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Internal Energy Relaxation Processes and Bulk Viscosities in Fluids

Domenico BRUNO
ISTP–CNR, 70125 Bari, ITALY

Vincent GIOVANGIGLI
CMAP–CNRS, École Polytechnique, 91128 Palaiseau, FRANCE

We revisit internal energy relaxation processes and related bulk viscosity coefficients in fluid
models derived from the kinetic theory. We discuss the apparition of bulk viscosity coefficients
in relaxation regimes and the links with equilibrium one-temperature bulk viscosity coefficients.
Multiple temperature models of single species fluids are investigated as well as state-to-state models
for mixtures of gases. Monte Carlo numerical simulations of internal energy relaxation processes in
polyatomic gases are shown to fully agree with the theoretical results. The impact of bulk viscosity
in fluid mechanics is also addressed as well as various mathematical aspects of internal energy
relaxation and Chapman-Enskog asymptotic expansion for a two-temperature fluid model.

I. INTRODUCTION

The relaxation of internal energy is of fundamental importance in reentry problems and laboratory plasmas [1–12].
Internal energy exchanges notably lead to the apparition of bulk viscosity coefficients in fluid models in relaxation
regimes [13–26]. Theoretical results and experimental measurements have further shown that bulk viscosity coefficients
of polyatomic gases are of the order of shear viscosity coefficients [27–33]. These are strong motivations for investigating
internal energy relaxation processes and related bulk viscosity coefficients in nonequilibrium models derived from the
kinetic theory of gases.

A hierarchy of thermodynamic nonequilibrium fluid models may be derived from the kinetic theory of polyatomic
gas mixtures. The most general thermodynamic nonequilibrium model is the state-to-state model where each internal
state of a molecule is independent and considered as a separate species [1–12]. When there are partial equilibria
between some of these states, species internal energy temperatures may be defined and the complexity of the model
is accordingly reduced [9]. The next reduction step consists in equating some of the species internal temperatures
with the equilibrium one-temperature model ultimately obtained [9]. Each relaxation step towards a simpler and
more equilibrated model then yields bulk viscosity contributions—provided the characteristic energy relaxation times
are smaller than the flow times, the most complete bulk viscosity coefficient being that obtained for the equilibrium
one-temperature fluid [23–26].

We first consider a simplified kinetic model where elastic and resonant collisions are fast but collisions exchanging
translational and internal energy are slow [23, 24]. In such a framework, the translational and internal temperatures
are macroscopic quantities associated with collisional invariants of the fast collision operator. In a relaxation regime,
when the characteristic time of internal energy relaxation is smaller than the flow characteristic time, the difference
between the translational temperature T tr and the equilibrium temperature T becomes proportional to the divergence
of the velocity field v. This leads to the apparition of a bulk viscosity coefficient κ such that nkB(T tr − T ) = −κ∇·v
where n is the number density and kB the Boltzmann constant.

We then investigate a more complex situation with two internal energy modes, one with a slow exchange rate
and the other one with a fast exchange rate [23, 24]. The translational-rapid mode temperature and the slow mode
temperature are then collisional invariants of the fast collision operator. For such a model, there is a bulk viscosity due
to the fast internal energy mode as in classical one-temperature models but part of the thermodynamic equilibrium
bulk viscosity is still hidden in the slow internal mode. A detailed analysis yields that, in a relaxation regime, there are
five contributions to the effective bulk viscosity, namely the fast internal mode bulk viscosity, the slow internal mode
bulk viscosity, the reduced relaxation pressure and two perturbed relaxation source terms. In the thermodynamic
equilibrium limit, the sum of these five contributions coincide with the one-temperature two-mode bulk viscosity. The
physical interpretation of the origin of the bulk viscosity coefficient is found to be similar to that of the simplified
two-temperature model [23, 24]. This analysis may also be generalized to the situation of gas mixtures as well as to
the case of nonindependent energy modes [25].

We next consider the general situation of state-to-state mixture models where each quantum state of each species is
independent [26]. Relaxation equations in symmetric form are derived for the quantum state population Gibbs func-
tions and the translational temperature. Approximate solutions of the population relaxation equations compatible with
the asymptotic equilibrium limit are then obtained. At zeroth order, using a relaxation approximation, the differences
between the pseudo species chemical potentials and their equilibrium value are proportional to the divergence of the
velocity field. The ‘internal energy’ bulk viscosity κ[01] is then recovered with the relation nkB(T tr−T ) = −κ[01]∇·v.
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At first order, the relaxation approximation yields a bulk viscosity that converges at thermodynamic equilibrium
towards the traditional bulk viscosity.

Monte Carlo simulations of spontaneous fluctuations near thermodynamic equilibrium are then performed in order
to investigate a polyatomic model gas [34–36]. The density fluctuation power spectrum of the model gas is evaluated
by using Boltzmann equation as well as linearized fluid equations [23, 37–40]. The simplified one temperature model,
including the bulk viscosity term, then well agrees with Boltzmann equation when the internal energy relaxation time
is smaller than the flow time [23–25]. When the relaxation time is larger than the flow characteristic time, however,
only the two temperature model is in agreement with Boltzmann equation.

A state-to-state model for mixtures of Helium and Hydrogen is next investigated numerically. The required collision
integrals are evaluated from a complete set of state-to-state cross sections for the He+H2(v, j) collisional system. The
latter have been obtained using an implementation of the quasiclassical method [41–45] with the accurate Muchnik-
Russek potential energy surface [46–54]. The values of the bulk viscosity for the model gas, obtained from the
fluctuation-dissipation theory [55–64], are then in full agreement with the theory [26].

We further address the impact of bulk viscosity in fluid mechanics that has scarcely been discussed in the litera-
ture [65–72]. The success of the erroneous Stokes approximation is mostly due to the gradient structure of the bulk
viscosity term [69]. We also discuss the mathematical structure of relaxation systems of partial differential equations
their and symmetrization [73–92]. We also address various mathematical aspects associated with the Chapman-Enskog
method for partial-differential equations that are applied to the simplified two-temperature model and that are found
to agree with the formal expansions [77, 89–92].

The simplified two-temperature model is considered in Section II, the two-temperature two-mode nonequilibrium
model in Section III, and the state-to-state model in Section IV. The Monte Carlo simulations of single gases are
presented in Section V and that of state-to-state mixture models in Section VI. The impact in fluid mechanics and
the mathematical aspects are finally addressed in Section VII.

II. A SIMPLIFIED TWO TEMPERATURE MODEL

II.A. Kinetic framework

We consider a single polyatomic gas with the Boltzmann equation written in the form

∂tf + c ·∇f =
1

ǫ
J rap + J sl, (II.1)

where ∂t denotes the time derivative operator, c the particle velocity, ∇ the space derivative operator, f(t,x, c, i)
the distribution function, x the spatial coordinate, i the index of the quantum energy state, J rap the rapid collision
operator, J sl the slow collision operator, and ǫ the formal parameter associated with the Chapman-Enskog procedure.
The complete collision operator J = J rap + J sl is in the form

J (f) =
∑

j,i′,j′

∫(
f(c′, i′)f(c̃′, j′)

aiaj
ai′aj′

− f(c, i)f(c̃, j)
)
gσiji

′
j
′

dc̃ de′, (II.2)

where in a direct collision i and j denote the indices of the quantum energy states before collision, i
′ and j

′ the
corresponding numbers after collision, c̃ the velocity of the colliding partner, c′ and c̃

′ the velocities after collision, ai
the degeneracy of the ith quantum energy state, g the absolute value of the relative velocity c− c̃, e′ the unit vector
in the direction of the relative velocity c′ − c̃

′, and σiji
′
j
′

the collision cross sections [15, 19]. The dependence of f on
(t,x) has been left implicit in (II.2) and the cross sections gσiji

′
j
′

satisfy the reciprocity relations aiajgσiji
′
j
′

dc dc̃de′ =

ai′aj′g
′σi

′
j
′
ijdc′dc̃′de.

Denoting by Ei the internal energy of the particle in the ith state, the rapid collisions are either elastic without
change of internal energy or resonant with ∆E = Ei

′ + Ej
′ − Ei − Ej = 0, Ei

′ 6= Ei and Ej
′ 6= Ej, whereas the

slow collisions are such that ∆E = Ei
′ + Ej

′ − Ei − Ej 6= 0. Denoting by J tr−tr the operator associated with elastic
collision, J int−int the operator associated with resonant collisions, and J tr−int the operator associated with collisions
such that ∆E 6= 0, the fast and slow collision operators are then

J rap = J tr−tr + J int−int, J sl = J tr−int. (II.3)
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The collisional invariants of the fast collision operator J rap are associated with particle number ψ1 = 1, momentum
ψ1+ν = mcν , ν ∈ {1, 2, 3} with c = (c1, c2, c3)

t, kinetic energy ψ5 = ψtr = 1
2m|c−v|2 and internal energy ψ6 = ψint =

Ei where m denotes the particle mass and v the fluid velocity.
The Enskog expansion is in the form f = f (0)

(
1 + ǫφ+O(ǫ2)

)
and the Maxwellian distribution f (0) reads

f (0) =
( m

2πkBT tr

) 3
2 nai
Z int

exp
(
−m|c− v|2

2kBT tr
− Ei

kBT int

)
, (II.4)

where n denotes the number density, kB the Boltzmann constant, T tr the translational temperature, T int the internal
temperature, and Z int =

∑
i
ai exp

(
−Ei/kBT

int
)

the partition function. There are two different temperatures T tr and
T int in f (0) since there are two different energy collisional invariants ψtr and ψint. The scalar product 〈〈ξ, ζ〉〉 between
two tensorial quantities ξ(t,x, c, i) and ζ(t,x, c, i) is naturally defined by

〈〈ξ, ζ〉〉 =
∑

i

∫
ξ·ζ dc.

where ξ·ζ is the contracted product.
The equations for conservation of mass, momentum and internal energies are then obtained by taking the scalar

product of the Boltzmann equation (II.1) with the collisional invariants of the fast collision operator. The corre-
sponding fluid variables are the particle number density n = 〈〈ψ1, f〉〉 = 〈〈ψ1, f (0)〉〉 or equivalently the mass density
ρ = mn, the mass averaged velocity v with ρv = 〈〈mc, f〉〉 = 〈〈mc, f (0)〉〉, the internal energy per unit volume
of translational origin Etr = 〈〈f, ψtr〉〉 = 〈〈f (0), ψtr〉〉, and the internal energy per unit volume of internal origin
E int = 〈〈f, ψint〉〉 = 〈〈f (0), ψint〉〉, or equivalently the translation and internal temperatures T tr and T int defined by
Etr(T tr, n) = 〈〈f, ψtr〉〉 and E int(T int, n) = 〈〈f, ψint〉〉. The pressure p and the internal energies Etr and E int are found
in the form

p = nkBT
tr, Etr = n 3

2kBT
tr, E int = nE, (II.5)

where E =
∑

i

aiEi

Zint exp
(
−Ei/kBT

int
)

is the average internal energy per particle. The corresponding translational
and internal entropies and Gibbs functions are presented in [23, 24]. Following the Chapman-Enskog procedure, the
equations for conservation of mass, momentum, and internal energies are obtained in the form [9]

∂tρ+∇·(ρv) = 0, (II.6)

∂t(ρv) +∇·(ρv⊗v + pI) +∇·Π = 0, (II.7)

∂tEtr +∇·(vEtr) +∇·Qtr = −p∇·v −Π :∇v − ωint
1 , (II.8)

∂tE int +∇·(vE int) +∇·Qint = ωint
1 , (II.9)

where ⊗ denotes the tensor vector product, I the unit tensor, Π the viscous tensor, Qtr the translational energy heat
flux, Qint the internal energy heat flux and ωint

1 the first order energy exchange term. The transport fluxes are given
by

Π =− η
(
∇v + (∇v)t − 2

3 (∇·v)I
)
, (II.10)

Qtr =− λtr,tr
∇T tr − λtr,int

∇T int, (II.11)

Qint =− λint,tr
∇T tr − λint,int

∇T int, (II.12)

where η denotes the shear viscosity, and λtr,tr, λtr,int, λint,tr, and λint,int the thermal conductivities. The full source
term ωint = 〈〈ψint,J sl〉〉 = 〈〈ψint,J 〉〉 may be expanded as ωint = ωint

0 + ǫδωint
1 + O(ǫ2) where ωint

0 is evaluated from
the Maxwellian distribution f (0) and δωint

1 is the correction associated with the Navier-Stokes perturbation φ, so that
the first order source term ωint

1 is given by

ωint
1 = ωint

0 + ǫδωint
1 . (II.13)

Finally, the pressure tensor P = pI +Π is given by

P = nkBT
trI − η

(
∇v + (∇v)t − 2

3 (∇·v)I
)
, (II.14)

and does not involve a bulk viscosity term unlike one-temperature polyatomic gas models [13–22].
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II.B. Relaxation and bulk viscosity

From the energy equations (II.8) and (II.9) it is obtained at zeroth order that

∂tT
tr + v·∇T tr = −p∇·v

nctr
− ωint

0

nctr
, ∂tT

int + v·∇T int =
ωint
0

ncint
, (II.15)

where the heat capacities are given by

ctr = 3
2kB, cint =

∑

i

kBai
Z int

(Ei − E
kBT int

)2

exp
(
− Ei

kBT int

)
, cvl = ctr + cint.

The zeroth order source term ωint
0 is in the form ωint

0 = −2n2
[[
(∆E)

(
exp

(
∆E

kBT tr − ∆E
kBT int

)
− 1

)]]
where [[ ]] is the

averaging operator [[α]] = 1
8n2

∑
i,j,i′,j′

∫
αiji

′
j
′f (0)f̃ (0)gσiji

′
j
′

dc dc̃ de′. Defining the nonequilibrium correction factor by

ζ =
∫ 1

0 exp
(
( ∆E
kBT tr − ∆E

kBT int )s
)
ds and the relaxation time by τ int = cintkBT

trT int/2n[[(∆E)2ζ]], the source term ωint
0

may be rewritten in the relaxation form

ωint
0 =

ncint

τ int
(T tr − T int). (II.16)

Subtracting the T int equation from that for T tr and using (II.16), the resulting equation for T tr − T int reads

∂t(T
tr − T int) + v·∇(T tr − T int) = −p∇·v

nctr
− cvl

ctr
T tr − T int

τ int
. (II.17)

This is a typical relaxation equation and when τ int is smaller that the flow characteristic time we obtain, after some
initial layer, the relaxation relation T tr − T int = −τ intp∇·v/ncvl. The equilibrium temperature is naturally defined
as the unique scalar T such that

Etr(T ) + E int(T ) = Etr(T tr) + E int(T int), (II.18)

and only this temperature T is available for the limiting one-temperature fluid model. Using E int(T ) − E int(T int) =∫ T

T intc
int(T ′) dT ′ = c̃int(T −T int) where c̃int =

∫ 1

0
cint

(
T int + s(T − T int)

)
ds we have ctr(T tr−T ) = c̃int(T −T int). We

also define the bulk viscosity by κ = pkBc̃
intτ int/cvlc̃vl where c̃vl = ctr + c̃int so that

κ =
cintc̃int

cvl c̃vl

k3
B
(T tr)2T int

2[[(∆E)2ζ]]
, (II.19)

and the equilibrium limit of this coefficient is
(
cint

cvl

)2
(kBT )

3/2[[(∆E)2]] that coincides with the bulk viscosity coefficient
obtained independently from the Chapman-Enskog method for the equilibrium fluid [32, 33]. Combining the relaxation
relation with ctr(T tr − T ) = c̃int(T − T int) and the definition of κ we obtain the fundamental relation

nkB(T
tr − T ) = −κ∇·v. (II.20)

We next note that the pressure tensor P is in the form

P = nkBTI − κ∇·vI − η
(
∇v + (∇v)t − 2

3 (∇·v)I
)
, (II.21)

and we have recovered the bulk viscosity coefficient of the one-temperature equilibrium limit fluid that only involves T .
Many authors have discussed the near thermodynamic equilibrium situation, where the internal temperature T int and
the translational temperature T tr are close, notably Kohler [13], Hirschfelder Curtiss and Bird [14], Waldmann [15],
Chapman and Cowling [16], Ferziger and Kapper [17], McCourt et al. [18], de Groot and Mazur [21], Keizer [22],
Zhdanov [8], Nagnibeda and Kustova [9], and Brun [10].

It is also possible to establish that first order corrections to the bulk viscosity coefficient are negligible for such
a simplified two temperature model. Discarding Burnett type terms, the corrections indeed involve the perturbed
source term δωint

1 that is in the form δωint
1 = 〈〈f (0)φ,W int〉〉 = 〈〈f (0)φω,W int〉〉ωint

0 where φω is the scalar perturbed
distribution function arising from the expansion [23]

φ = −φη:∇v − φλtr ·∇
( 1

kBT tr

)
− φλint ·∇

( 1

kBT int

)
+ φωωint

0 ,
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with φη denoting a symmetric traceless tensor, and φλ
tr

and φλ
int

are vectors [9, 23]. However, the standard scalar
basis functions φ0010 = 3

2 − 1
2

m
kBT |c − v|2 and φ0001 = (E − Ei)/kBT

int used for scalar linearized kinetic equations
are both collisional invariants of the rapid collision operator and are therefore in the nullspace of the linearized fast
collision operator Irap. Therefore the perturbed term φω ≃ 0 vanishes in a first approximation, we have ωint

1 ≃ ωint
0 ,

and there are no first order corrections to the bulk viscosity coefficient [23].

III. A TWO-MODE TWO-TEMPERATURE MODEL

III.A. Kinetic framework

We consider the more complex situation of a single polyatomic gas with two independent internal energy modes
having different exchange rates. A first mode is assumed to have a rapid exchange rate with the translational degrees
of freedom whereas the other one is assumed to have a slow exchange rate. The internal energy in the ith quantum
state is accordingly split as

Ei = Erap
i
rap + Esl

i
sl , (III.1)

where i denotes the composed index i = (irap, isl), i
rap the index of the quantum energy state of the rapid mode, i

sl

the index of the quantum energy state of the slow mode, Erap
i
rap the rapid mode internal energy, and Esl

i
sl the slow mode

internal energy. We also denote for short Erap
i for Erap

i
rap and Esl

i
for Esl

i
sl so that Ei = Erap

i +Esl
i
. We also denote by ai the

degeneracy of the ith state that may be decomposed as ai = arap
i
rapasl

i
sl where arap

i
rap and asl

i
sl are the degeneracies of the fast

and slow modes. We assume that the rapid collisions are all the collisions such that ∆Esl = Esl
i
′ +Esl

j
′ −Esl

i
−Esl

j
= 0,

either only involving the translational and rapid mode energy or resonant with respect to the slow internal mode.
Denoting by J (tr+rap)−(tr+rap) the collision operator involving solely the translational and fast internal degrees of
freedom, J sl−sl the operator for resonant collision with respect to Esl, and J (tr+rap)−sl the operator for collisions
such that ∆Esl 6= 0, the Boltzmann equation governing the distribution f(t,x, i) is in the form (II.1) with the fast
and slow collision operators given by

J rap = J (tr+rap)−(tr+rap) + J sl−sl J sl = J (tr+rap)−sl. (III.2)

The collisional invariants of the fast collision operator are associated with particle number ψ1 = 1, momentum
ψ1+ν = mcν , ν ∈ {1, 2, 3}, translational and rapid mode energy ψ5 = ψtr + ψrap and slow mode energy ψ6 = ψsl,
where ψtr = 1

2m|c− v|2, ψrap = Erap
i , and ψsl = Esl

i
.

The Enskog expansion is in the form f = f (0)
(
1 + ǫφ+O(ǫ2)

)
and the Maxwellian f (0) is found to be

f (0) =
( m

2πkBT

) 3
2 nai
Z int

exp
(
−m|c− v|2)

2kBT
− Erap

i

kBT
− Esl

i

kBT sl

)
, (III.3)

where T is the partial equilibrium temperature between the translational and fast internal degrees of freedom, T sl

the temperature associated with the slow internal energy modes, and Z int =
∑

i
ai exp

(
−Erap

i

kBT
− Esl

i

kBT sl

)
the internal

partition function. There are two different temperatures T and T sl involved in f (0) since there are two different
energy collisional invariants ψtr + ψrap and ψsl. The partition function may be decomposed as Z int = ZrapZsl

where Zrap =
∑

i
rap a

rap
i
rap exp

(
−Erap

i
rap/kBT

)
and Zsl =

∑
i
sl asl

i
sl exp

(
−Esl

i
sl/kBT

sl
)

are the fast and slow mode partition
functions.

The equations for conservation of mass, momentum and internal energies are obtained by taking scalar products
of the Boltzmann equation with the collisional invariants of the fast collision operator. The extra fluid variables
to consider, in addition to the particle number density n and the mass averaged velocity v, are now the energies
Etr+rap = 〈〈f, ψtr + ψrap〉〉 = 〈〈f (0), ψtr + ψrap〉〉 and Esl = 〈〈f, ψsl〉〉 = 〈〈f (0), ψsl〉〉 or equivalently the temperatures T
and T sl defined by Etr+rap(T , n) = 〈〈f, ψtr + ψrap〉〉 and Esl(T sl, n) = 〈〈f, ψsl〉〉. The pressure p and the internal energies
Etr+rap and Esl are obtained in the form

p = nkBT , Etr+rap = n(32kBT + E
rap

), Esl = nE
sl
, (III.4)

where E
rap

=
∑

i
rap

arap

i
rapE

rap

i
rap

Zrap exp
(
−Erap

i
rap/kBT

)
and E

sl
=

∑
i
sl

asl

i
slE

sl

i
sl

Zsl exp
(
−Esl

i
sl/kBT

sl
)

are the average fast and slow
mode internal energy per particle. The corresponding entropies and Gibbs functions are presented in [23, 24]. The



6

corresponding mass and momentum conservation equations are similar to (II.6) and (II.7) and are not repeated. On
the other hand, the equations for conservation of internal energies are in the form

∂tEtr+rap +∇·(vEtr+rap) +∇·Qtr+rap = −p∇·v −Π :∇v − ωsl
1 , (III.5)

∂tEsl +∇·(vEsl) +∇·Qsl = ωsl
1 , (III.6)

where Qtr+rap denotes the translational and fast mode energy flux, Qsl the slow mode energy flux, and ωsl
1 the first

order energy exchange term. The transport fluxes are given by

Π = prelI − κrap
∇·vI − η

(
∇v + (∇v)t − 2

3 (∇·v)I
)
, (III.7)

Qtr+rap = −λtr+rap,tr+rap
∇T − λtr+rap,sl

∇T sl, (III.8)

Qsl = −λsl,tr+rap
∇T − λsl,sl

∇T sl, (III.9)

where prel denotes the relaxation pressure, κrap the fast internal energy mode bulk viscosity, η the shear viscosity,
and λtr+rap,tr+rap, λtr+rap,sl, λsl,tr+rap, and λsl,sl the thermal conductivities. The full source term ωsl = 〈〈ψsl,J sl〉〉 =
〈〈ψsl,J 〉〉 may be expanded as ωsl = ωsl

0 + ǫδωsl
1 +O(ǫ2) where ωsl

0 is evaluated from the Maxwellian distribution f (0)

and δωsl
1 is the correction associated with the Navier-Stokes perturbation φ so that ωsl

1 is given by

ωsl
1 = ωsl

0 + ǫδωsl
1 . (III.10)

Finally, defining the pressure tensor as P = pI +Π , we have

P = nkBTI + prelI − κrap
∇·v I − η

(
∇v + (∇v)t − 2

3 (∇·v)I
)
, (III.11)

with a pressure term nkBTI, a relaxation pressure term prelI, a bulk viscosity contribution solely associated with the
fast internal modes κrap∇·vI and a shear viscosity term. In particular, the resulting bulk viscosity κrap differ from

that obtained at equilibrium that involves the two internal energy modes [32, 33].

III.B. Relaxation and the slow mode bulk viscosity

From the energy equations (III.5) and (III.6) we obtain at zeroth order that

∂tT + v·∇T = − p∇·v
n(ctr + crap)

− ωsl
0

n(ctr + crap)
, ∂tT

sl + v·∇T sl =
ωsl
0

ncsl
, (III.12)

where the heat capacities are given by

ctr = 3
2kB, crap =

∑

i
rap

kBa
rap
i
rap

Zrap

(Erap
i
rap − Erap

kBT

)2
exp

(
−E

rap
i
rap

kBT

)
, csl =

∑

i
sl

kBa
sl
i
sl

Zsl

(Esl
i
sl − E

sl

kBT

)2
exp

(
−E

sl
i
sl

kBT

)
,

and cvl = ctr + crap + csl. The source term ωsl
0 is in the form ωsl

0 = −2n2
[[
(∆Esl)

(
exp

(
∆Esl

kBT
− ∆Esl

kBT sl

)
− 1

)]]
where

[[ ]]

is the averaging operator. Defining the nonequilibrium correction factor as ζsl =
∫ 1

0
exp

((
∆Esl

kBT
− ∆Esl

kBT sl

)
s
)
ds and the

relaxation time by τ sl = cslkBTT
sl/2n[[(∆Esl)2ζsl]], the source term ωsl

0 may be recast in the relaxation form

ωsl
0 =

ncsl

τ sl
(T − T sl). (III.13)

Subtracting the T sl equation from that of T and using (III.13), the resulting equation for T − T sl is then

∂t(T − T sl) + v·∇(T − T sl) = − p∇·v
n(ctr + crap)

− cvl

(ctr + crap)

T − T sl

τ sl
. (III.14)

This is a typical relaxation equation and, assuming that τ sl is smaller than the flow characteristic time, we obtain
after some initial layer the relaxation relation at zeroth order T −T sl = −τ slp∇·v/ncvl. The equilibrium temperature
T is naturally defined such that

Etr(T, n) + Erap(T, n) + Esl(T, n) = Etr(T , n) + Erap(T , n) + Esl(T sl, n), (III.15)
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and letting Esl(T, n) − Esl(T sl, n) = n
∫ T

T slc
sl(T ′) dT ′ = n c̃sl(T − T sl) with c̃sl =

∫ 1

0
csl

(
T sl + s(T − T sl)

)
ds and

similarly Erap(T, n) − Erap(T , n) = n
∫ T

T c
rap(T ′) dT ′ = n c̃rap(T − T ) with c̃rap =

∫ 1

0 c
rap

(
T + s(T − T )

)
ds, we have

(ctr + c̃rap)(T − T ) = c̃sl(T − T sl). We also define the slow mode bulk viscosity by κsl = pkBc̃
slτ sl/cvlc̃vl, where

c̃vl = ctr + c̃rap + c̃sl and κsl may also be written

κsl =
cslc̃sl

cvl c̃vl

k3
B
T

2
T sl

2[[(∆Esl)2ζsl]]
. (III.16)

Combining the relaxation relation with the later definitions we obtain at zeroth order that

nkBT = nkBT − κsl
∇·v. (III.17)

Using the state law (III.4) and the expression of the pressure tensor (III.11), we then deduce an effective bulk
viscosity in the form κrap + κsl that differ from the one-temperature two-mode bulk viscosity directly obtained at

equilibrium [32, 33] also presented in Appendix A. It is thus necessary to investigate first order effects in order to
recover the full one-temperature two-mode equilibrium bulk viscosity.

III.C. The effective bulk viscosity

We need to take into account first order corrections to the relaxation relation in order to recover the proper one-
temperature two-mode bulk viscosity at equilibrium. From the governing equations (III.5) and (III.6) we deduce that
at first order





∂tT + v·∇T = − p∇·v
n(ctr + crap)

− ∇·Qtr+rap

n(ctr + crap)
− Π :∇v

n(ctr + crap)
− ωsl

1

n(ctr + crap)
,

∂tT
sl + v·∇T sl = −∇·Qsl

ncsl
+
ωsl
1

ncsl
,

(III.18)

so that we have to investigate the structure of the first order source term ωsl
1 = ωsl

0 + δωsl
1 . From the structure of the

linearized Boltzmann equation the perturbed distribution function φ may be expanded as

φ = −φη:∇v − φλtr+rap ·∇
( 1

kBT

)
− φλsl ·∇

( 1

kBT sl

)
− 1

3φ
κ
∇·v + φωωsl

0 ,

where φη is a symmetric traceless tensor, φλ
tr+rap

and φλ
sl

are vectors, φκ and φω are scalars. The coefficients φµ,
µ ∈ {η, λtr+rap, λsl, κ, sl}, satisfy linearized Boltzmann equations Irap(φµ) = ψµ with the constraints 〈〈f (0)φµ, ψj〉〉 = 0,
1 6 j 6 6, where Irap is the linearized fast collision operator and the right hand sides ψµ are presented in [23]. Defining
Wsl =

∑
j,i′,j′(∆E

sl)
∫
f̃ (0)gσiji

′
j
′

dc̃ de′ the perturbed source term is then in the form δωsl
1 = 〈〈f (0)φ,Wsl〉〉 and from

the Curie principle, we have δωsl
1 = − 1

3 〈〈f (0)φκ,Wsl〉〉∇·v + 〈〈f (0)φω ,Wsl〉〉ωsl
0 . Defining wκ

1 = − 1
3 〈〈f (0)φκ,Wsl〉〉 and

wsl
1 = 〈〈f (0)φω ,Wsl〉〉 we have obtained that the perturbed term δωsl

1 is in the form

δωsl
1 = wκ

1 ∇·v + wsl
1 ω

sl
0 . (III.19)

In the relaxation approximation, at first order, we may also replace ωsl
0 by its zeroth order approximation ωsl

0 ≈
−cslp∇·v/cvl in the first order term δωsl

1 . The perturbed source terms wκ
1 and wsl

1 then yield corrections to the
temperature difference T − T sl in such a way that [23, 24]

nkB(T − T ) = −
(
κsl + κsl c

vlwκ
1

cslp
− κslwsl

1 )∇·v. (III.20)

In addition, the relaxation pressure prel is given by

prel = p̃relωsl
0 , p̃rel = 1

3kBT 〈〈f (0)φω, ψκ〉〉 = 1
3kBT 〈〈f (0)φκ, ψω〉〉, (III.21)

where p̃rel is the reduced relaxation pressure so that prel is also proportional to ∇·v and further yields a bulk viscosity
contribution. Finally, using the general expression of the pressure tensor (III.11), the definition of p̃rel, as well as
(III.20), it is found that the effective bulk viscosity in the Navier-Stokes regime is in the form [23, 24]

κeff = κrap − p̃rel c
slp

cvl
+ κsl + κsl c

vlwκ
1

cslp
− κslwsl

1 . (III.22)
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The detailed calculation of each term finally yields after lengthy algebra that [23]

κeff =
( crap

ctr + crap

)2 (kBT )
3

2[[(∆Erap)2]]
− csl

cvl

( crap

ctr + crap

)2 (kBT )
3cslcrap

2[[(∆Erap)2]]
− crapcsl

(ctr + crap)cvl

(kBT )
3[[(∆Erap)(∆Esl)ζsl]]

2[[(∆Erap)2ζsl]][[(∆Esl)2ζsl]]

+
cslc̃sl

cvlc̃vl

kB
3(T )2T sl

2[[∆Esl)2ζsl]]
− c̃sl

c̃vl

( crap

ctr + crap

)2 k3
B
T

2
T sl

2[[(∆Erap)2]]
− crapc̃sl

(ctr + crap)c̃vl

k3
B
T

2
T sl[[(∆Esl)(∆Erap)]]

2[[(∆Erap)2]][[(∆Esl)2ζsl]]

+
cslc̃sl

cvlc̃vl

( crap

ctr + crap

)2 k3
B
T

2
T sl

2[[(∆Erap)2]]
+ 2

crapcslc̃sl

(ctr + crap)cvlc̃vl

k3
B
T

2
T sl[[(∆Esl)(∆Erap)]]

2[[(∆Erap)2]][[(∆Esl)2ζsl]]
. (III.23)

The effective bulk viscosity at thermodynamic equilibrium T = T sl = T then coincides with the one-temperature
two-mode bulk viscosity derived from the Chapman-Enskog method and presented in Appendix A.

Finally, it is possible to introduce a translational temperature T tr from the relation Etr(T tr, n) = 〈〈f, ψtr〉〉. This
temperature is not a collisional invariant and must be expanded in the form T tr = T tr

1 +O(ǫ2). It is then established
that

nkB(T
tr
1 − T ) = −

(
κrap − p̃rel c

slp

cvl

)
∇·v. (III.24)

Combining (III.20) and (III.24) it is finally obtained that T tr
1 and κeff, defined by (III.22) and given by (III.23), are

such that

nkB(T
tr
1 − T ) = −κeff

∇·v. (III.25)

Therefore, the physical interpretation gained with the previous simplified model (II.20) is also valid in the more
complex situation where there are two energy modes with different dynamics [23, 24]. All these results may further be
extended to mixtures of gases as well as to the situation where the fast and slow energy modes are not independent [25].

IV. A STATE-TO-STATE MODEL FOR GAS MIXTURES

IV.A. Kinetic framework

We consider a state-to-state model for a mixture of polyatomic gases [1–12]. We denote by ii the pseuso species
index for the ith species in the ith quantum state, S = {1, . . . ,ns} the species indexing set, n

s the number of species,
Qi the ith species quantum state indexing set, Q = ∪i∈S{i}×Qi the pseudo species indexing set, and n

q the number
of pseudo species. The pseudo species Boltzmann equations are written as

∂tfii + cii ·∇fii =
1

ǫ
J rap
ii + J sl

ii , ii ∈ Q, (IV.1)

where cii denotes the velocity of the particle of the iith pseudo species, fii(t,x, cii) the distribution function for the
iith pseudo species, J rap

ii the rapid collision operator, J sl
ii the slow collision operator, and ǫ the formal parameter

associated with the Chapman-Enskog procedure. We will also denote by denoting by Eii the internal energy of the
iith pseudo species and by aii the corresponding degeneracy. Using similar notation as in previous sections, the fast
and slow collision operators are given by

J rap
ii = J tr−tr

ii , J sl
ii = J tr−int

ii + J int−int
ii . (IV.2)

The collisional invariants of the fast collision operator J rap = (J rap
ii )ii∈Q are associated with the pseudo species

particle numbers ψkk = (δkiδik)ii∈Q, kk ∈ Q, momentum ψn
q+ν = (miciiν)ii∈Q, ν ∈ {1, 2, 3}, where mi denotes the

mass of the particles of the ith species and cii = (cii1,cii2, cii3)
t, and kinetic energy ψn

q+4 = ψtr =
(
1
2mi|cii− v|2

)
ii∈Q

where v denotes the mass average mixture velocity.
The Enskog expansion reads fii = f

(0)
ii

(
1+ ǫφii+O(ǫ2)

)
with the Maxwellian distribution of the iith pseudo species

f
(0)
ii in the form

f
(0)
ii =

( mi

2πkBT tr

)3/2

nii exp
(
−mi|cii − v|2

2kBT tr

)
, (IV.3)
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where T tr is the translational temperature of the mixture. Assuming that there are sufficiently inelastic collisions,
the collision invariants of the slow collision operator J sl = (J sl

ii )ii∈Q
, are associated with the species particle numbers

ψk = (δki)ii∈Q =
∑

k∈Qk
ψkk, k ∈ S, momentum ψn

q+ν , ν ∈ {1, 2, 3}, and mixture total energy ψen = ψn
q+4 =(

1
2mi|cii − v|2 + Eii

)
ii∈Q

. The scalar product 〈〈ξ, ζ〉〉 between two tensorial quantities ξ = (ξii)ii∈Q and ζ = (ζii)ii∈Q

is naturally defined by

〈〈ξ, ζ〉〉 =
∑

ii∈Q

∫
ξii·ζii dcii,

where ξii·ζii is the contracted product.
The fluid equations are obtained by taking the scalar product of Boltzmann equations (IV.1) with the collisional

invariants of the fast collision operator. The fluid variables are the pseudo species number densities nkk = 〈〈ψkk, f〉〉 =
〈〈ψkk, f (0)〉〉 or equivalently the mass densities ρkk = mknkk for kk ∈ Q, the mass averaged velocity v = (v1, v2, v3)

t

with ρvν = 〈〈ψn
q+ν , f〉〉 = 〈〈ψn

q+ν , f (0)〉〉 for ν ∈ {1, 2, 3} and ρ =
∑

kk∈Q
ρkk, and the translational temperature

defined by 3
2nkBT

tr = 〈〈f, ψtr〉〉 = 〈〈f (0), ψtr〉〉 with n =
∑

kk∈Q
nkk denoting the total number density. The pressure

p, the translational energy Etr and the total internal energy E are found in the form

p = nkBT
tr, Etr = n 3

2kBT
tr E = Etr +

∑

ii∈Q

niiEii. (IV.4)

Introducing the partition functions Zii = Ztr
i Z

int
ii with

Ztr
i =

(2πmikBT
tr

h2P

)3/2

, Z int
ii = aii exp

(
− Eii

kBT tr

)
,

where hP is the Planck constant, we may then rewrite the Maxwellian distribution of the iith pseudo-species in the
form f

(0)
ii = 1

βii

nii

Zii
exp

(
−mi|cii−v|2/2kBT tr−Eii/kBT

tr
)

where βii = h3P/(aiim
3
i ). The entropy per particle of the iith

pseudo species is given by Sii = 5
2kB − kB log nii

aiiZtr
i

= 5
2kB + Eii

T tr − kB log nii

Zii
for ii ∈ Q and the mixture fluid entropy

by S =
∑

ii∈Q
niiSii. The Gibbs function Gii of the iith pseudo particle isalso given by Gii = kBT

tr log nii

Zii
and the

reduced chemical potential µii and µtr by

µii = log
nii

Zii
, ii ∈ Q, µtr = −

1

Ttr

, (IV.5)

and will be used are symmetrizing variables.
Following the Chapman-Enskog procedure, the conservation equations are found in the form [9]

∂tnkk +∇·(nkkv) +∇·(nkkVkk) = ω
(1)
kk , kk ∈ Q, (IV.6)

∂t(ρv) +∇·(ρv⊗v + pI) +∇·Π = 0, (IV.7)

∂tE +∇·(vE) +∇·Q = −p∇·v −Π :∇v, (IV.8)

where Vkk denotes the diffusion velocity of the kkth pseudo species, ω(1)
kk the first order production term of the kkth

pseudo species, Π the viscous tensor, and Q the heat flux.
The inelastic collisions are written for convenience as chemical reactions

∑

ii∈Q

νfiirMii ⇄
∑

ii∈Q

νbiirMii, r ∈ R, (IV.9)

where Mii is the symbol of the ii pseudo species, r the reaction number, R the reaction indexing set and νfiir and νbiir the
forward and backward stoichiometric coefficients of pseudo species ii in reaction r. The source term may be expanded
as ω(1)

kk = ω
(0)
kk + ǫδω

(1)
kk where ω(0)

kk is evaluated with Maxwellian distributions and δω(1)
kk is the first order perturbation.

The zeroth order source terms are first obtained in the form ω
(0)
kk =

∑
r∈R

νkkrτ̄r , with the stoichiometric coefficients

defined by νkkr = νbkkr − νfkkr, and the rates of progress in the form τ̄r = Cr

{∏
ii∈Q

(nii/Zii)
νf
iir −∏

ii∈Q
(nii/Zii)

νb
iir

}

where Cr is an average quantity associated with chemical transition probabilities of reaction r [9, 19]. Letting
ω(0) = (ω

(0)
ii )ii∈Q, νfr = (νfiir)ii∈Q, νbr = (νbiir)ii∈Q, νr = (νiir)ii∈Q the zeroth order source term may then be written

as ω(0) =
∑

r∈R
νr τ̄r with τ̄r = Cr

(
exp〈µ, νfr〉 − exp〈µ, νbr 〉

)
and defining ζr =

∫ 1

0
exp

(
〈µ, νr〉s

)
ds we obtain that

ω(0) = −Λµ = −Λ(µ− µe), Λ =
∑

r∈R

Λr νr⊗νr, Λr = Crζr exp〈µ, νbr 〉, (IV.10)
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where µe = (µe
ii)iiQ denotes the equilibrium value of µ and where we have used that 〈νr, µe〉 = 0, r ∈ R. The

perturbed source terms δω(1)
kk may also be expressed in terms of the perturbed distribution φ [19, 23, 25].

Denoting by Irap
ii the linearized fast collision operator for the iith pseudo species and by Irap = (Irap

ii )ii∈Q the
linearized operator of the mixture, the perturbed distribution function φ = (φii)ii∈Q is such that Irap(φ) = ψ where
ψ = (ψii)ii∈Q has components

ψii = −∂(0)t log f
(0)
ii − cii ·∇ log f

(0)
ii + J sl,(0)

ii /f
(0)
ii ,

and φ must satisfy the Enskog constraints 〈〈f (0)φ, ψj〉〉 = 0 for 1 ≤ j ≤ n
q + 4. Expanding the perturbed distribution

function in terms of the gradients of the macroscopic variables, the dissipative fluxes are found in the classical form
[9, 19, 23]. In particular, the viscous tensor reads Π = −η

(
∇v + (∇v)t − 2

3 (∇·v)I
)

and there is neither a bulk
viscosity term nor a relaxation pressure since all pseudo species have a single internal state [9, 19]. Defining the
pressure tensor as P = pI +Π we finally have

P = nkBT
trI − η

(
∇v + (∇v)t − 2

3 (∇·v)I
)

(IV.11)

so that P does not contain a bulk viscosity term unlike with one-temperature polyatomic gas mixtures [13–22].

IV.B. Equilibrium population and bulk viscosities

The equilibrium limit of the state-to-state model is obtained by zeroing the chemistry sources ω(0) while maintaining
constant the slow variables associated with the collision invariants of the full collision operator J rap+J sl, namely the
species number densities nk =

∑
k∈Qk

nkk, k ∈ S, momentum ρv and the total internal energy n 3
2kBT

tr+
∑

ii∈Q
niiEii.

Denoting by T the thermodynamic equilibrium temperature, the species equilibrium population is given by the
Boltzmann distribution

ne
ii =

aiini

Z int
i

exp
(
− Eii

kBT

)
, ii ∈ Q, (IV.12)

where Z int
i =

∑
i∈Qi

aii exp
(
−Eii/kBT

)
is the equilibrium internal partition function of the ith species and where∑

i∈Qi
nii =

∑
i∈Qi

ne
ii = ni, for i ∈ S. The corresponding equilibrium species average energies are then Ei =∑

i∈Qi
(aiiEii/Z

int
i ) exp(−Eii/kBT ), the internal heat capacities are given by

cint
i = ∂TEi =

∑

i∈Qi

aii
(Eii − Ei)

2

kBT 2Z int
i

exp
(
−Eii/kBT

)
,

and the equilibrium temperature is the unique scalar T such that

n 3
2kBT +

∑

i∈S

niEi =
∑

ii∈Q

nii(
3
2kBT

tr + Eii). (IV.13)

With the chemistry analogy we may further introduce ψk = (δik)ii∈Q =
∑

k∈Qk
ψkk, for k ∈ S, and νr = (νiir)ii∈Q,

for r ∈ R, and define

R = span{ νr, r ∈ R }, A = span{ ψk, k ∈ S }.

Using a chemistry vocabulary, we may then say that the species are the atoms of the pseudo species. Assuming
naturally that there are sufficiently energy exchanges we further have R⊥ = A, that is, the reaction vectors νr, r ∈ R

are sufficiently numerous in order to span the maximum space A⊥, keeping in mind that there is no dissociation
or recombination. The equilibrium pseudo species number densities µe = (µe

ii)ii∈Q are then the unique solution of
the equilibrium conditions µe ∈ R⊥ or equivalently µe ∈ A under the constraints that nk for k ∈ S and E are
invariants. The reduced chemical potentials at equilibrium are indeed such that µe

ii = log(ne
ii/Z

e
ii) = log(ni/Z

int
i )

where Ze
ii = Zii(T ) so that µe =

∑
i∈S

log(ni/Z
int
i )ψi and 〈µe, νr〉 = 0, r ∈ R.

The usual scalar species basis functions at equilibrium are given by φ0001k =
(
(Ei − Eii)δik/kBT

)
ii∈Q

and φ0010k =(
(32 − 1

2
mi

kBT |c− v|2)δki
)
ii∈Q

for the kth species. The basis function φ0010k are defined for any k ∈ S while φ0001k are
defined for any k ∈ Sp where Sp denotes the set of polyatomic species. We also consider the projected basis functions
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φ̂0001k = φ0001k − ψencint
k /cvl, k ∈ Sp, where the term proportional to ψen ensures that φ̂0001k is orthogonal to the

collisional invariant ψen of the complete collision operator in the equilibrium kinetic framework. Two bulk viscosities
at equilibrium may then be defined, namely the ‘internal energy’ bulk viscosity κ[01] as well as the ‘standard bulk
viscosity’ κ. The linear system associated with the evaluation of the ‘internal energy’ bulk viscosity κ[01] at equilibrium
is obtained by using the Galerkin variational approximation space spanned by φ̂0001k, k ∈ Sp. The idea behind this
basis function is that the most important part of the dynamics is that associated with internal energy exchanges and
not with kinetic energy [32, 33]. The ‘internal energy’ bulk viscosity κ[01] is obtained by solving the tranport linear
system K[01]γ = β[01] of size n

p, where n
p is the number of polyatomic species, where K[01]kl = [φ0001k, φ0001l]/np,

β[01]i = −xicint
i /cvl, and [, ] is the classical bracket product [32, 33]. The matrix K[01] is symmetric positive definite

and letting γ = (γi)i∈S, the ‘internal energy’ bulk viscosity is given by κ[01] = −
∑

i∈S
pγixic

int
i /cvl and has been

found to be accurate [32, 33]. On the other hand, the standard bulk viscosity is obtained with the Galerkin variational
approximation space spanned by φ0001k and φ0010k, k ∈ S.

IV.C. Symmetric zeroth order relaxation equations

The system of partial differential equations governing the pseudo species Gibbs functions and the translational
temperature at zeroth order is written in symmetric form. Symmetrized forms are convenient for analyzing systems
of partial differential equations modeling fluids and are generally obtained by using entropic type variable −(∂uS)t
where u denotes the vector of conservative variables. Since we are interested in the relaxation of thermodynamic
variables we use for convenience the variables (δµ, δµtr)

t = (µ − µe, µtr − µe
tr)

t where µ = (µii)ii∈Q, µe = (µe
ii)ii∈Q,

µtr = −1/(kBT tr), and µe
tr = −1/(kBT ). Denoting for short dt = ∂t + v·∇ the convective derivative, the governing

equations at zeroth order are found in the form

niidtδµii + nii(
3
2kBT

tr + Eii)dtδµtr = ω
(0)
ii +

ne
ii(Eii − Ei)

Tcvl
∇·v, ii ∈ Q, (IV.14)

∑

ii∈Q

nii(
3
2kBT

tr + Eii)dtδµii + atrdtδµtr = 0, (IV.15)

where atr =
∑

ii∈Q
nii(

3
2kBT

tr + Eii)
2 + 3

2pkBT
tr. Denoting by N the diagonal matrix N = diag

(
(nii)ii∈Q

)
and a the

vector with components aii = nii(
3
2kBT

tr+Eii), ii ∈ Q, these equations involve the symmetric positive definite matrix
Ã =

(
N a

a
t
atr

)
.

The equations (IV.14)(IV.15) imply that δµ = µ− µe satisfies the vector partial differential equation

Ñ dtδµ = −Λδµ+ b∇·v, (IV.16)

where Ñ = N − a⊗a/atr is symmetric positive definite, Λ symmetric positive semi-definite, and b = (bii)ii∈Q is given
by bii = ne

ii(Eii − Ei)/T c
vl, ii ∈ Q. Since Ñ is positive definite and Λ is positive semidefinite, (IV.16) is a typical

vector relaxation equation and the corresponding vector relaxation relation is then in the form

Λeδµ = b∇·v, (IV.17)

where Λe is the matrix Λ at equilibrium Λe =
∑

r∈R
Λe
rνr⊗νr with Λe

r = Ce
r exp〈µe, νfr〉 = Ce

r exp〈µe, νbr 〉 and ζe
r = 1.

Since the nullspace of Λe is A we also need constraints to determine uniquely δµ, using
∑

i∈Qi
(nii − ne

ii) = 0, i ∈ S.
In the relaxation approximation, we may linearize the constraints around equilibrium and after some algebra it is
obtained that 〈N eδµ, ψi〉 = ∑

i∈Qi
ne
ii(µii − µe

ii) = −ni(
3
2kBT

tr + Ei)(T
tr − T )/kBT 2 for i ∈ S.

IV.D. Bulk viscosity at zeroth order

Taking into account the relaxation relation (IV.17) and the mass constraints, we are lead to decompose δµ in the
vector form

δµ = δµR
∇·v + δµA, δµR ∈ (N e)−1A⊥, δµA ∈ N(Λe) = A. (IV.18)
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The term δµR is such that ΛeδµR = b and b is in the range R(Λe) since
∑

i∈Qi
ne
ii(Eii − Ei) = 0. We now seek

an approximate solution of the constrained relaxation equations that is compatible with the equilibrium limit mixture

so that δµR =
∑

i∈S
γ′iφ

0001i and δµA =
∑

i∈S
γ′′i ψ

i. Using that δµR ∈ (N e)−1A⊥ we first obtain from the mass

constraints that 〈N eδµA, ψi〉 = −ne
i(

3
2kBT

tr + Ei)(T
tr − T )/kBT

2 for i ∈ S so that γ′′i = −(32kBT + Ei)
T tr−T
kBT 2 ,

for i ∈ S. In order to determine the coefficients vector γ′ = (γ′i)i∈S, we use a least square approximation of
the relaxation equations upon writing that

∑
l∈S
〈φ0001i,Λeφ0001l〉γ′l = 〈φ0001i, b〉 for i ∈ S. The matrix K =(

〈φ0001i,Λeφ0001j〉
)
i,j∈S

is found to be positive definite and a direct comparison yields that the coefficients of the

both matrices K[01] and Λe are proportional 〈Λeφ0001i, φ0001j〉 = npK[01]ij and 〈φ0001i, b〉 = −nxicint
i /cvl so that

〈φ0001i, b〉 = nβ[01]i and γ = pγ′[01]. We have thus established that the least square solution to the relaxation
equations under the linearized constraints is given by

µii − µe
ii = γi

Ei − Eii

kBT
∇·v − (32kBT + Ei)

T tr − T
kBT 2

, ii ∈ Q, (IV.19)

where where γ = (γi)i∈S is the solution of the transport linear system K[01]γ = nβ[01]i associated with the internal
mode bulk viscosity κ[01].

By definition of the equilibrium temperature T we have ctr(T tr − T ) +∑
ii∈Q

nii(Eii − Ei) = 0 and linearizing the
expression of the reduced potential (IV.19) we obtain

nii − ne
ii

ne
ii

= γi
Ei − Eii

kBT
∇·v + (Eii − Ei)

T tr − T
kBT 2

. (IV.20)

Multiplying by ne
ii(Eii−Ei) and summing over i ∈ Qi yields

∑
i∈Qi

nii(Eii−Ei) = −nTγixicint
i ∇·v+nxicint

i (T tr−T )
and summing over i ∈ S we finally obtain that [26]

kBn(T
tr − T ) = −κ[01]∇·v. (IV.21)

We have thus recovered the ‘internal energy mode’ equilibrium bulk viscosity κ[01] and established the relaxation
relation (IV.21) [26]. Although the kinetic framework for state-to-state mixtures of gases is much more complex than
that of previous two-temperature models, a similar physical interpretation of the bulk viscosity coefficient has been
obtained with (II.20), (III.25), and (IV.21).

IV.E. Bulk viscosity at first order

A similar analysis may be conducted for first order equations but is much more intricate analytically. The first
order relaxation equations for the pseudo species are in the form ω

(0)
ii + δω

(1)
ii = −bii∇·v, for ii ∈ Q, and require to

evaluate the perturbed source term δω(1) in the neighborhood of equilibrium. The resulting analytical expressions and
the resulting relaxation approximation have been obtained as well as identification of the equilibrium limit with the
traditional bulk viscosity using notably the basis vectors φ0010k, k ∈ S, and φ0001k, k ∈ Sp, the blocks K[01] = K0101

K0110, K1010 and K1001 of the K matrix as well as the Schur complement K̂[01] = K0101 −K0110(K1010)−1K1001.

V. NUMERICAL EXPERIMENTS FOR THE SIMPLIFIED TWO-TEMPERATURE MODEL

The results derived in Section II are assessed against numerical experiments for a model gas. Results are obtained
by solving the appropriate Boltzmann transport equation via Monte Carlo methods [23, 35, 37–40]. The transport
properties of the model system are investigated by looking at the spontaneous fluctuations at thermal equilibrium [35,
55–57]. Interestingly, the dynamics of spontaneous fluctuations can actually be probed by light scattering experiments
[57–59].
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V.A. Kinetic theory of spontaneous fluctuations

We consider a fluctuating gas near equilibrium and the dynamics of the fluctuations of a variable A(r, t) is investi-
gated by using the space-time correlation function

δA2(r, t; r′, t′) =< δA(r, t)δA(r′, t′) >, (V.1)

where < ... > means ensemble average and δA(r, t) = A(r, t)− < A(r, t) > is the fluctuation of the dynamic variable.
For an isotropic system in thermodynamic equilibrium the correlation function depends only on the space-time distance

δA2(r, t; r′, t′) = δA2(|r− r
′|, t− t′). (V.2)

In particular, the quantity actually measured in light (or neutron) scattering experiments is the Laplace-Fourier
transform of the correlation function of density fluctuations, the spectral density (or power spectrum) of these fluc-
tuations [57]

δn2(k, ω) =

∫
ei(k·r−ωt)δn2(r, t)drdt. (V.3)

Since the equilibrium fluctuations of the fluid variables are small compared to the average values, their dynamics
is governed by the same equations that govern the dynamics of the system, but linearized around the equilibrium
solution. These linearized equations are then doubly Laplace-Fourier transformed to the (k, ω) space and are solved
for δ̃ρk(s = ǫ+ iω). The latter is used to construct the space time correlation function < δρ∗k(0)δ̃ρk(s) >.

Finally, this correlation function may be connected with the density fluctuation power spectrum S(k, ω) that is a
quantity experimentally measurable in light scattering experiments

S(k, ω)

S(k)
= 2Re lim

ǫ→0

< δρ∗k(0)δ̃ρk(s) >

< δρ∗k(0)δρk(0) >
. (V.4)

For thermal fluctuations in gases, the ratio of the fluctuation wavelength to the mean free path defines the flow regime
(from high to low ratios: hydrodynamic, kinetic, collisionless). Different regimes are described by different values of
the parameter y = (8/3

√
2π)ρ0

√
kBT/m/ηk where ρ0 is the equilibrium density, η is the shear viscosity and k is the

fluctuation wavenumber. The collisionless limit corresponds to y → 0, whereas the hydrodynamic limit (k → 0) is
approached for y > 5. In the following we derive the thermal fluctuation power spectra in the hydrodynamic regime
as obtained by the one temperature model and the two temperature model fluid equations.

V.B. Simulation of spontaneous fluctuations in a dilute gas

The fluctuation power spectrum for a one-temperature fluid described Navier Stokes equations is reported in the
book by J.P. Boon and S. Yip [55] whereas for the simplified two temperature model it is reported in [23]. The general
method to derive such fluctuation power spectrum is to start from the fluid equation, to linearize near equilibrium, to
take the Fourier transform in space and then the Laplace transform in time and the results are typically in the form

< δρ∗k(0)δ̃ρk(s) >=
N(k, s)

M(k, s)
< δρ∗k(0)δρk(0) > . (V.5)

where M(k, s) and N(k, s) are polynomials in s.
On the other hand, at the molecular level, thermodynamic fluctuations in gases, provided the density is low enough

that only bimolecular collisions are effective, are described by the Boltzmann equation. In the case of the Boltzmann
equation, the system is described in terms of the one-particle distribution function. By linearizing the equation
around the equilibrium distribution a integro-differential equation for the space-time correlation of the fluctuations of
the distribution function is obtained [60]. The density fluctuations are then readily obtained by integration over the
velocity space.

For the simulation of the spontaneous fluctuations in a gas in thermodynamic equilibrium we use the Direct
Simulation Monte Carlo method [34–36]. DSMC is a particle simulation method that solves the nonlinear Boltzmann
equation. As such, it can simulate flows in the rarefied and/or hypersonic regime that cannot be dealt with in the
framework of a fluid-dynamic treatment. Besides, it can handle situations of strong thermal nonequilibrium where
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a clear hierarchy of relaxation times cannot be established and rate equation methods fail [40]. The principle of
the method is the decoupling, over a small time-step, of the processes of free flight and of collisional relaxation. A
number of simulated particles are moved in the simulation domain according to their velocities and to prescribed
boundary conditions. In the collision step, particles are made to collide inside spatially homogeneous cells. A Monte
Carlo method is used to realize collision events with the appropriate frequency. The details of the molecular processes
occurring in the gas system are specified by assigning the appropriate set of collision cross sections. The viscosity and
diffusion coefficients of the gas can be modeled by the Variable Soft Sphere model of Koura [61].

The power spectrum of the fluctuations of the dynamic variable n(r, t) is evaluated as follows. The variable
fluctuations at all sampled space-time points, δnij = nij − n0, are recorded during the simulation, n0 being the
equilibrium value. This discrete set is then Fourier transformed and squared to get the discrete power spectrum.
For an isotropic medium, it is sufficient to simulate a one-dimensional spatial domain. Also, for obvious reasons, the
number of simulated particles is much less than the number of real particles present in the physical volume. The ratio
of real to simulated particle number is called the weight w of the simulated particle and it is a constant throughout the
simulation. Now, since the density fluctuations are proportional to the gas density [62], i.e., given the volume, to the
number of particles, the simulated fluctuations are equal to the real fluctuations to within a factor w. Therefore, the
spectrum sampled by the simulation is exactly equivalent, to within normalization factors, to the spectrum measured
in light scattering experiments. In order to reduce the statistical scatter inherent in the particle simulation method
ensemble averaging of the results is performed by averaging the results of many independent runs. This procedure
allows also to estimate the variance of the results with respect to the statistical scatter. It is worth mentioning that
this procedure is amenable to implementation on a computational grid. The GRID infrastructure allows hundreds of
runs to be performed simultaneously, thus reducing drastically the global computational time. The simulations of this
work, in particular, have been done under the Compchem Virtual Organisation and more details on the computational
procedures may be found in [23].

V.C. Simulations for a model gas

A single gas of Hard Spheres is considered with mass = 28.9641 amu, σ = 7.2 · 10−19 m2. The gas has two internal
energy levels with degeneracies and energies given by

a0 = 1, E0 = 0 J, (V.6)

a1 = 9, E1 = kB · 1000 J. (V.7)

Molecules exchange internal energy in collision according to the simplest single-quantum, line-of-centers model

p(0← 1) = p0, (V.8)

p(1← 0) =

{
0 ǫk < E1

a1p0(1− E1

ǫk
) ǫk ≥ E1

(V.9)

where ǫk = 1
2µg

2 is the kinetic energy in collision. The temperature and density are chosen to be T = 285.71 K and
n = 2.4 · 1021 m−3. The fluctuation spectra are sampled at the wavelength 2π/k = 0.02 m that gives y = 5.97 so that
the probed fluctuations fall into the hydrodynamic regime.

Two situations are analyzed. In the first case, we have chosen p0 = 0.01, that gives for the relaxation time
τ0 ≈ 7.0 · 10−5 s (Z ≡ τ0/τc = 49). Figure 1 shows the fluctuation power spectra for this case. The spectra are
normalized to unit maximum value. In this case, the relaxation is slow enough that a relaxation approximation
does not hold and the one-temperature model fails to describe the transport properties of the system correctly. The
two-temperature model, instead, gives an adequate description of the system behaviour and the agreement with the
DSMC simulations is satisfactory. Also reported for comparison is the spectrum predicted for the same gas when the
internal energy relaxation is forbidden (frozen relaxation).

Next, we analyse a situation where relaxation of internal energy is fast enough as compared to the flow characteristic
time (as determined by the speed of sound). In these conditions we expect the one-temperature model to be accurate
and that the two-temperature model reduce to the former. We have chosen p0 = 0.1 that gives for the relaxation time
τ0 = 7.0 ·10−6 s (Z ≡ τ0/τc = 4.9). Figure 2 shows the fluctuation power spectra as obtained from DSMC simulations
and from the one-temperature and two-temperature models, respectively. Also shown for comparison are the spectra
predicted for the same gas when the bulk viscosity contribution is neglected (i.e., κ = 0). We see that, in this case,
both models describe the DSMC results accurately. Comparison with the κ = 0 case also shows that this agreement is
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FIG. 1. Fluctuation power spectra for the slow relaxation case (p0 = 0.01). The spectra are normalized to unit maximum
value. Full line: 1T model; dotted line: frozen; dashed line: 2T model; symbols: DSMC.

not trivial since there is an important contribution of the bulk viscosity to the spectrum with κ
η ≈ 1. Note, however,

that the one-temperature model cannot describe the (small) change in the speed of sound that is a consequence of
the finite relaxation time for internal energy.

FIG. 2. Fluctuation power spectra for the fast relaxation case (p0 = 0.1). The spectra are normalized to unit maximum value.
Full line: 1T model; dotted line: 1T model without bulk viscosity; dashed line: 2T model; symbols: DSMC.

The statistical error in the simulation results is around 4% for the slow relaxation and 12% for the fast relaxation
case, respectively. We conclude that multi-temperature hydrodynamic equations, as derived from the Boltzmann
transport equation, provide an adequate description of internal energy relaxation for all values of the relaxation
time. Therefore there is no need to invoke frequency dependent transport coefficients that introduce unnecessary
complications. Further, the results support the conclusion, obtained by kinetic theoretical arguments in the previous
sections, that the multi-temperature model reduces to the one-temperature model when the relaxation time is small
enough and that only in this case a bulk viscosity formalism is adequate.

These results are also relevant in view of the renewed interest in Rayleigh-Brillouin scattering in gases made possible
by the use of nonlinear optical techniques [64]. Coherent Rayleigh-Brillouin scattering is a technique capable of making
localized and high signal-to-noise ratio measurements of gases from the collisionless limit to the hydrodynamic regime.
CRBS data are therefore expected to become a valuable source for the study of kinetic processes in molecular gases.
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VI. NUMERICAL EXPERIMENTS FOR A QUANTUM STATE POPULATION

VI.A. Internal energy spectrum and energy-exchange collisions

The kinetic model is developed for arbitrary gas mixtures S and specialized to S = {He,H2} for applications.
The required detailed cross sections used in this work has been calculated by the quasiclassical method, with an
in-house developed code, that has been tested repeatedly against accurate results from the literature [41–45]. The set
is complete, since all the H2 rovibrational states of the electronic ground state have been considered as initial and final
states. Quasibound states and dissociation processes have also been considered in the trajectory calculations, even
though they have not been used in the present study. Cross sections for the processes He+H2(v, j)→ He+H2(w, k)
with v/w initial/final vibrational states, j/k initial/final rotational states, have been calculated including both reactive
(i.e. exchange) and non-reactive processes. Particular care has been put in accuracy of trajectory calculation, with
a strict checking at each step of each trajectory, in order to accurately determine the optimal time step and improve
the overall computational efficiency [44]. The potential energy surface (PES) adopted in this study is the well known
Muchnik-Russek [46], instead of the more recent BMP [47], used for example in a similar work by Kim et al. [48].
This choice is motivated by the important discrepancies found with respect to experimental data in Lee et al. [49].
Six billions of trajectories, using 9.5 years of CPU, have been calculated in this way on the Muchnik-Russek potential
energy surface [46], using a constant density of 50000 trajectories per eV of collisional energy (uniformly distributed)
and per Å of impact parameter, in the range 1 meV − 10 eV , with stratified sampling applied. Comparisons with
available accurate quantum-mechanical theoretical data [50] put in evidence a very good reliability starting from
0.1 − 0.5 eV , depending on the initial states, corresponding to a minimal temperature of about 2000 K for rate
coefficients [51]. For lower values of translational energies cross sections tend to be less reliable, due to problems
typical of non-reactive low energy processes treated with QCT. A specific paper on this topic is in preparation.
Finally, elastic collision integrals have been taken from ref. [52].

The theoretical results of the previous sections are here specialized to the He−H2 mixture in thermal equilibrium
conditions. We have evaluated numerically the various contributions of the quantum state population as a function
of temperature. The procedure is analogous to that used in a previous study on the H−H2 mixture [25] to which the
reader is referred for further details. Since a complete set of inelastic cross sections is available for the atom-diatom
collisional system only, we investigated a simulated gas where H2 − H2 collisions are elastic. Since the resulting
theoretical predictions are not amenable to experimental measurements, we resort to DSMC simulation and use
Green-Kubo formulas for estimating the transport coefficients of the simulated gas.

We have simulated a He − H2 mixture in thermal equilibrium conditions with a standard DSMC code using a
majorant frequency scheme [7]. The VSS model has been used for the elastic collision cross sections, with parameters
chosen to reproduce the transport coefficients in ref. [52]. The number of simulated particles is 2000 for all cases
discussed. Results have been averaged over a number of independent runs in order to reduce the statistical scatter.
The latter is reported in the results as the simulation’s error bar.

VI.B. Green-Kubo bulk viscosity in DSMC simulations

Linear response theory is a powerful tool for the description of the relaxation towards thermodynamic equilibrium
of any system subject to small perturbations. The fluctuation-dissipation theorem, in particular, connects the time
correlation functions of mechanical quantities to the system transport properties. These relations are known as
the Green-Kubo expressions for the transport coefficients [56]. This theory being independent of the mechanical
model describing the system, it has been primarily applied to the evaluation of transport properties in Equilibrium
Molecular Dynamics simulations of liquids [53] and solids (see, e.g. [54] and references therein). In this study we apply
the Green-Kubo formulas to the evaluation of transport coefficients in DSMC simulations of dilute (i.e. ideal) gases.

For a system of volume V in equilibrium at temperature T and pressure p, the Green-Kubo formula for the bulk
viscosity reads [55]:

4

3
η + κ =

1

V

1

kBT

∫ +∞

0

< (Jp
xx(0)− pV )(Jp

xx(τ) − pV ) > dτ, (VI.1)

where < · · · > denotes ensemble average, whereas that of the shear viscosity reads

η =
1

V

1

kBT

∫ +∞

0

< Jp
xy(0)J

p
xy(τ) > dτ. (VI.2)
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The quantities Jp
xx or Jp

xy, the currents, are respectively any of the diagonal or off-diagonal components of the
spatially-averaged, time-dependent, rank-two pressure tensor:

J
p =

∑

i

miCi ⊗Ci − pV I, (VI.3)

where the sum runs over simulated particles and C = ci − v.
The equilibrium condition allows (via the ergodic hypothesis and stationarity) to express the integral in eq. (VI.1)

as the zero-frequency limit of the current power spectrum:

2

∫ +∞

0

dτ < (Jp
xx(0)− pV )(Jp

xx(τ) − pV ) >= lim
T→+∞

1

T
|Ap

xx(0)|2, (VI.4)

Ap
xx(ω) being the current Fourier transform.
In DSMC simulation, the current Jp is sampled at discrete time points then Fourier transformed with standard

FFT algorithms and squared. Let P ηv be the resulting zero-frequency value:

4

3
η + κ =

1

V

1

kBT

1

2tsim
P ηvw∆2

t . (VI.5)

tsim being the simulation duration, ∆t the sampling time interval and w the weight of simulated particles (each
particle representing w real particles). The factor w arises because the fluctuation amplitude is proportional to the
square root of the number of simulated particles; the factor ∆2

t comes from the discrete Fourier transform.

VI.C. Results

The DSMC simulations have been performed for an equimolar mixture of helium and hydrogen with n = 1020 m−3.
The resulting bulk viscosity obtained from DSMC is presented in fig. 3 together with the equilibrium viscosity as
function of temperature. The equilibrium bulk viscosity has been evaluated by using the expression

κ =
(cint

cvl

)2 (kBT )
3

2[[(∆E)2]]
,

where [[ ]] is the usual averaging operator and ∆E the energy jump during a collision of the simulated gas [9, 23, 25].
The DSMC calculations have been performed at temperatures T = 6000 K, T = 9000 K, and T = 10000 K.

FIG. 3. Bulk viscosities. Solid line: κe; symbols: DSMC.
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This figure reveals the very good agreement between the bulk viscosity of the fluctuating quantum population and
the equilibrium limit, illustrating the accuracy of the least square formulation with a variational space ‘compatible
with the equilibrium mixture’.

VII. FLUID AND MATHEMATICAL ASPECTS

VII.A. Impact in fluid mechanics

The impact of the viscosity has scarcely been adressed in the past literature [65–68]. Karim [65] pointed out the
importance of bulk viscosity coefficients and underlined that Stokes relation is only justified for monatomic gases.
The impact of bulk viscosity on hypersonic boundary layers has also been investigated in depth by Emmanuel [66, 67].
A review of the concept of bulk viscosity and its implications for fluids over the twentieth century has been given by
Graves and Argrow [68].

More recently, Billet et al. have investigated the interaction of a shock wave with an hydrogen bubble [69]. The
bulk viscosity coefficient has been found to have a major influence on both the fluid and thermal aspects. This impact
originates in particular from the thickening of pressure waves by bulk viscosity and from vorticity production when
pressure and density gradients are not aligned. The artificial success of the Stokes approximation has also been related
to the gradient structure of the term of ∇·(κ∇·v I) = ∇(κ∇·v). This term is indeed absent in boundary layers at
second order and only has a Ma2 influence over fluid variables. As a typical example, in a steady hydrogen-air flame,
κ/η is not small, ∇·v is not small either, but the gradient structure essentially leads to replace the hydrodynamic
perturbed pressure p̃ by p̃−κ∇·v as discussed in Billet et al. [69]. Fru et al. have further investigated the small Mach
situation and established that for a long time integration the bulk viscosity regains its major influence [70]. Two and
three dimensional simulations of the interaction of a shock wave with a shear layer have further been investigated by
Boukharfane et al. [71]. Finally, the interaction of a shock wave with a droplet has recently been studied by Singh et
al. and bulk viscosity has again been found to play a major role [72].

Recent investigations have also shown that large values of bulk viscosity coefficients in dilute carbon dioxyde
mixtures result from erroneous applications of relaxation relations out of their domain of validity [11, 12].

VII.B. Chapman-Enskog method for the simplified two temperature model

The system of partial differential equations (II.6)–(II.9) modeling two temperature fluids derived in Section II may
be written in the convenient vector form

∂tuǫ +
∑

i∈D

Ai(u)∂iuǫ − ǫ
∑

i,j∈D

∂i
(
Bij(uǫ)∂juǫ

)
− 1

ǫ
Ω(uǫ) = 0, (VII.1)

where ∂i is the partial derivation in the ith spatial direction, D the indexing ser of spatial directions, and uǫ the
conservative variable given by

uǫ =
(
ρ, ρv, Etr + Eint +

1
2ρ|v|2, Eint

)t
. (VII.2)

In these equation (VII.1), the matrix Ai is the Jacobian Ai = ∂uFi of the convective flux in the ith spatial direction
Fi whereas the dissipative matrices Bij are related to the dissipative fluxes ǫFdiss

i with ǫFdiss
i = −ǫ∑j∈D Bij(uǫ)∂juǫ.

The convective flux Fi and dissipative flux ǫFdiss
i in the ith spatial direction and source term Ω are given by

Fi =
(
ρvi, ρvvi + pei, (Etr + E int + 1

2ρ|v|2 + p)vi, E intvi
)t
, (VII.3)

ǫFdiss
i =

(
0, Π i, Q

tr
i +Qint

i +Π i·v, Qint
i

)t
= −ǫ

∑

j∈D

Bij(uǫ)∂juǫ, (VII.4)

1

ǫ
Ω =

(
0, 0, 0, ωint

)t
=

1

ǫ

(
0, 0, 0,

ρcint(T tr − T int)

τ̄ int

)t
, (VII.5)
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where Π i = (Π1i,Π2i,Π3i)
t, Qint = (Qint

1 , Qint
2 , Qint

3 )t, and Qtr = (Qtr
1 , Q

tr
2 , Q

tr
3 )

t. The convective matrices Ai, i ∈ D,
and the the dissipation matrices Bij , that contain all the transport coefficients, are investigated in [89–91]. Both the
diffusion terms and the internal energy relaxation time have naturally been rescaled in the form ǫBij and τ int = ǫτ̄ int

where ǫ is a typical Knudsen number. Two different small parameters could more generally be introduced with ǫd
in front of the dissipation terms and ǫ for the relaxation of internal energy in (VII.1) and an independent limit with
ǫd and ǫ may also be investihgated [89–91]. However, it is also legitimate and convenient to investigate the simpler
situation where ǫd = ǫ [89–92]. The dependence of the solution on the parameter ǫ has been emphasized by denoting
the conservative variable in the form uǫ.

Symmetrized forms have been shown to be of fundamental important for analyzing the mathematical structure of
hyperbolic-parabolic systems of partial differential equations modeling fluids [19, 73–88]. They are useful for a priori
estimates, existence theorems [19, 73–88] as well as finite element formulations [93]. Existence of a symmetrized form is
related to the existence of a mathematical entropy compatible with convective terms, dissipative terms and relaxation
of energy. Symmetrized forms for the system of partial differential equations modeling two-temperature fluid (VII.1)
have been comprehensively investigated under natural mathematical assumptions on thermodynamics and transport
in [89–91]. Entropic as well as normal symmetrized forms have been obtained with an entropy compatible with
convective, diffusive as well as source terms [89–91].

The concept of Chapman-Enskog expansion has also been extended to hyperbolic systems of partial differential
equations by Liu [77] and Liu, Chen, Levermore [79] and later to hyperbolic-parabolic systems by Giovangigli and
Yong [89–92]. The natural structural conditions are that there exists a mathematical entropy taken to be for con-
venience σ = −S/R that is compatible with convection, diffusion as well as source terms [77, 79, 89–92]. It is also
required that there exists an equilibrium manifold or slow manifold E, characterized by the relation T tr = T int for
the two temperature problem, and the slow variable corresponding to (VII.2) reads ueq =

(
ρ, ρv, E + 1

2ρ|v|2
)t

. For
each slow variable ueq there exists a unique ueq such that Πt

equeq = ueq where Πeq is the projector operator on the
slow manifold with matrix Πeq = [e1, . . . , e4] with ei, 1 ≤ i ≤ 5, denoting the canonical basis vectors of R5 and we
also introduce for later use the projector with matrix Πrap = [e5]. The slow manifold is thus parameterized by ueq

and a careful analysis shows that the equilibrium one-temperature fluid model exactly corresponds to a second order
Chapman-Enskog [89–91] of the partial differentail equations (VII.1). We thus have the following schematic diagram

One temperature fluid

Two temperature fluidKinetic model
Chapman-Enskog

Chapman-Enskog Chapman-Enskog from the PDE

✲

❄

✟
✟

✟
✟

✟
✟

✟
✟

✟
✟

✟✟✙

FIG. 4. Schematic diagram of the double Chapman-Enskog procedure.

The Chapman-Enskog expansion for the solution uǫ to the system of partial differential equation (VII.1) is notably
in the form

uǫ =
∑

i≥0

ǫiui = u0 + ǫu1 +O(ǫ2) (VII.6)

where the zeroth order term u0 coincide with uǫ on the slow manifold Πt
equǫ = Πt

equ0 = ueq, where the Enskog
constraints are in the form Πt

equi = 0 for i ≥ 1 and where ui only depends on ∂αueq for |α| ≤ i. Combining (VII.1)
with (VII.6) the equations for ui, i ≥ 0, are given by

∂t(u0 + ǫu1 + · · · ) +
∑

i∈D

∂i
(
Fi(u0) + ǫ∂

u
Fi(u0)u1 + · · ·

)

− ǫ
∑

i,j∈D

∂i
(
Bij(u0)∂ju0 + · · ·

)
=

1

ǫ

(
Ω(u0) + ǫ∂uΩ(u0)u1 + · · ·

)
.

At the order −1 it is found that Ω(u0) = 0 so that u0 is an equilibrium point u0 = ueq(ueq) and the slow variable
equations are given by

∂tueq +
∑

i∈D

∂i
(
Πt

eqFi(u0) + ǫΠt
eq∂uFi(u0)u1 + · · ·

)
− ǫ

∑

i,j∈D

∂i
(
Πt

eqBij(u0)∂ju0 + · · ·
)
= 0.
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The equation at zeroth order governing u0 are found to be a symmetrizable hyperbolic system, indeed Euler equations
for the one-temperature fluid. The perturbed term u1 is next solution of linearized equations with the Enskog
constraints in the form

{
∂uΩ(u0)u1 = ∂tu0 +

∑
i∈D ∂i

(
Fi(u0)

)
,

Πt
equ1 = 0,

(VII.7)

and using Euler equation in order to express ∂tu0, the first order perturbation u1 is found in the form

u1 = −
∑

j∈D

mj∂jueq,

where mj , j ∈ D, are 5x4 matrices and we refer to [89–92] for more details. The first order Navier-Stokes type
equations are then obtained as

∂tueq +
∑

i∈D

A
eq
i (ueq)∂iueq − ǫ

∑

i,j∈D

∂i
(
B

eq
ij (ueq)∂jueq

)
(VII.8)

with the diffusion coefficients in the form

B
eq
ij (ueq) = Πt

eqBij ∂ueq
ueq +Πt

eqA
eq
i mj . (VII.9)

The resulting first order accurate governing equations for the slow variable thus involves dissipative coefficients arising
from perturbed convective terms Πt

eqA
eq
i mj as well as inherited directly from the system out of equilibrium Πt

eqBij .
Both the bulk viscosity term arising from the perturbed convective fluxes and the shear viscosity term inherited from
the out of equilibrium viscous tensor are finally involved in the equilibrium viscous tensor. For the two temperature
model it is indeed found that

ǫ
∑

i∈D

∂i
(
Πt

eq∂uFiu1

)
= −

(
0,∇·(κ∇·vI),∇·(κ∇·v v)

)t
, (VII.10)

so that the bulk viscosity coefficients is exactly obtained from the perturbed out of equilibrium convective terms in the
Chapman-Enskog method whereas the shear viscosity and thermal conductivity contributions are directly inherited
from the out of equilibrium model [89–92].

VII.C. Multiple time expansions for the simplified two-temperature model

Exact mathematical convergence results have further been obtained for the simplified two-temperature system of
equations in the form (VII.1) over the full space R

d for 1 ≤ d ≤ 3 [91, 92]. The results and the method of proof
differ depending if the inital data is well prepared with T tr

data = T int
data or ill prepared with T tr

data 6= T int
data where

(ρdata,vdata, T
tr
data, T

int
data)

t denotes the variable at initial time t = 0. Both the well prepared situation [91] and the
ill prepared situations [92] have been investigated and only the ill prepared situation results are summarized in this
section.

Existence of solutions to the Cauchy problem with ill prepared initial data has been established as well as the
validity of asymptotic composite expansions including initial-layer correctors. The results may conveniently been
presented using the variable

wǫ =
(
ρ, ρv, Etr + Eint +

1
2ρ|v|2,

1

T tr
− 1

T int

)t

= (uǫ, qǫ)
t, (VII.11)

with the slow uǫ and fast qǫ components given by

uǫ = Πt
eqwǫ = Πt

equǫ =
(
ρ, ρv, Etr + Eint +

1
2ρ|v|2

)t

qǫ = Πt
rapwǫ =

1

T tr
− 1

T int
.

Multiple time expansions have been introduced in the form

wǫ = w0(t,x) + ǫw1(t,x) + w
il
0 (t/ǫ,x) + ǫw il

1(t/ǫ,x) +O(ǫ2), (VII.12)
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with an outer expansion involving the standard time t

w0(t, x) + ǫw1(t, x) +O(ǫ2), (VII.13)

as well as initial layer correctors involving the fast time τ = t/ǫ in the form

w
il
0(τ, x) + ǫw il

1(τ, x) +O(ǫ2), (VII.14)

and such that w il
0 and w il

1 are exponentially decreasing with respect to the fast time τ = t/ǫ. The equations governing
each of the asymptotic expansion coefficients u0, u1, q0, q1 and q2 where w0 = (u0, q0)

t, w1 = (u1, q1)
t, w ′

2 = (0, q2)
t

may be obtained. The proper initial and boundary conditions may also be written by first expanding the initial
conditions

wdata = wdata0 + ǫwdata1 +O(ǫ2),

where wdata = (udata, qdata)
t and then identifying w0(·, 0) + w il

0 (·, 0) = wdata0 and w1(·, 0) + w il
1 (·, 0) = wdata1 so

that in particular u0(·, 0) = udata0, q0(·, 0) = 0, uil0(·, 0) = 0, and qil0 (·, 0) = qdata0. The mathematical structure
of the hyperbolic type equations governing u0 and u1 then guarantee the existence of solutions over a finite time
interval [0, t̄ ] under natural regularity assumptions [89–92]. An important role is notably played by the mathematical
entropy that allows symmetrization of the corresponding systems of partial differential equations that is taken in the
form σ = −S/R for convenience. In addition, the initial layer correctors are shown to satisfy systems of differential
equations with respect to the fast time. Existence of exponentially decreasing global solution is then obtained by
using the entropy as a Lyapunov function [92]. An important tool has also been the use of an improved truncated
approximation in the form

w
a
ǫ = w0 + ǫw1 + ǫ2w

′
2 + w

il
0 + ǫw il

1 , (VII.15)

including a fast component of the second order term w ′
2 = (0, q2)

t

It is then established that the out of equilibrium solution exists avec a finite time interval [0, t̄ ] and the truncated
approximation is second order accurate with supt∈[0,t̄ ] |wǫ(t) − wa

ǫ (t)|L∞ ≤ Cǫ2 where C is a finite constant and
|f|L∞ = supx∈Rd |f(x)| denotes the L∞ norm of a function f over R

d.
It may also be established that the Hilbert type expansion u0+ǫu1 and the Chapman-Enskog solution at equilibrium

ueq are O(ǫ2) close so that

sup
t∈[0,t̄ ]

∣∣ueq(t)−
(
u0(t) + ǫu1(t)

)∣∣
L∞
≤ Cǫ2.

Combining these results it is then obtained that if uǫ = Πt
eqwǫ = Πt

equǫ then for ǫ small enough

sup
t∈[0,t̄ ]

∣∣uǫ(·, t)− (ueq(·, t) + ǫuil1(·, t/ǫ))
∣∣
L∞
≤ Cǫ2.

In other words, the out of equilibrium slow variable uǫ is O(ǫ2) close to the Chapman-Enskog solution at equilibrium
ueq up to a first order term ǫuil1(·, t/ǫ)) that is exponentially decreasing with respect to the fast time τ = t/ǫ [92]. The
zeroth order initial layer corrector is also governed by the ordinary differential equation in the form ∂τ (T

tr − T int) =
− cvl

ctrτ int (T
tr − T int) so that assuming for the sake of illustration that cint and τ int constant we obtain that

T tr(τ) = T +
(
T tr(0)− T (0)

)
exp

(
−cvl

ctr

τ

τ int

)
,

and we also have q1 = T intτ int

ctr(T tr)2+cint(T int)2 ∇·v that yields the bulk viscosity contributions of (VII.10).
The mathematical theoretical results obtained concerning the Chapman-Enskog solution are thus in full agreement

with the physical framework. Making a parallel with the traditional Chapman-Enskog, we may say that the slow or
fluid variable is the one-temperature fluid variable ueq, the Mawellian distribution is thecorresponding equilibrium
two-temperature fluid variable ueq, the linearized Boltzmann equations are replaced by (VII.7), and the resulting
dissipative coefficients have two different sources with (VII.9).
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VIII. CONCLUSION

We have investigated the relaxation of internal temperature and the concept of bulk viscosity in nonequilibrium gas
models derived from the kinetic theory. When the rates for internal energy exchanges are smaller than the fluid time,
a common interpretation of the apparition of the bulk viscosity coefficient has been obtained with (II.20), (III.25),
and (IV.21). The Monte Carlo simulations of spontaneous fluctuations near thermal equilibrium obtained by solving
the Boltzmann equation have been shown to be in full agreement with the theoretical results. Mathematical aspects
of internal energy elaxation have also been discussed for a two-temperature fluid mopdel and found to agree with the
formal expansions. Future work should consider numerical simulations with multiple internal energy modes and more
generally states far from thermodynamic equilibrium.

Appendix A: The one-temperature two-mode bulk viscosity

We investigate in this section the bulk viscosity associated with a one-temperature two-mode polyatomic gas.
The standard linear system associated with the evaluation of the two-mode bulk viscosity is obtained with the
Galerkin variational approximation space spanned by the orthogonal polynomials φ0010 = 3

2− 1
2

m
kBT |c−v|2, φ0001rap =

(E
rap − Erap

i )/kBT , and φ0001sl = (E
sl − Esl

i
)/kBT . The general solution of the Transport Linear Systems as well as

their mathematical structure has been investigated [32, 33]. The modes are termed ‘rapid’ and ‘slow’ for notational
consistency with the nonequilibrium framework of Section III, but in the thermodynamic equilibrium framework they
are all fast. The corresponding linear system of size 3 is in the form [33]

{
Kα = β,
〈K, α〉 = 0,

(A.1)

where K denotes the system matrix, K the constraint vector, α = (α10, α01rap, α01sl)t the unknown vector, β =
(β10, β01rap, β01sl)t the right hand side vector, and the bulk viscosity is finally given by κ = α10β10 + α01rapβ01rap +
α01slβ01sl. The matrix K is positive semi-definite with nullspace N(K) = RV where V = (1, 1, 1)t, the constraint
vector is given by K = (ctr, crap, csl)t, and the right hand side vector by β = (crap + csl,−crap,−csl)t/cvl.

We deduce from the constraint 〈K, α〉 = 0 that ctrα10+crapα01rap+cslα01sl = 0 and κ = −(crapα01rap+cslα01sl)/ctr.
We may thus recast the singular linear system of size 3 into a regular linear system of size 2 involving only the
unknowns α01rap and α01sl. Thanks to the vector relation KV = 0, the coefficients of this linear system may also be
expressed solely in terms of Krap,rap, Krap,sl, and Ksl,sl. We also have the relations Krap,rap = 2[[(∆Erap)2]]/(kBT )

3,
Krap,sl = 2[[(∆Erap)(∆Esl)]]/(kBT )

3, and Ksl,sl = 2[[(∆Esl)2]]/(kBT )
3, where ∆Erap = Erap

i
′ + Erap

j
′ − Erap

i − Erap
j and

∆Esl = Esl
i
′ + Esl

j
′ − Esl

i
− Esl

j
.

After some lengthy algebra, using the reduced linear system of size 2, it is obtained that

κ =
1

(cvl)2
(crap)2Ksl,sl − 2crapcslKrap,sl + (csl)2Krap,rap

Krap,rapKsl,sl −Krap,slKrap,sl
. (A.2)

Since we have to investigate the equilibrium limit of a two temperature model where one mode is fast and another
one slow, we deduce that the coefficient Krap,rap is large and that the cross terms Krap,sl = Ksl,rap are also small.
We therefore neglect the square term Ksl,rapKrap,sl in the previous expression and the limiting value of the effective
nonequilibrium bulk viscosity should thus be

κ =
(crap
cvl

)2 (kBT )
3

2[[(∆Erap)2]]
− crapcsl

(cvl)2
(kBT )

3[[(∆Erap)(∆Esl)]]

[[(∆Erap)2]][[(∆Esl)2]]
+
( csl
cvl

)2 (kBT )
3

2[[(∆Esl)2]]
. (A.3)
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