology of the group-graph Sym_F^P over A_F is completely given by restricting it to an appropriate subgraph $R_F \subset A_F$ (Theorem 5.3). The advantage of this restriction is that over R_F the group-graph Sym_F^P is isomorphic (via the “exponential morphism”) to the abelian group-graph \mathcal{T}_F^P of \mathbb{C}-vector
spaces of infinitesimal transverse symmetries of the constant deformation, see Definition 5.8. This study gives the natural isomorphisms
\[H^1(A_F, Aut^P_F) \sim H^1(A_F, Sym^P_F) \sim H^1(R_F, Sym^P_F) \sim H^1(R_F, T^P_F). \]
(3)
The structure of \(T^P_F \) over \(R_F \) is the tensor product \(T_F \otimes \mathcal{M}_P \) of the group-graph of infinitesimal symmetries of \(F \) with the maximal ideal of \(\mathcal{O}_P \) (Lemma 5.11). Finally, using the results of Section 2.7 we get:
\[H^1(R_F, T^P_F) \sim H^1(R_F, T_F \otimes \mathcal{M}_P) \sim H^1(R_F, T_F) \otimes \mathcal{M}_P \sim \mathcal{O}(P, H^1(R_F, T_F)), \]
that achieves, using (2) and (3), the construction of the natural isomorphism (1).

- In Chapter 6, using that the restriction of the group-graph \(T_F \) to \(R_F \) is regular (Proposition 5.12) and Theorem 2.15, we specify in Theorem 6.4 the structure of the finite dimensional universal parameter space \(H^1(R_F, T_F) \). We also construct a Kodaira-Spencer map
\[\frac{\partial [F_P]}{\partial t} \bigg|_{t=t_0} : T_{t_0}P \rightarrow H^1(R_F, T_F) \]
associated to an equisingular deformation \(T_F \), that will provide in Theorem 6.7 an infinitesimal criterion of universality.

2. Group-graphs

We recall that a graph is the data of a pair \(A = (V_{E_A}, E_{D_A}) \) where \(V_{E_A} \) is a set and \(E_{D_A} \subset P(V_{E_A}) \) is a collection of subsets of two distinct elements \(v, v' \) of \(V_{E_A} \), denoted by \(\langle v, v' \rangle \). The elements of \(V_{E_A} \) are called vertices of \(A \) and those of \(E_{D_A} \) are called edges of \(A \). We denote by
\[I_A := \{(v, e) \in V_{E_A} \times E_{D_A} \mid v \in e\} \]
the set of oriented edges of \(A \). A morphism of graphs \(\varphi : A' \rightarrow A \) is a map \(\varphi : V_{E_A} \rightarrow V_{E_A} \) such that if \(e = \langle v, v' \rangle \in E_{D_A} \) either \(\varphi(v) \neq \varphi(v') \) and \(\varphi(e) := \langle \varphi(v), \varphi(v') \rangle \in E_{D_A} \), or \(\varphi(v) = \varphi(v') \) and \(\varphi(e) := \varphi(v) \in V_{E_A} \).

2.1. Notion of group-graph.

Definition 2.1. Let \(C \) be a category. A \(C \)-graph over \(A \) is a collection \(G \) of objects of \(C \), denoted\(^2\) by \(G_v \) and \(G_e \), for each vertex \(v \in V_{E_A} \) and each edge \(e \in E_{D_A} \), and of \(C \)-morphisms \(\rho^e_v : G_v \rightarrow G_e \) for each \((v, e) \in I_A \), which are called restriction morphisms. When \(C \) is the category \(\text{Gr} \) of groups we say that \(G \) is a group-graph; if all groups \(G_* \), \(* \in V_{E_A} \cup E_{D_A} \), are abelian, we say that \(G \) is abelian and when all groups \(G_* \), \(* \in V_{E_A} \cup E_{D_A} \), are trivial we say that \(G \) is the trivial group-graph and we denote it by \(0 \) or \(1 \).

The category of \(C \)-graphs over \(A \) is the category denoted by \(\text{CA} \), whose objects are the \(C \)-graphs over \(A \) and whose morphisms \(\alpha : F \rightarrow G \) are the data of \(C \)-morphisms \(\alpha_v : F_v \rightarrow G_v \) and \(\alpha_e : F_e \rightarrow G_e \), \(v \in V_{E_A}, e \in E_{D_A} \), such that the following diagram
\[
\begin{array}{ccc}
F_v & \xrightarrow{\alpha} & G_v \\
\xi^e_v \downarrow & & \downarrow \rho^e_v \\
F_e & \xrightarrow{\alpha_e} & G_e
\end{array}
\]
commutes for each \((v, e) \in I_A \), \(\xi^e_v \) and \(\rho^e_v \) being the restriction maps of \(F \) and \(G \).

In all the sequel we suppose that \(C \) is a subcategory of the category of groups.

A \(C \)-graph \(H \) is a sub-\(C \)-graph of a \(C \)-graph \(G \) if \(H_* \) is a subgroup of \(G_* \) for any \(* \in V_{E_A} \cup E_{D_A} \), the inclusion map \(H_* \hookrightarrow G_* \) being \(C \)-morphisms, and the restriction maps
\(^2\)The notation \(G(v) \) and \(G(e) \) is also used in the text.
If G (resp. G') is a C-graph over a graph A (resp. A'), a morphism of C-graphs $\phi : G \to G'$ over a morphism of graphs $\varphi : A' \to A$ is a collection of C-morphisms
$$\phi_* : G_{\varphi(*)} \to G'_*, \quad * \in Ve_{A'} \cup Ed_{A'}$$
such that, if $e = (v, v')$ then the following diagram commutes
$$\begin{array}{ccc}
G_{\varphi(v)} & \xrightarrow{\phi_e} & G'_v \\
\rho_{\varphi(v)} \downarrow & & \downarrow \rho'_v \\
G_{\varphi(e)} & \xrightarrow{\phi_e} & G'_e
\end{array}$$

If $\varphi(e) = \varphi(v)$ then $\rho_{\varphi(v)}$ is the identity. A consequence of the commutativity of this diagram is that ρ'_e sends the kernel of ϕ_e into the kernel of ϕ_v and ρ'_e sends the image of ϕ_v into the image of ϕ_e. This allows to define the C-graph kernel $\ker\phi$ over A by $(\ker\phi)_* = \ker(\phi_*)$, which is a sub-$C$-graph of G and the C-graph image $\phi(G)$ over A' by $\phi(G)_* = \phi_*(G_{\varphi(*)})$, which is a sub-$C$-graph of G'. We can thus consider exact sequences of C-graphs over a common graph.

If $\varphi' : A'' \to A'$ is another graph morphism and $\phi' : G' \to G''$ is a C-graph morphism over φ', then the composition defined by
$$\phi' \circ \phi := \{ \phi'_* \circ \phi_{\varphi(*)} : G_{\varphi(\varphi(*) \circ \varphi')} \to G''_* \mid * \in Ve_{A''} \cup Ed_{A''} \}$$
is a C-graph morphism $G \to G''$ over $\varphi \circ \varphi'$. Hence the collection of all the pairs (A, G) where A is a graph and G is a C-graph over A together with the C-graphs morphisms consisting of the pairs $(\varphi, \phi) : (A, G) \to (A', G')$ with $\varphi : A' \to A$ and $\phi : G \to G'$ over φ, forms a category that we will denote by CG. A C-graph morphism (id_A, ϕ) over the identity of A is just a morphism of group-graphs over A as defined previously. Thus, C^A is a subcategory of CG.

Definition 2.2. The pull-back by a graph morphism $\varphi : A' \to A$ of a C-graph G over A is the C-graph over A' defined by
$$(\varphi^*G)_* = G_{\varphi(*)}, \quad * \in Ve_{A'} \cup Ed_{A'},$$
the restriction morphism $(\varphi^*G)_e \to (\varphi^*G)_v$ for $e = (v, v') \in Ed_{A'}$ being the restriction morphism $G_{\varphi(v)} \to G_{\varphi(e)}$ when $\varphi(e) \in Ed_A$, and the identity map of $G_{\varphi(v)}$ otherwise. We call canonical morphism the C-graph morphism $\iota_\varphi : G \to \varphi^*G$ over φ defined by the identity maps
$$\iota_{\varphi*} := \text{id}_{G_{\varphi(*)}} : G_{\varphi(*)} \to (\varphi^*G)_*, \quad * \in Ve_{A'} \cup Ed_{A'}.$$

In this way, the data of a morphism of C-graphs $\phi : G \to G'$ over a morphism of graphs $\varphi : A' \to A$ is just the data of a morphism of C-graphs $\phi : \varphi^*G \to G'$ over φ.

Remark 2.3. Let $F : G \to G'$ be a morphism of C-graphs over $f : R' \to A$. Let $r : R \to A$ be a morphism of graphs. If f factorizes as $f = r \circ \tilde{f}$ for some morphism of graphs $\tilde{f} : R' \to R$ then F factorizes as $F = F \circ \iota_r$ where $\tilde{F} : r^*G \to G'$ is a morphism of C-graphs over \tilde{f}. Indeed, if we define $\tilde{F}_* := F_* : (r^*G)_{\tilde{f}(*)} = G_{r(\tilde{f}(*))} = G_{\tilde{f}(*)} \to G'_*$ for each $* \in Ve_{R'} \cup Ed_{R'}$ then $F = \tilde{F} \circ \iota_r$. \qed

$H_v \to H_e$ being given by the restriction map ρ^*_e of G, a fortiori $\rho^*_e(H_v) \subset H_e$. When each group H_e is a normal subgroup of G_e we say that H is a normal sub-C-graph of G; then the map ρ^*_v factorizes as a map $\overline{\rho}_v : G_v/H_v \to G_e/H_e$, defining the quotient C-graph G/H, with $(G/H)_* = G_*/H_*$, the maps $\overline{\rho}_v$ being the restriction maps.
Remark 2.4. If \(j = 1, 2 \), let \(G_j \) be a group-graph over \(A_j \) and \(K_j \) a normal sub-group-graph of \(G_j \), then any group-graph morphism \(g : G_1 \to G_2 \) over a graph-morphism \(\varphi : A_2 \to A_1 \) sending \(K_1 \) to \(K_2 \) factorizes as a morphism \(\tilde{g} \) between the quotient group-graphs:

\[
\begin{array}{c}
1 \longrightarrow K_1 \longrightarrow G_1 \longrightarrow G_1/K_1 \longrightarrow 1 \\
\downarrow g \quad \quad \quad \quad \quad \quad \quad \downarrow \tilde{g} \\
1 \longrightarrow K_2 \longrightarrow G_2 \longrightarrow G_2/K_2 \longrightarrow 1
\end{array}
\]

We easily check this property when \(A_1 = A_2 \) and \(\varphi = \text{id} \). Since, by definition \(\varphi^*(G_1/K_1) = \varphi^*G_1/\varphi^*K_1 \), the general case follows taking the pull-back by \(\varphi \) in the first row.

\[\Box\]

Remark 2.5. Every graph \(A \) can be seen as a category whose objects are the vertices and the edges of \(A \), and whose morphisms (other than the identities) are the inclusion maps \(v_a : \{a\} \to b \) of a vertex in an edge.

A \(C \)-graph over \(A \) is just a covariant\(^3\) functor \(G : A \to C \) and morphisms of \(C \)-graphs are just morphisms (i.e. natural transformations) of functors. This explains the adopted notation \(\mathcal{C}^A = \{ F : A \to C \text{ covariant functor} \} \). Under this identification, a morphism of graphs \(\varphi : A' \to A \) is a covariant functor between the corresponding categories. If \(G \in \mathcal{C}^A \) then the pull-back \(\varphi^*G \in \mathcal{C}^{A'} \) is the composition of functors \(G \circ \varphi \) and

\[\varphi^*: \mathcal{C}^A \to \mathcal{C}^{A'}, \quad G \mapsto \varphi^*G = G \circ \varphi\]

becomes a contravariant functor defining the pull-back by \(\varphi \) of a morphism of \(C \)-graphs \(\alpha : G_1 \to G_2 \) over \(A \) as the morphism \(\varphi^*\alpha : \varphi^*G_1 \to \varphi^*G_2 \) of \(C \)-graphs over \(A' \) given by \((\varphi^*\alpha)_* = \alpha_{\varphi(*)} \) for \(\ast \in V_{A'} \cup E_{A'} \).

In fact, the natural context to consider these notions is that of abstract simplicial complexes:

Remark 2.6. Recall that an abstract simplicial complex \(\Delta \) is a nonempty subset of \(P(S) \) whose elements are called faces, such that for each \(F \in \Delta, 0 < |F| < \infty \) and if \(0 \neq F' \subset F \) then \(F' \in \Delta \). The dimension of \(F \in \Delta \) is \(\dim F = |F| - 1 \), the dimension of \(\Delta \) is \(\dim \Delta = \sup \{\dim F : F \in \Delta\} \). A simplicial complex of dimension \(\leq 1 \) is just a graph. The \(k \)-skeleton \(\Delta_k \) of a simplicial complex \(\Delta \) is the subcomplex of \(\Delta \) consisting of all faces of dimension at most \(k \). We will identify \(\Delta_0 \) with the set of vertices \(\bigcup_{F \in \Delta} F \subset S \) of \(\Delta \). Each simplicial complex \(\Delta \) can be thought of as a small category whose objects are the elements of \(\Delta \) and whose morphisms are the inclusions, i.e. if \(F \subset F' \in \Delta \) then \(\text{Hom}_\Delta(F,F') = \{ i_{FF'} : F \hookrightarrow F' \} \).

A simplicial map between (abstract) simplicial complexes \(f : \Delta \to \Gamma \) is defined by a map \(f_0 : \Delta_0 \to \Gamma_0 \) such that \(f(F) := f_0(F) \in \Gamma \) for all \(F \in \Delta \). Any simplicial map \(f : \Delta \to \Gamma \) can be thought of as a functor.

The category \(\mathbf{SC} \) of simplicial complexes and simplicial maps contains the full subcategory \(\mathbf{SC}_k \) of simplicial complexes of dimension \(\leq k \). In particular \(\mathbf{G} := \mathbf{SC}_1 \) is the category of graphs. If \(\Delta \) is a graph then \(\Delta = \Delta_1 \) and \(\Delta_1 \setminus \Delta_0 \) is the set of edges. Passing to the

\[\text{The contravariant version leads to the dual notion of graph of C, for instance graph of groups in the sense of Serre [12].}\]
k-skeleton defines a functor $\mathbf{SC} \to \mathbf{SC}_k$. For every category \mathbf{C} we consider the collection CSC of \mathbf{C}-simplicial complexes which are pairs (Δ, G) with Δ a simplicial complex and $G \in \mathbf{C}^\Delta := \{ \Delta \to \mathbf{C} \text{ covariant functor} \}$, i.e. G is an assignment $\Delta \ni F \mapsto G(F)$ jointly with a \mathbf{C}-morphism $\rho^G_F : G(F) \to G(F')$, that we call restriction, if $F \subset F' \in \Delta$. We will say that G is a \mathbf{C}-simplicial complex over Δ. There is a natural definition of morphism of \mathbf{C}-simplicial complexes over a map of simplicial complexes completely analogous to the one considered for \mathbf{C}-graphs which makes CSC a category. □

2.2. Group-graph associated to a sheaf. Let \mathcal{S} be a \mathbf{C}-sheaf on a topological space \mathcal{D} and \mathcal{C} a collection of sets of \mathcal{D}. Consider the following graph \mathcal{A} (not necessarily finite): its vertices are the elements of \mathcal{C} and its edges are all the sets (D, D') formed by two distinct elements of \mathcal{C}, such that $D \cap D' \neq \emptyset$. For any $W \subset \mathcal{D}$ (not necessarily open) we recall that the group of continuous sections of \mathcal{S} over W is $\mathcal{S}(W) := \lim_{U \in \mathcal{W}_W} \mathcal{S}(U)$, where \mathcal{W}_W is the set of open neighborhoods of W. In the case that $W = \{p\}$, $\mathcal{S}(\{p\})$ is just the stalk $\mathcal{S}(p)$ of \mathcal{S} at $p \in \mathcal{D}$. If $W' \subset W$ then $\mathcal{W}_W \subset \mathcal{W}_W'$ and the inductive limit of the restriction morphisms of \mathcal{S} define a restriction morphism $\mathcal{S}(W) \to \mathcal{S}(W')$.

We define the \mathbf{C}-graph \mathcal{S} over \mathcal{A} associated to \mathcal{S} in the following way:

- $\mathcal{S}_D := \mathcal{S}(D)$ for $D \in \mathcal{V}_A$,
- $\mathcal{S}_{(D, D')} := \mathcal{S}(D \cap D')$ for $(D, D') \in \mathcal{E}_A$,
- the restriction maps $\rho_{D, D'}^D$ are the restriction morphisms considered before.

Any morphism of \mathbf{C}-sheaves over \mathcal{D} induces a morphism of \mathbf{C}-graphs over \mathcal{A}, defining a covariant functor:

$$\text{CSh}_D \to \mathbf{C}^A, \quad \mathcal{S} \mapsto \mathcal{S},$$

from the category of \mathbf{C}-sheaves over \mathcal{D} to the category of \mathbf{C}-graphs over \mathcal{A}. We highlight that this functor is not exact in general.

Let \mathcal{D}' be another topological space with a collection \mathcal{C}' of subsets of \mathcal{D}' and let \mathcal{S}' be a \mathbf{C}-sheaf over \mathcal{D}'. Let $\phi : \mathcal{D}' \to \mathcal{D}$ be a homeomorphism such that $\phi(\mathcal{C}) = \mathcal{C}'$. If $D \in \mathcal{V}_A$, and $(D, D') \in \mathcal{E}_A$ then $\phi(D) \in \mathcal{V}_A$, $\phi(D \cap D') = \phi(D) \cap \phi(D')$ and ϕ induces a graph morphism

$$A_\phi : A' \to A, \quad * \mapsto \phi(*); \quad * \in \mathcal{V}_A \cup \mathcal{E}_A.$$

Given a morphism of \mathbf{C}-sheaves $\mathcal{S} \to \mathcal{S}'$ over $\phi : \mathcal{D} \to \mathcal{D}'$, i.e. a morphism

$$g : \phi^{-1} \mathcal{S} \to \mathcal{S'},$$

of \mathbf{C}-sheaves over \mathcal{D}', we have \mathbf{C}-morphisms

$$g_D : (\phi^{-1} \mathcal{S})(D) = \mathcal{S}(\phi(D)) \to \mathcal{S}'(D),$$

$$g_{D \cap D'} : (\phi^{-1} \mathcal{S})(D \cap D') = \mathcal{S}(\phi(D \cap D')) = \mathcal{S}(\phi(D) \cap \phi(D')) \to \mathcal{S}'(D \cap D'),$$

for $D \in \mathcal{V}_A$ and $(D, D') \in \mathcal{E}_A$. Since

$$(A_\phi^* \mathcal{S})(\langle D, D' \rangle) = \mathcal{S}(\langle \phi(D), \phi(D') \rangle) = \mathcal{S}(\phi(D) \cap \phi(D'))$$

we obtain a \mathbf{C}-graph morphism associated to the sheaf morphism g

$$g : A_\phi^* \mathcal{S} \to \mathcal{S}'.$$

Notice that $A_\phi^* \mathcal{S}$ coincides with the \mathbf{C}-graph associated to the sheaf $\phi^{-1} \mathcal{S}$ over \mathcal{D}', and g can be seen as the \mathbf{C}-graph morphism associated to the morphism of sheaves $g : \phi^{-1} \mathcal{S} \to \mathcal{S}'$.

The situation we will deal with in the sequel is the following: \mathcal{D} is an analytic set (and more specifically a hypersurface in a complex manifold), \mathcal{C} is the collection of irreducible components of \mathcal{D}. The graph \mathcal{A} is called the dual graph of \mathcal{D}. In this way we have a functor

$$\text{CSh}_{\text{an}} \to \mathbf{CG}, \quad \mathcal{S} \mapsto \mathcal{S},$$
where $C\text{Sh}_{\text{an}}$ is the subcategory of the category of C-sheaves over analytic sets whose morphisms are over homeomorphisms.

2.3. **Cohomology of a group-graph.** This notion was introduced in [7]. For group-graphs associated to sheaves considered in subsection 2.2, with \mathcal{C} a locally finite open covering \mathcal{U} of \mathcal{D} and \mathcal{S} abelian, this notion will coincide with the Čech cohomology groups $\check{H}^i(\mathcal{U}, \mathcal{S}), \ i = 0, 1$.

Let G be a group-graph over a graph A. The 0-cohomology set is the subgroup $H^0(G, G) := \prod_{v \in V_G} G_v$ whose elements are the families (g_v) satisfying the relations $\rho^e_v(g_v) = \rho^e_v(g_{v'})$ whenever $e = \langle v, v' \rangle$.

In order to define the 1-cohomology set $H^1(G, G)$ of a group-graph $(G, (\rho^e_v)_{(v,e) \in E_A})$ we first define the set of cocycles $Z^1(G, G)$ as the set of families

$$(g_{v,e}) \in \prod_{(v,e) \in E_A} G_{v,e}, \ \text{with} \ G_{v,e} := G_e,$$

such that $g_{v,e} g_{v',e}^{-1} = 1$ whenever $e = \langle v, v' \rangle$. Then $H^1(G, G)$ is the quotient set of $Z^1(G, G)$ by the following action of $C^0(G, G)$:

$$(g_v) \star_G (g_{v,e}) := (\rho^e_v(g_v) g_{v,e}^{-1}) \rho^e_v(g_{v'}).$$

The set $H^1(G, G)$ contains the privileged element 1 defined by $g_{v,v} = 1$. In this way, from now on $H^1(G, G)$ will be considered as a pointed set.

Remark 2.7. When G is an abelian group-graph, then $H^1(G, G)$ is an abelian group. Specifically, we have in this case an exact sequence of groups (with additive notations)

$$C^0(G, G) \xrightarrow{\partial^0} Z^1(G, G) \xrightarrow{\partial^1} H^1(G, G) \rightarrow 0,$$

More formally, $H^i(G, G)$ is the i-th cohomology group of the cochain complex of abelian groups

$$C^*(G, G) : \ C^0(G, G) \xrightarrow{\partial^0} C^1(G, G) \xrightarrow{\partial^1} C^2(G, G) := \prod_{e \in E_A} G_e,$$

with: $\partial^1((g_{v,e})) = (g_{v,e} + g_{v',e})$, if $e = \langle v, v' \rangle$.

Every morphism $\phi : G \rightarrow G'$ of C-graphs over a graph morphism $\varphi : A' \rightarrow A$ induces maps

$$\phi_0 : C^0(A, G) \rightarrow C^0(A', G'), \quad \phi_0((g_v)_{v}) = (\phi_{v'}(g_{\varphi(v')}))_{v'},$$

$$\phi_1 : C^1(A, G) \rightarrow C^1(A', G'), \quad \phi_1((g_{v,e})_{(v,e)}) = (g'_{v,e'})_{(v,e')},$$

where

$$g'_{v,e'} = \begin{cases} \phi_{v'}(g_{\varphi(v'), \varphi(e')}) & \text{if } \varphi(e') \text{ is an edge of } A, \\ 1 & \text{otherwise.} \end{cases}$$

The image of the restriction $H^0(\phi)$ of the group morphism ϕ_0 to the subgroup $H^0(G, G)$ is contained in $H^0(A', G')$. Moreover, ϕ_1 sends $Z^1(A, G)$ into $Z^1(A', G')$, the following diagram is commutative

$$
\begin{array}{ccc}
C^0(A, G) \times Z^1(A, G) & \xrightarrow{\gamma} & Z^1(A, G) \\
\downarrow \phi_0 & & \downarrow \phi_1 \\
C^0(A', G') \times Z^1(A', G') & \xrightarrow{\gamma'} & Z^1(A', G')
\end{array}
$$
inducing a map

\[H^1(\phi) : H^1(A, G) \to H^1(A', G'). \]

In this way one can check that the correspondences \((A, G) \mapsto H^1(A, G) \) and \((\varphi, \phi) \mapsto H^1(\phi) \) define covariant functors

\[H^1 : CG \to \text{Set}, \quad i = 0, 1, \]

from the category of \(C \)-graphs to the category of pointed sets. Moreover when \(C \) is one of the following sub-categories of \(\text{Gr} \):

- the category \(\text{Ab} \) of abelian groups,
- the category \(\text{Vec} \) of \(\mathbb{C} \)-vector spaces, and linear maps,

we obtain covariant functors with values in the same category pointed by 0:

\[H^1 : CG \to C', \quad i = 0, 1. \]

In particular, \(H^i(\phi), i = 0, 1, \) are \(C \)-morphisms.

Remark 2.8. The canonical morphism \(i_\varphi : G \to \varphi^* G \) induces maps \(H^i(i_\varphi) : H^i(A, G) \to H^i(A', \varphi^* G) \) and we have

\[H^i(\phi) = H^i(\phi) \circ H^i(i_\varphi), \quad i = 0, 1, \]

where \(\phi : \varphi^* G \to G' \) is the \(C \)-graph morphism over \(A' \) associated to \(\phi \) and \(i_\varphi : G \to \varphi^* G \) is the canonical morphism. \(\square \)

Proposition 2.9. Let \(1 \to G' \hookrightarrow G \twoheadrightarrow G'' \to 1 \) be a short exact sequence of group-graphs over a tree \(A \) and suppose that all restriction maps \(\rho^e_v : G'_v \to G''_v \) are surjective. Then the induced morphism \(H^1(p) : H^1(A, G) \to H^1(A, G'') \) is an isomorphism.

Proof. First we define an orientation \(\prec \) of each edge of \(A \) in the following way: we choose a vertex \(v_0 \in Ve_A \); as \(A \) is a tree, for each vertex \(v \in Ve_A \) there is a unique geodesic in \(Ve_A \) joining \(v \) to \(v_0 \), i.e. a unique minimal sequence of vertices \(v_0, \ldots, v_\ell \), such that \(v_\ell = v \) and \(\langle v_{i-1}, v_i \rangle, i = 1, \ldots, \ell \), are edges of \(A \); then we set \(v_{\ell-1} \prec v_\ell \). Notice that for any vertex \(v \neq v_0 \) there is only one edge \(\langle v', v \rangle \) such that \(v' \prec v \).

The surjectivity of \(p_\ast := H^1(p) \) follows from that of \(p \). Indeed for any \(\langle h_{v,e} \rangle \in Z^1(A, G'') \) and each edge \(e = \langle v', v'' \rangle \) with \(v' \prec v'' \), we can choose an element \(g_{v',e} \in G_{v',e} = G_e \) such that \(p_e(g_{v',e}) = h_{v,e} \). Setting \(g_{v'',e} := g_{v',e}^{-1} \) we obtain an element \(\langle g_{v,e} \rangle \) of \(Z^1(A, G) \) satisfying \(p_\ast(\langle g_{v,e} \rangle) = \langle h_{v,e} \rangle \).

To prove the injectivity of \(p_\ast \) let us consider two cohomological classes \(\langle g_{v,e} \rangle \) and \(\langle h_{v,e} \rangle \in H^1(A, G) \) such that \(p_\ast(\langle g_{v,e} \rangle) = p_\ast(\langle h_{v,e} \rangle) \). The cocycles \(\langle p_e(g_{v,e}) \rangle \) and \(\langle p_e(h_{v,e}) \rangle \) being cohomologous, there exists \((g'_{v,e}) \in C^0(A, G'') = \prod_{v \in Ve_A} G''_v \) satisfying the following equalities in \(G''_v \), for any \(e = \langle v, w \rangle \in Ed_A, v \prec w \):

\[\rho^e_v (g'_{v,e})^{-1} p_e(g_{v,e}) \rho^w_v (g'_{w,e}) = p_e(h_{v,e}). \]

By surjectivity of \(p_\ast : G_v \to G''_v, v \in Ve_A \), there are \(g_v \in G_v \) such that \(g''_v = p_v(g_v) \) and

thanks to the commutative diagrams

\[\begin{array}{c}
\begin{array}{ccc}
G'_v & \xrightarrow{i_e} & G_v \\
\rho^e_v & \downarrow & \rho_v \\
G'_{v'} & \xrightarrow{i_{v'}} & G_{v'}
\end{array}
\end{array} \quad \begin{array}{c}
\begin{array}{ccc}
G''_v & \xrightarrow{p_v} & G''_v \\
\rho^w_v & \downarrow & \rho^w_v \\
G''_{v'} & \xrightarrow{p_{v'}} & G''_{v'}
\end{array}
\end{array} \]

for any \(e = \langle v, w \rangle \), we obtain the equalities in \(G_e \)

\[p_e(\rho^e_v (g_v)^{-1} g_{v,e} \rho^w_v (g_w)) = p_e(h_{v,e}). \]

Therefore there exists \(g'_{v} \in G'_{v} \) such that

\[(\ast_e) \quad \rho^e_v (g_v)^{-1} g_{v,e} \rho^w_v (g_w) i_e(g'_e) = h_{v,e}. \]
We will construct a cocycle \((k_v) \in \prod_{v \in \mathcal{V}_A} G_v \) that satisfies the equality
\[
(\ast \ast_e) \quad \rho^e_v (k_v) - 1 g_v e \rho^e_w (k_w) = h_{v,e}.
\]
for each edge \(e = (v, w) \), \(v \prec w \), of \(A \), using an induction process indexed by the lengths \(\ell \) of the geodesics \(v_0, \ldots, v_\ell = v \) joining in \(A \) any vertex \(v \in \mathcal{V}_A \) to the previously chosen vertex \(v_0 \). One call \(\ell \) the distance of \(v \) to \(v_0 \) and we denote \(\ell = d_A(v, v_0) \). Consider the following assertion:

\((H_n) \) there exists \((k_v) \in \prod_{v \in \mathcal{V}_A, d_A(v, v_0) \leq n} G_v \) such that:

- \((\alpha_n) \) the relations \((\ast \ast_e) \) are fulfilled for every edge \(e = (v, w) \), \(v < w \), with \(d_A(v, v_0) \) and \(d_A(v, v_0) \leq n \),
- \((\beta_n) \) for every \(v \in \mathcal{V}_A \), \(1 \leq d_A(v, v_0) \leq n \), there exists \(f'_v \in G'_v \) such that \(k_v = g_v i_v (f'_v) \).

We will prove in a) that assertion \(H_1 \) is true, and in b) that assertion \(H_{n+1} \) is true as soon as assertion \(H_n \) is satisfied.

- a) Let us consider the relation \((\ast e) \) for each edge \(e = (v, w) \), with \(v = v_0 \). The restriction maps \(\rho^e_w : G'_w \to G'_v \) being surjective, we choose \(g'_w \in G'_w \) such that \(g'_e = \rho^e_w (g'_w) \). Using again the commutativity of all diagrams (6) we deduce the equality
\[
\rho^e_w (g(v_0)) - 1 g(v_0, e) \rho^e_w (g(w) g'_w) = h_{v_0, e}.
\]
Setting \(k_{v_0} = g(v_0), k_w = g_w i_w (g'_w) \) and \(f'_w = g'_w \), we obtain the assertion \(H_1 \).

- b) Now let us suppose \(H_n \) satisfied, we will prove \(H_{n+1} \). Let us fix families
\[
(g_v) \in \prod_{v \in \mathcal{V}_A} G_v \quad \text{and} \quad (g'_v) \in \prod_{v \in \mathcal{E}_A} G'_v
\]
fulfilling the relation \((\ast_e) \) for every \(e \in \mathcal{E}_A \). Let us fix also a collection
\[
(f'_v) \in \prod_{v \in \mathcal{V}_A, d_A(v, v_0) \leq n} G'_v
\]
such that the elements
\[
k_v := g_v i_v (f'_v) \in G_v, \quad v \in \mathcal{V}_A, \quad d_A(v, v_0) \leq n,
\]
satisfy the relation \((\ast \ast_e) \) for every edge \(e \) of \(A \) whose vertices are at distances to \(v_0 \) at most \(n \). Let \(w \) be a vertex of \(A \) such that \(d_A(w, v_0) = n + 1 \). As noticed above, there is a unique edge \(e_w = (v_w, w) \) of \(A \) with \(v_w \prec w \). Therefore \(v_w \) is the unique vertex of \(A \) such that \(d_A(v_w, w) = n \) and \((v_w, w) \) is an edge of \(A \). The relations \((\ast \ast_e) \) and (7) give the equality:
\[
\rho^{e_w} (i_w (f'_w)) \rho^{e_w} (k_{v_w}) - 1 g_{v_w, e_w} \rho^{e_w} (g(w) i_w (g'_w)) = h_{v_w, e_w}.
\]
As in step a), let \(g_w \in G'_w \), such that \(\rho^{e_w} (g'_w) = g'_w \). We have:
\[
\rho^{e_w} (i_w (f'_w)) \rho^{e_w} (k_{v_w}) - 1 g_{v_w, e_w} \rho^{e_w} (g(w) i_w (g'_w)) = h_{v_w, e_w}.
\]
On the other hand the element \(\rho^{e_w} (i_w (f'_w)) = i_w (\rho^{e_w} (f'_w)) \in G_{e_w} \) belongs to the normal subgroup of \(G_{e_w} \)
\[
\ker (p_{e_w}) = i_w (G'_w) = i_w (\rho^{e_w} (G'_w)) = \rho^{e_w} (i_w (G'_w)).
\]
The following element of \(G_{e_w} \):
\[
\tilde{g}_{e_w} := g^{-1} \rho^{e_w} (i_w (f'_w)) g, \quad g := \rho^{e_w} (k_{v_w}) - 1 g_{v_w, e_w} \rho^{e_w} (g(w) i_w (g'_w)),
\]
is also an element of \(\ker (p_{e_w}) \). There exists \(\tilde{g}_{e_w} \in G_{e_w} \) such that
\[
\tilde{g}_{e_w} = \rho^{e_w} (i_w (g'_w)).
\]
We finally obtain:
\[\rho^{c_w}(k_{v_w})^{-1} g_{v_w, w} \rho^{c_w}(g_{w, v}(g'_{w, w})) \rho^{c_w}(i_w(g'_{w, w})) = h_{v_w, v_w}, \]
and
\[\rho^{c_w}(k_{v_w})^{-1} g_{v, w} \rho^{c_w}(g_{w, v}(g'_{w, w})) = h_{v, v_w}. \]
We set
\[k_w := g_{w, v}(g'_{w, w}) \in G_w, \quad f'_w := g'_w g_w \]
and we repeat this construction for each vertex whose distance to \(v_0 \) is \(n + 1 \). The family \((k_v), v \in \mathcal{V}_A, d_A(v, v_0) \leq n + 1 \), that we obtain satisfies assertion \(H_{n+1}. \)

2.4. Pruning. A path in a tree \(A \) with origin \(c_0 \) and extremity \(c_\ell \) is a sequence \(L = (c_0, \ldots, c_\ell), c_j \in \mathcal{V}_A \cup \mathcal{E}_A \) such that:
- if \(c_j, j < \ell, \) is a vertex, then \(c_j+1 \) is an edge and \(c_j \in c_{j+1}, \)
- if \(c_j, j < \ell, \) is an edge, then \(c_{j+1} \) is a vertex and \(c_j \supset c_{j+1}. \)

If \(R \) is a sub-tree of a \(A \) we can define for any vertex \(v \) of \(A \setminus R \) the notion of geodesic in \(A \) from \(v \) to \(R \), as the unique minimal path \(L_v = (c_0, \ldots, c_\ell) \) in \(\mathcal{V}_A \cup \mathcal{E}_A \) such that \(c_0 = v, c_\ell \in \mathcal{V}_R \) and \(c_{\ell-1}, \ldots, c_0 \notin \mathcal{V}_R \cup \mathcal{E}_R \). When \(v \) is a vertex of \(R \), the geodesic \(L_v \) is reduced to the single element \(v \). We define a partial order relation on \(\mathcal{V}_A \) by setting \(v \prec_R w \) if and only if the geodesic \(L_v \) is contained in the geodesic \(L_w \). We will say that \(R \) is repulsive for a group-graph \(G \) over \(A \), if for every edge \(e = (v, v') \in \mathcal{E}_A \) with \(v \prec_R v' \), the restriction map \(\rho^{v'}_e : G_{v'} \to G_e \) is surjective. From [7, Theorem 3.11 and Remark 3.12] we have:

Theorem 2.10. Let \(R \) be a subtree of a tree \(A \) that is repulsive for a C-graph \(G \) over \(A \). Then the map
\[H^1(t_r) : H^1(A, G) \to H^1(R, r^*G), \quad (g_{v, e})_{v \in \mathcal{V}_A} \mapsto (g_{v, e})_{v \in \mathcal{E}_A} \]
induced by the canonical C-graph morphism \(t_r : G \to r^*G \) over the inclusion graph morphism \(r : R \to A \), is a bijection of pointed sets. Moreover, if \(C = \text{Ab} \) or \(C = \text{Vec} \) then \(H^1(t_r) \) is a C-isomorphism.

2.5. Direct image of a C-graph. Let \(\varphi : A \to A' \) be a morphism of graphs and let \(G \) be a C-graph over \(A \). We define the direct image of \(G \) by \(\varphi \) as the C-graph \(\varphi^*G \) over \(A' \) given for \(v' \in \mathcal{V}_{A'} \) and \(e' \in \mathcal{E}_{A'} \) by
\[(\varphi^*G)_{v'} := H^0(\varphi^{-1}(v'), G) \subset \prod_{\varphi(e) = e'} G_e, \quad (\varphi^*G)_{e'} := \prod_{\varphi(e) = e'} G_e \]
and \((\varphi^*\rho)^{e}_{v'}((g_{v, e}))_{v} \) where \(v \in \mathcal{V}_{A} \) and \(e \in \mathcal{E}_{A} \). It is implicitly understood that the product over the empty set is the trivial group.

There is a canonical morphism \(j_{\varphi} : \varphi^*G \to G \) of C-graphs over \(\varphi \) defined by the natural projections \((j_{\varphi})_* : (\varphi^*G)_{(\varphi(e))} \subset \prod_{\varphi(e) = e'} G_e \to G_e \) for every \(* \in \mathcal{V}_{A} \cup \mathcal{E}_{A} \). It can be checked that if \(G' \) is a C-graph over \(A' \) then the maps
\[\text{Hom}_{A}(G, \varphi^*G') \xrightarrow{a} \text{Hom}_{A'}(G', G') \xleftarrow{b} \text{Hom}_{A'}(\varphi^*G, G') \]
given by \(a(\phi) = j_{\varphi} \circ \phi \) and \(b(\phi) = \phi \circ i_{\varphi} \) are bijective.

The preimage \(\varphi^{-1}(v') \) of a vertex \(v' \in \mathcal{V}_{A'} \) by a graph morphism \(\varphi : A \to A' \) is always a subgraph of \(A \). If \(G \) is a group-graph over \(A \) we will denote by \(H^1(\varphi^{-1}(v'), G) \) the 1-cohomology set of the pull-back of \(G \) by the inclusion map \(\varphi^{-1}(v') \hookrightarrow A \).

Lemma 2.11. Let \(\varphi : A \to A' \) be a morphism of graphs, let \(G \) be a group-graph over \(A \) and consider the map \(H^1(j_{\varphi}) : H^1(A', \varphi^*G) \to H^1(A, G) \) defined in (4).
The image of $H^1(j_* \varphi)$ is the set of cohomology classes of 1-cocycles $(h_e)_e \in Z^1(A, G)$ with $h_e = 1$ if $\varphi(e) \in Ve_{A'}$.

(b) $H^1(j_* \varphi) : H^1(A', \varphi_* G) \to H^1(A, G)$ is always injective.

(c) If $H^1(\varphi^{-1}(v'), G) = 1$ for all $v' \in Ve_{A'}$, then $H^1(j_* \varphi) : H^1(A', \varphi_* G) \to H^1(A, G)$ is surjective.

Proof. By fixing an orientation for each edge of A and A' we have bijections

$$Z^1(A', \varphi_* G) \simeq \prod_{e' \in Ed_{A'}} (\varphi_* G)_{e'} \quad \text{and} \quad Z^1(A, G) \simeq \prod_{e \in Ed_A} G_e.$$

Under these identifications the map $H^1(j_* \varphi)$ is induced by

$$j_*^1 : Z^1(A', \varphi_* G) \simeq \prod_{e' \in Ed_{A'}} (\varphi_* G)_{e'} \simeq \prod_{e' \in Ed_{A'}} (\varphi_* G)_{e'} \simeq \prod_{e \in Ed_A} G_e \simeq Z^1(A, G)$$

which puts 1 in the factor G_e when $\varphi(e) \notin Ed_{A'}$, this proves assertion (a). To prove assertion (b) let us fix $(g_e)_e, (h_e)_e \in Z^1(A', \varphi_* G)$ and $(k_{e'})_{e'} \in C^0(A, G)$ satisifying $(k_{e'}) \circ \varphi(g_e) = j_*^1(h_{e'})$ in $Z^1(A, G)$. For any $v' \in Ve_{A'}$ we check that

$$k_{e'} := (k_{e'})_{e'} \in \varphi^{-1}(v') \cap Ve_{A'} \in H^0(\varphi^{-1}(v'), G).$$

Then $k_{e'} \in (\varphi_* G)_{e'}$ and $(k_{e'})_{e'} \circ \varphi(g_e) = (h_e)$ in $Z^1(A', \varphi_* G)$. To prove assertion (c), let us fix a 1-cocycle $(g_e)_e \in Z^1(A, G)$. Since $H^1(\varphi^{-1}(v'), G) = 1$ for each $v' \in Ve_{A'}$ there is $(k_{e'})_{e' \in \varphi^{-1}(v') \cap Ve_{A'}} \in C^0(\varphi^{-1}(v'), G)$ such that $(k_{e'}) \circ (g_e) = 1$ in $Z^1(\varphi^{-1}(v'), G)$. Then $(k_{e'})_{e' \in \varphi^{-1}(v')} \in Z^1(A, G)$ satisifies $(k_{e'}) \circ (g_e) = (h_e)$ with $h_e = 1$ if $\varphi(e) \in Ve_{A'}$. We conclude using assertion (a). \qed

2.6. Regular group-graph. The **support** of a group-graph G over a graph A is the set of vertices and edges where the corresponding group is non-trivial:

$$\text{supp}(G) = \{* \in Ve_{A} \cup Ed_{A} \mid G_* \neq \{1\}\},$$

with 1 denoting the identity element.

Remark 2.12. Let G be a group-graph over A and let A' be a subgraph of A obtained by removing some edges of A which are not in the support of G. Then the morphism $H^1(i_1) : H^1(j_1, A, G) \to H^1(j_1, A', j^*_1, G)$ induced by the canonical morphism $i_1 : G \to j^*_1 G$ over the inclusion $j_1 : A' \to A$ is an isomorphism. \qed

Definition 2.13. We will say that a group-graph G over A is **regular** if the restriction morphisms $\rho^G_{e,v} : G_v \to G_e$ are isomorphisms as soon as $v, e \in \text{supp}(G)$.

Let A' be a subtree of a tree A. An edge $e = \langle v, v' \rangle \in Ed_{A}$ is **adjacent** to A' if $v \in Ve_{A} \setminus Ve_{A'}$ and $v' \in Ve_{A'}$. We define the **contraction** A/A' as the tree whose vertices are

$$Ve_{A/A'} = (Ve_{A} \setminus Ve_{A'}) \sqcup \{v_{A'}\}$$

and whose edges are the edges of A which do not belong to A' and are not adjacent to A', jointly with an additional edge $\tilde{e} = \langle v, v_{A'} \rangle$ for each adjacent edge $e = \langle v, v' \rangle$ to A' with $v \notin Ve_{A'}$.

$$Ed_{A} \setminus Ed_{A'} \simeq Ed_{A/A'}, \quad e \mapsto e \circ \tilde{e}.$$

There is a natural surjective graph morphism $c_{A'} : A \to A/A'$ given by $c_{A'}(v) = v_{A'}$ if $v \in Ve_{A'}$ and $c_{A'}(v) = v$ otherwise.

If $A'' \subset A' \subset A$ are subtrees of a tree A then we have a natural isomorphism

$$j : A/A' \simeq (A/A')/(A'/A'')$$

such that $c_{A'/A''} \circ c_{A'} = j \circ c_{A'}$. \quad (10)

If G is a $C\text{-}$graph over A the direct image $\tilde{G} := (c_{A'})_* G$ over A/A' satisfies $\tilde{G}_{e_{A'}} = H^0(A', G)$, $\tilde{G}_e = G_e$ if $e \in Ed_{A}$ is adjacent to A' and $\tilde{G}_* = G_*$ otherwise.
Lemma 2.14. Let G be a regular \mathbb{C}-graph over a tree A and let A' be a subtree of A such that all its edges are contained in the support of G. Then $(c_{A'})_G$ is a regular \mathbb{C}-graph over A/A'.

Proof. It is easy to check when A' has only one edge. In the general case, we proceed by induction on the number of edges of A' using isomorphisms (10).

We call active edge of a regular \mathbb{C}-graph G over a tree A any edge $a = \langle v, v' \rangle \in E_d$ such that $G_v \neq \{0\}$ and $G_{v'} = \{0\}$. If $G_v \neq 0$, the vertex v will be called active vertex associated to a and denoted by v_a. If $G_v = G_{v'} = \{0\}$ and $G_a \neq \{0\}$, we select one of the two vertices v or v' as active vertex associated to a. Let $(S_\alpha)_{\alpha \in I}$ be the collection of path connected components of $\text{supp}(G)$, i.e. the maximal subsets of $\text{supp}(G)$ such that any two elements can be joined by a path in $\text{supp}(G)$. We say that S_α is an active component if it contains an active edge, or equivalently an active vertex. We denote by I' the set of indices $\alpha \in I$ such that S_α is active and not reduced to a single edge.

Let \mathscr{A} be the collection of all active edges. Now, let us choose one edge a_α in each active component S_α, $\alpha \in I'$, and let us write

$$\mathscr{A}' := \mathscr{A} \setminus \{a_\alpha ; \alpha \in I'\}.$$

Theorem 2.15. Let G be a regular \mathbb{C}-graph over a tree A. If $A' = \emptyset$ then $H^1(A, G) = 1$, otherwise we consider the map

$$[\delta_G] : \prod_{a \in \mathscr{A}'} G_a \to H^1(A, G)$$

induced by $\delta_G : \prod_{a \in \mathscr{A}'} G_a \to Z^1(A, G)$ defined by $\delta_G((g_a)_a) = (g_{v,a})$ with $g_{v,a} = 1$ if $e \notin \mathscr{A}'$ and

$$g_{v,a} = g_a^{-1}, \quad g_{v',a} = g_a$$

for $a = \langle v_a, v' \rangle \in \mathscr{A}'$. Then $[\delta_G]$ is bijective and if $C = \text{Ab}$ or $C = \text{Vec}$ then $[\delta_G]$ is a \mathbb{C}-isomorphism. Moreover, if $C = \text{Vec}$ and all the vector spaces G_\ast, $\ast \in \text{supp}(G)$, have the same dimension d then

$$\dim H^1(A, G) = (a - p) \cdot d$$

where a is the number of active edges, p is the number of active connected components of $\text{supp}(G)$ not reduced to a single edge.

Proof. We reason by induction on the number $n(A, G)$ of path connected components of $\text{supp}(G)$ not reduced to a single vertex or a single edge. If $n(A, G) = 0$ the statement is clear. If $n(A, G) > 0$ we consider a path connected component S_α of $\text{supp}(G)$ not reduced to a single edge nor a single vertex. It contains a nonempty maximal subgraph C'_α. If S_α is an active component we consider the graph C_α given by $\text{Ed}_{C_\alpha} = \text{Ed}_{C'_\alpha} \cup \{a_\alpha\} \subset \text{supp}(G)$ and $\text{Vec}_{C_\alpha} = \text{Vec}_{C'_\alpha} \cup \{a_\alpha, v'\}$ where $a_\alpha = \langle (v_a, v') \rangle$ is the active edge previously chosen to define \mathscr{A}'. If S_α is not an active component then we set $C_\alpha := C'_\alpha$. Let $c : A \to \tilde{A} = A/C_\alpha$ be the contraction of the subtree $C_\alpha \subset A$. By Lemma 2.14 the \mathbb{C}-graph $\tilde{G} = c_\ast G$ over \tilde{A} is regular and $\mathscr{A}' \cong \mathscr{A}''$ under the bijection (9). Moreover we have the following commutative diagram
where the left vertical arrow, induced by the bijection (9) using that \(\tilde{G}_\alpha = G_\alpha \), is the identity. It is clear that every vertex of \(C_\alpha \cap \text{supp}(G) \) is repulsive for the restriction of \(G \) to \(C_\alpha \). By applying Theorem 2.10 we deduce that \(H^1(C_\alpha, G) = 1 \) so that hypothesis (c) in Lemma 2.11 is fulfilled for the contraction map \(c : A \to \tilde{A} \). Consequently \(H^1(j_c) \) is bijective (or a \(C \)-isomorphism when \(C = Ab \) or \(C = \text{Vec} \)). It is easy to see that if \(S_\alpha \) is an active component then \(\tilde{v} := c(C_\alpha) \in Ve_{\tilde{A}} \) does not belong to the support of \(\tilde{G} \), i.e. \(\tilde{G}_\alpha = H^0(C_\alpha, G) = 1 \). If \(S_\alpha \) is not active then \(\{ \tilde{v} \} \) is a path connected component of \(\text{supp}(\tilde{G}) \). In both cases \(n(\tilde{A}, \tilde{G}) = n(A, G) - 1 \). By the inductive hypothesis \([\delta_e]_C \) is bijective (or a \(C \)-isomorphism). Therefore \([\delta_e]_C \) is bijective (or a \(C \)-isomorphism). The last assertion is trivial. \(\square \)

2.7. Tensor product. If \(T \) is a \text{Vec}-graph over a graph \(A \) and \(W \) is a \(C \)-vector space we can define the \text{Vec}-graph \(T \otimes_C W \) in an obvious way and we obtain a functor

\[\otimes_C : \text{VecG} \times \text{Vec} \to \text{VecG}, \]

\(\text{VecG} \) being the category of \(C \)-vector space-graphs. The commutative property between tensor product and direct sum gives an isomorphism between the functors

\[(T, W) \mapsto C^*(A, T \otimes_C W) \quad \text{and} \quad (T, W) \mapsto C^*(A, T) \otimes_C W, \]

from \(\text{VecG} \times \text{Vec} \) to the category of vector space complexes. It induces an isomorphism

\[((T, W) \mapsto H^1(A, T \otimes_C W)) \sim (T, W) \mapsto H^1(A, T) \otimes_C W \] (11)

between functors from the category \(\text{VecG} \times \text{Vec} \) to \(\text{Vec} \).

3. Equisingular deformations of foliations

3.1. Deformations of foliations. Consider a germ \(F \) of singular foliation at the origin of \(\mathbb{C}^2 \), given by a germ \(Z = a(x, y)\partial_x + b(x, y)\partial_y \) of holomorphic vector field with \(\{ a(x, y) = b(x, y) = 0 \} = \{ 0 \} \). Let \(Q = (Q, u_0) \) be a germ of manifold. A deformation of \(F \) over \(Q \) is a germ of foliation \(F_Q \) on \((\mathbb{C}^2 \times Q, (0, u_0)) \) defined by a germ of vertical (tangent to the fibers of the canonical projection \(\text{pr}_Q : \mathbb{C}^2 \times Q \to \mathbb{C}^2 \)) vector field \(X = A(x, y, u)\partial_x + B(x, y, u)\partial_y \), whose restriction to \(\mathbb{C}^2 \times \{ u_0 \} \) is equal to \(F \),

\[D \text{pr}_Q \cdot X = 0, \quad i^* F_Q = F, \quad i : \mathbb{C}^2 \hookrightarrow \mathbb{C}^2 \times Q, \quad i(x, y) := (x, y, u_0). \]

The germ \(Q \) is called parameter space of \(F_Q \). If \(\lambda \) is a germ of holomorphic map from a germ of manifold \(P = (P, t_0) \) to \(Q \) satisfying \(\lambda(t_0) = u_0 \), the pull-back of \(F_Q \) by \(\lambda \) is the deformation \(\lambda^* F_Q \) of \(F \) over \(P \), defined by the vector field \(\lambda^* X := A(x, y, \lambda(t))\partial_x + B(x, y, \lambda(t))\partial_y \), When \(Q = \{ u_0 \} \), \(\lambda \) is the constant map and \(\lambda^* F_Q \) is called constant deformation over \(P \) and is denoted by \(F_P \).

Two deformations \(F_Q \) and \(F'_Q \) of \(F \) with same parameter space \(Q' \) are topologically conjugated, or \(C^0 \)-conjugated, if there is a germ of homeomorphism \(\Phi \) that is a deformation of \(\text{id}_{\mathbb{C}^2} \), that sends the leaves of \(F_Q \) on that of \(F'_Q \)

\[\Phi : (\mathbb{C}^2 \times Q, (0, u_0)) \sim (\mathbb{C}^2 \times Q, (0, u_0)), \quad \text{pr}_Q \circ \Phi = \text{pr}_Q, \quad \Phi \circ i = i, \quad \Phi(F_Q) = F'_Q ; \]

we will say that \(\Phi \) is a conjugacy of deformation from \(F_Q \) to \(F'_Q \) and we will denote \(\Phi : F_Q \to F'_Q \). We will say that a deformation is trivial if it is conjugated to the constant deformation.

Remark 3.1. (a) If \(\Phi : F_Q \to F'_Q \), the pull-back \(\lambda^* \Phi \) of \(\Phi \) by a map germ \(\lambda : P \to Q \), defined by

\[\lambda^* \Phi : (\mathbb{C}^2 \times P, (0, t_0)) \sim (\mathbb{C}^2 \times P, (0, t_0)), \quad \lambda^* \Phi(x, y, t) := \Phi(x, y, \lambda(t)) , \]
is a conjugacy from the deformation $\lambda^* F_Q$ to $\lambda^* F'_Q$. (b) If $\mu : N \to P$ is a germ of holomorphic map, we have the relation $(\lambda \circ \mu)^* F_Q = \mu^* \lambda^* F_Q$. \hfill \square

Let us recall that a deformation F_Q is called **equireducible** if there exists a map germ called **equireduction map**

$$E_{F_Q} : (M_{F_Q}, \mathcal{E}_{u_0}) \to (\mathbb{C}^2 \times Q, (0, u_0))$$

obtained by composition of proper holomorphic map germs

$$E_{F_Q} = E_1 \circ \cdots \circ E_k, \quad E_j : (M_j, K_j) \to (M_{j-1}, K_{j-1}),$$

$$(M_0, K_0) = (\mathbb{C}^2 \times Q, (0, u_0)), \quad (M_k, K_k) = (M_{F_Q}, \mathcal{E}_{u_0}),$$

fulfilling the following properties (i)-(iii) below: for $1 \leq j \leq k$ let us write

$$E_j := E_1 \circ \cdots \circ E_j : (M_j, K_j) \to (\mathbb{C}^2 \times Q, (0, u_0)), \quad \pi_j := \text{pr}_Q \circ E_j : M^j \to Q,$$

and let us denote by F^j_Q the foliation $(E_j)^{-1}(F_Q)$ on M_j, then for $j = 1, \ldots, k$, we must have:

(i) on an open neighborhood of K_j in M_j the singular locus of F^j_Q is regular and the restriction of π_j to it is a covering map over an open neighborhood of u_0 in Q;
(ii) E_j is a blow-up map germ with center a union C_j of components of the singular locus of F_{Q}^{j-1} and $K_j = E_{j}^{-1}(K_{j-1})$; moreover C_1 is the singular locus $\text{Sing}(F_Q)$ of F_Q;
(iii) there is an open neighborhood $U \subset Q$ of u_0 such that for any $u \in U$ the restriction of F_{Q}^{j} to $\pi_j^{-1}(u)$ is a reduced foliation at each of its singular points; moreover the restriction of E^k_j to $\pi_j^{-1}(u)$ is the minimal reduction map of the germ at $\text{pr}_Q^{-1}(u) \cap \text{Sing}(F_Q)$ of the restriction of F_Q to $\text{pr}_Q^{-1}(u)$.

We will write:

$$\mathcal{E}_{F_Q} := E_{F_Q}^{-1}(C_1), \quad \pi^j := \pi_k : (M_{F_Q}, \mathcal{E}_{u_0}) \to Q', \quad F^j_Q := F_Q^k ;$$

By induction on $j = 1, \ldots, k$, we check that π^j is a submersion. The **exceptionnal divisor** \mathcal{E}_{F_Q} is a hypersurface with normal crossing and the restriction of π^j to each of its irreducible components is a holomorphically trivial fibration with fiber \mathbb{P}^1. Its **special fiber**

$$\mathcal{E}_{u_0} = E_{F_Q}^{-1}(0, u_0) = \mathcal{E}_{F_Q} \cap \pi^j^{-1}(u_0),$$

is a curve with normal crossings and irreducible components biholomorphic to \mathbb{P}^1; the restriction of E_{F_Q} to the **special fiber** $M_{u_0} := \pi^j^{-1}(u_0)$ of M_{F_Q} is identified to the **reduction map** $E_F : (M_F, \mathcal{E}_F) \to \mathbb{C}^2$ of \mathcal{F},

$$E_F \simeq E_{F_Q|M_{u_0}} : (M_{u_0}, \mathcal{E}_{u_0}) \longrightarrow \mathbb{C}^2 \times \{u_0\} \simeq \mathbb{C}^2, \quad (M_{u_0}, \mathcal{E}_{u_0}) \simeq (M_F, \mathcal{E}_F),$$

and the **special fiber of** F^j_Q,

$$F^j_{u_0} := F^j_Q|_{M_{u_0}},$$

is identified to the reduced foliation $F^j : E_F^{-1}(\mathcal{F})$ on M_F. Notice that any constant deformation F^j_Q is equireducible and its reduction map is the product map of the reduction map of \mathcal{F} with the identity map of Q:

$$E_{F_Q} = E_F \times \text{id}_Q : (M_F \times Q, \mathcal{E}_F \times \{u_0\}) \to (\mathbb{C}^2 \times Q, (0, u_0)), \quad (m, u) \mapsto (E_F(m), u);$$

Using the fact that pull-back process induces biholomorphisms at the fibers level one checks the following property:
Proposition 3.2. The pull-back $\mu^* F_Q$ of an equireducible deformation F_Q over Q' of a foliation F by a holomorphic map germ $\mu : P \to Q'$, is an equireducible deformation of F over P' and its equireduction map is the pull-back $\mu^* E_{F_Q}$ of the equireduction map of F_Q.

For equireducible deformations we may consider a special class of C^0-conjugacies:

Definition 3.3. Let F_Q and F_Q' be two deformations over $Q' = (Q, u_0)$ of a foliation F and let $F : (C^2 \times Q, (0, u_0)) \sim (C^2 \times Q, (0, u_0))$, $pr_Q \circ F = pr_Q$, be a homeomorphism that sends the leaves of F_Q to the leaves of F_Q'. We will say that F is excellent or of class C^{ex}, if

1. F lifts through the reduction maps of these foliations

$$E_{F_Q} : (M_{F_Q}, \mathcal{E}_{u_0}) \to C^2 \times Q, \quad E_{F_Q'} : (M_{F_Q'}, \mathcal{E}_{u_0}') \to C^2 \times Q,$$

i.e. there is a (unique) germ of homeomorphism $F^\sharp : (M_{F_Q}, \mathcal{E}_{u_0}) \to (M_{F_Q'}, \mathcal{E}_{u_0}')$ satisfying $E_{F_Q'} \circ F^\sharp = F \circ E_{F_Q}$,

2. F^\sharp is holomorphic at each point of $\text{Sing} \mathcal{E}_{u_0} \cup \text{Sing} (F_Q') \subset \mathcal{E}_{u_0}$, except perhaps at the singular points of \mathcal{E}_{u_0} that are nodal singularities of the special fiber F_{u_0} of F_Q, cf. (16).

Remark 3.4. According to Camacho-Sad index Theorem, there is a non-nodal singular point of F_Q' in each invariant component of the special fiber \mathcal{E}_{u_0} of the exceptional divisor of the reduction of F_Q; consequently the holomorphy property (2) in Definition 3.3 induces the transversal holomorphy of F^\sharp at any regular point of the foliation F_Q'.

Remark 3.5. If $\mu : P \to Q'$ is a holomorphic map germ and F is a C^{ex}-conjugacy between two equireducible deformations F_Q and G_Q of the same foliation F, then $\mu^* F$ is a C^{ex}-conjugacy between the deformations $\mu^* F_Q$ and $\mu^* G_Q$.

3.2. Equisingular deformations. Let us consider an equireducible foliation F_Q, over a germ of manifold $Q = (Q, u_0)$, of a foliation F on $(C^2, 0)$. We keep all previous notations (13)-(16). We will denote by $\text{Diff}(C \times Q, (0, u_0))$ the group of germs of holomorphic automorphisms of $(C \times Q, (0, u_0))$ fixing the point $(0, u_0)$ and by

$$\text{Diff}_Q(C \times Q, (0, u_0)) := \{ h \in \text{Diff}(C \times Q, (0, u_0)) \mid pr_Q \circ h = pr_Q \}, \quad (17)$$

the subgroup of automorphisms over Q.

Now let us fix a point o_D in each \mathcal{E}_{u_0}-invariant component D of \mathcal{E}_{u_0} that is a non-singular point of this foliation and let us choose a germ of holomorphic submersion

$$g_D : (M_{F_Q}, o_D) \to (C \times Q, (0, u_0)), \quad g_D(o_D) = (0, u_0),$$

that is a map over Q', i.e. $pr_Q \circ g_D = \pi^\sharp$, constant on the leaves of F_Q^\sharp. We will say that g_D is a transversal factor to F_Q at the point o_D. Classically the holonomy of F_Q^\sharp along D realized on g_D is the group representation of the fundamental group of the punctured component $D^* := D \setminus \text{Sing}(F_Q^\sharp)$

$$\pi_1(D^*, o_D) \to \text{Diff}_Q(C \times Q, (0, u_0))$$

that associates to the class of a loop γ in D^*, $\gamma(0) = o_D$, the automorphism h_γ over Q such that $g_D \circ h_\gamma^{-1}$ is the analytic extension (equivalently the extension as first integral of F_Q^\sharp) of g_D along γ. Up to composition by inner automorphisms of $\text{Diff}_Q(C \times Q, (0, u_0))$, this representation does not depend on the choice of the point o_D in D^* or that of the transversal factor g_D.

For a germ of holomorphic map $\mu : P \to Q$ we will identify to $M_{\mathcal{F}}$ the special fibers of the reductions of \mathcal{F}_Q and of $\mu^*\mathcal{F}_Q$, see (15). The pull-back by μ of a submersion over Q, resp. a first integral over Q of \mathcal{F}_Q^\sharp, being a submersion over P, resp. a first integral over P of $\mu^*\mathcal{F}_Q^\sharp$, we have:

- the pull-back μ^*g_D of a transversal factor g_D to \mathcal{F}_Q^\sharp, considered as a map over Q, is a transversal factor to $\mu^*\mathcal{F}_Q^\sharp$ at the same point of the same invariant component D of \mathcal{E}_F, and the holonomy of $\mu^*\mathcal{F}_Q^\sharp$ represented on it is

$$\mathcal{H}_{\mathcal{D}}^{\mu^*\mathcal{F}_Q^\sharp} = \mu^* \circ \mathcal{H}_{\mathcal{D}}^{\mathcal{F}_Q^\sharp}, \quad (19)$$

where

$$\mu^* : \text{Diff}_Q(\mathbb{C} \times Q, (0, u_0)) \to \text{Diff}_P(\mathbb{C} \times P, (0, t_0)), \quad h \mapsto (\mu^* h : (z, t) \mapsto h(z, \mu(t)))$$

- if H_D denotes the holonomy group of \mathcal{F}_Q^\sharp along D, i.e. the image of the morphism $\mathcal{H}_{\mathcal{D}}^{\mathcal{F}_Q^\sharp}$, then $\mu^*(H_D)$ is the holonomy group of $\mu^*\mathcal{F}_Q^\sharp$ along D.

Let us denote by $\text{Diff}(\mathbb{C}, 0) \times \{\text{id}_Q\} \subset \text{Diff}_Q(\mathbb{C} \times Q, (0, u_0))$ the subgroup of automorphisms that do not depend on $u \in Q$.

Definition 3.6. We say that a deformation \mathcal{F}_Q of \mathcal{F} over Q is **equisingular**, if it is equireducible and the holonomy representation of the reduced foliation \mathcal{F}_Q^\sharp along any invariant component D of the special fiber \mathcal{E}_{u_0} of the exceptional divisor \mathcal{E}_Q is conjugated to a morphism with values in $\text{Diff}(\mathbb{C}, 0) \times \{\text{id}_Q\}$: there exists $\psi_D \in \text{Diff}_Q(\mathbb{C} \times Q, (0, u_0))$ such that

$$\tau_{\psi_D} \circ \mathcal{H}_{\mathcal{D}}^{\mathcal{F}_Q^\sharp} : \pi_1(D^*, o_D) \to \text{Diff}(\mathbb{C}, 0) \times \{\text{id}_Q\} \subset \text{Diff}_Q(\mathbb{C} \times Q, (0, u_0))$$

where τ_{ψ_D} is the inner automorphism $\phi \mapsto \psi_D \circ \phi \circ \psi_D^{-1}$ of $\text{Diff}(\mathbb{C} \times Q, (0, u_0))$.

In other words, an equireducible foliation \mathcal{F}_Q is equisingular if and only if for any invariant component D of \mathcal{E}_{u_0}, the holonomy representation $\mathcal{H}_{\mathcal{D}}^{\mathcal{F}_Q^\sharp}$ is conjugated to the holonomy representation along D of the constant foliation $\mathcal{F}_Q^{\text{ct}}$, i.e.

$$\tau_{\psi_D} \circ \mathcal{H}_{\mathcal{D}}^{\mathcal{F}_Q^\sharp} = \mathcal{H}_{\mathcal{D}}^{\mathcal{F}_Q^{\text{ct}}}, \quad (20)$$

for an appropriate $\psi_D \in \text{Diff}_Q(\mathbb{C} \times Q, (0, u_0))$.

Proposition 3.7. The pull-back by a holomorphic map germ $\mu : P \to Q$ of an equisingular deformation \mathcal{F}_Q over Q is an equisingular deformation over P.

Proof. Let us suppose equality (20) satisfied, and let us denote by $\kappa_P : P \to P$ the constant map $t \mapsto t_0$. Since $\kappa_P^*, \mu^*\mathcal{F}_Q$ is the constant deformation of \mathcal{F} over P, it suffices to prove the equality

$$\tau_{\mu^*\psi_D} \circ \mathcal{H}_{\mathcal{D}}^{\mu^*\mathcal{F}_Q} = \mathcal{H}_{\mathcal{D}}^{\mu^*\mathcal{F}_Q^\sharp}, \quad (21)$$

$\kappa_P : P \to P$ being the constant map $t \mapsto t_0$. Trivially we have: $\tau_{\mu^*\psi_D} \circ \mu^* = \mu^* \circ \tau_{\psi_D}$. Hence, it follows from (19) and (20):

$$\tau_{\mu^*\psi_D} \circ \mathcal{H}_{\mathcal{D}}^{\mu^*\mathcal{F}_Q^\sharp} = \tau_{\mu^*\psi_D} \circ \mu^* \circ \mathcal{H}_{\mathcal{D}}^{\mathcal{F}_Q^\sharp} = \mu^* \circ \tau_{\psi_D} \circ \mathcal{H}_{\mathcal{D}}^{\mathcal{F}_Q^\sharp} = \mu^* \circ \mathcal{H}_{\mathcal{D}}^{\mu^*\mathcal{F}_Q^\sharp} = \mathcal{H}_{\mathcal{D}}^{\mu^*\kappa_Q^*\mathcal{F}_Q^\sharp},$$

the last equality follows from the fact that the constant deformation $\kappa_Q^*\mathcal{F}_Q^\sharp$ is equisingular and thus fulfills the corresponding relation (19). Equality (21) results from the trivial relation $\kappa_Q \circ \mu = \mu \circ \kappa_P$ that gives $\mu^*\kappa_Q^*\mathcal{F}_Q^\sharp = \kappa_P^* \mu^*\mathcal{F}_Q^\sharp$. \qed
3.3. Good trivializing system. In all the sequel we will make the hypothesis that the considered foliations \mathcal{F} are generalized curves, i.e. the reduced foliations \mathcal{F}^r have no saddle-node singularities. Consequently at each singular point s of \mathcal{F}^r in an invariant component D of $\mathcal{E}_\mathcal{F}$, the holonomy around s and the Camacho-Sad index $\text{CS}(\mathcal{F}^r, D, s)$ determine the analytical type of the germ of \mathcal{F}^r at s. We will see that this property will imply the “C^∞-rigidity” of \mathcal{F}^r along each component D of $\mathcal{E}_\mathcal{F}$, in the meaning that the germ along D of the reduced foliation associated to any equisingular deformation of \mathcal{F}, is C^∞-conjugated to that of the constant deformation.

Let us consider an equisingular deformation \mathcal{F}_Q of \mathcal{F}. Let us keep the previous notations (13)-(16) and let us denote by

$$\iota^\sharp: (M, \mathcal{E}_\mathcal{F}) \hookrightarrow (M_{\mathcal{F}_Q}, \mathcal{E}_{u_0}), \quad E_{\mathcal{F}_Q} \circ \iota^\sharp = \iota \circ E_\mathcal{F},$$

the lifting through the reduction and equirotation maps of the canonical immersion

$$\iota: (C^2, 0) \hookrightarrow (C^2 \times Q, (0, u_0)), \quad (x, y) \mapsto (x, y, u_0).$$

We will also denote by $j^\sharp: M \hookrightarrow M \times Q$ the canonical immersion $m \mapsto (m, u_0)$, by $\text{pr}_Q: C^2 \times Q \rightarrow Q$ and $\text{pr}_Q^\sharp: M \times Q \rightarrow Q$ the canonical projections, and we again write $\pi^\sharp := \text{pr}_Q \circ E_{\mathcal{F}_Q}: (M_{\mathcal{F}_Q}, \mathcal{E}_{u_0}) \rightarrow Q$.

Theorem 3.8. If \mathcal{F} is a generalized curve, then we can associate to each irreducible component D of $\mathcal{E}_\mathcal{F}$, a homeomorphism germ

$$\Psi_D: (M_{\mathcal{F}_Q}, \iota^\sharp(D)) \overset{\sim}{\longrightarrow} (M_\mathcal{F} \times Q, D \times \{u_0\}),$$

so that:

(i) Ψ_D is a map over Q, i.e. $\text{pr}_Q^\sharp \circ \Psi_D = \pi^\sharp$, and corresponds to the identity map over u_0, i.e. $\Psi_D \circ \iota^\sharp = j^\sharp$;

(ii) Ψ_D is holomorphic at each point of $\text{Sing}(\mathcal{E}_{u_0}) \cup \text{Sing}(\mathcal{F}^r_{u_0})$ except perhaps at the singular points of \mathcal{E}_{u_0} that are nodal singularities of $\mathcal{F}^r_{u_0}$;

(iii) Ψ_D conjugates the foliation $\mathcal{F}^r_{\mathcal{F}_Q}$ to the foliation $\mathcal{F}^r_{\mathcal{F}_Q}^\text{ct}$ obtained after equirotation of the constant deformation $\mathcal{F}^r_{\mathcal{F}_Q}$;

(iv) the germ of $\Psi_D \circ \Psi_D^{-1}$ at the intersection point $\{s_{DD'}\} = (D \cap D') \times \{u_0\}$ of two irreducible components D and D', is the identity when either $s_{DD'}$ is a nodal singular point of $\mathcal{F}^r_{u_0}$ or $s_{DD'}$ is a regular point of $\mathcal{F}^r_{u_0}$.

The collection $(\Psi_D)_D$ of these homeomorphisms indexed by the components of $\mathcal{E}_\mathcal{F}$ is called good trivializing system for \mathcal{F}_Q.

Proof. We will proceed in five steps.

Step 1: construction of Ψ_D on a neighborhood Ω of $\iota^\sharp(D \setminus \text{Sing}(\mathcal{F}^r))$ with D invariant.

Let us fix a point $o_D \in D \setminus \text{Sing}(\mathcal{F}^r)$ and a transversal factor to \mathcal{F}^r_Q

$$g: (M_{\mathcal{F}_Q}, \iota^\sharp(o_D)) \rightarrow (C \times Q, (0, u_0)).$$

Let us also fix a C^∞ submersion

$$\rho: W \rightarrow \iota^\sharp(D)$$

defined on a neighborhood W of $\iota^\sharp(D)$ in $M_{\mathcal{F}_Q}$, such that:

(i) the restriction of ρ to $\iota^\sharp(D)$ is the identity map,

(ii) the restriction ρ_0 of ρ to the special fiber $M_{u_0} := \pi^\sharp-1(u_0)$ is a submersion,

(iii) ρ is holomorphic at $\iota^\sharp(o_D)$ and also at each point $s \in \text{Sing}(\mathcal{E}_{u_0}) \cup \text{Sing}(\mathcal{F}^r_{u_0})$,

(iv) the fibers $\rho^{-1}(s)$, $s \in \text{Sing}(\mathcal{E}_{u_0}) \cup \text{Sing}(\mathcal{F}^r_{u_0})$, are invariant by $\mathcal{F}^r_{\mathcal{F}_Q}$.
There is a unique section $\sigma : (\mathbb{C} \times Q, (0, u_0)) \to (M_{\mathcal{F}_{Q}}, \iota^j(o_D))$ of g, whose image coincides with the fiber $\rho^{-1}(\iota^j(o_D))$. We do a similar construction for the constant deformation. First, at the point $\tilde{o}_D := j^\sharp(o_D)$ we have the following transversal factor

$$\tilde{g} = \tilde{g}_0 \circ \text{id}_Q : (M_{\mathcal{F}} \times Q, (\tilde{o}_D, u_0)) \to (\mathbb{C} \times Q, (0, u_0)), \quad \tilde{g}_0 := \text{pr}_C \circ g \circ \iota^j,$$

with $\text{pr}_C : \mathbb{C} \times Q \to \mathbb{C}$ the first projection. Next, we define the following submersion $\tilde{\rho}$ onto $D \times \{u_0\}$

$$\tilde{\rho} : \iota^{\sharp-1}(W) \times Q \to D \times \{u_0\}, \quad (m, u) \mapsto (\iota^{\sharp-1} \circ \rho_0 \circ \iota^j(m), u_0).$$

Finally, we consider the section $\tilde{\sigma}$ of \tilde{g} whose image coincides with $\tilde{\rho}^{-1}((\tilde{o}_D))$.

Now let us fix an element $\psi_D \in \text{Diff}_Q(\mathbb{C} \times Q, (0, u_0))$ that conjugates the holonomy representation along $\iota^j(D)$ of \mathcal{F}_{Q}^\sharp realized on g, to that of \mathcal{F}_{Q}^\sharp realized on \tilde{g}:

$$\tau_{\psi_D} \circ \mathcal{H}_{D}^\sharp = \mathcal{H}_{D}^\sharp, \quad \tau_{\psi_D}(\phi) := \psi_D \circ \phi \circ \psi_D^{-1},$$

as in Definition 3.6 and equation (20). By classical theory of path lifting in leaves of regular 1-dimensional foliations, there is a homeomorphism $\Psi : \Omega \to \tilde{\Omega}$ where Ω is an open neighborhood of $\iota^j(D \setminus \text{Sing}(\mathcal{F}^\sharp))$ in $W \subset M_{\mathcal{F}_Q}$ and $\tilde{\Omega}$ is an open neighborhood of $(D \setminus \text{Sing}(\mathcal{F}^\sharp)) \times \{u_0\}$ in $M_{\mathcal{F}} \times Q$, satisfying the following properties:

- when restricted to $\iota^j(D \setminus \text{Sing}(\mathcal{F}^\sharp))$, Ψ coincides with the map $\Psi^\flat : \iota^j(D) \sim \to D \times \{u_0\}$, $p \mapsto (\iota^{\sharp-1}(p), u_0)$,

- Ψ sends the fiber $\rho^{-1}(\iota^j(o_D))$ to the fiber $\tilde{\rho}^{-1}(\tilde{o}_D)$ and its restriction to $\rho^{-1}(\iota^j(o_D))$ is equal to $\tilde{\sigma} \circ \psi_D \circ g$,

- Ψ conjugates the restriction of \mathcal{F}_{Q}^\sharp to Ω to that of \mathcal{F}_{Q}^\sharp to $\tilde{\Omega}$,

- Ψ is a lift of Ψ^\flat, that is $\tilde{\rho} \circ \Psi = \Psi^\flat \circ \rho$.

By construction, Ψ is a map over Q, i.e. $\text{pr}_Q^\sharp \circ \Psi = \pi^j$ and its germ along $\iota^j(D \setminus \text{Sing}(\mathcal{F}^\sharp))$ is unique. Moreover, ρ being holomorphic at the singular points, Ψ is also holomorphic on the intersection of Ω with neighborhoods of these points.

Step 2: extension at a non-nodal singular point. The proof of Mattei-Moussu’s theorem [10] given in [5, Theorem 5.2.1] shows that the closures of Ω and $\tilde{\Omega}$ at the non-nodal singular points of $\mathcal{F}^\sharp_{0_0}$ are neighborhoods of these points; in fact, the estimates made in [5] are uniform in the parameters, see also [3]. Since Ψ constructed in Step 1 is holomorphic near these singularities we conclude that Ψ extends holomorphically at these points by classical Riemann’s theorem.

Step 3: construction of Ψ_D when D is dicritical. Classically, the holomorphic type of \mathcal{F}^\sharp_{Q} along a dicritical divisor $\iota^j(D)$ only depends on the self-intersection number of $\iota^j(D)$ in the special fiber $\pi^j-1(u_0)$. Thus there exists a germ of biholomorphism $\Psi : (M_{\mathcal{F}_{Q}}, \iota^j(D)) \sim \to (M_{\mathcal{F}} \times Q, D \times \{u_0\})$ over Q that conjugates \mathcal{F}_{Q}^\sharp to \mathcal{F}_{Q}^\sharp. Up to conjugating by a biholomorphism of $(M_{\mathcal{F}} \times Q, D \times \{u_0\})$ leaving \mathcal{F}_{Q}^\sharp invariant we may also suppose that $\Psi \circ \iota^j = j^\sharp$. It remains to modify Ψ at each point where $\iota^j(D)$ meets another component $\iota^j(D')$ so that at this point the germ of Ψ coincides with that of the homeomorphism constructed in Step 1 for D'. This follows from the following remark:

Remark 3.9. Let us consider two germs of biholomorphisms over \mathbb{C}^q

$$g^j : (\mathbb{C}^2 \times \mathbb{C}^q, \mathbb{D}_1 \times \{0\}) \sim \to (\mathbb{C}^2 \times \mathbb{C}^q, g^j(\mathbb{D}_1 \times \{0\})), \quad j = 1, 2,$$

of the following form:

$$g^j(x, y, u) = (g^j_1(x, u), g^j_2(x, y, u), u), \quad u = (u_1, \ldots, u_q),$$

where g^j_1 is a biholomorphism of $\mathbb{C}^2 \times \mathbb{C}^q$ onto itself that sends $\mathbb{D}_1 \times \{0\}$ to $\mathbb{D}_1 \times \{0\}$ and g^j_2 fixes $\mathbb{D}_1 \times \{0\}$.
there exists a homeomorphism germ of the same form, satisfying also Properties (24), such that:

\[g(x, y, u) = (g_1(x, u), g_2(x, y, u), u), \]

of the same form, satisfying also Properties (24), such that

\[g(x, y, u) = \begin{cases} g^1(x, y, u) & \text{if } |x| \leq r_1, \\ g^2(x, y, u) & \text{if } R_1 \leq |x| \leq 1. \end{cases} \]

Proof of the remark. Let \(0 < r_1 < R_1 < 1 \) and \(\epsilon > 0 \) be reals numbers such that

\[\sup_{|x| \leq r_1, |u| \leq \epsilon} |g^1_1(x, u)| < \inf_{r_1 \leq |x| \leq 1, |u| \leq \epsilon} |g^1_2(x, u)|, \]

and let us choose \(r_2, R_2 \in \mathbb{R} \) satisfying \(r_1 < r_2 < R_2 < R_1 \). Similarly to [7, Proposition 5.13] one can prove that there is a homeomorphism germ over \(\mathbb{C}^q \)

\[G : (\mathbb{C} \times \mathbb{C}^q, \mathbb{D}_1 \times \{0\}) \to (\mathbb{C}^2 \times \mathbb{C}^q, g(\mathbb{D}_1 \times \{0\})), \]

such that: \(G_1(z, u) = (G_1(z, u), u) \), \(G(z, u) = (G_1(z, u), u) \), \(G_1(z, u) = g_1(z, u) \) if \(z \leq r_1 \) and \(G_1(z, u) = g_1^1(z, u) \) if \(R_2 \leq |z| \leq 1 \). Let us fix continuous maps \(\zeta : \{r_1 \leq |z| \leq r_2\} \to \{|z| \leq r_1\} \), \(\xi : \{R_2 \leq |z| \leq R_1\} \to \{|z| \leq R_1\} \), that induce homeomorphisms when restricted to the interior of these compact annuli, such that \(\zeta(z) = z \) if \(|z| = r_1 \), \(\xi(z) = z \) if \(|z| = r_2 \) and \(\zeta(z) = z \) if \(|z| = R_2 \), \(\xi(z) = z \) if \(|z| = R_1 \). Let us also fix a continuous family \(F_r(z, u), \tau \in [r_2, R_2], \) of function germs at \((0, 0) \in \mathbb{C} \times \mathbb{C}^q \) that are defined and holomorphic on a common domain, such that \(\partial^+ F_r(0, 0) \neq 0, F_r(z, u) = g_2^1(0, z, u) \) and \(F_{R_2}(z, u) = g_2^2(0, z, u) \). Then we set \(g_1(x, u) = G_1(x, u) \) and

\[g_2(x, y, u) = \begin{cases} g_2^1(x, y, u) & \text{if } |x| \leq r_1, \\ g_2^1(\zeta(x), y, u) & \text{if } r_1 \leq |x| \leq r_2, \\ F_r^1(y, u) & \text{if } r_2 \leq |x| \leq R_2, \\ g_2^2(\xi(x), y, u) & \text{if } R_2 \leq |x| \leq R_1, \\ g_2^2(x, y, u) & \text{if } R_1 \leq |x| \leq 1. \end{cases} \]

Step 4: Extension at a nodal singular point \(s \notin \text{Sing}(E_{u_0}) \). The extension of \(\Psi \) will be done “by linearity” as follows. Let \(\zeta = (\zeta_1, \ldots, \zeta_q) : (Q, u_0) \to (\mathbb{C}^q, 0) \) be a chart on \(Q \). Since the holonomy around \(s \) is a trivial family, Camacho-Sad index of \(F^2_Q \) restricted to the fibers of \(\pi^2 \) is constant along the singular locus. By linearization (with parameters) there is a local chart

\[\chi = (w_1, w_2, z_1, \ldots, z_q) : (M_{\mathbb{S}_Q}, s) \to (\mathbb{C}^2 \times \mathbb{C}^q, 0), \]

such that \(F^2_Q = \chi^{-1}(\mathcal{L}) \), where \(\mathcal{L} \) is the one dimensional foliation on \(\mathbb{C}^{q+2}_{x,y,u_1,\ldots,u_q} \), with singular set \(\{(0, 0)\} \times \mathbb{C}^q \), given by the linear differential equations system

\[xdy - \alpha ydx = du_1 = \cdots = du_q = 0, \quad \alpha \in \mathbb{R}_{>0}. \]

We may suppose that the \(x \)-axis corresponds to \(i^2(D) \) and that \(\rho \) corresponds to the linear projection on the first coordinate \(w_1 \) in \(\mathbb{C}^2 \). At the point \(\bar{s} := (\bar{t}^{-1}(s), u_0) \in M_F \times Q \), with the local chart

\[\bar{\chi} = (w_1 \circ i^\bar{\xi}, w_2 \circ i^\bar{\xi}, \zeta_1, \ldots, \zeta_q) : (M_F \times Q, \bar{s}) \to (\mathbb{C}^2 \times \mathbb{C}^q, 0), \]
the component $D \times \{u_0\}$ corresponds again to the x-axis, \tilde{p} is the linear projection and we have: $\mathcal{F}^{\ast}_{Q} = \tilde{\chi}^{-1}(\mathcal{L})$. Notice that $\tilde{\chi} \circ \Psi \circ \chi^{-1}$ is a holomorphic automorphism leaving invariant the foliation \mathcal{L}, defined on a neighbourhood in \mathbb{C}^{d+2} of a punctured disk $\mathcal{D}^{\ast} = \{0 < |x| \leq \varepsilon, y = 0, u = 0\}$. It has the following expression:

$$\tilde{\chi} \circ \Psi \circ \chi^{-1}(x, y, u) = \left(x, \tilde{\Psi}(x, y, u), u \right), \quad u = (u_1, \ldots, u_q),$$

$$\tilde{\Psi}(x, 0, u) = 0, \quad \tilde{\Psi}(x, y, 0) = (x, y, 0).$$

On $\{x\} \times \mathbb{C}^{q+1}$, $x \in \mathcal{D}^{\ast}$, the holonomy of \mathcal{L} along the loop $\gamma_x(t) = (e^{2\pi i t} x, 0, \ldots, 0)$, $t \in [0, 1]$, is the linear automorphism $h(x, y, u) = (x, e^{2\pi i \alpha} y, u)$. The commutativity of $\tilde{\chi} \circ \Psi \circ \chi^{-1}$ with these holonomy maps,

$$\tilde{\Psi}(x, e^{2\pi i \alpha} y, u) = e^{2\pi i \alpha} \tilde{\Psi}(x, y, u),$$

gives

$$\tilde{\Psi}(x, y, u) = A(x, u)y, \quad A(x, u) \neq 0,$$

where A is a holomorphic map defined on an open set of \mathbb{C}^{d+q}, $x \in \{ x \}, \ldots, y \}_{q}$ that contains the compact set defined by $\varepsilon/2 \leq |x| \leq \varepsilon, |u_j| \leq \eta$ for $j = 1, \ldots, q$. By the invariance of \mathcal{L} under $\tilde{\chi} \circ \Psi \circ \chi^{-1}$, we have the equality:

$$(-\alpha \frac{dx}{x} + \frac{dy}{\Psi}) \wedge (-\alpha \frac{dx}{x} + \frac{dy}{y}) \wedge du_1 \wedge \cdots \wedge du_q = 0.$$

Hence:

$$\frac{dA}{A} \wedge (-\alpha \frac{dx}{x} + \frac{dy}{y}) \wedge du_1 \wedge \cdots \wedge du_q = 0.$$

Since the differential form $-\alpha \frac{dx}{x} + \frac{dy}{y}$ in \mathbb{C}^2 possesses only constant holomorphic first integrals, A does not depend on the variable x. It extends trivially to a holomorphic map defined on $\{ |x| \leq \varepsilon, |u_j| \leq \eta, j = 1, \ldots, q \}$. Thus the automorphism $\tilde{\chi} \circ \Psi \circ \chi^{-1}$ extends to a neighborhood of the origin in \mathbb{C}^{q+2}, as a holomorphic automorphism Ψ leaving \mathcal{L} invariant. We conclude that the desired extension of Ψ is given by $\tilde{\chi}^{-1} \circ \Psi \circ \chi$.

- **Step 5:** Extension at a nodal singular point $s \in \text{Sing}(\mathcal{E}_{\eta})$. If by Step 3 we extend at a such a point s the homeomorphisms along the components D and D' meeting at s constructed in Step 1, we obtain two germs at s of biholomorphisms Ψ and Ψ' that do not fulfill the requested property (iv). Thanks to the following remark, we modify them so that they coincide as germs at s.

Remark 3.10. Let $g^j : \overline{D}_{1} \times \overline{D}_{\eta} \rightarrow \mathbb{C}$, $j = 1, 2$, be two biholomorphisms leaving invariant the linear foliation \mathcal{L} defined by (25), such that

1. $g^1(x, y, 0) = (x, y, 0)$,
2. $g^1(x, y, u) = (x, g^1_2(x, y, u), u)$, with $g^1_2(x, 0, u) = 0$,
3. $g^2(x, y, u) = (g^2_1(x, y, u), y, u)$ with $g^2_1(0, y, u) = 0$,

where $\overline{D}_{\eta} = \{ |z| < \eta \} \subset \mathbb{C}$. Then for $\eta > 0$ small enough, there are suitable real numbers $0 < C_1 < C_2 < 1 < C'_2 < C'_1$ such that there exists a homeomorphism germ

$$g : \overline{D}_2 \times \overline{D}_\eta \rightarrow \overline{D}_2 \times \overline{D}_\eta, \quad (x, y, u) \mapsto (g_1(x, y, u), g_2(x, y, u), u)$$

satisfying also Properties (1)-(3) above, that is equal to g_1 when $|y| \leq C_1 |x|^\alpha$, to g_2 when $|y| \geq C_2 |x|^\alpha$ and to the identity map when $C'_2 |x|^\alpha < |y| \leq C_2 |x|^\alpha$. ∎

Proof of the remark. As we have seen in Step 4, the invariance of a linear foliation by these biholomorphisms implies that $g^2_1(x, y, u) = A_1(u)y$ and $g^2_1(x, y, u) = A_2(u)x$ with
\[A_1, A_2 : \mathbb{D}^q_n \to \mathbb{C}^*\] holomorphic functions. Let us choose the real numbers \(C_j, C'_j, j = 1, 2\) so that
\[C'_1 > \sup\{|A_2(u)| : u \in \mathbb{D}^q_n\} \cdot C'_2 > C_2 > \sup\{|A_1(u)| : u \in \mathbb{D}^q_n\} \cdot C_1.\]

The continuous functions
\[B : \{1\} \times \mathbb{D} \times \mathbb{D}^q_n \to \{1\} \times D_1 \times \mathbb{D}^q_n,\]
\[B(1, y, u) = (1, R(|y|, u) e^{i\theta(|y|, u)}, u)\]
defined by the following interpolation
- \(R(r, u) = |A(u)|r, if r \leq C_1,\)
- \(R(r, u) = \frac{C_2-C_1|A(u)|}{C_2-C_1} \cdot (r - C_1) + C_1|A(u)|, if C_1 \leq r \leq C_2,\)
- \(R(r, u) = r, if C_2 < r < 1,\)
- \(\theta(r, u) = \arg z + \arg A(u), if r \leq C_1,\)
- \(\theta(r, u) = \arg z + \frac{C_2-C_1}{2} \cdot (r - C_1) + \arg A(u), if C_1 \leq r \leq C_2,\)
- \(\theta(r, u) = \arg z, if C_2 < r < 1,\)
is a homeomorphism that is equal to \(g^1(1, y, u)\) if \(|y| < C_1\) and to the identity map if \(|y| > C_2\). On each line \(L_u = \{1\} \times D_1 \times \{u\}\) the holonomy map of \(L\), which is a rotation, commutes with the restriction \(B|_{L_u}\). Therefore \(B\) extends in a unique way to a homeomorphism defined on the open set
\[\{|y| < |x|^{\alpha}\} \subset \mathbb{D}^q \times \mathbb{D}^q_n,\]

obtained by saturation of \(\{1\} \times D_1 \times \mathbb{D}^q_n\) by \(L\). This homeomorphism leaves \(L\) invariant and fixes each line \(\{x\} \times D_1 \times \{y\}\). Thanks to the uniqueness of this extension it is equal to \(\tilde{\chi} \circ \Psi \circ \chi^{-1}\) on \(\{|y| < C_1|x|^{\alpha}\}\) and by construction it is equal to the identity map on \(\{C_2|x|^{\alpha} < |y| < |x|^{\alpha}\}\). It extends trivially as the identity map on \(\{C_2|x|^{\alpha} < |y|\}\). Finally the obtained extension is a homeomorphism \(G : \mathbb{D}^q \times \mathbb{D}^q_n \to \mathbb{D}^q \times \mathbb{D}^q_n\) with support in \(\{|y| \leq C_2|x|^{\alpha}\}\), again equal to \(g^1\) on \(\{|y| < C_1|x|^{\alpha}\}\).

Performing the same construction along the \(y\) axis we end up with a homeomorphism \(G' : \mathbb{D}^q \times \mathbb{D}^q_n \to \mathbb{D}^q \times \mathbb{D}^q_n\) with support in \(\{|y| \geq C_2'|x|^{\alpha}\}\), equal to \(\tilde{\chi} \circ \Psi' \circ \chi^{-1}\) on \(\{|y| > C'_1|x|^{\alpha}\}\). The supports of \(G\) and \(G'\) being disjoint, the homeomorphism \(g := G \circ G' = G' \circ G\) fulfills the required properties.

This achieves the proof of Theorem 3.8.

3.4. Deformation functor. Let us consider the pointed set
\[\text{Def}^Q_{\mathcal{F}} := \{[\mathcal{F}_Q] : \mathcal{F}_Q\ spurious deformation of \mathcal{F}\}/ \approx_{\mathcal{C}^{\infty}}\]
of all \(\mathcal{C}^{\infty}\)-conjugacy classes \([\mathcal{F}_Q]\) of germs of equisingular deformations \(\mathcal{F}_Q\) over \(Q\) of a fixed foliation \(\mathcal{F}\). This set is pointed by the class of the constant deformation.

The assignment \(Q \mapsto \text{Def}^Q_{\mathcal{F}}\) is a contravariant functor, because according to Remark 3.1, to a germ \(\mu : P \to Q\) corresponds the well defined pull-back map
\[\mu^* : \text{Def}^Q_{\mathcal{F}} \to \text{Def}^P_{\mathcal{F}}, [\mathcal{F}_Q] \mapsto [\mu^*\mathcal{F}_Q].\]

Theorem 3.11. Let \(\phi : (\mathcal{C}^2, 0) \to (\mathcal{C}^2, 0)\) be a homeomorphism germ that is a \(\mathcal{C}^{\infty}\)-conjugacy between two germs of foliations \(\mathcal{G}\) and \(\mathcal{F} = \phi(\mathcal{G})\) which are generalized curves. Let \(Q' = (Q, u_0)\) be a germ of manifold. Then there exists a bijective map
\[\phi^* : \text{Def}^Q_{\mathcal{F}} \to \text{Def}^Q_{\mathcal{G}}\]
defined by the following property:
\[\phi^*([\mathcal{F}_Q]) = [\mathcal{G}_{Q'}]\] if and only if there exists a germ of homeomorphism over \(Q\)
\[\Phi : (\mathcal{C}^2 \times Q, (0, u_0)) \to (\mathcal{C}^2 \times Q, (0, u_0)), \quad \text{pr}_Q \circ \Phi = \text{pr}_Q,\]
that sends the leaves of \mathcal{G}_Q on that of \mathcal{F}_Q, is excellent, and satisfies

$$\Phi(x, y, u_0) = (\phi(x, y), u_0).$$

Moreover, if $\psi : (\mathbb{C}^2, 0) \sim (\mathbb{C}^2, 0)$, $\psi(K) = \mathcal{G}$, is a C^∞-conjugacy between a germ of foliation K and \mathcal{G}, then

$$(\phi \circ \psi)^* = \psi^* \circ \phi^* : \text{Def}^Q_\mathcal{F} \sim \text{Def}^Q_K.$$

Proof. Under the hypothesis of the theorem, let us consider a class $c \in \text{Def}^Q_\mathcal{F}$ and an equisingular deformation \mathcal{F}_Q of \mathcal{F} in c. In a first step we will construct an equisingular deformation \mathcal{G}_Q of \mathcal{G} and a C^∞-homeomorphism Φ satisfying $\Phi(\mathcal{G}_Q) = \mathcal{F}_Q$, such that $\Phi \circ \iota = \iota \circ \phi$, with $\iota : \mathbb{C}^2 \hookrightarrow \mathbb{C}^2 \times Q$, $\iota(x, y) := (x, y, u_0)$. Then in a second step we will verify that the class $[\mathcal{G}_Q] \in \text{Def}^Q_\mathcal{F}$ does not depend on the choice of the deformation \mathcal{F}_Q in c. Finally in a third step we check that the map ϕ^* that associate to each class $c = [\mathcal{F}_Q] \in \text{Def}^Q_\mathcal{F}$ the class of the deformation \mathcal{G}_Q defined in the first step, fulfills the property $(*)$ and the functorial relation.

Step 1. We again denote by ι^\sharp the lifting (22) of ι through the reduction and equireduction maps $E_\mathcal{F}$ and $E_{\mathcal{F}_Q}$, by $j^\sharp : M_\mathcal{F} \hookrightarrow M_\mathcal{F} \times Q$ the lifting of ι through $E_\mathcal{F}$ and $E_{\mathcal{F}_Q}$, that is $j^\sharp(m) := (m, u_0)$, and finally by

$$\phi^\sharp : (M_\mathcal{G}, \mathcal{E}_\mathcal{G}) \to (M_\mathcal{F}, \mathcal{E}_\mathcal{F}), \quad E_\mathcal{F} \circ \phi^\sharp = \phi \circ E_\mathcal{G},$$

the lifting of ϕ through $E_\mathcal{F}$ and the reduction map $E_{\mathcal{G}} : (M_\mathcal{G}, \mathcal{E}_\mathcal{G}) \to (\mathbb{C}^2, 0)$ of \mathcal{G}. The following homeomorphism

$$\phi^\sharp_{Q} : (M_\mathcal{G} \times Q, \mathcal{E}_\mathcal{G} \times \{u_0\}) \to (M_\mathcal{F} \times Q, \mathcal{E}_\mathcal{F} \times \{u_0\}), \quad (m, u) \mapsto (\phi^\sharp(m), u),$$

is excellent and sends the reduced constant foliation $\mathcal{G}^{\text{ct}}_Q$ over Q with special fiber \mathcal{G}^\sharp, to the constant foliation $\mathcal{F}^{\text{ct}}_Q$. According to Theorem 3.8, let us fix a good trivializing system for \mathcal{F}_Q

$$\Psi_D : (M_{\mathcal{F}_Q} \times \iota^\sharp(D)) \sim (M_\mathcal{F} \times Q, D \times \{u_0\}), \quad \Psi_D(\mathcal{F}^\sharp_\mathcal{F}) = \mathcal{F}^{\text{ct}}_Q, \quad \Psi_D \circ \iota^\sharp = j^\sharp,$$

indexed by the irreducible components D of \mathcal{F}_F. At the intersection points $\{s_{DD'}\} := (D \cap D') \times \{u_0\}$, $D \cap D' \neq \emptyset$, the **cocycles**

$$\Phi_{DD'} := (\phi^\sharp_{Q})^{-1} \circ \Psi_{D} \circ \Psi_{D}^{-1} \circ \phi^\sharp_{Q} : (M_\mathcal{G} \times Q, s_{DD'}) \sim (M_\mathcal{G} \times Q, s_{DD'})$$

(27)

are germs of biholomorphisms over Q fulfilling the properties

$$\Phi_{DD'}(\mathcal{G}^{\text{ct}}_Q) = \mathcal{G}^{\text{ct}}_Q, \quad \Phi_{DD'} \circ j^\sharp = j^\sharp.$$

Indeed according to (ii) and (iv) in Theorem 3.8, if the intersection point $D \cap D'$ is not a nodal singular point of \mathcal{F}^\sharp, the germs of ϕ^\sharp_{Q} at the point $s_{DD'}$ and of $\Psi_{D'}^{-1}(s_{DD'})$ are holomorphic; otherwise, at $\Psi_{D}^{-1}(s_{DD'})$ the germs Ψ_{D} and $\Psi_{D'}$ coincide and $\Phi_{DD'}$ is the identity map.

Let us consider the manifold germ

$$(N, \mathcal{E}_\mathcal{Q}) := \sqcup_D (M_\mathcal{G} \times Q, D \times \{u_0\}) / (\Phi_{DD'}), \quad \theta : (N, \mathcal{E}_\mathcal{Q}) \to Q',$$

obtained by gluing neighborhoods in $M_\mathcal{G} \times Q$ of the irreducible components $j^\sharp(D)$ using these cocycles, and endowed with the germ of submersion θ obtained by gluing the germs of the canonical projection $p_\mathcal{Q} : (M_\mathcal{G} \times Q, D \times \{u_0\}) \to Q$. Since $\Phi_{DD'}$ are the identity on the special fiber $M_\mathcal{G} \times \{u_0\}$, j^\sharp induces an embedding

$$\Delta : (M_\mathcal{G}, \mathcal{E}_\mathcal{Q}) \hookrightarrow (N, \mathcal{E}_\mathcal{Q}).$$
that is a biholomorphism germ onto \((\theta^{-1}(u_0), \mathcal{E}_\nu')\). The gluing maps leaving invariant the constant foliation \(\mathcal{G}'_Q\), they define in the ambient space \((N, \mathcal{E}_\nu')\) a foliation germ \(\mathcal{G}_Q\) tangent to the fibers of \(\theta\), that coincides with \(\Delta(\mathcal{G})\) on \(\theta^{-1}(u_0)\). Thanks to the relations \(\Psi_D^{-1} \circ \phi^*_Q \circ \Psi_{DD'}^{-1} = \Psi_D^{-1} \circ \phi^*_Q\) given by (27), the collection of homeomorphisms

\[
\Phi_D := \Psi_D^{-1} \circ \phi^*_Q : (M_Q \times Q, j^*(D)) \to (M_{\mathcal{F}_Q}, i^*(D)), \quad \Phi_D(\mathcal{G}'_Q) = \mathcal{F}_Q,
\]

glue as a homeomorphism over \(Q\)

\[
\Phi' : (N, \mathcal{E}_Q') \xrightarrow{\sim} (M_{\mathcal{F}_Q}, i^*(\mathcal{E}_F)), \quad \text{pr}_Q \circ \Phi' = \theta,
\]

that send the leaves of \(\mathcal{G}_Q'\) to that of \(\mathcal{F}_Q\). As the maps \(\phi^*_Q\) and \(\Psi_D\), this map is excellent in the meaning that it is also holomorphic at the non-nodal points of the corresponding foliation. It satisfies:

\[
\Phi' \circ \Delta = i^* \circ \phi^*_Q; \quad (28)
\]

On the other hand, the preimage by \(\Phi'\) of the exceptional divisor \(\mathcal{E}_{\mathcal{F}_Q} := E_{\mathcal{F}_Q}^{-1}(\{0\} \times Q)\) is an hypersurface \(\mathcal{E}_Q\) which is also exceptional in \(N\) (see [9, p. 306]): there is a holomorphic map germ

\[
C : (N, \mathcal{E}_Q') \to (\mathbb{C}^2 \times Q, (0, u_0)) \quad \text{such that} \quad \text{pr}_Q \circ C = \theta, \quad C(\mathcal{E}_Q) = \{0\} \times Q,
\]

that is a biholomorphism from complementary of \(\mathcal{E}_Q\) to the complementary of \(\{0\} \times Q\). This last property allows to define a germ of holomorphic foliation \(\mathcal{G}_Q\) on \((\mathbb{C}^2 \times Q, (0, u_0))\), that is the direct image of \(\mathcal{G}'_Q\) by \(C\). Up to perform an additional biholomorphism we also require that \(\Delta\) contracts to the embedding \(\iota\), i.e. \(C \circ \Delta = \iota \circ E_{\mathcal{G}}\), so that

\[
\mathcal{G}_Q|_{\mathbb{C}^2 \times \{0\}} = C(\mathcal{G}'_Q) = C(\Delta(\mathcal{G})) = \iota(E_{\mathcal{G}}(\mathcal{G})).
\]

In other words, \(\mathcal{G}_Q\) is a deformation of \(\mathcal{G}\). By construction this deformation is equisingular and more precisely there is a biholomorphism germ

\[
F : (N, \mathcal{E}_Q') \xrightarrow{\sim} (M_{\mathcal{G}_Q}, \mathcal{E}'_{u_0}),
\]

such that

\[
E_{\mathcal{G}_Q} \circ F = C, \quad F(\mathcal{G}'_Q) = \mathcal{G}_Q^\nu, \quad F \circ \Delta = k^\nu, \quad (29)
\]

\(k^\nu\) being the lifting of \(\iota\) through the reduction map \(E_{\mathcal{G}}\) and the equireduction map \(E_{\mathcal{G}_Q} : (M_{\mathcal{G}_Q}, \mathcal{E}'_{u_0}) \to (\mathbb{C}^2 \times Q, (0, u_0))\) of the deformation \(\mathcal{G}_Q\),

Now let us notice that since \(C(\mathcal{E}_Q) = \{0\} \times Q\), the homeomorphism germ \(\Phi'\) contracts through \(C\) and \(E_{\mathcal{F}_Q}\) to a germ of map

\[
\Phi : (\mathbb{C}^2 \times Q, (0, u_0)) \to (\mathbb{C}^2 \times Q, (0, u_0)), \quad E_{\mathcal{F}_Q} \circ \Phi' = \Phi \circ C,
\]

that by construction is a germ of homeomorphism satisfying:

\[
\text{pr}_Q \circ \Phi = \text{pr}_Q, \quad \Phi(\mathcal{G}_Q) = \mathcal{F}_Q, \quad \Phi \circ \iota = \iota \circ \phi.
\]

To achieve the Step 1, it remains to check that \(\Phi\) is excellent. Indeed, \(\Phi' \circ F^{-1}\) is a lifting of \(\Phi\),

\[
\Phi' \circ F^{-1} : (M_{\mathcal{G}_Q}, \mathcal{E}'_{u_0}) \to (M_{\mathcal{F}_Q}, \mathcal{E}_{u_0}), \quad E_{\mathcal{F}_Q} \circ (\Phi' \circ F^{-1}) = \Phi \circ C \circ F^{-1} = \Phi \circ E_{\mathcal{G}_Q}.
\]
Since Φ' is excellent we deduce that Φ is also excellent.

Step 2. Notice first that up to C^{ex}-conjugacy the deformation \mathcal{G}_Q obtained by this construction does not depend on the choice of the good trivializing system $(\Psi_D)_D$. If $(\bar{N}, \bar{\xi}_Q)$, $\bar{\mathcal{G}}_Q$, and $\bar{\mathcal{G}}_Q$ are similarly obtained from another good trivializing system $(\Psi_D)_D$ then the homeomorphisms $\Psi_D \circ \bar{\Psi}_D^{-1} : (M_F \times Q, D \times \{u_0\}) \to (M_F \times Q, D \times \{u_0\})$ glue to an excellent homeomorphism that conjugates $\bar{\mathcal{G}}_Q^\prime$ and \mathcal{G}_Q^\prime, and contracts to an excellent conjugacy between the deformations $\bar{\mathcal{G}}_Q$ and \mathcal{G}_Q of \mathcal{G}.

Now let us show that $[\mathcal{G}_Q]$ does not depend on the choice of the representative F_Q of $c \in \text{Def}_F^Q$. Let \bar{F}_Q be another representative of c, $\bar{\mathcal{G}}_Q$ a deformation of \mathcal{G} and $\bar{\Phi} : (\mathbb{C}^2 \times Q, (0, u_0)) \to (\mathbb{C}^2 \times Q, (0, u_0))$ a germ of excellent homeomorphism such that $\bar{\Phi}(\bar{\mathcal{G}}_Q) = \bar{F}_Q$, $\bar{\mathcal{G}}_Q = \mathcal{G}_Q$, and $\bar{\Phi} = \iota \circ \phi$. Then $\bar{\mathcal{G}}_Q$ is C^{ex}-conjugated to \mathcal{G}_Q. Indeed, if ξ is an C^{ex}-homeomorphism such that $\xi(\bar{F}_Q) = F_Q$ and $\xi \circ \iota = \iota$, then the C^{ex}-homeomorphism $\Upsilon := \Phi^{-1} \circ \xi \circ \bar{\Phi}$ trivially satisfies $\Upsilon(\bar{\mathcal{G}}_Q) = \mathcal{G}_Q$ and $\Upsilon \circ \iota = \iota$. This implies that the map ϕ^* is well-defined.

Step 3. The direct implication of (\ast) is clear. To see the converse, we apply the previous argument to the case $F_Q = F_Q$. The functorial relation follows directly from (\ast) and if $\phi = \text{id}_{C^2}$ then ϕ^* is the identity map on Def_F^Q. This implies that ϕ^* is bijective and $(\phi^*)^{-1} = (\phi^{-1})^*$. \hfill \square

We check that for any holomorphic map germ $\mu : P \to Q$ and any deformation $\mathcal{G}_Q \in \phi^*([F_Q])$ we have:

$$
\phi^*([\mu^* F_Q]) = [\mu^* \mathcal{G}_Q],
$$

i.e. the following diagram is commutative:

$$
\begin{array}{ccc}
\text{Def}_F^Q & \xrightarrow{\phi^*} & \text{Def}_G^Q \\
\mu^* & \downarrow & \mu^* \\
\text{Def}_F^P & \xrightarrow{\phi^*} & \text{Def}_G^P.
\end{array}
$$

Lemma 3.12. Under the assumptions of Theorem 3.11, if $\mu : P \to Q$ and $\lambda : R \to P$ are holomorphic maps between germs of manifolds, $\phi : \mathcal{G} \to \mathcal{F}$ and $\psi : \mathcal{K} \to \mathcal{G}$ are C^{ex}-conjugacies and if we write

$$(\mu, \phi)^* := \phi^* \circ \mu^* : \text{Def}_F^Q \to \text{Def}_G^P,$$

then we have $(\lambda, \psi)^* \circ (\mu, \phi)^* = (\mu \circ \lambda, \phi \circ \psi)^*$.

Proof. It suffices to check that the following diagram is commutative using (26), diagram (30) and Remark 3.5,
Let us denote now by

- **Fol** the category whose objects are the germs of foliations on \((\mathbb{C}^2, 0)\) which are **generalized curves** and whose morphisms \(\phi : \mathcal{G} \to \mathcal{F}\) are the germs of \(C^\infty\)-conjugacies, \(\phi(\mathcal{G}) = \mathcal{F}\).
- **Set** the category of **pointed sets** whose objects are the pairs \((A, a)\) formed by a set and a point of this set, the morphisms \(F : (A, a) \to (B, b)\) being maps from \(A\) to \(B\) such that \(F(a) = b\).
- **Man** the subcategory of **Set**, consisting of pairs \((A, a)\) with \(A\) endowed with a complex manifold structure, the morphisms being holomorphic pointed sets morphisms \(\mu : P \to Q\).

Definition 3.13. The **deformation functor** is the contravariant functor

\[
\text{Def} : \text{Man} \times \text{Fol} \to \text{Set}, \quad (Q, \mathcal{F}) \mapsto \text{Def}^Q_{\mathcal{F}}
\]

defined by associating to any morphism \((\mu, \phi) : (P, \mathcal{G}) \to (Q, \mathcal{F})\), the **pull-back map**

\[
(\mu, \phi)^* : \text{Def}^Q_{\mathcal{F}} \to \text{Def}^P_{\mathcal{G}}, \quad [\mathcal{F}_Q] \mapsto \phi^*(\mu^*([\mathcal{F}_Q])) = \phi^*(\mu^*\mathcal{F}_Q).
\]

The fact that \(\text{Def}\) is a functor follows from Lemma 3.12.

As a direct consequence of Theorem 3.11, if \([\mathcal{G}_P] = (\mu, \phi)^*([\mathcal{F}_Q])\) with \(\mu : P := (P, t_0) \to Q\), then for \(t \in P\) sufficiently close to \(t_0\) the foliations \(\mathcal{G}_P|_{C^2 \times \{t\}}\) and \(\mathcal{F}_Q|_{C^2 \times \{\mu(t)\}}\) are \(C^\infty\)-conjugated.

4. **Group-graphs of automorphisms and transversal symmetries**

4.1. **Group-graph of \(C^\infty\)-automorphisms.** Given a foliation \(\mathcal{F}\) and a germ of manifold \(Q = (Q, u_0)\), let us consider the following sheaf \(\text{Aut}^Q_{\mathcal{F}}\) over the exceptional divisor \(E_\mathcal{F}\) of the reduction of \(\mathcal{F}\): if \(U\) is an open subset of \(\mathcal{E}_\mathcal{F}\), then \(\text{Aut}^Q_{\mathcal{F}}(U)\) is the group of germs along \(U \times \{u_0\}\) of \(C^\infty\)-homeomorphisms over \(Q\)

\[
\Phi : (M_\mathcal{F} \times Q, U \times \{u_0\}) \longrightarrow (M_\mathcal{F} \times Q, U \times \{u_0\})
\]

leaving invariant the constant family \(\mathcal{F}_Q^{\text{red}}\) with fiber the reduced foliation \(\mathcal{F}^{\text{red}}\) and moreover being the identity map on the special fiber \(M_\mathcal{F} \times \{u_0\}\). The same definition works when \(U\) is not open in \(\mathcal{E}_\mathcal{F}\) and in that case \(\text{Aut}^Q_{\mathcal{F}}(U)\) coincides with the inductive limit of \(\text{Aut}^Q_{\mathcal{F}}(V)\) for \(V\) open subset of \(\mathcal{E}_\mathcal{F}\) containing \(U\), cf. Section 2.2. The property “excellent” means here that at each point \(m\) in an invariant component of \(\mathcal{E}_\mathcal{F}\) the germ \(\Phi_m\) of \(\Phi\) is a holomorphic germ if \(m \in \text{Sing}(\mathcal{E}_\mathcal{F})\), except perhaps if \(m\) is a nodal singularity of \(\mathcal{F}^{\text{red}}\) belonging to \(\text{Sing}(\mathcal{E}_\mathcal{F})\), and that \(\Phi_m\) is transversely holomorphic if \(m\) is a regular point of \(\mathcal{F}^{\text{red}}\). According to [1] if \(D\) is an invariant component of \(\mathcal{E}_\mathcal{F}\) and if one saturates by \(\mathcal{F}^{\text{red}}\) a neighborhood of \(\text{Sing}(\mathcal{F}^{\text{red}}) \cap D\), one obtains a set that contains all the regular points of \(\mathcal{F}^{\text{red}}\) in \(D\). Therefore when \(U\) contains \(D\), the above transversal holomorphy property is automatically induced by the holomorphy at the singular points; for this reason we did not need to require it in Definition 3.3 of \(C^\infty\)-conjugacy.

Definition 4.1. We call **group-graph of automorphisms over \(Q\) of \(\mathcal{F}\)** and we denote by \(\text{Aut}^Q_{\mathcal{F}}\) the following group-graph over the **dual graph** \(\Lambda_\mathcal{F}\) of \(\mathcal{E}_\mathcal{F}\):

- (i) \(\text{Aut}^Q_{\mathcal{F}}(D) = \text{Aut}^Q_{\mathcal{F}}(D)\), if \(D \in \text{Ve}_{\Lambda_\mathcal{F}}\) is invariant;
- (ii) \(\text{Aut}^Q_{\mathcal{F}}(D) = \{I_D\}\), if \(D \in \text{Ve}_{\Lambda_\mathcal{F}}\) is dicritical;
- (iii) \(\text{Aut}^Q_{\mathcal{F}}(e)\) is the stalk \(\text{Aut}^Q_{\mathcal{F}}(s)\) of the sheaf \(\text{Aut}^Q_{\mathcal{F}}\) at the point \(s\) defined by \(e = \langle D, D' \rangle\), \(D \cap D' = \{s\}\), if \(s\) is neither a regular point nor a nodal singular point of \(\mathcal{F}^{\text{red}}\).
(iv) $\text{Aut}_F^Q(e) = \{I_e\}$, if $e = \langle D, D'\rangle$, $D \cap D' = \{s\}$ and s is either a regular point or a nodal singular point of F^\dag;
(v) the restriction map $\rho_D^\ast : \text{Aut}_F^Q(D) \to \text{Aut}_F^Q(e)$ is the restriction map of the sheaf Aut_F^Q when D is invariant and e fulfills condition (iii); ρ_D^\ast is the trivial map $\text{Aut}_F^Q(D) \to \{I_e\}$ otherwise;
where I_D, resp. I_e, denotes the germ along $D \times \{u_0\}$, resp. at the point (s, u_0), of the identity map $\text{id}_{M_F \times Q}$.

Remark 4.2. Notice that restricted to its support, see (8), Aut_F^Q coincides with the group-graph associated to the sheaf Aut_F^Q defined in Section 2.2. The elements of $\text{Ve}_{A_F} \cup \text{Ed}_{A_F}$ not belonging to this support are exactly the elements given by (ii) and (iv): the vertices that are dicritical components of \mathcal{E}_F, the edges $\langle D, D'\rangle$ with D or D' dicritical and the edges $\langle D, D'\rangle$ for which F^\dag has a nodal singularity at the point $D \cap D'$. Clearly $\text{supp}(\text{Aut}_F^Q)$ is a sub-graph of \mathcal{E}_F called **cut-graph of F**. We denote by $\text{supp}(\text{Aut}_F^Q) = \bigsqcup_{a \in A} A_{F_a}^Q$, its decomposition into connected components which we call **cut-components of A_F**. We have:

$$H^1(A_F, \text{Aut}_F^Q) = \prod_{a \in A} H^1(A_{F_a}^Q, \text{Aut}_F^Q).$$

(32)

This decomposition, produced by the points (ii) and (iv) and Remark 2.12 in the above definition, may seem artificial. However the cocycles $\langle \Psi_D \circ \Psi_D^{-1} \rangle$ that we will consider are constructed using good trivializing systems $(\Psi_D)_D$ provided by Theorem 3.8. Consequently the property (iv) of that theorem guarantees that $\Psi_D \circ \Psi_D^{-1}$ is trivial when D or D' is dicritical or when F^\dag has a nodal singularity at $D \cap D'$.

Now let us consider a germ of C^∞-homeomorphism $\phi : (C^2, 0) \sim (C^2, 0)$ which conjugates two foliations G and F, $\phi(G) = F$, and the corresponding C^∞-conjugacy

$$\phi^\sharp_{G} : (M_G \times Q, \mathcal{E}_G \times \{u_0\}) \sim (M_F \times Q, \mathcal{E}_F \times \{u_0\}), \quad (p, u) \mapsto (\phi^\sharp p, u),$$

between the constant families $\mathcal{G}_Q^{\text{cut}}$ and $\mathcal{F}_Q^{\text{cut}}$. Let us denote by $\phi^\sharp : \mathcal{E}_G \to \mathcal{E}_F$ the restriction of ϕ^\sharp to the exceptional divisors. If $U \subset \mathcal{E}_G$ is an open set and Φ belongs to $\phi^\sharp_{G} \text{Aut}_G^Q(U) = \text{Aut}_F^G(\phi^\sharp(U))$, then $\phi^\sharp_{G}^{-1} \circ \Phi \circ \phi^\sharp_{G}$ belongs to $\text{Aut}_F^Q(U)$. As described in Section 2.2, the homeomorphism ϕ^\sharp induces an isomorphism between the dual graphs of \mathcal{E}_G and \mathcal{E}_F

$$A_\phi : A_G \to A_F, \quad D \mapsto \phi^\sharp_D(D), \quad \langle D, D' \rangle \mapsto \langle \phi^\sharp_D(D), \phi^\sharp_D(D') \rangle.$$

(33)

We thus obtain the following isomorphism of group-graphs over A_ϕ:

$$\phi^* : \text{Aut}_G^Q \to \text{Aut}_F^Q,$$

$$\text{Aut}_G^Q(A_\phi(\ast)) \ni \Phi \mapsto \phi^\sharp_{G}^{-1} \circ \Phi \circ \phi^\sharp_{G} \in \text{Aut}_G^Q(\ast), \quad \ast \in \text{Ve}_{A_F} \cup \text{Ed}_{A_F}.$$

On the other hand let $\mu : P \to Q$ be a holomorphic map between germs of manifolds. The pull-back being a functor and, by definition, $\mathcal{F}_Q^{\text{cut}}$ being the pull-back by a constant map, it follows:

$$\mu^* \mathcal{F}_Q^{\text{cut}} = \mathcal{F}_P^{\text{cut}} \quad \text{and} \quad \mu^* \phi_Q^\sharp = \phi_P^\sharp.$$

Thus we have the equality $\mu^* (\phi_Q^\sharp^{-1} \circ \Phi \circ \phi_Q^\sharp) = \phi_P^\sharp^{-1} \circ \mu^* \Phi \circ \phi_P^\sharp$. We finally obtain the following commutative diagram of group-graph morphisms

$$\begin{align*}
\text{Aut}_G^Q & \xrightarrow{\phi^*} \text{Aut}_F^Q \\
\mu^* & \downarrow \quad \downarrow \mu^* \\
\text{Aut}_P^P & \xrightarrow{\phi_P} \text{Aut}_F^P.
\end{align*}$$

(34)
Using the relations $\phi^* \circ \psi^* = (\psi \circ \phi)^*$ and $(\mu \circ \lambda)^* = \lambda^* \circ \mu^*$ we deduce as in (31) that the following assignments

$$(Q, F) \mapsto (A_F, \text{Aut}^Q_F),$$

$$(\mu, \phi) : (P, G) \rightarrow (Q, F) \mapsto ((\mu, \phi)^* := \mu^* \circ \phi^* : \text{Aut}^Q_F \rightarrow \text{Aut}^{\phi}_G),$$

(35)
define a contravariant functor with values in the category GrG of group-graphs. When restricted to generalized curves this functor is denoted by

$$\text{Aut} : \text{Man} \times \text{Fol} \rightarrow \text{GrG}.$$

(36)

From now on F will be a GENERALIZED CURVE.

For any deformation F_Q of F over Q, let us choose a good trivializing system $(\Psi_D)_{D \in \text{Veh}_F}$ meaning that the properties (i)-(iv) of Theorem 3.8 are satisfied. The family $(\Phi_{D,e})_{D \in \text{e}}$ defined by

$$\Phi_{D,e} = \Psi_D \circ \Psi_D^{-1}, \quad e = \langle D, D' \rangle,$$

(37)
is an element of $Z^1(A_F, \text{Aut}^Q_F)$.

Lemma 4.3. The cohomology class $C(F_Q) \in H^1(A_F, \text{Aut}^Q_F)$ of the above cocycle $(\Phi_{D,e})_{D \in \text{e}}$ does not depend on the choice of a good trivializing system; moreover it only depends on the \mathcal{C}^∞-class $[F_Q] \in \text{Def}^Q_F$.

Proof. We check that if $(\Psi_D)_{D \in \text{Veh}_F}$ and $(\Psi'_D)_{D \in \text{Veh}_F}$ are two good trivializing systems for F_Q, then the homeomorphisms $\Psi_D \circ \Psi_D^{-1}$ belong to $\text{Aut}^Q_F (D)$ and define a 0-cocycle whose action on the cocycle $(\Psi_D \circ \Psi_D^{-1})$ gives the cocycle $(\Psi'_D \circ \Psi'_D^{-1})$. Hence $C(F_Q)$ is well defined. On the other hand if F is an \mathcal{C}^∞-conjugacy between another deformation G_Q of F over Q and F_Q, $\Phi(G_Q) = F_Q$, we easily verify that $(\Psi_D \circ \Phi^D)_{D \in \text{Veh}_F}$ is a good trivializing system for G_Q with the same associated cocycle.

Theorem 4.4. Let Q be a germ of manifold and F a foliation which is a generalized curve. Then the maps

$$C^Q_F : \text{Def}^Q_F \rightarrow H^1(A_F, \text{Aut}^Q_F), \quad [F_Q] \mapsto C(F_Q),$$

are bijective. Moreover they define a natural isomorphism

$$C : \text{Def} \xrightarrow{\sim} H^1 \circ \text{Aut},$$

between the contravariant functor $\text{Def} : \text{Man} \times \text{Fol} \rightarrow \text{Set}$ introduced in Definition 3.13 and the contravariant functor $(Q, F) \mapsto H^1(A_F, \text{Aut}^Q_F)$ obtained by composing the contravariant functor $\text{Aut} : \text{Man} \times \text{Fol} \rightarrow \text{GrG}$ with the covariant cohomological functor $H^1 : \text{GrG} \rightarrow \text{Set}$ defined in (5) (pointed by the class of the identity).

Proof. The maps C^Q_F are well defined thanks to Lemma 4.3. We proceed in three steps:

Step 1: functoriality of C. We must prove that, given a germ of holomorphic map $\mu : P \rightarrow Q$ and an \mathcal{C}^∞-conjugacy $\phi : G \rightarrow F$ between generalized curves, the following
Consequently we have:

$$H^1(A_F, \text{Aut}_Q^F) \xrightarrow{\phi^*} H^1(A_G, \text{Aut}_G^Q) \xrightarrow{\mu^*} H^1(A_F, \text{Aut}_F^P)$$

Let us check first the commutativity of the lateral faces: If $(\Psi_D)_{D \in V\text{e}A_F}$ is a good trivializing system for F_Q, then $(\mu^* \Psi_D)_{D \in V\text{e}A_F}$ is also a good trivializing system for $\mu^* F_Q$. Consequently we have:

$$C^Q_F ([\mu^* F_Q]) = [\mu^* \Psi_D \circ \mu^* \Psi^{-1}_D] = H^1(\mu^*) ([\Psi_D \circ \Psi^{-1}_D]) = H^1(\mu^*) \circ C^Q_G ([F_Q]).$$

To check the commutativity of the top face, we notice that by definition $c := H^1(\phi^*) \circ C^Q_F ([F_Q])$ is the cohomology class in $H^1(A_G, \text{Aut}_G^Q)$ of the cocycle $(\phi_Q^{-1} \circ \Psi_D \circ \Psi^{-1}_D \circ \phi^*_Q)$. It coincides with the cocycle (27) used in the proof of Theorem 3.11 to construct the deformation $\mathcal{G}_Q \in \phi^*_Q ([F_Q])$. Therefore $c = C^Q_G ([\mathcal{G}_Q])$. The same arguments give the commutativity of the lower face. That of the back and front faces of the cube results from the relations (30) and (34) respectively.

Step 2: injectivity of C^Q_F. Let $(\Psi_D)_{D \in V\text{e}A_F}$ resp. $(\Psi'_D)_{D \in V\text{e}A_F}$ be good trivializing systems for two equisingular deformations F_Q, resp. F'_Q, inducing the same cohomology class in $H^1(A_F, \text{Aut}_F^Q)$. There exist $\Phi_D \in \text{Aut}_F^Q(D)$, $D \in V\text{e}A_F$, such that the following relation:

$$\Phi_D \circ \Psi_D \circ \Psi^{-1}_D \circ \Phi^{-1}_D = \Psi'_D \circ \Psi'^{-1}_D$$

is satisfied for any pair (D, D') of irreducible components of \mathcal{E}_F such that $\{s_{DD'}\} = D \cap D'$ is neither a nodal singularity or a regular point of \mathcal{F}_F. This relation also means that the homeomorphisms $K_D := \Psi'^{-1}_D \circ \Phi_D \circ \Psi_D$ defined on neighborhoods of $D \times \{u_0\}$ coincide on neighborhoods of $(s_{DD'}, u_0)$ and induce a C^∞-conjugacy between \mathcal{F}_Q and \mathcal{F}'_Q.

Step 3: surjectivity of C^Q_F. Given a cocycle $(\Psi_{D,e}) \in Z^1(A_F, \text{Aut}_F^Q)$, the construction of an equisingular deformation F_Q equipped with a good trivializing system satisfying (37), may be done by a gluing process as in the proof of Theorem 3.11.

4.2 Sheaf of transversal symmetries

Let us fix again a foliation F and a germ of manifold $Q^r = (Q, u_0)$. For an open set $U \subset E_F$ we will say that an automorphism $\Phi \in \text{Aut}_F^Q(U)$ **fixes the leaves**, if it leaves invariant the codimension one foliation $\mathcal{F}_F^r \times Q$. We denote by $\text{Fix}_Q^F \subset \text{Aut}_F^Q$, the subsheaf of normal subgroups consisting of these automorphisms. We will describe in an explicit way the quotient sheaf

$$\text{Sym}_F^Q = \text{Aut}_F^Q / \text{Fix}_F^Q.$$

To do that let us consider the normal subgroup

$$\text{Diff}_Q(C \times Q, (0, u_0)) = \{ \phi \in \text{Diff}_Q(C \times Q, (0, u_0)) | \phi(\mathcal{Z}, u_0) \equiv (\mathcal{Z}, u_0) \},$$

with \(z_1, z_2 \) two points in \(C \times Q \).
of the group $\text{Diff}_Q(\mathbb{C} \times Q, (0, u_0))$ defined in (17), and for any subgroup
$$G \subset \text{Diff}_Q(\mathbb{C} \times Q, (0, u_0))$$

let us adopt the following notations:
- $C_Q(G)$ is the centralizer of G, i.e. the subgroup of $\text{Diff}_Q(\mathbb{C} \times Q, (0, u_0))$ whose
elements commute with any element of G;
- $C^0_Q(G) = C_Q(G) \cap \text{Diff}^0_Q(\mathbb{C} \times Q, (0, u_0))$;
- in the monogenous case $G = \langle h \rangle$, we write $C_Q(h)$ and $C^0_Q(h)$ instead of $C_Q((h))$
and $C^0_Q((h))$.

Now let us fix an invariant component D of \mathcal{E}_F. For $m \in D \setminus \text{Sing}(\mathcal{F}^d)$, let us choose a
ger of holomorphic submersion
$$g : (M_F, m) \rightarrow (\mathbb{C}, 0)$$
constant on the leaves of \mathcal{F}^d. Any $\phi \in \text{Aut}^Q_F(m)$ factorizes through $g \times \text{id}_Q$, defining an
element $g_*(\phi) \in \text{Diff}^0_Q(\mathbb{C} \times Q, (0, u_0))$ such that
$$g_*(\phi) \circ (g \times \text{id}_Q) = (g \times \text{id}_Q) \circ \phi.$$
The holomorphy of $g_*(\phi)$ results from the fact that ϕ is transversely holomorphic by definition. Clearly
$$g_* : \text{Aut}^Q_F(m) \rightarrow \text{Diff}^0_Q(\mathbb{C} \times Q, (0, u_0))$$
is a surjective group morphism.

Lemma 4.5. The following sequence
$$1 \rightarrow \text{Fix}^Q_F(m) \rightarrow \text{Aut}^Q_F(m) \xrightarrow{g_*} \text{Diff}^0_Q(\mathbb{C} \times Q, (0, u_0)) \rightarrow 1$$
is exact.

Proof. For the exactness at the central term, let us first notice that the germ at (m, u_0)
of an element $\phi \in \text{Aut}^Q_F(m)$ preserves the codimension one foliation $\mathcal{F}^d \times Q$ if and only if
there is a factorization $g_*(\phi)^\circ$
$$\begin{array}{c}
(M_F \times Q, (m, u_0)) \\
\phi \\
\downarrow \\
(M_F \times Q, (m, u_0))
\end{array}
\xrightarrow{g \times \text{id}_Q}
\begin{array}{c}
(\mathbb{C} \times Q, (0, u_0)) \\
\downarrow \\
(\mathbb{C}, 0)
\end{array}
\xrightarrow{\text{pr}_C}
\begin{array}{c}
(\mathbb{C} \times Q, (0, u_0)) \\
\downarrow \\
(\mathbb{C}, 0)
\end{array}
\xrightarrow{\phi}
\begin{array}{c}
(\mathbb{C} \times Q, (0, u_0)) \\
\downarrow \\
(\mathbb{C}, 0)
\end{array}
\xrightarrow{g_*(\phi)^\circ}
\begin{array}{c}
(\mathbb{C} \times Q, (0, u_0)) \\
\downarrow \\
(\mathbb{C}, 0)
\end{array}
\xrightarrow{g_*(\phi)^\circ}
\begin{array}{c}
(\mathbb{C} \times Q, (0, u_0)) \\
\downarrow \\
(\mathbb{C}, 0)
\end{array}
$$
where $\text{pr}_C(z, u) = z$. Since $g_*(\phi)(p, u) = (\tilde{\phi}(p, u), u)$, $g_*(\phi)^\circ$ exists if and only if $\tilde{\phi}(p, u)$ does
not depend on u. But $\tilde{\phi}(z, u_0) = z$, therefore $g_*(\phi)^\circ$ exists if and only if $g_*(\phi) = \text{id}_{\mathbb{C} \times Q}$.

Lemma 4.6. If $U \subset D$ is open\footnote{U may not be open in \mathcal{E}_F.} and connected and $p \in U$, then we have the exact sequence:
$$1 \rightarrow \text{Fix}^Q_F(U) \rightarrow \text{Aut}^Q_F(U) \rightarrow \text{Sym}^Q_F(p).$$

Proof. The statement is trivial if $U = W \cap D$ and $W \subset M_F$ is an open subset trivializing
the foliation \mathcal{F}^d. If $U \cap \text{Sing}(\mathcal{F}^d) = \emptyset$ we cover U by open subsets in M_F trivializing \mathcal{F}^d
and we conclude by connectedness of U. For the last case $p \in \text{Sing}(\mathcal{F}^d)$ we take a point
$q \in U \setminus \text{Sing}(\mathcal{F}^d)$ close to p and we note that if the germ of an element $\phi \in \text{Aut}^Q_F(U)$ at p
is in $\text{Fix}^Q_F(p)$ then the germ of ϕ at q also belongs to $\text{Fix}^Q_F(q)$. By applying the exactness
of sequence (40) substituting U and p by $U \setminus \text{Sing}(\mathcal{F}^d)$ and q respectively, we deduce that
$\phi \in \text{Fix}^Q_F(U \setminus \text{Sing}(\mathcal{F}^d))$. It remains to see that the germ of ϕ at $p' \in U \setminus \text{Sing}(\mathcal{F}^d)$ belongs
to $\text{Fix}^Q_F(p')$. For this we use the holomorphy of ϕ at p' and the following characterization:
\[\phi \in \text{Fix}_{\mathcal{F},\rho}^Q (p') \Leftrightarrow (\phi^* \omega) \wedge \omega \equiv 0, \text{ where } \omega \text{ is the germ at } p' \text{ of a holomorphic 1-differential form defining the codimension one foliation } \mathcal{F}^i \times Q. \]

Let us fix an invariant component \(D \) of \(\mathcal{E}_\mathcal{F} \) and let us denote by \(i_D : D \to \mathcal{E}_\mathcal{F} \) the inclusion map. Let us also fix a transverse fibration \(\rho : (\mathcal{M}_\mathcal{F} \times Q, D) \to D \) satisfying properties (i)-(iv) described in the step 1 of the proof of Theorem 3.8 and let us consider the subsheaf over \(D \)

\[\text{Aut}_{\mathcal{F},\rho}^Q \subset i_D^{-1} \text{Aut}_{\mathcal{F}}^Q \]

of automorphisms preserving the fibration \(\rho \).

Lemma 4.7. If \(\mathcal{F} \) is a generalized curve, for any connected open set \(U \) of \(D \) and any point \(m \in U \setminus \text{Sing}(\mathcal{F}^i) \), the following assertions hold:

(i) The sheaf \(\text{Aut}_{\mathcal{F},\rho}^Q \) is locally constant over \(D \setminus \text{Sing}(\mathcal{F}^i) \) and the morphism \(g_* \) defined in (38) induces an isomorphism

\[\text{Aut}_{\mathcal{F},\rho}^Q (m) \simeq \text{Diff}^0_\mathcal{F} (C \times Q, (0, u_0)); \]

(ii) The restriction map \(\text{Aut}_{\mathcal{F},\rho}^Q (U) \to \text{Aut}_{\mathcal{F},\rho}^Q (U \setminus \text{Sing}(\mathcal{F}^i)) \) is an isomorphism and \(g_* \) induces an isomorphism \(\text{Aut}_{\mathcal{F},\rho}^Q (U) \simeq C_0^0 (H_U) \), where \(H_U \) is the holonomy group

\[H_U := \mathcal{H}_D^{\mathcal{F},i} \left(\pi_1 (U \setminus \text{Sing}(\mathcal{F}^i), m) \right) \subset \text{Diff}^0_\mathcal{F} (C \times Q, (0, u_0)); \]

(iii) For any \(p \in U \), the natural map \(\text{Aut}_{\mathcal{F},\rho}^Q (U) \to \text{Aut}_{\mathcal{F},\rho}^Q (p) \) is injective.

Proof. Assertion (i) follows from the fact that the restriction of \(g \times \text{id}_\mathcal{Q} \) to each fiber of \(\rho \) is a local diffeomorphism onto \((C \times Q, (0, u_0))\). Assertion (ii) is a consequence of Mattei-Moussu’s Theorem as in step 2 of the proof of Theorem 3.8. To prove assertion (iii), let us assume that the germ of \(\phi \in \text{Aut}_{\mathcal{F},\rho}^Q (U) \) at \(p \) is the identity. If \(p \notin \text{Sing}(\mathcal{F}^i) \) then \(\phi_{\mid U \setminus \text{Sing}(\mathcal{F}^i)} = \text{id} \) by assertion (i) and \(\phi = \text{id} \) using also assertion (ii). If \(p \in \text{Sing}(\mathcal{F}^i) \) then there is \(q \notin \text{Sing}(\mathcal{F}^i) \) close to \(p \) such that the germ of \(\phi \) at \(q \) is the identity; we apply the previous case and we conclude by the holomorphy of the germ of \(\phi \) at \(p \).

Proposition 4.8. If \(\mathcal{F} \) is a generalized curve, then the composition of the group sheaves morphisms

\[\text{Aut}_{\mathcal{F},\rho}^Q \hookrightarrow i_D^{-1} \text{Aut}_{\mathcal{F}}^Q \to i_D^{-1} \text{Sym}_{\mathcal{F}}^Q \]

(41)
is an isomorphism.

Proof. We have to see that \(\text{Aut}_{\mathcal{F},\rho}^Q (p) \to \text{Sym}_{\mathcal{F}}^Q (p) \) is an isomorphism for each \(p \in D \). The case \(p \in D \setminus \text{Sing}(\mathcal{F}^i) \) follows from assertion (i) in Lemma 4.7 and the exact sequence (39) in Lemma 4.5. Next, we fix \(p \in \text{Sing}(\mathcal{F}^i) \) and we take \([\phi_p] \in \text{Sym}_{\mathcal{F}}^Q (p)\). There is a neighborhood \(U \) of \(p \) in \(D \) and \(\phi_U \in \text{Aut}_{\mathcal{F}}^Q (U) \) such that \([\phi_U] \to [\phi_p]\). In the commutative diagram below

\[
\begin{array}{ccc}
\tilde{\phi}_p \in \text{Aut}_{\mathcal{F},\rho}^Q (p) & \xrightarrow{\sim} & \text{Sym}_{\mathcal{F}}^Q (p) \ni [\phi_p] \\
\downarrow & & \downarrow \\
\tilde{\phi}_U \in \text{Aut}_{\mathcal{F},\rho}^Q (U) & \xrightarrow{\sim} & \text{Fix}_{\mathcal{F}}^Q (U) \ni [\phi_U] \\
\downarrow b & & \downarrow c \\
\text{Aut}_{\mathcal{F},\rho}^Q (U \setminus \text{Sing}(\mathcal{F}^i)) & \xrightarrow{\sim} & \text{Sym}_{\mathcal{F}}^Q (U \setminus \text{Sing}(\mathcal{F}^i))
\end{array}
\]

\(a \), \(b \), and \(c \) are isomorphisms.
the arrow a is an isomorphism by the regular case already considered and the arrow b is also an isomorphism by assertion (ii) of Lemma 4.7. Hence there is $\tilde{\phi}_U \in \text{Aut}^Q_{\rho,\rho}(U)$ such that $[\tilde{\phi}_U]$ and $[\phi_U]$ are sent to the same element in $\text{Sym}^Q_F(U \setminus \text{Sing}(\mathcal{F}))$. Using the exact sequence (40) we deduce that the arrow c is injective and consequently $\tilde{\phi}_U$ is sent to $[\phi_U]$. By the commutativity of the top square the germ $\tilde{\phi}_p$ of $\tilde{\phi}_U$ at p projects onto $[\phi_p]$. This shows that the composition (41) is surjective at p. The injectivity of the composition (41) at p follows, as in the proof of assertion (iii) in Lemma 4.7, using the holomorphy of $\tilde{\phi}_U$ and the injectivity at the regular points, which has already been shown. \hfill \Box

Corollary 4.9. If \mathcal{F} is a generalized curve, for any connected open set U of D, the following assertions hold:

(i) The sheaf Sym^Q_F is locally constant on $D \setminus \text{Sing}(\mathcal{F})$;

(ii) The morphism g_* induces an isomorphism $\text{Sym}^Q_F(U) \simeq C^0(U)$;

(iii) We have the exact sequence:

$$1 \to \text{Fix}^Q_F(U) \to \text{Aut}^Q_F(U) \to \text{Sym}^Q_F(U) \to 1.$$

Proof. Assertions (i) and (ii) are obvious from the isomorphism $\text{Aut}^Q_{\rho,\rho} \simeq \text{Sym}^Q_F$ and assertions (i) and (ii) in Lemma 4.7. To check the exactness of the sequence in assertion (iii) it only remains to show the surjectivity of $\text{Aut}^Q_{\rho,\rho}(U) \to \text{Sym}^Q_F(U)$. This is so because the composition $\text{Aut}^Q_{\rho,\rho}(U) \to \text{Aut}^Q_F(U) \to \text{Sym}^Q_F(U)$ is an isomorphism thanks to Proposition 4.8. \hfill \Box

4.3. **Group-graph of transversal symmetries.** Let us again fix a foliation \mathcal{F} that is a generalized curve. We consider the normal subgroup-graph $\text{Fix}^Q_F \subset \text{Aut}^Q_F$ defined by

$$\text{Fix}^Q_F(*) = \text{Aut}^Q_F(*) \cap \text{Fix}^Q_F(*), \quad * \in \text{Ve}_{A_F} \cup \text{Ed}_{A_F},$$

where $\text{Fix}^Q_F(e)$ denotes $\text{Fix}^Q_F(D \cap D')$ if $e = \langle D, D' \rangle \in \text{Ed}_{A_F}$.

Definition 4.10. The **group-graph of transversal symmetries** is the quotient group-graph Sym^Q_F defined by the group-graph exact sequence

$$1 \to \text{Fix}^Q_F \to \text{Aut}^Q_F \xrightarrow{\pi^Q_F} \text{Sym}^Q_F = \text{Aut}^Q_F / \text{Fix}^Q_F \to 1. \quad (42)$$

For each invariant component $D \in \text{Ve}_{A_F}$, using the exact sequence (iii) in Corollary 4.9 with $U = D$, we have a natural\footnote{If $A \to A'$ is a morphism of sheaves of groups over X sending a normal subgroup F into F' then for any open subset $U \subset X$ the following diagram is commutative:

$$\begin{array}{ccc}
A(U)/F(U) & \longrightarrow & (A/F)(U) \\
\downarrow & & \downarrow \\
A'(U)/F'(U) & \longrightarrow & (A'/F')(U)
\end{array}$$

where $A(U)/F(U)$ and $A'(U)/F'(U)$ are open subgroups of $A(U)$ and $A'(U)$ respectively.} isomorphism:

$$\text{Sym}^Q_F(D) = \frac{\text{Aut}^Q_F(D)}{\text{Fix}^Q_F(D)} \simeq \text{Sym}^Q_F(D), \quad (43)$$

when \mathcal{F} is a generalized curve.

We check that if $(\mu, \phi) : (P, \mathcal{G}) \to (Q, \mathcal{F})$ is a morphism in the category $\text{Man} \times \text{Fol}$, then the morphism $(\mu, \phi)^*$ defined in (35) sends the group-graph Fix^Q_F into $\text{Fix}^Q_{F'}$ and...
it factorizes (see Remark 2.4) as a morphism of group-graphs over the graph morphism
\(A_\phi : A_G \to A_F \) defined in (33), that we also denote by
\[
(\mu, \phi)^* : \text{Sym}_F^Q \to \text{Sym}_G^P.
\]
This allows to define a contravariant functor from \(\text{Man} \times \text{Fol} \) to \(\text{GrG} \)
\[
\text{Sym} : (Q, \mathcal{F}) \mapsto (A_F, \text{Sym}_F^Q), \quad (\mu, \phi) \mapsto (\mu, \phi)^*.
\]
The collection \(\{ \pi_F^Q \} \) of quotient maps (42) defines a natural transformation
\[
\text{Aut} \to \text{Sym}.
\]
By applying the functor \(H^1 : \text{GrG} \to \text{Set} \) to the morphisms \(\pi_F^Q \) we obtain maps
\[
H^1(A_F, \text{Aut}_F^Q) \to H^1(A_F, \text{Sym}_F^Q)
\]
defining a natural transformation \(H^1 \circ \text{Aut} \to H^1 \circ \text{Sym} \). It follows immediately from
Lemma 4.12 below and Proposition 2.9 applied to the exact sequence (42) that:

Proposition 4.11. For any germ of manifold \(Q \) and any generalized curve \(F \), the map
(44) is bijective and consequently the natural transformation
\[
H^1 \circ \text{Aut} \to H^1 \circ \text{Sym}
\]
is an isomorphism of contravariant functors from \(\text{Man} \times \text{Fol} \) to \(\text{Set}^\ast \).

Lemma 4.12. Assume that \(F \) is a generalized curve. For any edge \(e = (D, D') \) of \(A_F \)
with \(D \) invariant, the restriction map \(\text{Fix}_F^Q(D) \to \text{Fix}_F^Q(e) \) is surjective.

Proof. At the point \(\{ s \} = D \cap D' \) we take local coordinates \((x, y) : (M_F, s) \to (\mathbb{C}^2, 0) \) such
that the foliation \(\mathcal{F}^2 \) is defined by a vector field \(x \partial_x + yB(x, y) \partial_y \) with \(B(0, 0) \neq 0 \). Let us
consider \(\Phi \in \text{Fix}_F^Q(e) = \text{Fix}_F^Q(s) \).

Let \(u = (u_1, \ldots, u_q) \) be a centered coordinate system on \(Q \). In the chart \(\chi = (x, y, u) \)
the foliation \(\mathcal{F}^2 \) is defined by \(yB(x, y)dx - xdy = 0 \). Let us denote by \(\varphi = \chi \circ \Phi \circ \chi^{-1} \)
the expression of \(\Phi \) in this chart. Since \(\varphi(x, y, 0) = (x, y, 0) \) and the points \((x, y, u) \) and \(\varphi(x, y, u) \) belong to
the same leaf \(L_{x,y,u} \) of \(\mathcal{F}^2 \times Q \) the function \(\tau(x, y, t) = \int_{(x,y,0)}^{(x,y,t)} dy \bigg|_{L_{x,y,u}} = \int_{(x,y,0)}^{(x,y,t)} yB(x,y) dy \bigg|_{L_{x,y,u}} \)
is well defined and holomorphic in an open neighborhood \(\Omega \) of \(C = \{ (x, y, u) : \varepsilon \leq |x| \leq 2\varepsilon, |y| \leq \varepsilon, |u| \leq \delta \} \). By definition,
the flow \(\Phi^Z_{\tau(p)} \) of \(Z \) satisfies \(\Phi^Z_{\tau(p)}(p) = \varphi(p) \) for \(p \in C \). Let \(\alpha : \Omega \to \mathbb{R} \) be a \(C^\infty \)
function with compact support on \(x(\Omega) \), that is equal to 1 in a neighborhood of \(\{ \varepsilon \leq |x| \leq 2\varepsilon \} \).

The map \(p \mapsto \xi(p) := \Phi^Z_{\alpha(x(p))\tau(p)}(p) \) is a \(C^\infty \) diffeomorphism, because its restriction to
\(u = 0 \) is the identity and moreover it is a local diffeomorphism as it can be easily checked
by computing its Jacobian matrix. Clearly the map \(\phi = \xi^{-1} \circ \varphi \) coincides with \(\varphi \) on a
neighborhood of \(s \), it preserves the codimension 1 foliation \(\mathcal{F}^2 \times P \) and \(\varphi(x, y, u) = (x, y, u) \)
for \(\varepsilon \leq |x| \leq 2\varepsilon \). Thus, \(\Phi \) extends to a neighborhood of \(D \) as the identity and defines an
element of \(\text{Fix}_F^Q(D) \).

Now we will give an explicit expression of the group-graph \(\text{Sym}_F^Q \) which will depend on
the choice of the following additional data:

Definition 4.13. A geometric system for an invariant component \(D \) of \(E_F \) consists in:

- a point \(o_D \in D \setminus (\text{Sing}(E_F) \cup \text{Sing}(\mathcal{F}^2)) \) and a germ of holomorphic submersion
 \(g : (M_F, o_D) \to (\mathbb{C}, 0) \) which is constant along the leaves of \(\mathcal{F}^2 \);
- a collection \(\{ U_p \}_{p \in \text{Sing}(\mathcal{F}^2) \cap D} \) of connected and simply connected open subsets of \(D \)
such that \(U_p \cap \text{Sing}(\mathcal{F}^2) = \{ p \} \) and \(o_D \in \bigcap_{p \in \text{Sing}(\mathcal{F}^2) \cap D} U_p \).
For \(e = \langle D, D' \rangle \) with \(D \cap D' = \{ p \} \) we denote by
\[
h_{D,e} \in H_D \subset \text{Diff}_Q(\mathbb{C} \times Q, (0, u_0))
\] (45)
the holonomy of \(\mathcal{F}^r \) along of a path in \(U_p \setminus \{ p \} \) of index 1 with respect to \(p \), which belongs to the holonomy group \(H_D \) image of the morphism \(H'_D \) in (18).

Proposition 4.14. Assume that \(\mathcal{F} \) is a generalized curve. If \(D \in \text{Ve}_{A_{\mathcal{F}}} \) and \(e = \langle D, D' \rangle \in \text{Ed}_{A_{\mathcal{F}}} \), after choosing a geometric system for \(D \), the morphism (38) with \(m = o_D \) induces isomorphisms
\[
G_{D,e} : \text{Sym}^0_Q (D) \sim \mathbb{C}_Q (h_{D,e}) \quad \text{and} \quad G_D : \text{Sym}^0_Q (D) \sim \mathbb{C}_Q (H_D).
\]
Under these isomorphisms the restriction map \(\text{Sym}^r_Q (D) \rightarrow \text{Sym}^0_Q (e) \) is just the inclusion \(\mathbb{C}_D (H_D) \hookrightarrow \mathbb{C}_D (h_{D,e}) \).

Proof. We have: \(\text{Sym}^Q (D) = \text{Sym}^Q _Q (e) \approx \text{Sym}^Q _Q (U_p) \), thanks to assertion (i) of Corollary 4.9, where \(\{ p \} = D \cap D' \). By assertion (ii) in Corollary 4.9 with \(U = U_p \), \(g_* \) induces an isomorphism \(\text{Sym}^Q _Q (U_p) \approx \mathbb{C}_Q (h_{D,e}) \). The second isomorphism follows immediately from (43) and assertion (ii) of Corollary 4.9 with \(U = D \). \(\square \)

5. Finite type foliations and infinitesimal transversal symmetries

5.1. **Finite type foliations.** Given a foliation \(\mathcal{F} \) which is a generalized curve, we will say that a vertex \(D \), resp. an edge \(\langle D, D' \rangle \), belonging to a cut-component \(A_{\mathcal{F}}^r \), \(\alpha \in A \), of \(A_{\mathcal{F}} \) (see Remark 4.2) is red for \(\mathcal{F} \) if, using the notations in (45) with \(Q = \{ u_0 \} \), the holonomy group \(H_D \) of \(\mathcal{F}^r \) is not finite, resp. the holonomy diffeomorphism \(h_{D,e} \) (or equivalently \(h_{D,e} \)) is not periodic. Classically a vertex \(D \), resp. an edge \(\langle D, D' \rangle \), is red if every holomorphic first integral of \(\mathcal{F}^r \) defined in a neighborhood of \(D \), resp. \(D \cap D' \), is constant.

Notice that the red part \(R_{\mathcal{F}}^r \) of \(A_{\mathcal{F}}^r \) is a sub-graph. When it is connected and non-empty, we consider the partial order relation \(\prec_{R^r_{\mathcal{F}}} \) on \(\text{Ve}_{A_{\mathcal{F}}}^r \) defined in Subsection 2.4. When \(R_{\mathcal{F}}^r = \emptyset \) we will consider the partial order relation \(\prec_{\{ v \}} \) on \(\text{Ve}_{A_{\mathcal{F}}}^r \) defined by the subgraph \(\{ v \} \) reduced to some single vertex \(v \).

Definition 5.1. We say that \(\mathcal{F} \) is of finite type if for each \(\alpha \in A \) one of the following conditions holds:

(i) \(R_{\mathcal{F}}^r \neq \emptyset \) is connected and for any edge \(e = \langle D, D' \rangle \in (\text{Ed}_{A_{\mathcal{F}}} \setminus \text{Ed}_{R^r_{\mathcal{F}}}) \) with \(D' \prec_{R^r_{\mathcal{F}}} D \), the holonomy group \(H_D \) is generated by the holonomy map \(h_{D,e} \);

(ii) \(R_{\mathcal{F}}^r = \emptyset \) and \(A_{\mathcal{F}}^r \) contains a vertex \(v \) such that we have: \(H_D = (h_{D,e}) \) for any edge \(e = \langle D, D' \rangle \in (\text{Ed}_{A_{\mathcal{F}}}^r \setminus \{ v \}) \).

We will denote by \(\text{Fol}_{\mathcal{F}} \subset \text{Fol} \) the full subcategory of finite type foliations.

When \(\mathcal{F} \) is of finite type, for every germ of manifold \(Q \) the subgraph \(R_{\mathcal{F}}^r \) is \(\text{Sym}^r_Q \)-repulsive in the meaning of Section 2.4. Indeed for \(D \in \text{Ve}_{A_{\mathcal{F}}}^r \) and \(e = \langle D, D' \rangle \in \text{Ed}_{A_{\mathcal{F}}}^r \), thanks to Proposition 4.14, we have isomorphisms \(\text{Sym}^r_Q (D) \approx \mathbb{C}_Q (H_D) \) and \(\text{Sym}^r_Q (e) \approx \mathbb{C}_Q (h_{D,e}) \). As we will see later the cohomology of \(\text{Sym}^r_Q (D) \) is given by its restriction to the subgraph
\[
R_{\mathcal{F}} := \bigcup_{\alpha \in A} R_{\mathcal{F}}^r \subset A_{\mathcal{F}}.
\]
Definition 5.2. We call **restricted group-graph of transversal symmetries** the group-graph $\text{RSym}_F^Q = r_F^* \text{Sym}_E^Q$ over R_F defined as the pull-back by the inclusion $r_F : R_F \hookrightarrow A_F$:

$$\text{RSym}_F^Q(*) = \text{Sym}_E^Q(*), \quad * \in V_{r_F} \cup E_{r_F},$$

Notice that for any morphism $\phi : G \to F$ in the category Fol, the graph isomorphism $A_\phi : A_G \to A_F$ restricts to a graph isomorphism $R_\phi : R_G \to R_F$. If $\mu : P \to Q$ is a morphism in Man, we consider the left diagram of group-graphs morphisms over the right diagram of graph morphisms:

$$\begin{array}{ccc}
\text{Sym}_F^Q & \xrightarrow{(\mu,\phi)^*} & \text{Sym}_G^P \\
\iota_{r_F} & \downarrow & \iota_{r_G} \\
\text{RSym}_F^Q & \xrightarrow{\mu,\phi} & \text{RSym}_G^P
\end{array}$$

over

$$\begin{array}{ccc}
A_F & \xrightarrow{A_\phi} & A_G \\
\iota_{r_F} & \downarrow & \iota_{r_G} \\
R_F & \xrightarrow{\mu,\phi} & R_G
\end{array}$$

where ι_{r_F} and ι_{r_G} denote the canonical morphisms, see Definition 2.2. Since $A_\phi(R_G) \subset R_F$, the morphism $F = r_G \circ (\mu,\phi)^*$ over $f = A_\phi \circ \iota_{r_G}$ factorizes through ι_{r_F}, according to Remark 2.3, and defines a morphism of group-graphs $\hat{F} : \text{RSym}_G^Q \to \text{RSym}_F^Q$ over R_ϕ. By abuse of notation we will denote \hat{F} as $(\mu,\phi)^*$. This allows to consider the contravariant functor

$$\text{RSym} : \text{Man} \times \text{Fol} \to \text{GrG}, \quad (Q,F) \mapsto (R_F, \text{RSym}_F^Q), \quad (\mu,\phi) \mapsto (\mu,\phi)^*.$$

The collection of canonical morphisms $\iota_{r_F} : \text{Sym}_F^Q \to \text{RSym}_F^Q$ of group-graphs over the graph morphisms $r_F : R_F \hookrightarrow A_F$ defines a natural transformation

$$R : \text{Sym} \to \text{RSym}$$

between contravariant functors from $\text{Man} \times \text{Fol}$ to GrG. It induces a natural transformation

$$\mathcal{R} := H^1(R) : H^1 \circ \text{Sym} \to H^1 \circ \text{RSym}$$

between contravariant functors from $\text{Man} \times \text{Fol}$ to Set. By applying (32) and Theorem 2.10 to each subtree $R_F^\alpha \subset A_F^\alpha$, $\alpha \in \mathcal{A}$, we directly obtain:

Theorem 5.3. For any germ of manifold Q and any finite type foliation which is a generalized curve, the map

$$R_F^Q : H^1(A_F, \text{Sym}_F^Q) \sim \sim H^1(R_F, \text{RSym}_F^Q)$$

is bijective and the natural transformation \mathcal{R} considered in (46) is an isomorphism of contravariant functors when restricted to the subcategory $\text{Man} \times \text{Fol}_R$.

We will see in the next section that the group-graph RSym_F^Q is abelian, so that the two functors in (46) restricted to $\text{Man} \times \text{Fol}_R$ are isomorphic and take values in the category Ab of abelian groups, which can be seen as a subcategory of Set by pointwise by zero, see Section 2.3.

5.2. Sheaf of infinitesimal transversal symmetries. Given a foliation F let us consider now the following sheaves $\mathcal{X}_F \subset \mathcal{B}_F$ over \mathcal{E}_F of **tangent** and **basic** holomorphic vector fields of \mathcal{F}: the stalk $\mathcal{B}_F(m)$ of \mathcal{B}_F at $m \in \mathcal{E}_F$ is the \mathbb{C}-vector space of germs at m of holomorphic vector fields in M_F leaving invariant the foliation \mathcal{F} and the divisor \mathcal{E}_F; $\mathcal{X}_F(m)$ is the subspace of $\mathcal{B}_F(m)$ consisting of vector fields tangent to \mathcal{F}. The quotient sheaf $\mathcal{T}_F := \mathcal{B}_F/\mathcal{X}_F$ is called **sheaf of infinitesimal transversal symmetries** of \mathcal{F}.

Similarly, given $Q = (Q,u_0)$ a germ of manifold, we define \mathcal{B}_F^Q the sheaf over \mathcal{E}_F of \mathcal{O}_{Q,u_0}-modules whose stalks are the spaces $\mathcal{B}_F^Q(m)$ of germs at (m,u_0) of holomorphic
vector fields in $M_F \times Q$ leaving invariant the constant foliation \mathcal{F}_Q^{ct} and the divisor $\mathcal{E}_F \times Q$, that are vertical (i.e. tangent to the fibers of the projection $M_F \times Q \to Q$) and zero on the special fiber $M_F \times \{ u_0 \}$; $\mathcal{X}_F^Q \subset \mathcal{X}_F$ is the subsheaf consisting of vector fields which are tangent to \mathcal{F}_Q^{ct} and the quotient sheaf

$$\mathcal{T}_F^Q := \mathcal{B}_F^Q / \mathcal{X}_F^Q$$

is called the sheaf of infinitesimal transversal symmetries of \mathcal{F}_Q^{ct}. Notice that, if as usual we denote by \mathcal{M}_{Q,u_0} the maximal ideal of \mathcal{O}_{Q,u_0}, we have:

$$\mathcal{B}_F^Q \otimes_{\mathcal{O}_{Q,u_0}} (\mathcal{O}_{Q,u_0}/\mathcal{M}_{Q,u_0}) = \{0\} \neq \mathcal{B}_F.$$

We will give local expressions for the stalks $\mathcal{T}_F(m)$ and $\mathcal{T}_F^Q(m)$ at a point m in an invariant component D of \mathcal{E}_F. Let us fix in M_F a local chart $z = (z_1, z_2) : \Omega \sim \mathbb{D}_r^2$ satisfying

$$r > 1, \quad z(m) = (0, 0), \quad D = \{ z_2 = 0 \}, \quad \mathcal{E}_F = \{ z_1 z_2 = 0 \}, \quad \epsilon \in \{ 0, 1 \}.$$

We suppose that $\Omega \cap \Sigma(\mathcal{F}^2)$ is either empty or reduced to $\{ m \}$. We also fix a chart $u : \Omega' \sim \mathbb{D}_r^q, \eta > 0$, on Q' with $u(u_0) = 0$.

Let us denote by V_m, resp. by V_m^Q, the space of germs of vector fields Z in the submanifold $\{ z_1 = 1 \}$ of Ω, resp. of $\Omega' \times \Omega'$, at the point of coordinates $(1, 0)$, resp. $(1, 0, \ldots, 0)$, that satisfy: (a) $Z = 0$ when $z_2 = 0$, and (b) $h_m(Z) = Z$ where h_m is the classical holonomy map of \mathcal{F}^2, resp. of \mathcal{F}_Q^{ct}, along the loop $z(t) = (e^{2\pi ti}, 0)$, resp. $z(t) = (e^{2\pi ti}, 0), u(t) = 0, t \in [0, 1]$, realized on the transverse manifold $\{ z_1 = 1 \}$.

If Y is a vector field on an open set $U \subset M_F$ we will consider the constant vertical extension Y_Q^{ct} on $U \times Q$, i.e. the unique vertical vector field on $U \times Q$ related to Y by the projection $U \times Q \to U$.

Lemma 5.4. Assume that \mathcal{F} is a generalized curve. With the previous notations we have:

1. if \mathcal{F}^2 at m is singular and it is either (a) non-resonant, non-linearizable but formally linearizable or (b) resonant non-formally linearizable nor normalizable, then:

$$\mathcal{T}_F(m) = \{0\}, \quad \mathcal{T}_F^Q(m) = \{0\}, \quad V_m = \{0\}, \quad V_m^Q = \{0\};$$

2. if \mathcal{F}^2 at m is not as in case (1) and any germ of holomorphic first integral of \mathcal{F}^2 at m is constant, then we may choose the coordinates z_1, z_2 so that:

$$\mathcal{T}_F(m) = \mathbb{C}[Z], \quad \mathcal{T}_F^Q(m) = \mathcal{M}_{Q,u_0}[Z_Q^{ct}], \quad V_m = \mathbb{C} \cdot Z|_{\{ z_1 = 1 \}}, \quad V_m^Q = \mathcal{M}_{Q,u_0} \cdot Z_Q^{ct}|_{\{ z_1 = 1 \}},$$

where $Z_Q^{ct}|_{\{ z_1 = 1 \}}$ denotes the restriction of Z_Q^{ct} to $\{ z_1 = 1 \}$ and Z is the following vector field on Ω:

(a) $Z = z_2 \frac{\partial}{\partial z_2}$ when \mathcal{F}^2 is linearizable at m,

(b) $Z = \left(\frac{z_1 z_2^b}{1 + (z_1 z_2^b)^k} \right) z_2 \frac{\partial}{\partial z_2}$ when \mathcal{F}^2 is singular resonable normalizable at m, and z_1, z_2 is chosen so that \mathcal{F}^2 is given by $\omega = 0$ where

$$\omega := b z_1 (1 + \zeta (z_1 z_2^b)^k) dz_2 + a z_2 (1 + (\zeta - 1)(z_1 z_2^b)^k) dz_1,$$

with $a, b, k \in \mathbb{N}^+$, $(a, b) = 1$, $\zeta \in \mathbb{C}$;

3. if \mathcal{F}^2 at m has a non-constant first integral F, then by choosing F minimal and z_1, z_2 such that $F(z_1, z_2) = z_1 z_2^b$, $a, b \in \mathbb{N}, b \neq 0$, $(a, b) = 1$, we have:

$$\mathcal{T}_F(m) = \mathbb{C}\{F\} \left[z_2 \frac{\partial}{\partial z_2} \right], \quad \mathcal{T}_F^Q(m) = \mathcal{M}_{Q,u_0} \mathbb{C}\{F, u\} \left[z_2 \frac{\partial}{\partial z_2} \right],$$
Remark 5.6. \(\forall \) germ of \(X \)

Remark 5.5. \(\forall \) holonomy of the foliation

This proves that the sheaf \(\mathcal{F}_F(m) \) is a free module of rank one over the ring \(\mathcal{O}_{F,m} \subset \mathcal{O}_{F,m} \) of germs of holomorphic first integrals (perhaps constant) of \(F \). We deduce the expression of \(\mathcal{F}_F(m) \) after checking that the vector fields \(Z \) in (2) and \(z_2 \frac{\partial}{\partial z_2} \) in (3) are basic and \(\mathcal{O}_{F,m} = \mathbb{C} \), resp. \(\mathcal{O}_{F,m} = \mathbb{C} \{ F \} \), in case (2), resp. (3), cf. [11, §5.1.2]. The expressions of \(\mathcal{F}_Q^m \) are versions with parameters of these results.

In the cases (2a) and (3) the holonomy map \(h_m \) is linear and \(V_m \) and \(V_Q^m \) is obtained by a direct computation. In order to obtain \(V_Q^m \) in case (2b) one first notices that the flow \(\Phi_t(z_2, u) = (\phi(z_2, t), u) \) of \(Z_Q^\ast \{(z_1=1) \} \) satisfies \(\phi(z_2, t) \in \mathbb{C}[t] \{ z_2 \} \); therefore any biholomorphism germ that commutes with a single element of this flow also commutes with all the other elements. Since \(h_m^Q = \Phi_{2\pi q} \), the flow of any element \(X \) in \(V_Q^m \) commutes with that of \(Z_Q^\ast \{(z_1=1) \} \). It follows that \(X \in \mathcal{M}_{Q,\omega_0} Z_Q^\ast \{(z_1=1) \} \).

In order to describe \(\mathcal{F}_Q^m \) for any open set \(U \subset D \), we fix a geometric system as in Definition 4.13.

For any \(X \in \mathcal{E}_U^Q (oD) \) there is a holomorphic vector field \(g_u(X) \) on \((\mathbb{C}, 0) \) such that \(X(0) = 0 \) and \(g_u(X) \circ g = Dg(X) \). Moreover, \(X \mapsto g_u(X) \) is \(\mathbb{C} \)-linear. Let us adopt the following notations:

- \(\mathcal{V}(H) \) is the vector space of holomorphic germs of vector fields on \((\mathbb{C}, 0) \) vanishing at 0 and invariant under the action of the subgroup \(H \subset \text{Diff}(\mathbb{C}, 0) \);
- \(\mathcal{V}_Q^0 \) is the vector space of holomorphic germs of vector fields on \((\mathbb{C} \times Q, (0, u_0)) \) which are parallel with respect to \(\mathbb{C} \times Q \subset \mathbb{C} \) and vanish along \(\{(0) \times Q \} \cup (\mathbb{C} \times \{ u_0 \}) \);
- If \(G \subset \text{Diff}(\mathbb{C} \times Q, (0, u_0)) \) is a subgroup, then \(\mathcal{V}_Q^G \) denotes the subspace of \(\mathcal{V}_Q^0 \) consisting of vector fields invariant by \(G \).

Similarly if \(X \in \mathcal{E}_U^Q (oD) \) there is a (unique) germ of vector field, again denoted by \(g_u(X) \), such that \(g_u(X) \circ (g \times \text{id}_Q) = D(g \times \text{id}_Q) \)(X). According to the model (3) with \(a = 0 \) and \(b = 1 \) in Lemma 5.4 we have the following exact sequence:

\[
0 \rightarrow \mathcal{V}_Q^0 (oD) \rightarrow \mathcal{E}_U^Q (oD) \stackrel{\partial}{\rightarrow} \mathcal{V}_Q^0 \rightarrow 0.
\]

This proves that the sheaf \(\mathcal{F}_F \) is locally constant on \(D \setminus \text{Sing}(F') \).

Remark 5.5. Let \(X \) be a section of \(\mathcal{F}_F \) over a connected open subset \(U \) of \(\mathcal{E}_F \). If the germ of \(X \) at some point \(p \) of \(V \) is zero, then \(X = 0 \). Indeed if \(p \) is a regular point, by local triviality, the section is zero along the whole regular part of \(D \). The vanishing at the remaining singularities follows by analytic continuation. If \(p \) is a singular point, then the germ of \(X \) at a regular point close to \(p \) is zero and we conclude as before. The same property holds for \(\mathcal{F}_Q^m \).

Remark 5.6. The monodromy of \(\mathcal{F}_Q^m \) restricted to \(D \setminus \text{Sing}(F') \) corresponds to the holonomy of the foliation \(F_Q^{ct} \) in the following sense: if \(Z' \) is the extension of \(Z \in \mathcal{F}_Q^{ct} (oD) \) (as germ of a locally constant sheaf) along a loop \(\gamma \) in \(D^* \) with origin \(oD \), then \(g_u(Z') = h_{\gamma \ast} (g_u(Z)) \), where \(h_{\ast} = h_{D}^{F_Q^{ct}}(\gamma) \), see (18). Indeed we have: \(g' = g \circ h_{\gamma}^{-1} \) and on the other hand, since the expression \(g_u(Z) \) remains constant when we perform along \(\gamma \) the analytic extension of \(g \) and the extension of \(Z \) as section of a locally constant sheaf, we also have \(g'_u(Z') = g_u(Z) \), where \(g' \) is the analytic extension of \(g \) along \(\gamma \).

Proposition 5.7. Assume that \(oD \in U \subset D \). The following sequence is exact:

\[
0 \rightarrow \mathcal{V}_U^Q (U) \rightarrow \mathcal{E}_U^Q (U) \stackrel{\partial}{\rightarrow} \mathcal{V}_Q^0 (H_U) \rightarrow 0,
\]
where \(g_{U*} \) is the composition of the morphism \(g_* \) in (47) with the natural map \(B^Q_F(U) \to B^Q_F(o_D) \) and \(H_U := \mathcal{H}_D^Q(\pi_1(U \setminus \text{Sing}(\mathcal{F}^\sharp), o_D)). \)

If \(e = \langle D, D' \rangle \) and \(\{ p \} = D \cap D' \), by applying this proposition to \(U = U_p \), and to \(U = D \) we obtain isomorphisms

\[
G^T_{D,e}: \mathcal{T}^Q_F(e) \xrightarrow{\sim} \mathcal{V}^0_Q(h_{D,e}) \quad \text{and} \quad G^T_D : \mathcal{T}^Q_F(D) \xrightarrow{\sim} \mathcal{V}^0_Q(H_D). \tag{49}
\]

Under these isomorphisms the restriction map \(\mathcal{T}^Q_F(D) \to \mathcal{T}^Q_F(e) \) corresponds to the inclusion \(\mathcal{V}^0_Q(H_D) \hookrightarrow \mathcal{V}^0_Q(h_{D,e}). \)

Proof. The fact that \(g_{U*} \) takes values in \(\mathcal{V}^0_Q(H_U) \) results from Remark 5.6 which also gives the exactness of the sequence when \(U \) does not meet \(\text{Sing}(\mathcal{F}^\sharp) \). It remains to see that the restriction map

\[
\mathcal{T}^Q_F(U) \to \mathcal{T}^Q_F(U \setminus \text{Sing}(\mathcal{F}^\sharp)), \quad Z \mapsto Z|_{U \setminus \text{Sing}(\mathcal{F}^\sharp)}
\]

is an isomorphism. We may suppose that \(U \) is a disk such that \(U \cap \text{Sing}(\mathcal{F}^\sharp) = \{ m \} \). Thus, the map \(g_{U*} \) in (48) induces an isomorphism

\[
\mathcal{T}^Q_F(U \setminus \text{Sing}(\mathcal{F}^\sharp)) \xrightarrow{\sim} \mathcal{V}^0_Q(H_U).
\]

We may also suppose that \(U \) is the domain \(\Omega \) of a chart \((z_1, z_2)\) as in Lemma 5.4. The restriction of \(g \times \text{id}_Q \) to \(\{ z_1 = 1 \} \subset M_\mathcal{F} \times Q' \) induces a linear isomorphism from \(\mathcal{V}^0_m \) to \(\mathcal{V}^0_Q(H_U) \). We conclude by noting that, according to Lemma 5.4, any element of \(\mathcal{V}^0_m \) extends to a vector field in \(B^Q_F(U) \).

In the same way we prove the exactness of the following sequence:

\[
0 \to \mathcal{X}_\mathcal{F}(U) \to B^Q_F(U) \xrightarrow{g_{U*}} \mathcal{V}(H_U) \to 0. \tag{50}
\]

5.3. Group-graph of infinitesimal transversal symmetries

A \(C^\infty \)-conjugacy does not induce a map between the sheaves of basic holomorphic vector fields, but it will do for the sheaves of transverse infinitesimal symmetries. For this reason we do not consider the quotient of the group-graphs associated to \(B^Q_F \) and \(\mathcal{X}_\mathcal{F} \), but a group-graph \(\mathcal{T}^Q_F \) associated to the sheaf \(\mathcal{T}^Q_F \). As in the case of the group-graph of automorphisms (see Definition 4.1) we set:

Definition 5.8. The vector space-graph over \(\mathfrak{A}_\mathcal{F} \) of infinitesimal transversal symmetries of \(\mathcal{F} \), resp. of \(\mathcal{F}^\times \), denoted by \(\mathcal{T}^\prime_\mathcal{F} \), resp. \(\mathcal{T}^Q_\mathcal{F} \), is defined, for \(\star \in \mathfrak{V}_{\mathfrak{A}_\mathcal{F}} \cup \mathfrak{E}_{\mathfrak{A}_\mathcal{F}} \), by:

1. \(\mathcal{T}^\prime_\mathcal{F}(\star) = \{ 0 \} \) and \(\mathcal{T}^Q_\mathcal{F}(\star) = \{ 0 \} \) if \(\star \in \mathfrak{E}_{\mathfrak{A}_\mathcal{F}} \) is a dicritical component of \(\mathcal{E}_\mathcal{F} \) or \(\star = \langle D, D' \rangle \in \mathfrak{E}_{\mathfrak{A}_\mathcal{F}} \) and the foliation \(\mathcal{F}^\sharp \) has a nodal singularity at the point \(D \cap D' \);
2. \(\mathcal{T}^\prime_\mathcal{F}(D) = \mathcal{T}^\prime_\mathcal{F}(D) \) and \(\mathcal{T}^Q_\mathcal{F}(D) = \mathcal{T}^Q_\mathcal{F}(D) \) if \(D \in \mathfrak{V}_{\mathfrak{A}_\mathcal{F}} \) is invariant;
3. \(\mathcal{T}^\prime_\mathcal{F}(\langle D, D' \rangle) = \mathcal{T}^\prime_\mathcal{F}(D \cap D') \) and \(\mathcal{T}^Q_\mathcal{F}(\langle D, D' \rangle) = \mathcal{T}^Q_\mathcal{F}(D \cap D') \) if \(\langle D, D' \rangle \in \mathfrak{E}_{\mathfrak{A}_\mathcal{F}} \) and \(D \cap D' \) is not a nodal singularity of \(\mathcal{F}^\sharp \);
4. the restriction map \(\mathcal{T}^Q_\mathcal{F}(D) \to \mathcal{T}^Q_\mathcal{F}(e) \) is the trivial map \(\mathcal{T}^Q_\mathcal{F}(D) \to \{ 0 \} \) in case (1) and it is the restriction map of sheaves in cases (2) and (3).

The support of \(\mathcal{T}^Q_\mathcal{F} \) is contained in the cut-graph of \(\mathcal{F} \) which is the support of \(\text{Aut}_\mathcal{F}^Q \), see Remark 4.2.

The pull-back by a holomorphic map germ \(\mu : P \to Q' \) of a vertical vector field \(X \) is also a vertical vector field and its flow is the pull-back of the flow of \(X \). Thus, the pull-back
operation defines sheaf morphisms from the sheaves B^Q_r, A^Q_r and T^Q_r, respectively to the sheaves B^P_r, A^P_r and T^P_r, inducing a morphism of vector space-graphs

$$\mu^* : T^Q_r \to T^P_r.$$

On the other hand, let ϕ be an C^∞-conjugacy between \mathcal{G} and a foliation \mathcal{F}, $\phi(\mathcal{G}) = \mathcal{F}$. Since the germs of homeomorphisms allowing us to define the following contravariant functors (denoted by the same letter)

$B^Q_r := \phi^{-1}(\mathcal{G})$, $A^Q_r := \phi^{-1}(\mathcal{G})$, and $T^Q_r := \phi^{-1}(\mathcal{G})$

are holomorphic at the singular points and transversely holomorphic elsewhere, we can define the inverse image morphisms of sheaves over \mathcal{E}_G

$$\varphi^* : T^Q_r \to T^Q_r$$

where $\varphi_r : \mathcal{E}_G \to \mathcal{E}_F$ is the restriction of φ to the exceptional divisors, as in Section 4.1. Indeed, let us fix $m \in \mathcal{E}_G$ and $[Z] \in T(F, \mathcal{G}(\phi_r(m)))$, which is the class of $Z \in B_r(\mathcal{G}(\phi_r(m)))$. If $m \in \text{Sing}G_1 \cup \text{Sing}(\mathcal{E}_G)$ then φ^* is holomorphic at m and we define $\varphi^*([Z])$ as the class of the usual inverse image $([\phi^*])^*(Z) \in B_r(\mathcal{G}(\phi_r(m)))$. Otherwise, there is a homeomorphism germ ξ at $\phi^*(m)$ fixing the leaves of \mathcal{F} such that $\xi \circ \varphi^*$ is holomorphic and we define $\varphi^*([Z])$ as the class of $([\xi \circ \varphi^*])^*(Z)$, which does not depend on the choice of ξ. We can similarly define the sheaf morphism φ^*.

We will denote in the same way by

$$\varphi^* : T^Q_r \to T^Q_r$$

the vector space-graph morphisms over $A_\phi : A_\mathcal{G} \to A_\mathcal{F}$ defined in (33), which are associated to the sheaf morphisms φ^* and φ^*, see Section 2.2.

We can check that the second morphism φ^* satisfies the relations $\mu^* \circ \varphi^* = \varphi^* \circ \mu^*$, allowing us to define the following contravariant functors (denoted by the same letter)

$$\mathcal{T} : \text{Fol} \to \text{VecG}, \quad \mathcal{F} \mapsto \mathcal{T}_F, \quad \phi \mapsto \varphi^*,$$

$$\mathcal{T} : \text{Man} \times \text{Fol} \to \text{VecG}, \quad (Q, \mathcal{F}) \mapsto \mathcal{T}_F^Q, \quad (\mu, \phi) \mapsto (\mu, \phi)^* := \varphi^* \circ \mu^*,$$

where VecG denotes the category of of \mathbb{C}-vector space-graphs and linear maps.

As we did for the group-graph of transversal symmetries we consider the restriction of infinitesimal transversal symmetries vector space-graphs to the red subgraph $R_\mathcal{F} \subset A_\mathcal{F}$.

Definition 5.9. We call restricted group-graph of infinitesimal transversal symmetries of \mathcal{F}, resp. \mathcal{F}_r^Q, the group-graph $R_\mathcal{F} \to \mathcal{T}_F = r_\mathcal{F} \mathcal{T}_r$, resp. $R_\mathcal{F}^Q = r_\mathcal{F}^Q \mathcal{T}_r^Q$, over $R_\mathcal{F}$ defined as the pull-back by the inclusion $r_\mathcal{F} : R_\mathcal{F} \hookrightarrow A_\mathcal{F}$:

$$R_\mathcal{F}(\ast) = \mathcal{T}_F(\ast), \quad \text{resp.} \quad R_\mathcal{F}(\ast) = \mathcal{T}_F^Q(\ast), \quad \ast \in \text{Ve}_{R_\mathcal{F}} \cup \text{Ed}_{R_\mathcal{F}}.$$

We denote by $R_\mathcal{F} : \text{Fol} \to \text{VecG}$, resp. $\mathcal{T} : \text{Man} \times \text{Fol} \to \text{VecG}$, the functors $\mathcal{F} \mapsto R_\mathcal{F}$, resp. $(Q, \mathcal{F}) \mapsto R_\mathcal{F}^Q$.

Remark 5.10. As for transversal symmetries, the collections of canonical morphisms $r_\mathcal{F} : \mathcal{T}_r \to R_\mathcal{F}$ and $r_\mathcal{F}^Q : \mathcal{T}_r^Q \to R_\mathcal{F}^Q$ of vector space-graphs over the graph morphisms $r_\mathcal{F} : R_\mathcal{F} \to A_\mathcal{F}$ define natural transformations, again denoted by

$$R : \mathcal{T} \to R_\mathcal{F}, \quad \text{and also} \quad R := H^1(\mathcal{R}) : H^1 \circ \mathcal{T} \to H^1 \circ R_\mathcal{F}.$$

If \mathcal{F} is of finite type, thanks to the exact sequence (50), in each cut-component A^Q_r of $A_\mathcal{F}$ the red part $R_\mathcal{F}$ is repulsive for the group-graph \mathcal{T}_F restricted to A^Q_r, see Section 2.4. By applying again (32) and Theorem 2.10 we directly obtain that the natural maps

$$R_\mathcal{F} : H^1(A_\mathcal{F}, \mathcal{T}_r) \to H^1(R_\mathcal{F}, R_\mathcal{F})$$
are bijective, thus \mathcal{R} is an isomorphism of contravariant functors. In the same way, using the exact sequence (48) we obtain a natural isomorphism

$$\mathcal{R}_F^Q : H^1(A_F, T_F^Q) \sim H^1(\mathcal{R}_F, RT_F^Q).$$

Lemma 5.11. Assume that \mathcal{F} is a generalized curve. Let us again denote by $Z^Q_{\mathcal{F}}$ the constant vertical extension of a vector field Z on an open set of $M_{\mathcal{F}}$, defined just before Lemma 5.4. The extension of scalars sheaf morphism 6

$$\text{Ext}^Q_F : T_{\mathcal{F}} \otimes_{\mathcal{C}} \mathcal{M}_Q \rightarrow T_F^Q,$$

define an isomorphism of vector space-graphs

$$\text{Ext}^Q_F : RT_{\mathcal{F}} \otimes_{\mathcal{C}} \mathcal{M}_Q \sim RT_F^Q$$

which induces a natural isomorphism Ext between the contravariant functors $(Q', \mathcal{F}) \mapsto RT_{\mathcal{F}} \otimes_{\mathcal{C}} \mathcal{M}_Q$ and $(\mathcal{Q}, \mathcal{F}) \mapsto RT_F^Q$, from $\text{Man} \times \text{Fol}$ to VecG.

In this way we obtain a natural isomorphism

$$H^1(\text{Ext}^{-1}) : H^1(\mathcal{R}_F, RT_F^Q) \sim H^1(\mathcal{R}_F, RT_F \otimes_{\mathcal{C}} \mathcal{M}_Q).$$

(53)

Proof. Consider an invariant component D of $\mathcal{E}_{\mathcal{F}}$, an edge $e = (D, D')$ and the point $p := D \cap D'$. Assume that D and e are red for \mathcal{F}. We can then use the isomorphisms (49), the exact sequence (50) with $U = U_p$ as in Definition 4.13, and cases (1) and (2) in Lemma 5.4. With the notations used in this lemma and these sequences, we have the following commutative diagrams whose vertical arrows are isomorphisms:

$$\begin{array}{ccc}
\mathcal{F}(D) \otimes_{\mathcal{C}} \mathcal{M}_{Q,u_0} & \xrightarrow{\text{Ext}^Q_{\mathcal{F}}(D)} & \mathcal{T}_F^Q(D) \\
\uparrow \gamma_{D} \circ \text{cid}_{\mathcal{M}_{Q,u_0}} & & \uparrow G_D^Q \\
\mathcal{V}(H_D) \otimes_{\mathcal{C}} \mathcal{M}_{Q,u_0} & \xrightarrow{\text{Ext}(D)} & \mathcal{V}_Q^0(H_D) \\
\end{array}$$

$$\begin{array}{ccc}
\mathcal{F}(e) \otimes_{\mathcal{C}} \mathcal{M}_{Q,u_0} & \xrightarrow{\text{Ext}^Q_{\mathcal{F}}(e)} & \mathcal{T}_F^Q(e) \\
\uparrow \gamma_{e} \circ \text{cid}_{\mathcal{M}_{Q,u_0}} & & \uparrow G_D^Q \\
\mathcal{V}(h_D,e) \otimes_{\mathcal{C}} \mathcal{M}_{Q,u_0} & \xrightarrow{\text{Ext}(e)} & \mathcal{V}_Q^0(h_D,e) \\
\end{array}$$

where $\text{Ext}(D)$ and $\text{Ext}(e)$ are the maps $Z \otimes_{\mathcal{C}} a \mapsto aZ^Q_{\mathcal{F}}$. To prove that the top horizontal arrows are isomorphisms it suffices to prove this property for the bottom arrows. Since the holonomy of the constant deformation “does not depend on the parameter” this fact directly results from the definitions of $\mathcal{V}_Q^0(H_D)$ and $\mathcal{V}_Q^0(h_D,e)$ and $\text{dim}_{\mathcal{C}} \mathcal{V}(H_D), \text{dim}_{\mathcal{C}} \mathcal{V}(h_D,e) \leq 1$.

Finally, this collection of isomorphisms induces the isomorphism of functors Ext since $\mu^* \phi^*([aZ^Q_{\mathcal{F}}]) = ([\mu^* a])(\phi^*([Z^Q_{\mathcal{F}}]))$ for any morphism (μ, ϕ) in the category $\text{Man} \times \text{Fol}$. □

Proposition 5.12. Assume that \mathcal{F} is a generalized curve. The vector space-graphs $RT_{\mathcal{F}}$ and RT_F^Q over \mathcal{R}_F are regular (see Definition 2.13). Moreover, in each red subgraph $R_{\mathcal{F}} \subset A_{\mathcal{F}}$ the complementary of its support is a subgraph.

Proof. By Lemma 5.4 for each $* \in \text{Ve}_{R_{\mathcal{F}}} \cup \text{Ed}_{R_{\mathcal{F}}}$, either both $RT_{\mathcal{F}}(*)$ and $RT_F^Q(*)$ are zero, or $RT_{\mathcal{F}}(*)$ is isomorphic to \mathbb{C} and $RT_F^Q(*)$ is isomorphic to the maximal ideal \mathcal{M}_{Q,u_0} of \mathcal{O}_{Q,u_0}. Assume that $D \in \text{Ve}_{R_{\mathcal{F}}}$ is invariant and $e = (D, D') \in \text{Ed}_{R_{\mathcal{F}}}$ does not correspond to a nodal singular point at $D \cap D'$. By Remark 5.5 either the restriction map $\text{RT}_{\mathcal{F}}(D) \rightarrow \text{RT}_{\mathcal{F}}(e)$ is an isomorphism or $\text{RT}_{\mathcal{F}}(D) = 0$ and $\text{RT}_{\mathcal{F}}(e) \simeq \mathbb{C}$, the situation $\text{RT}_{\mathcal{F}}(D) \neq 0$ and $\text{RT}_{\mathcal{F}}(e) = 0$ being impossible. According to Lemma 5.11, we deduce that $\text{RT}_F^Q \simeq \text{RT}_{\mathcal{F}} \otimes_{\mathcal{C}} \mathcal{M}_{Q,u_0}$ is also regular. □

6We highlight that $\text{Ext}^Q_{\mathcal{F}}$ is not an isomorphism of sheaves.
5.4. Exponential group-graph morphism. The flows of basic vector fields of $\mathcal{F}_{\mathcal{Q}}$ leave invariant the foliation $\mathcal{F}_{\mathcal{Q}}$. As in [7, Lemma 9.1] we see that the exponential maps $\mathcal{F}_{\mathcal{Q}} \rightarrow \text{Aut}_{\mathcal{Q}}(m)$, $Z \mapsto \exp(Z)[1]$, $m \in \mathcal{E}_\mathcal{F}$, send $\mathcal{N}_{\mathcal{Q}}(m)$ in $\text{Fix}_{\mathcal{Q}}(m)$ and factorize into maps $\exp_m : \mathcal{F}_{\mathcal{Q}}(m) \rightarrow \text{Sym}_{\mathcal{Q}}(m)$, thus defining a morphism of sheaves of sets

$$\exp_{\mathcal{Q}} : \mathcal{F}_{\mathcal{Q}} \rightarrow \text{Sym}_{\mathcal{Q}}.$$

Using the isomorphism (43) it induces maps

$$\exp_{\mathcal{Q}}^\star : \mathcal{T}_{\mathcal{Q}}^\star(\bullet) \rightarrow \text{Sym}_{\mathcal{Q}}^\star(\bullet) \simeq \text{Sym}_{\mathcal{Q}}^\star(\bullet), \quad \bullet \in \mathcal{V}_\mathcal{F} \cup \mathcal{E}_\mathcal{F}.$$

In general these maps are not group morphisms but this will be the case when the $\mathcal{O}_{\mathcal{Q}, u_0}$-module $\mathcal{T}_{\mathcal{Q}}^\star(\bullet)$ is free of rank one or null, cf. [7, §9]. Therefore to define an exponential group-graph morphism we must restrict the group-graph of infinitesimal symmetries of \mathcal{F} or $\mathcal{F}_{\mathcal{Q}}$ to the group-graph $\mathcal{RT}_{\mathcal{F}}^\star$ over the sub-graph $\mathcal{R}_\mathcal{F}$ of $\mathcal{A}_\mathcal{F}$.

Using the definitions of the isomorphisms $G^\star_\mathcal{F}$ in (49) and the definitions of the isomorphisms $G^\star_\mathcal{Q}$ in Proposition 4.14 with the same geometric system, cf. Definition 4.13, we have the following commutative diagrams

$$\begin{array}{ccc}
\mathcal{T}_{\mathcal{F}}^\star(e) & \xrightarrow{G^\star_{\mathcal{D}, e}} & \mathcal{V}_\mathcal{Q}^0(h_{\mathcal{D}, e}) \\
\downarrow \exp_{\mathcal{Q}}^\star(e) & & \downarrow \exp \\
\text{Sym}_{\mathcal{Q}}^\star(e) & \xrightarrow{G^\star_{\mathcal{D}, e}} & C^\mathcal{Q}_0(h_{\mathcal{D}, e})
\end{array} \quad \begin{array}{ccc}
\mathcal{T}_{\mathcal{F}}^\star(D) & \xrightarrow{G^\star_{\mathcal{D}}(D)} & \mathcal{V}_\mathcal{Q}^0(H_D) \\
\downarrow \exp_{\mathcal{Q}}^\star(D) & & \downarrow \exp \\
\text{Sym}_{\mathcal{Q}}^\star(D) & \xrightarrow{G^\star_{\mathcal{D}}(D)} & C^\mathcal{Q}_0(H_D)
\end{array}$$

where $e = (D, D')$ and $h_{\mathcal{D}, e}$ is the holonomy map defined in (45). Indeed, when the direct image $g_\bullet(Z)$ of a basic vector field Z is defined, its flow is also the direct image of the flow of Z by g.

Theorem 5.13. Given a foliation which is a generalized curve and a germ of manifold Q, the morphisms $\exp_{\mathcal{Q}}^\star(\bullet)$ induce a group-graph isomorphism over $\mathcal{R}_\mathcal{F}$

$$\exp_{\mathcal{Q}} : \mathcal{RT}_{\mathcal{F}}^\star \sim \text{RSym}_{\mathcal{F}}^\star.$$

The collection $\{\exp_{\mathcal{Q}}^\star\}$ defines an isomorphism of contravariant functors

$$\exp : \mathcal{RT} \sim \text{RSym},$$

from $\text{Man} \times \text{Fol}$ to the category of abelian group-graphs, the functor \mathcal{RT} taking values in the subcategory of \mathcal{C}-vector space group-graphs.

In order to prove this theorem we will need an auxiliary result.

Lemma 5.14. If $h \in \text{Diff}(\mathcal{C}, 0)$ is non-periodic then the exponential map induces a group isomorphism

$$\exp : \mathcal{V}_{\mathcal{Q}}^0(h) \xrightarrow{\sim} C^\mathcal{Q}_0(h).$$

Proof. If h is formally linearizable then there is a formal coordinate w such that $w \circ h = \lambda w$ with $\lambda \in \mathcal{C}^\star$. If $\phi \in C_{\mathcal{Q}}^\mathcal{Q}(h)$ then $w \circ \phi_t = \nu(t)w$ with $\nu \in \mathcal{O}_{\mathcal{Q}, u_0}$ and $\nu(0) = 1$. Indeed, $\phi(w, t) := w \circ \phi_t = \sum_{i \geq 1} \phi_i(t)w^i$ belongs to $\mathbb{C}\{w, t\}$ and $\phi(w, t) = \lambda \phi(w, t)$ implies that $\phi(t) = 1$ for $i > 1$ and $\nu(t) = \phi_1(t) \neq 0$ is holomorphic. There is $\xi \in \mathcal{M}_{\mathcal{Q}, u_0}$ such that $\nu(t) = \exp(\xi(t))$. If w is convergent then $\phi_t = \exp(\xi(t)w\partial_w)$. If $w(z)$ is divergent then $|\lambda| = 1$ and $C_{\mathcal{Q}}^\mathcal{Q}(h)$ is the set of $\phi(z, t) = (\phi_1(z), t)$ such that $\phi_1(z) = w^{-1} \circ \nu(t)w(z)$ is convergent. If w is divergent then $\mathcal{V}_{\mathcal{Q}}^0(h) = 0$ and $\nu(t)$ takes values in a discrete subset of the unit circle $\mathbb{S}^1 \subset \mathbb{C}$. We conclude that $\nu \equiv 1$ by holomorphy.

If h is resonant there is a formal coordinate w such that $w \circ h = \ell^r \circ \exp sX$ with $X = \frac{w^{p+1}}{1 + \lambda w^p}\partial_w$ for some integer $p \geq 1$. If $\phi \in C_{\mathcal{Q}}^\mathcal{Q}(h)$ then $w \circ \phi_t = \ell^{\nu} \circ \exp \tau(t)X$ with
we conclude that the holomorphic function \(\phi(t) = e^{2\pi i t} \) is identically equal to 1 and the function \(t \mapsto \tau(t) \) is holomorphic and vanishes at \(t = 0 \). If \(w \) is convergent then \(\phi_t = \exp(\tau(t)X) \) with \(\tau \in \mathfrak{m}_{Q,uo} \). If \(w \) is divergent then \(\mathcal{V}^0_Q(h) = 0 \) and \(C^0_Q(h) \) is the set of \(\phi(z,t) = (\phi_t(z), t) \) such that \(w^{-1} \circ \exp(\tau(t)X) \circ w \) is convergent. This implies that \(\tau(t) \in Q \) by the Écalle-Liverpool’s Theorem [4] and consequently \(\tau \equiv 0 \).

Proof of Theorem 5.13. It suffices to see that for \(D \in \mathcal{V}_e \) and \(e \in \mathcal{E}_R \) the right vertical arrows in the diagrams (54) are isomorphisms. For the diagram in the left this follows from Lemma 5.14 by taking \(\mathcal{V}^0_Q(h) = 0 \). Indeed, when \(H_D \) is non-periodic it contains a non-trivial commutator, which is tangent to the identity, hence non-periodic. When \(H_D \) is abelian, if all its elements were periodic then \(H_D \) would be finite. We must prove that the exponential map \(\exp : \mathcal{V}^0_Q(H_D) \rightarrow C^0_Q(H_D) \) is an isomorphism. By Lemma 5.14 the bottom horizontal map in the following diagram is an isomorphism:

\[
\begin{array}{ccc}
\mathcal{V}^0_Q(H_D) & \xrightarrow{\exp} & C^0_Q(H_D) \\
\downarrow & & \downarrow \\
\mathcal{V}^0_Q(h_0) & \xrightarrow{\sim} & C^0_Q(h_0).
\end{array}
\]

This shows that the top horizontal map is injective. To prove the surjectivity we distinguish two cases:

(a) \(T_F(D) = 0 \). In this case \(\mathcal{V}^0_Q(H_D) = 0 \). By contradiction, we must see that if \(C^0_Q(H_D) \neq \{id_{C \times Q}\} \) then \(\mathcal{V}^0_Q(H_D) \neq \{0\} \). If \((f(z,u), u) \in C^0_Q(H_D) \setminus \{id_{C \times Q}\} \) there is a holomorphic germ \(\lambda : (\mathbb{C},0) \rightarrow (Q,u_0) \) and \(n \in \mathbb{N}^* \) such that \(z \neq f(z,t) := f(z,\lambda(t)) = z + t^n a(z) \mod t^{n+1} \) with \(a(z) \neq 0 \). For every \(h \in H_D \) we have:

\[
g(h(z),t) = h(g(z,t)).
\]

Working modulo \(t^{n+1} \) we deduce that \(h(z) + t^n a(h(z)) = h(z) + k(t) t^n a(z) \), i.e. \(a(h(z)) = k(t) a(z) \). This means that \(0 \neq a(z) \partial_z \in \mathcal{V}(h) = \mathcal{V}(H_D) \neq 0 \) and consequently \(\mathcal{V}^0_Q(H_D) \simeq \mathcal{V}(H_D) \otimes C \mathfrak{m}_{Q,u_0} \neq 0 \).

(b) \(T_F(D) \neq 0 \). In this case, \(0 \neq T_F(D) \simeq \mathcal{V}(H_D) \subset \mathcal{V}(h_0) \) and since \(h_0 \) is non-periodic classically, we have: \(\dim C \mathcal{V}(h_0) \leq 1 \). Consequently \(\mathcal{V}(h) = \mathcal{V}(h_0) \) has dimension 1 and \(\mathcal{V}^0_Q(H_D) = \mathcal{V}(H_D) \otimes C \mathfrak{m}_{Q,u_0} = \mathcal{V}(h_0) \otimes C \mathfrak{m}_{Q,u_0} = \mathcal{V}^0_Q(h_0) \). Using Lemma 5.14 we have:

\[
C^0_Q(h_0) = \exp(\mathcal{V}^0_Q(h_0)) = \exp(\mathcal{V}^0_Q(H_D)) \subset C^0_Q(H_D) \subset C^0_Q(h_0).
\]

Hence \(\exp(\mathcal{V}^0_Q(H_D)) = C^0_Q(H_D) \).

We let the reader check that if \((\mu, \phi) : (P, \mathcal{G}) \rightarrow (Q, \mathcal{F}) \) is a morphism in the category \(\text{Man} \times \text{Fol} \), then the following diagram of group-graph morphisms is commutative:

\[
\begin{array}{ccc}
RT^Q_F & \xrightarrow{(\mu, \phi)^*} & RT^P_G \\
\downarrow \text{Exp}_F^Q \downarrow & & \downarrow \text{Exp}_G^P \downarrow \\
\text{RSym}_F^Q & \xrightarrow{(\mu, \phi)^*} & \text{RSym}_G^P.
\end{array}
\]

5.5. **Characterization of finite type foliations.** In this section we prove that, under a technical hypothesis, a foliation \(\mathcal{F} \) is of finite type if and only if the cohomology vector space \(H^1(\mathcal{A}_S, \mathcal{F}) \) is of finite dimension, which justifies the name that we have adopted.
Theorem 5.15. Let \mathcal{F} be a foliation which is a generalized curve. If there is no cut-component $A^2_{\mathcal{F}}$ of $\mathcal{A}_\mathcal{F}$ entirely green, then \mathcal{F} is of finite type if and only if in each cut-component H is periodic and $\dim_c H^1(\mathcal{A}_\mathcal{F}, T_{\mathcal{F}}) < \infty$.

Before proving the theorem we need to state some auxiliary results.

Remark 5.16. If K, K' are subgraphs of $\mathcal{A}_\mathcal{F}$, then we have:

$$\dim_c H^1(K', T_{\mathcal{F}}) \leq \dim_c H^1(K, T_{\mathcal{F}})$$

as soon as $K' \subset K$.

\[\square\]

Lemma 5.17. If an edge $e \in Ed_{\mathcal{A}_\mathcal{F}}$ is green and $D \in e$ then the following properties are equivalent:

1. The holonomy group H_D is generated by $h_{D,e}$;
2. The restriction morphism $\rho_D: T_{\mathcal{F}}(D) \to T_{\mathcal{F}}(e)$ is surjective;
3. The image of ρ_D^n has finite codimension in $T_{\mathcal{F}}(e)$;

where $h_{D,e}$ are defined using a given geometric system, cf. Definition 4.13.

An immediate consequence of this lemma is the following:

Corollary 5.18. If there is no cut-component of $\mathcal{A}_\mathcal{F}$ entirely green, then \mathcal{F} is of finite type if and only if in each cut-component $\mathcal{A}^2_{\mathcal{F}}$, $\alpha \in \mathcal{A}$, the red part $R^2_{\mathcal{F}}$ is connected and repulsive for the group-graph $T_{\mathcal{F}}$.

To lighten the text, in this proof we will denote by T the vector space-graph $T_{\mathcal{F}}$ and by T_e the vector space $T_{\mathcal{F}}(*)$.

Proof of Lemma 5.17. If D is not green then $\dim_c T_D \in \{0, 1\}$, $\dim_c T_e = \infty$, $h_{D,e}$ is periodic and H_D is infinite. Thus, none of the three assertions hold. If D is green then there is a transverse factor $z: (M_{\mathcal{F}}, o_D) \to (\mathbb{C}, 0)$ at a regular point $o_D \in D$ such that $H_D = \langle z \mapsto e^{2i\pi/n_D z} \rangle$ and $h_{D,e}(z) = e^{2i\pi/n_D z}$. The proof of [7, Proposition 6.4] shows that $T_e/\rho_D^n(T_D) \simeq \mathbb{C}^{\mathbb{Z}/n_D^*}/\mathbb{C}^{\mathbb{Z}/n_D}$ is either zero (when $n_D = \infty$) or it has infinite codimension (when $n_D \neq n_{D,e}$).

Let us highlight that by Remark 5.5 the restrictions maps $\rho^\ast_D: T_D \to T_e$, with $e = \langle D, D' \rangle \in Ed_{\mathcal{A}_\mathcal{F}}$, of the group graph $T_{\mathcal{F}}$ are always injective. We now provide "orientations" to the edges e of $\mathcal{A}_\mathcal{F}$ in the following way:

(i) $D \circ \to D'$ means that ρ^\ast_D is not bijective and $\rho^\ast_{D'}$ is bijective,
(ii) $D \notin \to D'$ means that ρ^\ast_D bijective and $\rho^\ast_{D'}$ is not bijective,
(iii) $D \circ \leftrightarrow D'$ means that both ρ^\ast_D and $\rho^\ast_{D'}$ are bijective,
(iv) $D \circ \leftrightarrow D'$ means that both ρ^\ast_D and $\rho^\ast_{D'}$ are not bijective.

Lemma 5.19. In a cut-component $A^2_{\mathcal{F}}$ of $\mathcal{A}_\mathcal{F}$, let K be a geodesic of one of following types:

1. $D_0 \bullet \to_{e_0} D_1 \bullet \star \cdots \star_{e_{n-1}} D_n \bullet \leftrightarrow_{e_n} D_{n+1} \bullet$, with $n \geq 1$;
2. $D_0 \bullet \leftrightarrow_{e_0} D_1 \bullet$, the edge e_0 being necessarily green;
3. $D_0 \bullet \leftrightarrow_{e_0} D_1 \bullet \star \cdots \star_{e_{n-1}} D_n \bullet \leftrightarrow_{e_n} D_{n+1} \bullet$, with $n \geq 1$;
4. $D_0 \bullet \to_{e_0} D_1 \bullet$, the edge e_0 being green;

where the green vertices are denoted by \star, the red vertices by \bullet and $D \circ \to D'$ denotes any "orientation" (i)-(iv). Then the dimension of $H^1(K, T)$ is infinite.
Proof. First consider case (1). Thanks to Remark 5.16, even if we restrict to a smaller geodesic, we can suppose that all arrows e_0, \ldots, e_{n-1} are either simple arrows directed to D_n, i.e. $\ast_{D_{j-1}} e_{j-1} \star_{D_j}$ or double arrows $\ast_{D_{j-1}} e_{j-1} \ast_{D_j}$; therefore all the restriction maps $\rho^e_{j-1} : T_{D_j} \to T_{e_{j-1}}$, $j = 0, \ldots, n$, are isomorphisms. Every map ρ^e_{j-1} being injective, we can identify all the spaces T_{e_j}, $j = 0, \ldots, n$, and T_{D_j}, $j = 0, \ldots, n + 1$ with subspaces of T_{e_n}. With these identifications we have:

$$T_{D_0} \subseteq T_{e_0} = T_{D_1} \subseteq \cdots \subseteq T_{D_n} = T_{e_n} \supseteq T_{D_{n+1}}. \tag{55}$$

Since $D_{n+1} \in e_n$ are green, from Lemma 5.17 it follows that

$$\dim_C(T_{e_n}/T_{D_{n+1}}) = \infty. \tag{56}$$

With the identifications (55) the coboundary morphism for the subgraph K can be written as

$$\partial^0_K : C^0(K, T) = \prod_{j=0}^{n+1} T_{D_j} \longrightarrow Z^1(K, T) \xrightarrow{\sim} \prod_{j=0}^n T_{e_j},$$

$$\partial^0_K((X_j)_{j=0,\ldots,n+1}) = (X_j - X_{j-1})_{j=1,\ldots,n+1}.$$

The surjective linear map

$$\beta : \prod_{j=0}^n T_{e_j} \to T_{e_n}, \quad (X_j)_{j=0,\ldots,n} \mapsto \sum_{j=0}^n X_j$$

induces the following diagram whose rows and columns are all exact:

\[
\begin{array}{ccc}
\prod_{j=0}^{n+1} T_{D_j} & \xrightarrow{\partial^0_K} & \prod_{j=0}^n T_{e_j} \xrightarrow{\sim} H^1(K, T) \xrightarrow{0} \\
\downarrow{\alpha} & & \downarrow{\beta} & \downarrow{\bar{\beta}} \\
T_{D_0} \times T_{D_{n+1}} & \xrightarrow{\sigma} & T_{e_n} \xrightarrow{\sim} T_{e_n}/(T_{D_0} + T_{D_{n+1}}) \xrightarrow{0} \\
\downarrow 0 & & \downarrow 0 & \downarrow 0 \\
0 & & 0 & 0
\end{array}
\]

with $\alpha((X_j)_{j=0,\ldots,n+1}) := (X_0, X_{n+1})$ and $\sigma(X_0, X_{n+1}) := X_{n+1} - X_0$. Since the dimension of T_{D_0} is finite and the codimension of $T_{D_{n+1}}$ in T_{e_n} is infinite according to (56), we deduce that the dimension of $T_{e_n}/(T_{D_0} + T_{D_{n+1}})$ is infinite and consequently $\dim_C H^1(K, T) = +\infty$.

Case (2) can be treated as case (1). In case (3), if K does not contain a subgraph of type (1) nor (2), even by renumbering, then the configuration must be

$$\begin{array}{ccccccc}
D_0 & \xrightarrow{e_0} & D_1 & \xrightarrow{e_1} & \cdots & \xrightarrow{e_{n-1}} & D_n & \xrightarrow{e_n} & D_{n+1} \\
\bullet & \leftrightarrow & \ast & \leftrightarrow & \ast & \leftrightarrow & \ast & \leftrightarrow & \bullet
\end{array}$$

and we can make again the identifications (55). The spaces T_{D_0} and $T_{D_{n+1}}$ having both finite dimension, we obtain the conclusion. Case (4) is trivial because T_{D_0} and T_{D_1} have finite dimension and $\dim_C T_{e_0} = \infty$. \[\square\]

Proof of Theorem 5.15. We will use the characterization of finite type foliations given in Corollary 5.18. Notice that the red part R^e_F of a cut-component A^e_F is not repulsive with respect to T_F if and only if it contains a geodesic of type (1) or (2) because the configuration $\bullet \leftrightarrow \ast$ cannot occur. On the other hand, R^e_F is not connected if and only if it contains a geodesic of type (3) or (4). It follows from Lemma 5.19 that if F is not of finite type then a cut-component A^e_F contains a geodesic K with $\dim H^1(K, T_F) = \infty$ and consequently $\dim_C H^1(A^e_F, T_F) \geq \dim_C H^1(A^e_F, T_F) = \infty$, cf. Remark 5.16.

Conversely, if F has finite type, from Remark 5.10, Proposition 5.12 and Theorem 2.15 we deduce that $H^1(A^e_F, T_F)$ has finite dimension. \[\square\]
6. C^{∞}-universal deformations

6.1. C^{∞}-universality. We will show the existence of a C^{∞}-universal deformation for finite type foliations through the representability of the corresponding deformation functor.

Definition 6.1. Let F_Q be an equisingular deformation over a germ of manifold $Q := (Q, u_0)$ of a foliation F. We say that F_Q is a C^{∞}-universal deformation of F if for any germ of manifold $P' = (P, t_0)$ and any equisingular deformation G_P of F over P', there exists a unique germ of holomorphic map $\lambda : P' \to Q$ such that the deformations G_P and $\lambda^* F_Q$ of F are C^{∞}-conjugated.

Remark 6.2. Notice that if $\mu : Q' \to Q$ is a germ of biholomorphism, the C^{∞}-universality of F_Q and of $\mu^* F_Q$ are clearly equivalent. On the other hand, it directly results from the definition that the C^{∞}-universality of F_Q only depends on its class $f_Q := [F_Q] \in \text{Def}_Q^\text{ex}$. We will then say that f_Q is C^{∞}-universal.

Let us consider the maps

$$\Lambda_{Q}^{P} : \mathcal{O}(P, Q) \to \text{Def}_F^{P}, \quad \lambda \mapsto [\lambda^{*} F_Q],$$

where $\mathcal{O}(P, Q)$ always denotes the set of holomorphic map germs $P \to Q$ sending t_0 to u_0. By definition we have:

f_Q is C^{∞}-universal \iff for any P the map Λ_{Q}^{P} is bijective.

One easily checks that $(\Lambda_{Q}^{P})_P$ defines a natural transformation

$$\Lambda_{Q} : F_Q \to \sim \text{Def}_F$$

where F_Q, $\text{Def}_F : \text{Man} \dashrightarrow \text{Set}$ are the following contravariant functors:

$$F_Q (P') := \mathcal{O}(P', Q), \quad F_Q (\lambda) = \cdot \circ \lambda, \quad \text{Def}_F (P') := \text{Def}_F^{P}, \quad \text{Def}_F (\lambda) := \lambda^*,$$

where the first set is pointed by the constant map $\kappa_{u_0} : P' \to Q$ and the second one is pointed by the class of the constant deformation F_Q^{id}, see Section 3.4. Thus f_Q is C^{∞}-universal if and only if Λ_{Q} is an isomorphism of functors. Classically Q being fixed, any isomorphism of functors

$$\Lambda : F_Q \sim \to \text{Def}_F, \quad \Lambda = (\Lambda^{P} : \mathcal{O}(P, Q) \sim \to \text{Def}_F^{P})_P$$

is of this type:

$$\Lambda = \Lambda_{Q} \quad \text{with} \quad f_Q := \Lambda^{Q} (\text{id}_Q).$$

It is Yoneda’s Lemma which may be summarized in the diagrams whose commutativity results from the functoriality of Λ:

\[
\begin{array}{c}
\begin{array}{c}
\mathcal{O}(Q', Q) \\
\cdot \circ \lambda
\end{array}
\xrightarrow{\Lambda^{Q}} \text{Def}_F (Q')
\\
\Lambda^{P} \circ \mathcal{O}(P, Q) \\
\downarrow \lambda^*
\end{array}
\quad \text{by} \quad
\begin{array}{c}
id_Q
\downarrow
\Leftrightarrow
\downarrow
\end{array}
\quad
\begin{array}{c}
f_Q
\downarrow
\downarrow
\end{array}
\end{array}
\]

Finally, to find a germ of manifold Q' and a C^{∞}-universal deformation F_Q is equivalent to represent the functor Def_F, i.e. to find a germ of manifold Q' and an isomorphism of functors $\text{Def}_F \sim \to F_Q$:

\[
\left(f_Q \in \text{Def}_F^Q \text{ is } C^{\infty}-\text{universal} \right) \iff \left(\exists \xi^{Q} : \text{Def}_F \sim \to F_Q, \xi^{Q} (f_Q) = \text{id}_Q \right). \quad (57)
\]

As we will also need later the naturality of ξ^{Q} relative to the foliation $F \in \text{Fol}$, we will prove a slightly stronger result.
If \(\phi : G \to F \) is a \(\mathcal{C}^\infty \)-conjugacy between two foliations \(G \) and \(F \), we will denote by
\[
[\phi^*] := H^1(\phi^*) : H^1(A_F, T_F) \cong H^1(A_G, T_G),
\]
the morphism induced by the vector space-graph isomorphism \(\phi^* : T_F \cong T_G \) defined in (51). We define the contravariant factorizing functor \(\text{Fac} : \text{Man} \times \text{Fol} \to \text{Set} \) as
\[
\text{Fac}(Q,F) := \mathcal{O}(Q, H^1(A_F, T_F)),
\]
this set being pointed by the zero map, and if \((\mu, \phi) : (P, G) \to (Q, F) \), then \(\text{Fac}(\mu, \phi) := \text{Fac}^\mu_\phi \) is the following linear map:
\[
\text{Fac}^\mu_\phi : \mathcal{O}(Q, H^1(A_F, T_F)) \to \mathcal{O}(P, H^1(A_G, T_G)), \quad \lambda \mapsto [\phi^*] \circ \lambda \circ \mu,
\]
where \(H^1(A_F, T_F) \) is the vector space \(H^1(A_F, T_F) \) pointed by the origin.

Theorem 6.3. For any finite type foliation \(F \) which is a generalized curve and for any germ of manifold \(Q \) there is a bijection
\[
\xi^Q_F : \text{Def}^Q_F \cong \mathcal{O}(Q, H^1(A_F, T_F))
\]
such that the collection \(\{\xi^Q_F\}_{(Q,F)} \) defines an isomorphism of contravariant functors
\[
\xi : \text{Def} \cong \text{Fac},
\]
when both functors are restricted to the subcategory \(\text{Man} \times \text{Fol}_R \) of the category \(\text{Man} \times \text{Fol} \), see Definition 5.1.

Proof. We successively apply Theorem 4.4, Proposition 4.11, Theorem 5.3, Theorem 5.13, Lemma 5.11, natural isomorphisms (53), (11) and (52). We obtain for any \((Q,F) \in \text{Man} \times \text{Fol}_R \), the following isomorphisms:
\[
\text{Def}^Q_F \overset{\text{Th.}4.4}{\cong} H^1(A_F, \text{Aut}^Q_F) \overset{\text{Prop.}4.11}{\cong} H^1(A_F, \text{Sym}^Q_F) \overset{\text{Th.}5.3}{\cong} H^1(R_F, R\text{Sym}^Q_F) \overset{(53)}{\cong} H^1(R_F, R\mathcal{T}_F \otimes_{\mathbb{C}} \mathcal{M}_Q) \overset{(11)}{\cong} H^1(R_F, R\mathcal{T}_F) \otimes_{\mathbb{C}} \mathcal{M}_Q \overset{(52)}{\cong} H^1(A_F, T_F) \otimes_{\mathbb{C}} \mathcal{M}_Q \cong \mathcal{O}(Q, H^1(A_F, T_F)),
\]
the last natural isomorphism being as usual \((\zeta \otimes a) \mapsto (t \mapsto a(t)c) \). Each of them defines in fact a natural transformation between contravariant functors from \(\text{Man} \times \text{Fol}_R \) to \(\text{Set} \). The functor isomorphism \(\xi \) is defined as the composition of all the isomorphisms in (61). \(\square \)

Theorem 6.4. For any foliation of finite type (which is a generalized curve) there exists a \(\mathcal{C}^\infty \)-universal deformation \(F_Q \), with base
\[
Q = H^1(A_F, T_F),
\]
such that for any equisingular deformation \(F_P \) of \(F \), we have that \(\lambda := \xi^P_F([F_P]) \) satisfies
\[
[\lambda^* F_Q] = [F_P].
\]
Moreover, \(H^1(A_F, T_F) \) is a \(\mathbb{C} \)-vector space of dimension the rank of \(H_1(R_F/(R_F \setminus \text{supp}(R_T F)))) \).

Here \(R_F/(R_F \setminus \text{supp}(R_T F)) \) denotes the graph obtained by contracting to a single vertex the complementary of the support of \(R_T F \), which is a subgraph of \(R_F \) according to Proposition 5.12.

Proof. By (57) with \(Q = H^1(A_F, T_F) \) we can choose for \(F_Q \) any element in \((\xi^Q_F)^{-1}(\text{id}_Q) \).
To obtain the description of \(H^1(A_F, T_F) \) we use the isomorphism \(H^1(A_F, T_F) \cong H^1(R_F, R_T F) \) given by (52) and Proposition 5.12. We then apply Theorem 2.15 to each connected component of \(R_F \), taking \(d = 1 \) and noting that \(a - p = \text{rk} H_1(R_F/(R_F \setminus \text{supp}(R_T F))) \). \(\square \)
6.2. Kodaira-Spencer map. This map assigns to each equisingular deformation its associated “infinitesimal deformation”. We will define for any germ of manifold $Q = (Q, u_0)$ and any foliation $\mathcal{F} \in \text{Fol}$, a graph-group morphism

$$\Theta^Q_{\mathcal{F}} : \text{Aut}^Q_{\mathcal{F}} \to \mathcal{T}_\mathcal{F} \otimes_C (\mathcal{M}_{Q,u_0}^2/\mathcal{M}_{Q,u_0}^1)$$

so that this collection is a natural transformation Θ between the functor Aut considered in (36) and the functor $(Q, \mathcal{F}) \mapsto \mathcal{T}_\mathcal{F} \otimes_C (\mathcal{M}_{Q,u_0}^2/\mathcal{M}_{Q,u_0}^1)$. The definition of $\Theta^Q_{\mathcal{F}, e}$ for $e := (D, D') \in \text{Ed}_{A_F}$ is based on the following fact: let (u_1, \ldots, u_q) be a centered coordinate system on Q and let us denote by pr_{M_F} the canonical projection $M_F \times Q \to M_F$; if a germ of biholomorphism Φ at the point $(s, u_0) \in M_F \times Q$, with $\{s\} := D \cap D'$, leaves invariant the constant deformation \mathcal{F}^t_Q, then $\frac{\partial \text{pr}_{M_F} \circ \Phi}{\partial u_k} \bigg|_{u = u_0}, k = 1, \ldots, q$, are germs of vector fields in M_F at s, basic for the foliation \mathcal{F}^s. We denote by $\left(\frac{\partial \text{pr}_{M_F} \circ \Phi}{\partial u_k} \bigg|_{u = u_0}\right)$ its class in $\mathcal{T}_\mathcal{F}(e)$ and, when s is not a nodal singularity of \mathcal{F}^s, we set:

$$\Theta^Q_{\mathcal{F}, e} : \text{Aut}^Q_{\mathcal{F}}(e) \to \mathcal{T}_\mathcal{F}(e) \otimes_C (\mathcal{M}_{Q,u_0}^2/\mathcal{M}_{Q,u_0}^1),$$

$$\Theta^Q_{\mathcal{F}, e}(\Phi) := \sum_{k=1}^q \left[\frac{\partial \text{pr}_{M_F} \circ \Phi}{\partial u_k} \bigg|_{u = u_0}\right] \otimes \delta_k.$$

The definition of $\Theta^Q_{\mathcal{F}, D}$ for $D \in \text{Ed}_{A_F}$ invariant is less direct because the homeomorphisms $\Phi \in \text{Aut}^Q_{\mathcal{F}}(D)$ are not holomorphic a priori. We will fix the germ of a submersion $g : (M_F, o_D) \to (\mathbb{C}, 0)$ at a regular point o_D constant along the leaves of \mathcal{F}^s and we will use the composition of group morphisms

$$\text{Aut}^Q_{\mathcal{F}}(D) \to \text{Sym}^Q_{\mathcal{F}}(D) \to \mathcal{C}^Q_{\mathcal{F}}(H_D), \quad \Phi \mapsto g_* \Phi,$$

cf. Proposition 4.14, and the isomorphism

$\gamma_{D_*} : \mathcal{T}_\mathcal{F}(D) \xrightarrow{\sim} \mathcal{V}(H_D)$

given by the exact sequence (50) with $U = D$. One easily checks that if $h(z)$ is a germ of biholomorphism of $(\mathbb{C}, 0)$ and $(\phi(z, u), u)$ is a germ of biholomorphism of $(\mathbb{C} \times Q, (0, u_0))$ over Q satisfying $\phi(z, u_0) = z$ and $\phi(h(z), u) = h(\phi(z, u))$, then $\frac{\partial \phi}{\partial u_k} \bigg|_{u = u_0}, k = 1, \ldots, q,$ are vector field germs on $(\mathbb{C}, 0)$ invariant by h. We set:

$$\Theta^Q_{\mathcal{F}, D} : \text{Aut}^Q_{\mathcal{F}}(D) \to \mathcal{T}_\mathcal{F}(D) \otimes_C (\mathcal{M}_{Q,u_0}^2/\mathcal{M}_{Q,u_0}^1),$$

$$\Theta^Q_{\mathcal{F}, D}(\Phi) := \sum_{k=1}^q \gamma^{-1}_{D_*} \left(\frac{\partial \text{pr}_{C} \circ g \Phi}{\partial u_k} \bigg|_{u = u_0}\right) \otimes \delta_k,$$

where pr_{C} again denotes the canonical projection $\mathbb{C} \times Q \to \mathbb{C}$. One can check that definitions (62) and (63) do not depend on the choice of the germ of first integral submersion g at some regular point $o_D \in D$ nor on that of the coordinate system on Q. To see that these group morphisms define a group-graph morphism we need to show that for $\Phi \in \text{Aut}^Q_{\mathcal{F}}(D)$, the germ at $\{s\} = D \cap D'$ of $\gamma^{-1}_{D_*} \left(\frac{\partial \text{pr}_{C} \circ g \Phi}{\partial u_k} \bigg|_{u = u_0}\right)$ is equal to the class in $\mathcal{T}_\mathcal{F}(s)$ of the germ at s of $\frac{\partial \text{pr}_{M_F} \circ \Phi}{\partial u_k} \bigg|_{u = u_0}, k = 1, \ldots, q$. Thanks to Remark 5.5 it suffices to check this equality at a regular point $s' \in D$ close to s. We may suppose that $o_D = s'$. Using the map g_* in the exact sequence (47), the commutativity of the operations of partial derivatives at s' and direct image by the first integral g:

$$\left(\frac{\partial \text{pr}_{M_F} \circ \Phi}{\partial u_k} \bigg|_{u = u_0}\right) = \frac{\partial \text{pr}_{C} \circ g \Phi}{\partial u_k} \bigg|_{u = u_0},$$
gives the required equality.

It is easy to check that the collection \(\{ \Theta^Q, T \} \) defines a natural transformation of functors \(\Theta : \text{Aut} \rightarrow T \otimes \mathfrak{M}/\mathfrak{M}^2 \). Now we apply the cohomological functor to \(\Theta \) and we use the natural identification between \(\mathfrak{M}_{Q,u_0}/\mathfrak{M}^2_{Q,u_0} \) and the cotangent vector space \(T^*_{u_0}Q \) of \(Q \) at \(u_0 \). We obtain natural maps

\[
\text{Def}^Q \overset{\sim}{\rightarrow} H^1(A_F, \text{Aut}^Q) \overset{H^1(\Theta)}{\rightarrow} H^1(A_F, T_F \otimes \mathfrak{M}_{Q,u_0}/\mathfrak{M}^2_{Q,u_0}) \overset{\sim}{\rightarrow} H^1(A_F, T_F) \otimes_{\mathfrak{M}} T^*_{u_0}Q = L(T_{u_0} Q, H^1(A_F, T_F)),
\]

where \(L(E, E') \) denotes the space of \(\mathbb{C} \)-linear maps from the \(\mathbb{C} \)-vector space \(E \) to the \(\mathbb{C} \)-vector space \(E' \). We call the Kodaira-Spencer map for \((Q, F) \) the composition \((64)\) of these maps:

\[
\text{KS}^Q_{F} : \text{Def}^Q \rightarrow L(T_{u_0} Q, H^1(A_F, T_F)).
\]

We will also write

\[
\text{KS}^Q_{F} ([\mathcal{F}_Q]) = \frac{\partial[\mathcal{F}_Q]}{\partial u} \bigg|_{u=u_0}.
\]

Consider now the contravariant functor \(\text{DFac} : \text{Man} \times \text{Fol} \rightarrow \text{Set} \) defined by

\[
\text{DFac}(Q, F) := L(T_{u_0} Q, H^1(A_F, T_F)), \quad \text{DFac}(\mu, \phi) := \text{DFac}_{\phi}^\mu,
\]

with \(\text{DFac}_{\phi}^\mu : L(T_{u_0} Q, H^1(A_F, T_F)) \rightarrow L(T_{u_0} P, H^1(A_G, T_G)) \) defined by

\[
\text{DFac}_{\phi}^\mu (\ell) := [\phi^*] \circ \ell \circ D_{u_0} \mu
\]

if \((\mu, \phi) : (P, G) \rightarrow (Q, F) \) is a morphism in the category \(\text{Man} \times \text{Fol} \).

Since \(D_{u_0} ([\phi^*] \circ \lambda \circ \mu) = [\phi^*] \circ D_{u_0} \lambda \circ D_{u_0} \mu \) the derivation maps

\[
D^Q_{\phi} : \mathcal{O}(Q, H^1(A_F, T_F)) \rightarrow L(T_{u_0} Q, H^1(A_F, T_F)), \quad \lambda \mapsto D_{u_0} \lambda
\]

constitute a natural transformation

\[
D : \text{Fac} \rightarrow \text{DFac}
\]

according to \((59)\). One can check the following:

Proposition 6.5. For any morphism \((\mu, \phi) : (P, G) \rightarrow (Q, F) \) in \(\text{Man} \times \text{Fol} \) and any deformation \([\mathcal{F}_Q] \in \text{Def}^Q\)

we have the following commutative diagram:

\[
\begin{array}{ccc}
T_{u_0} P & \overset{\partial (\mu, \phi)^*[\mathcal{F}_Q]}{\rightarrow} & H^1(A_G, T_G) \\
\downarrow D_{u_0} \mu & & \uparrow [\phi^*] \\
T_{u_0} Q & \overset{\partial [\mathcal{F}_Q]}{\rightarrow} & H^1(A_F, T_F) \\
\end{array}
\]

in other words, the collection \(\{ \text{KS}^Q_{F} \}_{(Q, F)} \) defines a natural transformation \(\text{KS} : \text{Def} \rightarrow \text{DFac} \)

between contravariant functors from \(\text{Man} \times \text{Fol} \) to \(\text{Set} \).
6.3. Criteria for universality. Let us suppose now that the foliation \mathcal{F} has finite type. Using the representation of the deformation functor, the Kodaira-Spencer transformation becomes the usual derivation:

Proposition 6.6. Restricted to the subcategory $\text{Man} \times \text{Fol}_q$ the natural transformation KS is equal to the composition of the natural transformation derivative (63) with the natural isomorphism $\xi: \text{Def} \cong \text{Fac}$ defined in (60)

$$\text{KS} = D \circ \xi$$

Proof. Let us fix $(Q,F) \in \text{Man} \times \text{Fol}_q$. Since F is assumed to be of finite type, ξ is an isomorphism of functors and it suffices to see that, after the identifications

$$\mathcal{O}(Q,H^1(A_F,T_F)) \simeq H^1(A_F,T_F) \otimes C \mathcal{M}_{Q,u_0}$$

and

$$L(T_{u_0}Q,H^1(A_F,T_F)) \simeq H^1(A_F,T_F) \otimes C \mathcal{M}_{Q,u_0}/\mathcal{M}_{Q,u_0}^2,$$

the following map

$$\text{KS}_F^Q \circ (\xi_F^Q)^{-1}: H^1(A_F,T_F) \otimes C \mathcal{M}_{Q,u_0} \to H^1(A_F,T_F) \otimes C \mathcal{M}_{Q,u_0}/\mathcal{M}_{Q,u_0}^2$$

coincides with the tensor product of the identity map of $H^1(A_F,T_F)$ and the quotient map $\mathcal{M}_{Q,u_0} \to \mathcal{M}_{Q,u_0}/\mathcal{M}_{Q,u_0}^2$, $a \mapsto \dot{a}$. By following the functor morphisms in (61) and (64) and formula (63) we obtain that

$$(\text{KS}_F^Q \circ (\xi_F^Q)^{-1})([X_{D,e}]) \otimes a(u) = \sum_k \left[\frac{\partial}{\partial u_k} \bigg|_{u=u_0} \exp(a(u)X_{D,e})[1] \right] \otimes \dot{u}_k$$

$$= \sum_k \left[\frac{\partial}{\partial u_k} \bigg|_{u=u_0} \exp(X_{D,e})a(u) \right] \otimes \dot{u}_k$$

$$= \sum_k \left[\frac{\partial a(u_0)X_{D,e}}{\partial u_k} \right] \otimes \dot{u}_k$$

$$= [X_{D,e}] \otimes \sum_k \frac{\partial a}{\partial u_k}(u_0)\dot{u}_k = [X_{D,e}] \otimes \dot{a}.$$

\[\square\]

This interpretation of KS provides an infinitesimal criterium of universality.

Theorem 6.7. Let \mathcal{F} be a finite type foliation which is a generalized curve. For any equisingular deformation \mathcal{F}_P of \mathcal{F} over a germ of manifold P, the following properties are equivalent:

1. \mathcal{F}_P is C^{∞}-universal,
2. there is a biholomorphism germ $\mu: R \to P$ such that $\mu^*\mathcal{F}_P$ is C^{∞}-universal,
3. for any biholomorphism germ $\mu: R \to P$ the deformation $\mu^*\mathcal{F}_P$ is C^{∞}-universal,
4. the map $\xi_F^P([\mathcal{F}_P]): P \to H^1(A_F,T_F)$ is a biholomorphism germ,
5. the Kodaira-Spencer map $\frac{\partial [\mathcal{F}_P]}{\partial t} \big|_{t=0}$ is an isomorphism.

Proof. The equivalence of the first three assertions follows directly from the definition of C^{∞}-universality.

The proof of (1) \implies (4) is classical:\footnote{In fact, in the category whose objects are the classes of equisingular deformations of \mathcal{F} and the morphisms are pull-backs, a class of an equisingular deformation is C^{∞}-universal if and only if it is a final object. It is well-known that the final objects are canonically isomorphic, i.e. by a unique isomorphism.}: after setting $Q := H^1(A_F,T_F)$ one considers the class $\xi_F^Q \in \text{Def}_F^Q$ such that $\xi_F^Q(\xi_Q) = \text{id}_Q$, which is C^{∞}-universal, according to (57). Therefore, the map $\lambda := \xi_F^P([\mathcal{F}_P]): P \to Q$ satisfies $\lambda_0 := [\mathcal{F}_P] = \lambda^*\xi_Q$. On the other
hand, since f_P is assumed to be C^{∞}-universal, there is $\mu : Q' \to P'$ such that $f_Q = \mu^* f_P$. The uniqueness of factorizations and the relations $\mu^* \lambda^* f_Q = f_Q$, $\lambda^* \mu^* f_P = f_P$, give $\lambda \circ \mu = \text{id}_Q$ and $\mu \circ \lambda = \text{id}_P$.

The implication $(4) \Rightarrow (1)$ is a consequence of Theorem 6.4 and Remark 6.2. According to Proposition 6.6, $\frac{\partial f_P}{\partial t}|_{t=t_0}$ is the derivative of the map $\xi_P^t ([F_P])$, thus the equivalence $(4) \iff (5)$ is trivial.

Corollary 6.8. Let ϕ be an C^{∞}-conjugacy between two foliations $F, G \in \mathcal{Fol}$ of finite type, $\phi (G) = F$. Then $f_Q \in \text{Def}_F^Q$ is C^{∞}-universal if and only if $g_Q := \phi^* (f_Q) \in \text{Def}_G^Q$ is universal.

Proof. Let us suppose f_Q, C^{∞}-universal. According to Theorem 6.7, g_Q is C^{∞}-universal as soon as $\lambda^* g_Q = \phi^* (\lambda^* f_Q)$ is C^{∞}-universal for some biholomorphism germ $\lambda : P' \to Q'$. Therefore we may suppose that $Q := H^1 (A_F, T_F)^*$ and $f_Q = (\xi_Q^2)^{-1} (\text{id}_Q)$. Then we set:

$$P' := H^1 (A_G, T_G)^*, \quad \lambda := [\phi]^*: P' \to Q'.$$

Since ξ is a natural transformation we have the following commutative diagram:

$$\begin{array}{ccc}
\text{Def}_F^Q & \xrightarrow{\xi_Q} & \mathcal{O} (Q', Q') \\
\downarrow (\lambda, \phi)^* & & \downarrow \text{Fac}_{\phi}^P \\
\text{Def}_G^P & \xrightarrow{\xi_P} & \mathcal{O} (P', P')
\end{array}$$

We check that $\text{Fac}_{\phi}^P (\text{id}_Q) = \text{id}_P$, hence $\xi_P^P (\lambda^* g_Q) = \xi_P^P ((\lambda, \phi)^* (f_Q)) = \text{id}_P$. Thanks to criterion (4) in Theorem 6.7, $\lambda^* g_Q$ is C^{∞}-universal.

References

