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Symmetrization and local existence of strong solutions

for diffuse interface fluid models

Vincent Giovangigli, Yoann Le Calvez and Flore Nabet

CMAP, CNRS, École Polytechnique, 91128 Palaiseau, FRANCE

Abstract

We investigate compressible nonisothermal diffuse interface fluid models also termed capillary

fluids. Such fluid models involve van der Waals’ gradient energy, Korteweg’s tensor, Dunn and

Serrin’s heat flux as well as diffusive fluxes. The density gradient is added as an extra variable

and the convective and capillary fluxes of the augmented system are identified by using the Legendre

transform of entropy. The augmented system of equations is recast into a normal form with symmetric

hyperbolic first order terms, symmetric dissipative second order terms and antisymmetric capillary

second order terms. New a priori estimates are obtained for such augmented system of equations in

normal form. The time derivatives of the parabolic components are less regular than for standard

hyperbolic-parabolic systems and the strongly coupling antisymmetric fluxes yields new majorizing

terms. Using the augmented system in normal form and the a priori estimates, local existence of

strong solutions is established in an Hilbertian framework.

1 Introduction

Diffuse interface models conceive liquid-gas interfaces as changeover zones where state variables are
smoothly varying [62, 59, 1]. Diffuse interface models of second gradient type have successfully been used
to describe vaporization fronts, three phase contact lines, surface diffusion as well as complex liquid-gas
interfaces with topological changes [59, 1, 47, 14, 30, 2, 58]. These are strong motivations for investigating
the mathematical structure and properties of the corresponding systems of partial differential equations
as well as the existence of solutions.

The thermodynamics of diffuse interface models has been built by van der Waals [62] using a gradient
squared term in the free energy. The associated pressure tensor has been obtained by Korteweg [51] and
the heat flux by Dunn and Serrin using rational thermodynamics [23]. These equations have alternatively
been derived from the kinetic theory of dense gases by Giovangigli [34, 35]. Bulk phases classical nonideal
thermodynamics furthermore involve non monotone pressure laws allowing the simultaneous presence of
liquid and gaseous states. The dissipative fluxes are similar to that of Navier-Stokes-Fourier fluids and
the capillarity coefficient depends on temperature as deduced from the kinetic theory. The extra higher
order derivative terms of capillary origin in thermodynamic functions and governing equations ensure a
smooth variation of fluid properties at liquid-vapor interfaces [62, 59, 1, 47, 30, 2, 58].

In the isothermal situation, Hattori and Li [45] have first established the local existence of strong
solutions to the Cauchy problem with constant capillarity and transport coefficients. Danchin and
Desjardins have further obtained the existence and uniqueness of solutions in critical Besov space [18].
Kotschote has established the local existence of strong solutions in bounded domains with coefficients
independent of the solution [26]. Bresch, Desjardins and Lin [8] and Bresch, Gisclon and Lacroix-Violet [9]
have investigated the global existence of weak solutions in periodic or strip domains with a monotone
pressure and density dependent capillarity coefficients associated with quantum fluids.

In the multi-dimensional non-isothermal situation, Haspot has investigated the well-posedness in
critical spaces with a monotone pressure and a density dependent capillarity coefficient [44]. Kotschote
has studied the well-posedness of strong solutions in bounded domains with very general coefficients and
pressure laws [27]. Bresch et al. [9, 10], Benzoni et al. [3, 4, 5], Donatelli et al. [22] and Tzavaras et
al. [7, 32] have further considered Euler-Korteweg models. Hattori and Li [46] and Kotschote [28] have
studied the stability of stationary states and Nabet [57], Miranville [56], and Cancès et al. [15] have
investigated related Cahn-Hilliard fluid equations.
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Symmetrization is a requisite for analyzing the structure of systems of partial differential equa-
tions. Symmetrized forms have notably been used for hyperbolic systems of partial differential equa-
tions modeling fluids [42, 29, 55, 61, 17, 41, 19, 50, 6, 11] as well as for hyperbolic-parabolic sys-
tems [63, 48, 49, 36, 37, 33, 60, 21, 24, 40]. In order to symmetrize the diffuse interface fluid equations,
a first step is to consider an augmented system by adding the gradient of density w = ∇ρ as an extra
unknown following Gavrilyuk and Gouin [31], Benzoni et al. [3], Bresch et al. [10], and Kotschote [27]. In
the same vein, two velocity hydrodynamics with augmented systems have been considered by Bresch et
al. [12, 13]. Gavrilyuk and Gouin [31] have established that the resulting augmented system of equations
can be symmetrized by using entropic variables in the special situation of inviscid fluids. The specific
entropy has been used as a conserved variable—thanks to the inviscid framework—with energy playing
the role of entropy [31]. We first revisit the Gavrilyuk and Gouin symmetrization method, still keeping
the density gradient as an extra variable, but using the energy as a conserved unknown and restoring
the natural role of entropy as is mandatory for fluids with dissipative effects. We correspondingly use of
the Legendre transform of entropy—instead of energy—in order to identify the convective and capillary
fluxes of the augmented system. The entropic symmetrized form is then obtained and the corresponding
matrices relating the dissipative and capillary fluxes to the gradient of the entropic variable involve sym-
metric parts arising from dissipative effects and antisymmetric parts arising from capillarity. A major
drawback of such entropic symmetrized forms, however, is that the map u 7→ v from the conservative
variable u to the entropic variable v is not globally invertible, due to the presence of mechanical ther-
modynamic instabilities [3]. In addition, the dissipative effects are mixed between the entropic variable
components. In order to solve these difficulties, we investigate normal variables w and normal forms for
the augmented system of partial differential equations.

Normal forms for the augmented system are obtained by using for convenience the normal variable
w = (ρ,w,v, T )t where ρ denotes the density, w the density gradient, v the fluid velocity, and T the
absolute temperature. The map u 7→ w remains globally invertible even if neither u 7→ v nor w 7→ v are
globally invertible. This normal variable may be split between its hyperbolic wI = (ρ,w)t and parabolic
components wII = (v, T )t, and the hyperbolic component wI may further be split as wI = (wI

′ ,wI
′′)t

where wI
′ = ρ and wI

′′ = w. The unknown w thus has n = 2ds + 2 component with ds denoting the
space dimension wheras wI and wII both have nI = nII = ds + 1 components. The corresponding vector
and matrix block structure associated with the partitioning of Rn into R

n = R
nI × R

nII is used in the
following. The resulting equations in normal form constitute a quasilinear symmetric-antisymmetric
hyperbolic-parabolic composite system in the form

A0(w)∂tw +
∑

i∈D

Ai(w)∂iw −
∑

i,j∈D

Bd
ij(w)∂i∂jw−

∑

i,j∈D

Bc
ij(w)∂i∂jw = h(w,∇w), (1.1)

where A0 is symmetric positive definite, block-diagonal A0 = diag(AI,I
0 ,A

II,II
0 ), with A

II,II
0 only depending

on (wI
′ ,wII). The convective matrices Ai, i ∈ D, are symmetric and a multiple of the mass conservation

equation has been added to the first equation to ensure that A0 remains positive definite. The dissipation
matrices satisfy the reciprocity relations (Bd

ij)
t = Bd

ji, i, j ∈ D, have nonzero components only into the

lower right Bd II,II
ij blocks, and Bd II,II =

∑
i,j∈D B

d II,II
ij (w)ξiξj is positive definite for ξ ∈ Σds−1 where Σds−1

is the sphere in ds dimension. The matrices Bc
ij are such that (Bc

ij)
t = −Bc

ji, the blocks B
c I,I
ij vanish

B
c I,I
ij = 0, and the strongly coupling blocks B

c I,II
ij and B

c II,I
ij only depend on (wI

′ ,wII). The right hand

side h(w,∇w) is in the form h = (hI, hII)
t with hI = hI(w,∇wII) and hII = hI(w,∇w). We next consider

a constant equilibrium state w⋆ = (w⋆
I
,w⋆

II
)t with w⋆

I
= (ρ⋆, 0)t and w⋆

II
= (v⋆, T ⋆)t so that w⋆ = 0 and

investigate the Cauchy problem looking for solutions such that w − w⋆ ∈ H l(Rds).
The structure of the system of partial differential equations may be analyzed by using its normal

form (1.1). The components wI = (ρ,w)t first form an hyperbolic variable of dimension nI = 1 + ds and
the components wII = (v, T )t form a parabolic variable of dimension nII = ds + 1 using the terminology
of traditional hyperbolic-parabolic systems although the matrices Bc

ij introduce extra coupling. The
variable wI = (ρ,w)t = (ρ,∇ρ)t being an hyperbolic variable, the density ρ will have more regularity
inherited from that of w but ρ is not a parabolic variable. A priori estimates given in Theorem 6.2 are
obtained in the spaces

wI − w⋆
I
∈ C0

(
[0, τ̄ ], H l

)
∩ C1

(
[0, τ̄ ], H l−2

)
,

wII − w⋆
II
∈ C0

(
[0, τ̄ ], H l

)
∩ C1

(
[0, τ̄ ], H l−2

)
∩ L2

(
(0, τ̄), H l+1

)
,

where l ≥ l0 + 2, l0 = [ds/2] + 1 and [ ] denotes the integer part. In particular, density estimates are
in the form ρ − ρ⋆ ∈ C0

(
[0, τ̄ ], H l+1

)
instead of solely ρ ∈ L2

(
[0, τ̄ ], H l+1

)
as would be the case for a
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parabolic variable. More regularity is also required with l ≥ l0 +2 rather than l ≥ l0 +1 as for standard
hyperbolic-parabolic systems [48, 33, 60]. The time derivative ∂twII is indeed only in C0

(
(0, τ̄), H l−2

)

due to the antisymmetric coupling terms
∑

i,j∈D Bc
ij(w)∂i∂jw involving second derivatives of hyperbolic

variables.
A priori estimates and existence of solutions are established for an abstract augmented system of

equations in normal form that will encompass the special situation of diffuse interface fluids. Linearized
equations are initially considered and new a priori estimates are obtained for symmetric-antisymmetric
linearized systems of hyperbolic-parabolic type. An important property of nonlinear as well as linearized
systems is notably to maintain the natural constraint wI

′′ = ∇wI
′ . In order to establish the existence

of solutions for linearized equations, the higher order capillary terms
∑

i,j∈D Bc
ij(w)∂i∂jw are first reg-

ularized using mollifiers and the hyperbolic and parabolic components are uncoupled. The limit with
respect to the regularizing parameter is next performed and yields existence results for the linearized
equations. Only the symmetry of the hyperbolic blocks A

I,I
i , i ∈ D, is required for such local existence

theorems and key points are the anti-symmetry relations (Bc
ij)

t = −Bc
ji ensuring elimination of the cap-

illary terms of entropy production, the vanishing of the blocks B
c I,I
ij = 0, and the extra regularity of

the coefficients Bc I,II
ij and B

c II,I
ij that only depend on more regular components of w denoted by wr. The

nonlinear equations are next considered and a local existence theorem of strong solutions is obtained
using the symmetrized normal form as well as linearized iterates with wr = (wI

′ ,wII)
t. The functional

setting is a classical Hilbertian framework that differ from previous existence theorems [44, 8, 27]. To
the best of the authors’ knowledge, it is the first time that symmetrized normal form is introduced for
augmented system and used to establish local existence theorem of strong solutions for diffuse interface
fluid models with natural general assumptions on the system coefficients.

The equations governing capillary fluids are presented in Section 2 and the augmented system is
investigated in Section 3. The symmetrization of diffuse interface fluid models is addressed in Section 4.
Linearized estimated and existence of solutions to the linearized equations are then studied in Section 5.
Local existence of solutions to the nonlinear equations is finally obtained in Section 6.

2 Diffuse interface fluids

We present in this section the governing equations of diffuse interfaces fluids also termed Korteweg,
capillary, or cohesive fluids. These equations involve van der Waals’ gradient energy [62], Korteweg’s
tensor [51] and Dunn and Serrin’s heat flux [23]. Such capillary fluids models have successfully been
used for the study of phase change problems including complex liquid-gas interfaces with topological
changes [1, 47, 2, 30, 58].

2.1 Van der Waals free energy

The free energy per unit volume A in a second gradient theory is in the form

A = Acl + 1
2κ|∇ρ|2, (2.1)

where Acl denotes the classical free energy per unit volume, ρ the mass density, ∇ = (∂1, . . . , ∂ds
)t the

differential operator in the physical space R
ds , ds the space dimension, and κ the diffuse interface or

capillarity coefficient. The superscript cl is used to denote classic or bulk thermodynamic properties that
do not involve gradients. The classic free energy Acl only depends on the densities ρ and the absolute
temperature T whereas the gradient squared term 1

2κ|∇ρ|2 in A represents an excess free energy of
the interfacial region [62, 51, 59, 1]. As deduced from the kinetic theory of dense gases [34, 35] and
from experimental measurements [53], the diffuse interface coefficient κ is assumed to only depend on
temperature κ = κ(T ), at variance with the case of quantum fluids.

Using the thermodynamic relations dAcl = −ScldT + gcldρ, ∂TA = −S, and ∂ρA = g, the entropy
per unit volume S and the Gibbs function per unit mass g are found in the form

S = Scl − 1
2∂Tκ|∇ρ|2, g = gcl. (2.2)

The equality of the entropy S with the classic entropy Scl when κ is independent of temperature is
in agreement with van der Waals theory [62, 51, 59] and the Gibbs function per unit volume G is
G = ρg = Gcl. The energy per unit volume E = A+ TS and pressure p = G − A are further obtained as

E = Ecl + 1
2 (κ − T∂Tκ)|∇ρ|2, p = pcl − 1

2κ|∇ρ|2, (2.3)
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and the fluid enthalpy per unit volume H = E + p reads H = Hcl − 1
2T∂Tκ |∇ρ|2. The generalized

volumetric Gibbs relation is finally in the form

TdS = dE − gdρ− κ∇ρ·d∇ρ, (2.4)

where d denotes the differentiation operator. We also introduce for later use the thermodynamic functions
per unit mass s = S/ρ, e = E/ρ, and h = H/ρ.

2.2 Equations for capillary fluids

The equations governing capillary fluids may be written in the form [1, 47, 34, 35]

∂tρ+∇·(ρv) = 0, (2.5)

∂t(ρv) +∇·(ρv⊗v) +∇·P = 0, (2.6)

∂t
(
E + 1

2ρ|v|
2
)
+∇·

(
v(E + 1

2ρ|v|
2)
)
+∇·(Q+P·v) = 0, (2.7)

where ∂t denotes the time derivative operator, ∇ the spatial differential operator in physical space R
ds ,

v the fluid velocity, P the total pressure tensor, Q the total heat flux, and where the pressure p and the
energy E are given by (2.3). Vectors and tensors of physical origin in R

ds or Rds,ds are denoted by using
bold symbols. The transport fluxes P and Q contain capillary as well as dissipative contributions

P = pI + κ∇ρ⊗∇ρ− ρ∇·(κ∇ρ)I +P
d, (2.8)

Q = κρ∇·v∇ρ+Q
d, (2.9)

with I denoting the ds-dimensional unit tensor, Pd the viscous pressure tensor, and Q
d the Fourier heat

flux [1, 47]. The dissipative fluxes Pd and Q
d are classically of Navier-Stokes-Fourier type [16, 25, 33]

P
d =− v∇·v I − η

(
∇v +∇vt − 2

ds
∇·v I

)
, (2.10)

Q
d =− λ∇T, (2.11)

where v denotes the volume viscosity, η the shear viscosity and λ the thermal conductivity. The transport
coefficients v, η, and λ may be obtained from the kinetic theories of dense or dilute gases and only depend
on ρ and T .

Remark 2.1. The dissipative pressure tensor P
d is normally obtained in the form

P
d = −v′∇·v I − η

(
∇v +∇vt − 2

3∇·v I
)
, (2.12)

where v′ denotes the physical volume viscosity. The original pressure tensor is indeed a matrix of di-
mension three with a coefficient 2/3 instead of the coefficient 2/ds. However, the spatial dimension of
the model ds may possibly be reduced and the equations considered in R

ds with 1 ≤ ds ≤ 3. Using then
for convenience a coefficient 2/ds instead of 2/3 in (2.12) is equivalent to increasing the physical volume
viscosity v′ by the amount η

(
2
ds

− 2
3

)
. The effective volume viscosity with ds spatial dimensions is then

v = v′ + η
(

2
ds

− 2
3

)
and we note that v+ η(1− 2

ds

) = v′ + η
3 remains positive.

Using Gibbs’ relation (2.4), the governing equations (2.5)–(2.7), and the expression of transport
fluxes, the entropy balance equation may also be written after some algebra as

∂tS +∇·(vS) +∇·

(
Q

T
− κρ∇·v∇ρ

T

)
=

λ

T 2
|∇T |2 + v

T
(∇·v)2 +

η

2T

∣∣∇v +∇vt − 2
ds

∇·v I
∣∣2, (2.13)

and there is no entropy production associated with capillary phenomena. The word capillary is tradi-
tionally used to denote the extra gradient terms in the energy, the pressure tensor, and the heat flux.
A better terminology, however, is that of diffuse interface since the higher order derivative terms lead
to thin transition zones between phases with smooth variation of fluid properties. Another very good
terminology is that of cohesive fluids since the extra gradient terms are due to cohesive forces.
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2.3 Classical thermodynamics

The mathematical properties of the classical thermodynamic functions Ecl, pcl, and Scl are presented in
this section [43, 39, 40]. The properties of the extended thermodynamic functions E , p, S, the capillarity
coefficient κ, and the transport coefficients v, η, λ will be addressed in the fluid section using augmented
variables. We denote for convenience by zcl the variable zcl = (ρ, T )t and by ucl the variable ucl = (ρ, Ecl)t.
The superscript cl is generally used to denote quantities associated with classical thermodynamics. We
may commit the traditional abuse of notation of using the same symbol for a given quantity as function
of different state variables. We denote in the following by ∂ the derivation operator with respect to the
variable zcl. The first property (Hcl

1
) is associated with the smoothness of thermodynamic functions and

the regularity class γ denotes an integer such that γ ≥ 3.

(Hcl
1 ) The thermodynamic functions Ecl, pcl, and Scl are Cγ functions of the variable zcl = (ρ, T )t

defined over a simply connected nonempty open set Ozcl ⊂ (0,∞)2.

The second property (Hcl
2
) concerns Gibbs relation between the differentials of Ecl and Scl. There

is also a natural constraint associated with Gcl since we only consider a volumetric Gibbs differential
relation [39].

(Hcl
2 ) Assuming that (Hcl

1 ) holds and defining Gcl = Ecl + pcl − TScl and gcl = Gcl/ρ, we have the
volumetric Gibbs’ relation between the differentials dScl and dEcl

TdScl = dEcl − gcldρ. (2.14)

Defining scl = Scl/ρ and ecl = Ecl/ρ we have gcl = ecl + pcl/ρ− Tscl and it is obtained from (2.14)
that Tdscl = decl − (pcl/ρ2)dρ. A fundamental question associated with nonideal thermodynamics is
that of thermodynamic stability. According to the second principle of thermodynamics, the evolution
of an isolated system tends to maximize its entropy. The entropy of a stable isolated system should
thus be a concave function of its volume and internal energy [43]. Whenever it is not the case, the
system may loose its homogeneity and split between several phases in order to reach equilibrium. This
notably arises with mechanically unstable fluids that split between vapor and liquid phases [43]. From
a mathematical point of view, these unstable points are associated with a loss of definiteness of entropy
Hessian matrices [43, 38, 39].

Proposition 2.2. Assume that (Hcl
1
) and (Hcl

2
) hold and that zcl 7→ ucl is locally invertible. Denoting

by ∂̃ the derivation operator with respect to ucl, the following statements are equivalent :

(i) ∂̃2
uclucl

Scl is negative definite.

(ii) ∂T Ecl > 0 and ∂ρp
cl > 0.

Proof. From Gibbs’ relation (2.14) it is obtained that ∂̃EclScl = 1
T and ∂̃ρScl = − gcl

T and this implies

the compatibility relation ∂̃Ecl

(
−gcl

T

)
= ∂̃ρ

(
1
T

)
. Moreover, for any function φ we have the differential

relations
∂̃Eclφ = ∂Tφ ∂̃EclT, ∂Tφ = ∂̃Eclφ ∂T Ecl, (2.15)

∂̃ρφ = ∂ρφ+ ∂Tφ ∂̃ρT, ∂ρφ = ∂̃ρφ+ ∂̃Eclφ ∂ρEcl. (2.16)

We then note that ∂̃2EclEclScl = ∂̃Ecl(
1
T
) so that ∂̃2EclEclScl = −∂̃EclT/T

2. Similarly, we have ∂̃2Eclρ
Scl =

∂̃ρ(
1
T
) so that ∂̃2Eclρ

Scl = −∂̃ρT/T 2. Upon letting φ = T in (2.16) we obtain that ∂̃ρT = −∂̃EclT ∂ρEcl

and we have established that ∂̃2EclρclScl = ∂̃EclT ∂ρEcl/T 2. Combining ∂̃ρT = −∂̃EclT ∂ρEcl with the

compatibility relation ∂̃Ecl

(
−gcl

T

)
= ∂̃ρ

(
1
T

)
and (2.15), we also deduce that ∂T (

gcl

T ) = −∂ρE
cl

T 2 . In addition,

from ∂̃2ρρScl = −∂̃ρ( g
cl

T ) and from (2.16) we deduce that ∂̃2ρρScl = −∂ρ( g
cl

T )−∂T ( g
cl

T ) ∂̃ρT so that ∂̃2ρρScl =

−∂ρg
cl

T
− ∂̃

Ecl
T (∂ρE

cl)2

T 2 . We have thus established that T 2∂̃2EclEclScl = −∂̃EclT , T
2∂̃2Eclρ

Scl = ∂̃EclT ∂ρEcl

and T 2∂̃2ρρScl = −T∂ρgcl − ∂̃EclT (∂ρEcl)2. We have already derived that Tdscl = decl − (pcl/ρ2)dρ so

that dgcl = −scldT + (1/ρ)dpcl and ∂ρg
cl = ∂ρp

cl/ρ, and letting φ = T in (2.15) yields ∂T Ecl ∂̃EclT = 1.

Combining these relations, we have established that for any test vector xcl = (xρ, xE)
t ∈ R

2

〈∂̃2
uclucl

Sclxcl, xcl〉 = − 1

T 2∂TEcl
(xE − ∂ρEclxρ)

2 − 1

ρT
∂ρp

cl x2ρ, (2.17)

in such a way that thermodynamic stability is equivalent to ∂T Ecl > 0 and ∂ρp
cl > 0.
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The inequality ∂T Ecl > 0 is the thermal stability condition and the inequality ∂ρp
cl > 0 the mechanical

stability condition [43, 39]. In order to integrate with respect to the variable T in the open set Ozcl it is
further required that the open set Ozcl is increasing with respect to temperature.

Definition 2.3. A nonempty open set Ozcl ⊂ (0,∞)2 is said to be increasing with respect to temperature
if for any zcl = (ρ, T )t ∈ Ozcl we have {ρ}×[T,∞) ⊂ Ozcl .

The construction of thermodynamics from state laws also requires the open set Ozcl to be decreasing
with respect to density [39] but such a property is not needed for an existence theorem [40]. We now
assume that the fluid is thermally stable and this will allow the use of the ucl variable.

(Hcl
3 ) Assuming that (Hcl

1 ) holds, the open set Ozcl is increasing with respect to temperature and the
volumetric specific heat is positive ∂TEcl > 0 over Ozcl .

Under such a property (Hcl
3
) we may change of variable from zcl = (ρ, T )t to ucl = (ρ, Ecl)t as

investigated in the next lemma.

Lemma 2.4. Assuming that (Hcl
1 ) and (Hcl

3 ) hold, the map zcl 7→ ucl is a Cγ diffeomorphism from Ozcl

onto an open set Oucl .

Proof. The map zcl 7→ ucl is Cγ from (Hcl
1
) and the jacobian matrix ∂zclu

cl has determinant ∂TEcl. This
jacobian ∂zclu

cl is thus nonsingular from (Hcl
3 ) so that zcl 7→ ucl is locally invertible and the image Oucl

of Ozcl is an open set. Assuming next that
(
ρ♭, Ecl(ρ♭, T ♭)

)
=

(
ρ♯, Ecl(ρ♯, T ♯)

)
and letting ρ = ρ♭ = ρ♯,

we deduce from Ecl(ρ, T ♭) = Ecl(ρ, T ♯) that
∫ T ♯

T ♭∂TEcl(ρ, s) ds = 0 keeping in mind that Ozcl is increasing

with respect to temperature. Since the specific heat ∂T Ecl remains positive over the integration segment
{ρ}×[T ♭, T ♯] we obtain that T ♭ = T ♯. The map zcl 7→ ucl is thus one-to-one and is therefore a global Cγ

diffeomorphism from Ozcl onto Oucl .

The fluid thermodynamic functions are further compatible with that of perfect gases when the density
goes to zero ρ→ 0 [39]. This yields boundary conditions at zero densities for the construction of nonideal
fluid thermodynamics from equations of state [39]. However, such a property is not required in order to
investigate well posedness of diffuse interface fluid models. We neither assume that the Hessian matrix
∂̃2
uclucl

Scl is negative definite since we anticipate the presence of mechanical instabilities where ∂ρp
cl < 0

and only thermal stability is assumed with (Hcl
3
). We will still need an instability indicator mcl in order

to control negative values of the derivative ∂ρp
cl as investigated in the next lemma.

Lemma 2.5. Assuming that (Hcl
1
) holds and that δ > 0 is given there exists a Cγ−1(Ozcl) function mcl

such that mcl ≥ 0, mcl + ∂ρp
cl/ρT > 0 and mcl = 0 if ∂ρp

cl/ρT ≥ δ.

Proof. Let φ ∈ C∞(R) be such that φ(x) = 1 if x ≤ 1/2, φ is decreasing, φ(x) = 0 if x ≥ 1, and define

mcl(ρ, T ) =
(
δ − ∂ρp

cl

ρT

)
φ
(∂ρpcl
δρT

)
.

It is then easily checked that mcl ≥ 0, that mcl + ∂ρp
cl/ρT remains greater than δ/2 that mcl(ρ, T ) = 0

whenever ∂ρp
cl/ρT ≥ δ and m is Cγ−1(Ozcl) from (Hcl

1 ).

Whenever stability is lost, we will add mcl to ∂ρp
cl/ρT in order to obtain a positive quantity. When

a thermodynamical state zcl is stable in the sense that ∂ρp
cl/ρT > δ the instability indicator mcl also

vanishes in the neighborhood of zcl.

Remark 2.6. The Van der Waals pressure law is in the form [43]

pcl =
ρrT

1− ρbvw
− avw(T )ρ

2,

where r is the gas constant per unit mass, bvw a positive constant—the covolume—and avw(T ) a non-
negative Cγ function of temperature arising from attractive potential forces [43, 34]. The mass density
ρ is such that 1 − ρbvw > and the open set Ozcl is then given by Ozcl = (0, 1/bvw) × (Tmin,∞) where
Tmin is a positive minimum temperature. It may then be established that e = epg − (avw −T∂T avw)ρ and
s = spg + ∂T avwρ + r log(1 − bvwρ) where epg and spg are the energy and entropy per unit mass of a
perfect gas, respectively [39], as well as −2avw/Tmin ≤ ∂ρp

cl/(ρT ) so that mcl is also uniformly bounded
for these fluids. Similar properties also hold for modified van der Waals state laws like the SRK equation
of state that has been found to be accurate [38, 39].
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The mathematical structure of classical thermodynamics and their construction from state laws has
been investigated [39]. From a physical point of view, classical thermodynamic functions for fluids may
first be obtained by extending the thermostatic framework to fluids using the idea of local states [43].
A more satisfactory derivation is that from the kinetic theory of gases [16, 25, 33] since it is does take
into account the presence of macroscopic gradients. The idealized vision that there exists a local state is
replaced by the more satisfactory argument that the gas distribution function is a Maxwellian at zeroth
order of Enskog expansion. Extended thermodynamics further valid in the presence of microscopic
gradients and steep interfaces, that may also be derived from the kinetic theory [34, 35], are discussed
in the next section using augmented variables.

3 The augmented system

We recast in this section the equation governing cohesive fluids as a quasilinear second order system of
partial differential equations. A first step is to add the gradient of density as an extra unknown [31, 3,
10, 27]. A second step is to identify the proper convective, capillary and dissipative fluxes [31].

3.1 Augmented variables

An important step in order to restructure the system of partial differential equations governing diffuse
interface fluids is to introduce the extra unknown vector [31, 3, 10, 27]

w = ∇ρ. (3.1)

The vector w is in R
ds , where ds denotes the space dimension, and the w governing equation is obtained

by applying the differential operator ∇ to the mass conservation equation (2.5). The resulting equation
is written in the form

∂tw +
∑

i∈D

∂i
(
w vi + ρ∇vi

)
, (3.2)

where we have denoted by D = {1, . . . , ds} the indexing set of spatial directions, vi the velocity in the
ith spatial direction and ∂i the derivative in the ith spatial direction so that v = (v1, . . . , vds

)t and
∇ = (∂1, . . . , ∂ds

)t. The augmented conservative unknown u is then in the form

u =
(
ρ,w, ρv, Etot

)t
, (3.3)

and thus includes w as well as the density ρ, the fluid momentum ρv and the total energy per unit
volume Etot = E + 1

2ρ|v|2. Note that the transposition operation is made by block for column vectors
like u for the sake of notational simplicity. The augmented natural variable z ∈ R

n is correspondingly
defined as

z =
(
ρ,w,v, T

)t
, (3.4)

and will be convenient for deriving differential identities. Both u and z are in R
n where n = 2ds + 2 is

the augmented number of unknowns.
We may then express the thermodynamic functions E , p, and S in terms of the augmented natural

variable z

E = Ecl + 1
2 (κ − T∂Tκ)|w|2, S = Scl − 1

2∂Tκ|w|2, p = pcl − 1
2κ|w|2, (3.5)

as well as H = Hcl − 1
2T∂Tκ|w|2 and g = gcl. We may also introduce fluid thermodynamic quantities

taking into account the kinetic energy as functions of z

Etot = E + 1
2ρ|v|2, Htot = H+ 1

2ρ|v|2, gtot = g − 1
2 |v|2, (3.6)

as well as the densities per unit mass s = S/ρ, e = E/ρ, h = H/ρ, etot = Etot/ρ, and htot = Htot/ρ. The
mathematical properties of the thermodynamic functions as functions of z or u are investigated in the
next section.
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3.2 Fluid extended thermodynamics

The investigate in this section the mathematical properties of the thermodynamic functions E , p, and S,
given by (3.5), as functions of z or u and this next yields the properties of Etot and Htot given by (3.6).
We simply denote by ∂ the derivation operator with respect to the variable z. The first assumption (H1)
is a natural extension of (Hcl

1 ) and the regularity class γ denotes an integer with γ ≥ 3.

(H1) The thermodynamic functions E, p, and S are Cγ functions of the variable z defined over a
simply connected nonempty open set Oz ⊂ (0,∞) × R

ds × R
ds × (0,∞) and the capillarity

coefficient κ is a Cγ+1 function of temperature over Oz. For any (ρ, T )t ∈ Ozcl we have
(ρ, 0, 0, T )t ∈ Oz and for any (ρ,w,v, T )t ∈ Oz we have (ρ, T )t ∈ Ozcl .

The capillarity coefficient κ needs to be Cγ+1 in order to obtain Cγ extended thermodynamic func-
tions E , p and S from (3.5) and the classical thermodynamic functions Ecl, pcl, and Scl are naturally
defined over Oz. The capillarity coefficient κ only depends on temperature following the kinetic theory
of dense gases [34, 35]. The next property (H2) concerns Gibbs relation between the differentials of E
and S with a natural constraint for G since we consider volumetric quantities [39].

(H2) Assuming that (H1) holds and defining G = E + p− TS and g = G/ρ, we have the volumetric
Gibbs’ relation between the differentials dS and dE over Oz

TdS = dE − gdρ− κw·dw. (3.7)

When (H1) and (H2) hold, the following Gibbs’ relation TdS = dEtot − gtotdρ− κw·dw − ρv·dv is
also established in terms of S, Etot and gtot. Concerning thermodynamic stability, a result similar to
that of Proposition 2.2 is established in the next proposition taking into account the w and v variables.

Proposition 3.1. Assume that (H1) and (H2) are satisfied and that the map z 7→ u is locally invertible.

Denoting by ∂̃ the derivation operator with respect to u, the following statements are equivalent :

(i) ∂̃2
uu
S is negative definite.

(ii) ∂T E > 0, ∂ρp > 0, and κ > 0.

Proof. The proof is similar to that of Proposition 2.2 and is based on the following expression of the
quadratic form associated with the entropy Hessian matrix ∂̃2

uu
S

〈∂̃2uuS x, x〉 =− 1

T 2∂TE
(
xE − ∂ρEclxρ − v·xv − (κ − T∂Tκ)w·xw

)2

− ∂ρp

ρT
x2ρ −

κ

T

∣∣xw
∣∣2 − 1

ρT

∣∣xv − vxρ
∣∣2, (3.8)

where x = (xT , xw, xv , xE)
t denotes an arbitrary vector of Rn. This expression then directly yields that

stability is equivalent to ∂T E > 0, ∂ρp > 0 and κ > 0, keeping in mind that T and ρ are positive.

Note that the same mechanical instabilities are obtained in both Proposition 3.1 and Proposition 2.2
since ∂ρp = ∂ρp

cl. This is a natural result since vaporization fronts are stabilized by higher order density
derivatives and not by first order density gradients w. We now generalize Definition 2.3 and Lemma 2.4
to the situation of augmented variables.

Definition 3.2. A nonempty open set Oz ⊂ (0,∞)× R
2ds × (0,∞) is said to be increasing with respect

to temperature if for any z = (ρ,w,v, T )t ∈ Oz we have {ρ,w,v}×[T,∞) ⊂ Oz.

The strengthened assumption (H3) now includes the former assumption (Hcl
3 ) of Section 2.3 and

assumption (H4) naturally assumes that the capillarity coefficient is positive.

(H3) Assuming that (H1) holds, the open set Oz is increasing with respect to temperature and the
volumetric specific heat is positive ∂TE = ∂TEtot > 0 over Oz.

(H4) The capillarity coefficient is positive κ > 0 over Oz.

With Proposition 3.1 and under assumptions (H3) and (H4) only mechanical instabilities may arise.
Under assumption (H3) we may also change of variable from z to u as investigated in the next lemma.
This notably allows to consider all thermodynamic functions as functions of the conservative variable u.
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Lemma 3.3. Assume that (H1)-(H3) hold. Then the map z 7→ u is a Cγ diffeomorphism from the open
set Oz onto an open set Ou.

Proof. The proof is similar to the situation without the v and w variables. Under the assumptions
(H1)-(H2) the map z 7→ u is Cγ and its Jacobian may be evaluated in the form

∂zu =




1 01,ds
01,ds

0

0ds,1 I 0ds,ds
0ds,1

v 0ds,ds
ρI 0ds,1

∂ρEtot (κ − T∂Tκ)w
t ρvt ∂T E


 , (3.9)

where ∂ρEtot = ∂ρEcl + 1
2 |v|2, ∂TE = ∂TEcl − 1

2T∂
2
Tκ|w|2 and 0i,j denotes a zero block with i lines

and j columns. Since ρ and ∂TE are positive over Oz the Jacobian matrix ∂
z
u is nonsingular and the

local inversion theorem may be used. Moreover, proceeding as in Lemma 2.4, using again the positivity
of ρ and ∂T E and the increasing property of the open set Oz with respect to temperature, the map
(ρ,w,v, T ) 7→ (ρ,w, ρv, Etot) is into and we conclude that z 7→ u is a Cγ diffeomorphism. The inverse
Jacobian matrix may further be obtained after some algebra in the form

∂uz =




1 01,ds
01,ds

0

0ds,1 I 0ds,ds
0ds,1

−v

ρ 0ds,ds

1
ρI 0ds,1

−∂ρE
tot−|v|2

∂T E − (κ−T∂Tκ)wt

∂T E − v
t

∂T E
1

∂T E



, (3.10)

and these matrices ∂zu and ∂uz will later be useful in order to establish various differential identities.

Remark 3.4. As a typical exemple of open set Oz, let us assume that Ozcl ⊂ (0,∞)× (Tmin,∞) where
Tmin > 0 is positive and that κ as well as Ecl are smooth up to Tmin. We may then introduce

C(ρ) = inf
T∈[Tmin,∞)

∂TEcl(ρ, T ), K(ρ) = sup
T∈[Tmin,∞)

|T∂2Tκ|,

and assuming that C(ρ) is positive and K(ρ) is finite, we may then define

Oz = { z ∈ (0,∞)× R
ds × R

ds × (Tmin,∞); (ρ, T )t ∈ Ozcl , K(ρ) |w|2 < C(ρ) }, (3.11)

and Property (H3) is then easily established.

The thermal stability condition ∂TE = ∂T Ecl − 1
2T∂

2
Tκ |w|2 > 0 naturally introduce limitations on

the norm of w. However, the order of magnitude of κ shows that such conditions may hold even when
w is of the order of the inverse of the range of interaction potential [35]. We do not assume that the

Hessian matrix ∂̃2
uu
S is negative definite since we anticipate the presence of mechanical thermodynamic

instabilities. We will also need an instability indicator m in order to control negative values of the
derivative ∂ρp = ∂ρp

cl and that may be taken to be the instability indicator mcl of Lemma 2.5.

Lemma 3.5. Assuming that (H1) holds, that δ > 0 is given, and letting m(z) = mcl(ρ, T ), then m is
Cγ−1 over Oz, and such that m ≥ 0, m+ ∂ρp/ρT > 0 and m = 0 if ∂ρp/ρT ≥ δ.

We finally need to introduce the mathematical assumptions concerning the transport coefficients that
may be obtained from the kinetic theory of gases, the theory of moderately dense gases or from empirical
correlations [16, 25, 33, 38]. The property that v+ η(1− 2

ds
) > 0 is deduced from the relation involving

the physical volume viscosity v′ since v+ η(1− 2
ds

) = v′ + η
3 . The transport coefficients only depend on

(ρ, T ) but including a dependence on w introduce no difficulty.

(H5) The coefficients v, η and λ are Cγ functions over Oz. The coefficients η and λ are positive,
the coefficient v is nonnegative and such that v+ η(1− 2

ds

) is positive over Oz.

Assumptions (H1)-(H5) are assumed to hold in the remaining part of the paper whenever the diffuse
interface fluid equations are considered. Since the map z 7→ u is a Cγ diffeomorphism, all the thermo-
dynamic functions and transport coefficients are also Cγ functions of the conservative variable u and
defined over the corresponding open set Ou.
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3.3 Augmented entropic variable

The mathematical entropy σ is taken in the form

σ = −S = −Scl + 1
2∂Tκ |w|2, (3.12)

and includes capillary contributions when κ depends on temperature. The mathematical entropy σ is a
Cγ function of z or u from assumptions (H1)-(H5). Differentiating σ with respect to z, we obtain from
Gibb’s relation (3.7) that

∂zσ =
( g
T

− ∂ρE
T
, ∂Tκwt, 01,ds

,−∂TE
T

)
.

Multiplying next by ∂uz on the right, and using ∂uσ = ∂zσ ∂uz, we obtain the expression of the augmented
entropic variable v = (∂uσ)

t

v =
1

T

(
g − 1

2 |v|
2,κw,v,−1

)t

. (3.13)

The augmented entropic variable v is formally similar to that of compressible non capillary gases [48,
49, 33] with the addition of the extra vector κw associated with the w component of u. We may then
evaluate the useful matrix ∂zv in the form

∂zv =




∂ρp
ρT 01,ds

− 1
T v

t −∂ρE
tot−|v|2

T 2

0ds,1
κ

T
I 0ds,ds

−κ−T∂Tκ

T 2 w

0 0ds,ds

1
T
I − 1

T 2v

0 01,ds
01,ds

1
T 2



. (3.14)

In the situation of mechanical stability we have ∂ρp
cl = ∂ρp > 0 so that ∂zv is nonsingular and the inverse

Jacobian matrix is given by

∂vz =




ρT
∂ρp

01,ds

ρT
∂ρp

vt ρT∂ρE
tot

∂ρp

0 T
κ
I 0ds,ds

T (κ−T∂Tκ)
κ

w

0 0ds,ds
TI Tv

0 01,ds
01,ds

T 2



. (3.15)

The Jacobian matrix ∂zv has determinant κ∂ρp/ρT
5 and the map z 7→ v is not globally invertible

in the presence of mechanical instabilities when ∂ρp = ∂ρp
cl is changing sign. This is notably the case

in liquid-vapor flows and denoting by l and g the indices of a liquid and its vapor at equilibrium, the
classical equilibrium relations yield Tl = Tg, p

cl
l = pclg , and gl = gg. These equilibrium conditions between

a liquid and its vapor, completed with the conditions wl = wg = 0 and vl = vg = 0, mean that the
entropic variables vl and vg coincide even though the corresponding natural variables zl and zg differ.
We denote in the following by Ost

z
⊂ Oz the subset of stable states in Oz

Ost
z
= { z ∈ Oz

∣∣ ∂ρp > 0 }, (3.16)

with similar definition for Ost
u . Then for any z ∈ Ost

z , the map z 7→ v is locally a Cγ−1 diffeomorphism
and thermodynamic functions may locally be considered as Cγ−1 functions of v. In this situation, the
map u 7→ v is also a local Cγ−1 diffeomorphism [40] whereas in the situation of perfect gases z 7→ v and
u 7→ v are always global diffeomorphisms [33].

3.4 Augmented fluxes

The governing equations of the augmented system are written in vector form

∂tu+
∑

i∈D

∂i
(
Fi + Fc

i + Fd
i

)
= 0, (3.17)

where Fi denotes an augmented convective flux, Fc
i an augmented capillary flux, Fd

i an augmented
dissipative flux in the ith direction and D the spatial direction indexing set. Both augmented convective
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Fi and capillary Fc
i fluxes have to be identified whereas the augmented dissipative fluxes Fd

i are naturally
given by [48, 49, 33]

Fd
i =

(
0, 0ds,1, P

d
i, Qd

i +
∑

j∈D

Pd
ijvj

)t

, i ∈ D, (3.18)

where Pd
i = (Pd

i1, . . . ,Pd
ids

)t and are simply obtained by adding null components for the extra hyperbolic
w variable. In order to identify the proper convective Fi and capillary Fc

i fluxes we adapt the method of
Gavrilyuk and Gouin [31] using the Legendre transform of entropy instead of energy, although it is also
possible to use thermodynamic arguments [52].

We first assume to be in the neighborhood of a stable point z ∈ Ost
z

in such a way that u 7→ v is
locally invertible. The Legendre transform L of entropy is given by L(v) = 〈v, u〉 − σ since ∂uσ = vt and
may locally be defined as a function of v. In this situation, differentiating L(v) with respect to v, it is
obtained that ut = ∂vL. We may evaluate L from the expressions (3.12) of σ and (3.13) of v and it is
obtained that

L = 〈u, v〉 − σ =
1

T

(
pcl + 1

2κ|w|2
)
=

1

T

(
p+ κ|w|2

)
. (3.19)

The Legendre transform of σ(u) is then L(v) and conversely. This expression for L differs from that of
classic compressible fluids by the extra capillary term 1

2κ|w|2. It also differs from the Legendre transform
of energy by the 1/T factor. Adapting Gravilyuk and Gouin procedure [31] and following the structure

of classical compressible fluids, it is then enforced that Li = Lvi and Fi =
(
∂v(Lvi)

)t
. The fluxes Fi

may then be evaluated by using the identity ∂v(Lvi) = uvi +L∂vvi. From the expression of the entropic
variable v it is obtained after some algebra that the convective flux Fi is given by

Fi =
(
ρvi,wvi, ρvvi + (p+ κ|w|2)bi, (Htot + κ|w|2)vi

)t

, i ∈ D, (3.20)

where bi is the ith basis vector in the physical space Rds . This flux is similar to that of classic fluid with
the exceptions that we have an extra capillary component wvi associated with the w variable and that
κ|w|2 has been added to the pressure. Even though these fluxes have been derived in the situation of
thermodynamic stability, these expressions are now adopted for all states z ∈ Oz.

Entropic relations are then recovered from the expressions of σ and Fi, i ∈ D. Defining naturally the
entropy flux in the ith direction by qi = σ vi for i ∈ D, we have the traditional relations

∂uσ ∂uFi = ∂uqi, i ∈ D. (3.21)

It is indeed first obtained by differentiating (3.20) and using (3.13) that ∂uσ ∂zFi = ∂zqi and multiplying
on the right by ∂uz then yields (3.21). We thus have qi = σ vi, Li = L vi, and the Legendre transform of
qi(Fi) is Li(v) when stability holds and when z 7→ Fi is invertible as for instance when vi is large enough.

On the other hand, the capillary fluxes Fc
i include all higher order terms of the momentum and energy

equation and will lead to an antisymmetric structure

Fc
i =

(
0, ρ∇vi,−ρ∇(κwi), ρκw·∇vi − ρv·∇(κwi)

)t

, i ∈ D. (3.22)

It is then necessary to check that the governing equations associated with the fluxes Fi and Fc
i for i ∈ D

coincide with the original equations for capillary fluids (2.6) and (2.7). This is obtained by using the
following differential identities for the momentum (2.6) and energy (2.7) equations

∇·

(
κ∇ρ⊗∇ρ− ρ∇·(κ∇ρ)I − κ|∇ρ|2I

)
= −

∑

i∈D

∂i
(
ρ∇(κwi)

)
,

∇·

(
κρ∇·v∇ρ+ κ∇ρ∇ρ·v − ρ∇·(κ∇ρ)v − κ|∇ρ|2 v

)
=

∑

i∈D

∂i
(
ρκw·∇vi − ρv·∇(κwi)

)
.

3.5 Quasilinear form

We have obtained in Section 3.4 the augmented convective Fi, capillary Fc
i , and dissipative fluxes Fd

i

in the ith spatial direction. From the expressions (3.22) and (3.18), the capillary Fc
i and dissipative Fd

i
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fluxes may also be written in the form Fd
i = −∑

j∈D B̂d
ij∂jz and Fc

i = −∑
j∈D B̂c

ij∂jz where B̂d
ij and B̂c

ij

are uniquely defined matrices in R
n,n. We may thus write Fd

i and Fc
i in the form

Fd
i = −

∑

j∈D

Bd
ij∂ju, Fc

i = −
∑

j∈D

Bc
ij∂ju, i ∈ D, (3.23)

where Bd
ij and Bc

ij are given by Bd
ij = B̂d

ij∂uz and Bc
ij = B̂c

ij∂uz. The dissipation matrix Bd
ij then relates

the dissipative flux in the ith direction Fd
i to the gradient of the conservative variable in the jth direction

∂ju and the cohesive matrix Bc
ij relates the capillary flux in the ith direction Fc

i to the gradient of the
conservative variable in the jth direction ∂ju.

We may next introduce the jacobian Ai = ∂uFi of the convective flux Fi with respect to the conser-
vative variable u and the governing equations (3.17) may finally be written in the form of an augmented
quasilinear second order system of partial differential equations

∂tu+
∑

i∈D

Ai(u)∂iu−
∑

i,j∈D

∂i
(
Bd
ij(u)∂ju

)
−

∑

i,j∈D

∂i
(
Bc
ij(u)∂ju

)
= 0. (3.24)

The coefficient matrices Ai = ∂uFi, B
d
ij , and Bc

ij , for i, j ∈ D, have at least regularity Cγ−1 over the open
set Ou. It is then remarquable that the original system (2.5)–(2.7), that involves third order derivatives of
density in the momentum equation, has been rewritten in the form of a quasilinear second order system.
Symmetrization of the corresponding augmented system of partial differential equation is investigated in
the next section.

4 Normal form of the augmented system

We investigate in this section symmetrized forms of the augmented system of conservation equations
(3.24) as well as the properties of convective, dissipative and capillary matrices.

4.1 Entropic symmetrization

An entropic symmetrized form of the quasilinear system in conservative form (3.24) may be obtained
by using the entropic variable v around a stable state. Assuming that z is a stable state z ∈ Ost

z
with

∂ρp > 0, the map z 7→ v is locally invertible so that u 7→ v is also locally invertible from Lemma 3.3.
Proceeding as for classic fluids [48, 49, 33], the symmetrized entropic form is obtained in the form

Ã0(w)∂tv +
∑

i∈D

Ãi(v)∂iv −
∑

i,j∈D

∂i
(
B̃d
ij(v)∂jv

)
−

∑

i,j∈D

∂i
(
B̃c
ij(v)∂jv

)
= 0, (4.1)

with Ã0 = ∂vu, Ãi = Ai∂vu, B̃
d
ij = Bd

ij∂vu, and B̃c
ij = Bc

ij∂vu, for i, j ∈ D.

The matrix Ã0 = ∂vu may be evaluated as Ã0 = ∂zu ∂zv and is found to be

Ã0 =




ρT
∂ρp

01,ds

ρT
∂ρp

vt ρT
∂ρp

∂ρEtot

0ds,1
T
κ
I 0ds,ds

T
κ
(κ − T∂Tκ)w

ρT
∂ρp

v 0ds,ds

ρ
T
I + ρT

∂ρp
v⊗v ρT

∂ρp
∂ρHtotv

ρT
∂ρp

∂ρEtot T
κ
(κ − T∂Tκ)w

t ρT
∂ρp

∂ρHtotvt Υ



, (4.2)

where

Υ =
ρT

∂ρp
(∂ρEtot)2 +

T

κ
(κ − T∂Tκ)

2|w|2 + ρT |v|2 + T 2∂TE .

The matrix Ã0 is symmetric Ãt
0 = Ã0 and it is easily established that Ã0 is positive definite since z is

assumed to be a stable state with ∂ρp > 0. Its determinant, directly obtained from ∂vu = ∂zu∂vz, is

given by det Ã0 = ρ2T 5∂TE/κ∂ρp.
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Denoting by ξ an arbitrary vector of Rds , the convective matrices Ãi = ∂uFi ∂vu, i ∈ D, that may
conveniently be evaluated as Ãi = ∂zFi ∂vz, i ∈ D, are given by

∑

i∈D

ξiÃi = v·ξ Ã0 + T




0 01,ds
ρξt ρv·ξ

0ds,1 0ds,ds
w⊗ξ v·ξw

ρξ ξ⊗w ρ(v⊗ξ + ξ⊗v) (Htot + κ|w|2)ξ + ρv·ξv

ρv·ξ v·ξwt (Htot + κ|w|2)ξt + ρv·ξvt 2(Htot + κ|w|2)v·ξ



. (4.3)

These convective matrices Ãi are symmetric Ãt
i = Ãi, i ∈ D, and underline the role of the modified

pressure p + κ|w|2. If the lines and columns associated with the extra variable w are removed and if
the capillarity coefficient κ is set to zero, the resulting matrices are formally similar to that obtained for
compressible Navier-Stokes-Fourier equations [48, 33].

The second order dissipative flux matrices B̃d
ij may further be decomposed in the form

B̃d
ij = vB̃v

ij + ηB̃η
ij + λB̃λ

ij , (4.4)

where v denotes the volume viscosity, η the shear viscosity and λ the thermal conductivity. Denoting by
ξ and ζ arbitrary vectors of Rds , the matrices B̃v

ij , B̃
η
ij and B̃λ

ij are found in the form

∑

i,j∈D

ξiζjB̃
v

ij = T




0 01,ds
01,ds

0

0ds,1 0ds,ds
0ds,ds

0ds,1

0ds,1 0ds,ds
ξ⊗ζ ξ ζ·v

0 01,ds
ζtξ·v ξ·v ζ·v



, (4.5)

∑

i,j∈D

ξiζjB̃
η
ij = T




0 01,ds
01,ds

0

0ds,1 0ds,ds
0ds,ds

0ds,1

0ds,1 0ds,ds
ξ·ζI + ζ⊗ξ − 2

ds

ξ⊗ζ ξ·ζv + ζ ξ·v − 2
ds

ξ ζ·v

0 01,ds
ξ·ζvt + ζ·v ξt − 2

ds

ξ·vζt ξ·ζv·v + (1 − 2
ds

)ξ·v ζ·v



, (4.6)

∑

i,j∈D

ξiζjB̃
λ
ij = T 2ξ·ζ




0 01,ds
01,ds

0

0ds,1 0ds,ds
0ds,ds

0ds,1

0ds,1 0ds,ds
0ds,ds

0ds,1

0 01,ds
01,ds

1



. (4.7)

These dissipative second order matrices B̃d
ij , B̃

v

ij , B̃
η
ij , and B̃λ

ij , i, j ∈ D, are similar to those for compress-
ible fluids except that there are extra line and columns of zeros associated with the w variable [49, 33].

We have the reciprocity relations (B̃d
ij)

t = B̃d
ji, i, j ∈ D, and the blocks

∑
i,j∈D ξiξj B̃

d II,II
ij is positive

definite for any ξ ∈ Σds−1.
On the other hand, the cohesive flux matrices are found in the form

∑

i,j∈D

ξiζjB̃
c
ij = ρT




0 01,ds
01,ds

0

0ds,1 0ds,ds
−ζ⊗ξ −ζ ξ·v

0ds,1 ζ⊗ξ 0ds,ds
κ ζ ξ·w

0 ξ
t
ζ·v −κ ξ

t
ζ·w κ(ξ·wζ·v − ξ·v ζ·w)



. (4.8)

The cohesive matrices B̃c
ij are such that (B̃c

ij)
t = −B̃c

ji, i, j ∈ D, and introduce extra coupling between

the hyperbolic and parabolic variables. The blocks B̃c,I,I
ij vanish B̃

c,I,I
ij = 0 and the blocks B̃c,I,II

ij and B̃
c,II,I
ij

only depend on (ρ,v, T ). We also note that the matrices Ã0, Ãi, i ∈ D, B̃d
ij and B̃c

ij , i, j ∈ D have at

least regularity Cγ−2 over Ov.

13



The entropic symmetrized form introduced by Gravilyuk and Gouin was concerned with inviscid
fluids with capillary effects [31]. The corresponding governing equations may be obtained from (2.5)–
(2.9) by letting to zero the dissipative fluxes Pd = 0 and Q

d = 0. Gravilyuk and Gouin have used the
conservative variable (ρ,w, ρv,S)t with the entropy equation ∂tS+∇·(Sv) = 0 and the energy E playing
the role of entropy. This procedure, however, is only valid for inviscid fluids and this is why we have
restored the natural role of entropy. On the other hand, a major difficulty with the entropic variable
v, notably identified by Benzoni et al [3], is that the map u 7→ v is generally not globally invertible.

The matrix Ã0 also becomes singular at points where ∂ρp = 0 and is not anymore positive definite in
the presence of mechanical instabilities when ∂ρp becomes negative. This is why it is mandatory to use
normal variables w such that u 7→ w remains invertible as investigated in the next section.

4.2 Normal symmetrization

We investigate in this section a normal form of the augmented system of equations using the augmented
natural variable

w =
(
ρ,w,v, T

)t
. (4.9)

In the particular situation of the compressible Navier-Stokes equations without capillarity effects, it
has been established that the variable (ρ,v, T )t may be used as a normal variable [49, 33]. It is thus

natural to seek if the particular augmented variable w =
(
ρ,w,v, T

)t
that coincide with z also leads to

a normal symmetrized form of the augmented system. We use in the following the vector and matrix
block structure induced by the partitioning of Rn into R

n = R
nI ×R

nII with n = nI+nII, nI = nII = ds+1,
and w = (wI,wII)

t with wI = (ρ,w)t and wII = (v, T )t. It will also be convenient in the following to split
the hyperbolic variable wI as wI = (wI

′ ,wI
′′)t where wI

′ = ρ and wI
′′ = w.

The normal form of the system is written for convenience in nonconservative form

A0(w)∂tw+
∑

i∈D

Ai(w)∂iw−
∑

i,j∈D

Bd
ij(w)∂i∂jw −

∑

i,j∈D

Bc
ij(w)∂i∂jw = h(w,∇w), (4.10)

where h has the structure
h =

(
hI(w,∇wII), hII(w,∇w)

)t
. (4.11)

The standard method in order to derive normal forms for systems of conservation laws is to substitute
v = v(w) in the entropic symmetrized form and to multiply on the left by (∂wv)

t in order to maintain the
symmetry properties of convective and dissipative matrices [49, 33]. The matrix in front of ∂tw would

then be (∂zv)
tÃ0∂zv, that may be rewritten (∂zv)

t∂zu, and the matrix in front of ∂iw would be (∂zv)
tÃi∂zv,

that may also be rewritten (∂zv)
t∂zFi. This standard procedure, however, must be modified in order to

take into account the apparition of singularities due to thermodynamic mechanical instabilities arising
when ∂ρp vanishes and becomes negative. To this aim, after multiplication on the left by (∂zv)

t, we add
the total mass conservation equation multiplied by the instability indicator m of Lemma 3.5 to the first
equation.

The matrices A0 and Ai are thus taken in the form

A0 = (∂wv)
t∂wu+me1⊗e1, Ai = (∂wv)

t∂wFi +mvi e1⊗e1, i ∈ D, (4.12)

where ei, 1 ≤ i ≤ n, denotes the canonical basis of Rn. There is also a cancelation of singularities
when rewriting (∂wv)

t∂vu ∂wv as (∂wv)
t∂wu and (∂wv)

t∂vFi ∂wv as (∂wv)
t∂wFi. The right hand side is

correspondingly in the form

h =
∑

i,j∈D

(∂wv)
t∂iB̂

d
ij∂jw+

∑

i,j∈D

(∂wv)
t∂iB̂

c
ij∂jw−mρ∇·v e1, (4.13)

where we have used Fd
i = −∑

j∈D B̂d
ij∂jw and Fc

i = −∑
j∈D B̂c

ij∂jw keeping in mind that Bd
ij = B̂d

ij∂uw

and Bc
ij = B̂c

ij∂uw with w = z. The second order matrices, that are initially in the form Bd
ij =

(∂wv)
tB̃d

ij∂wv and Bc
ij = (∂wv)

tB̃c
ij∂wv, are also simplified by using B̂d

ij and B̂c
ij in the form

Bd
ij = (∂wv)

tB̂d
ij , Bc

ij = (∂wv)
tB̂c

ij , i ∈ D, (4.14)
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We may now obtain the matrices of the normal form (4.10) using previous expressions for ∂wv and

∂wu in (3.14) and (3.9) and using the matrices ∂wFi, B̂
d
ij , and B̂c

ij that are easily evaluated. The matrix

A0 is found in the form

A0 =




m+
∂ρp

ρT
01,ds

01,ds
0

0ds,1
κ

T
I 0ds,ds

0ds,1

0ds,1 0ds,ds

ρ
T I 0ds,1

0 01,ds
01,ds

∂T E
T 2



, (4.15)

and is thus symmetric A0 = At
0 and block diagonal A0 = diag(AI,I

0 ,A
II,II
0 ). The matrix A0 positive definite

since ∂T E > 0 from (H3) and m+
∂ρp
ρT > 0 from Lemma 3.5 and A

II,II
0 only depends on (ρ,v, T ), that is,

on (wI
′ ,wII). The corresponding quadratic form may be written as

〈A0x, x〉 =
(
m+

∂ρp

ρT

)
x2ρ +

κ

T
|xw|2 + ρ

T
|xv|2 +

∂TE
T 2

x2T , (4.16)

where the vector x ∈ R
n has been decomposed in the form x = (xρ, xw, xv, xT )

t. Denoting by ξ an
arbitrary vector of Rds , the matrix

∑
i∈D ξiAi is found to be

∑

i∈D

ξiAi = v·ξ A0 +
1

T




0 01,ds
∂ρp ξ

t 0

0ds,1 0ds,ds
κw⊗ξ 0ds,1

∂ρp ξ κξ⊗w 0ds,ds
(∂T p+ ∂Tκ|w|2)ξ

0 01,ds
(∂T p+ ∂Tκ|w|2)ξt 0



, (4.17)

and all the matrices Ai are symmetric Ai = At
i for i ∈ D.

The second order flux matrices are split in the form

Bd
ij = vBv

ij + ηBη
ij + λBλ

ij , (4.18)

and, denoting by ξ and ζ arbitrary vectors of Rds , it is found that

∑

i,j∈D

ξiζjB
v

ij =
1

T




0 01,ds
01,ds

0

0ds,1 0ds,ds
0ds,ds

0ds,1

0ds,1 0ds,ds
ξ⊗ζ 0ds,1

0 01,ds
01,ds

0



. (4.19)

∑

i,j∈D

ξiζjB
η
ij =

1

T




0 01,ds
01,ds

0

0ds,1 0ds,ds
0ds,ds

0ds,1

0ds,1 0ds,ds
ξ·ζI + ζ⊗ξ − 2

ds

ξ⊗ζ 0ds,1

0 01,ds
01,ds

0



. (4.20)

∑

i,j∈D

ξiζjB
λ
ij =

1

T 2




0 01,ds
01,ds

0

0ds,1 0ds,ds
0ds,ds

0ds,1

0ds,1 0ds,ds
0ds,ds

0ds,1

0 01,ds
01,ds

1



. (4.21)

The matrices Bd
ij , B

v

ij , B
η
ij , and Bλ

ij , i, j ∈ D, are similar to those of compressible fluids except that there
are extra lines and columns of zeros associated with the w variable [49, 33] and we have the reciprocity

relations (Bd
ij)

t = Bd
ji, i, j ∈ D. Denoting by B

d II,II
ij the lower right bloc of size ds +1 of Bd

ij and by Bd II,II

the matrix Bd II,II =
∑

i,j∈D ξiξjB
d II,II
ij where ξ ∈ Σds−1 we have

T 2〈Bd II,IIxII, xII〉 = T
(
v+ η

(
1− 2

ds

))
(ξ·xv)

2 + Tη |xv |2 + λ x2T , (4.22)
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for any test vector xII = (xv , xE)
t so that Bd II,II is positive definite under assumption (H5).

The cohesive matrices Bc
ij are also found in the form

∑

i,j∈D

ξiζjB
c
ij =

ρ

T




0 01,ds
01,ds

0

0ds,1 0ds,ds
−κζ⊗ξ 0ds,1

0ds,1 κζ⊗ξ 0ds,ds
∂Tκw·ξζ

0 01,ds
−∂Tκw·ζξt 0



. (4.23)

The (I, I) upper left block vanishes B
c I,I
ij = 0 and the coupling (I, II) and (II, I) blocks B

c I,II
ij and B

c II,I
ij

only depend on (ρ,v, T ), that is, on (wI
′ ,wII), so that they will have more regularity. The antisymmetric

reciprocity relations (B̂c
ij)

t = −B̂c
ji, i, j ∈ D, also hold and are associated physically with the fact that

capillarity does not produce entropy.
After some calculus, the hyperbolic part hI of the right hand side in (4.10) is found to be

hI =
(
−mρ∇·v,−κ

T

∑

i∈D

wi∇vi

)t

, (4.24)

where w = (w1, . . . , wds
)t. The derivatives of density appearing in hI

′′ of hI have notably been written
as components of w to ensure that the gradient constraint holds for linearized equations as investigated
in the next section. On the other hand, the parabolic part is in the general form

hII = hII(w,∇w), (4.25)

and depends on the complete gradient ∇w. The term hI
′ is linear in the gradient ∇wII and arises from

the stabilization procedure wheras hI
′′ has been rewritten formally as linear in ∇wII for convenience by

using w = ∇ρ but is intrinsically quadratic. The term hII is quadratic in terms of the gradient ∇w with
coefficients depending on w that have at least regularity Cγ−2. We finally note that the matrices A0, Ai,
i ∈ D, Bd

ij and Bc
ij , i, j ∈ D, as well as the coefficients in front of the gradients of the right hand sides hI

and hII have at least regularity Cγ−2 over Ow.
The general structure of the system of partial differential equations (3.17) may then be discussed

with the normal form (4.10). The variable wI = (ρ,w)t with w = ∇ρ is first an hyperbolic variable,
i.e., when wII is given, wI is governed by a symmetric hyperbolic system of conservation laws. Similarly,
wII = (v, T )t is a parabolic variable, i.e., when wI is given, wII is governed by a strongly parabolic system
of conservation laws. Incidentally, for such symmetric system, Petrovsky parabolicity is equivalent to
strong parabolicity [40]. As a consequence, the variable ρ is not a parabolic variable but rather the couple
(ρ,∇ρ)t is an hyperbolic variable. We have also obtained a new type of composite hyperbolic-parabolic
system involving matrices Bd

ij with symmetry properties and matrices Bc
ij with antisymmetry properties.

The matrices Bc
ij introduce extra couplings between the hyperbolic and parabolic variables and these

coupling blocks Bc I,II
ij and B

c II,I
ij will require more regularity. Last but not least, it will be important in

practice to maintain the constraint ∇ρ = w that is discussed in the next section.

4.3 Gradient constraint and linearization

We investigate in this section how the natural gradient constraint w = ∇ρ is a consequence of the
governing equations (4.10) with the hyperbolic part of the right hand side in the form (4.24). This natural
gradient constraint will be a key point in order to establish that the density ρ has more regularity. The
nonlinear equations in normal form are first considered and then the more complex situation of linearized
equations.

Considering the nonlinear equations in normal form (4.10) we note that, after some calculus, the first
equation governing the density ρ is in the form

(m+
1

ρT
∂ρp)

(
∂tρ+∇·(ρv)

)
= 0.

Since m + 1
ρT
∂ρp > 0 from Lemma 3.5 we deduce that ∂tρ+∇·(ρv) = 0 and (2.5) has been recovered.

Note the importance of the stabilizing terms in (4.12) involving the instability indicator m of Lemma 3.5.
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Taking the gradient of this relation we obtain that ∂t(∇ρ) +∇·
(
∇ρ⊗v + ρ(∇v)t

)
= 0. On the other

hand, after some algebra, the second equation of (4.10) governing w reads

κ

T

(
∂tw + v·∇w +w∇·v + ρ∇(∇·v) + (∇v)t·w

)
= 0.

Dividing by κ/T and subtracting the ∇ρ equation then yields

∂t(w −∇ρ) + v·∇(w −∇ρ) + (w −∇ρ)∇·v + (∇v)t·(w −∇ρ) = 0, (4.26)

and this Friedrichs system with respect to w−∇ρ implies that w−∇ρ = 0 provided that the solution w

is smooth enough, that the constraint w0 −∇ρ0 = 0 holds at the initial time t = 0, with w(0, ·) written
in the form w(0,x) =

(
ρ0(x),w0(x),v0(x), T0(x)

)t
, and that the state at infinity w⋆ is naturally such

that w⋆ = 0 [6].
In order to establish existence results for the nonlinear system (4.10), we will need to use linearized

equations. In is then mandatory to ensure that the natural gradient constraint w = ∇ρ also holds
for solutions of some properly selected linearized equations. To this aim, the linearized unknown w̃ is

decomposed in the form w̃ = (w̃I, w̃II)
t =

(
ρ̃, w̃, ṽ, T̃

)t
and the linearized system taken in the form

A0(w)∂tw̃ +
∑

i∈D

Ai(w)∂iw̃−
∑

i,j∈D

Bd
ij(w)∂i∂jw̃−

∑

i,j∈D

Bc
ij(w)∂i∂jw̃ =

(
h̃I, hII(w,∇w)

)t
, (4.27)

where the hyperbolic part of the right hand side h̃I is taken to be

h̃I =
(
−m ρ∇·ṽ,−

∑

i∈D

κ

T
w̃i∇vi

)t

. (4.28)

The linearized equations may thus be rewritten as

A0(w)∂tw̃ +
∑

i∈D

A′
i(w)∂iw̃ −

∑

i,j∈D

Bd
ij(w)∂i∂jw̃−

∑

i,j∈D

Bc
ij(w)∂i∂jw̃ + L(w,∇wII)w̃ = h′(w,∇w), (4.29)

where
h′ =

(
0nI,1, hII(w,∇w)

)t
, (4.30)

A′
i(w) = Ai(w) +mρe1⊗ed+1+i, L(w,∇wII) =

∑

i∈D

κ

T
(0,∇vi, 01,nI , 0)

t⊗ei+1, (4.31)

with e1, . . . , en denoting the canonical basis of Rn = R
2ds+2. We have in particular that

∑

i∈D

(
A′
i(w)− Ai(w)

)
∂iw̃ =

(
m ρ∇·ṽ, 0ds,1, 0ds,1, 0

)t
, L(w,∇wII)w̃ =

(
0,
∑

i∈D

κ

T
w̃i∇vi, 0ds,1, 0

)t

,

(4.32)
and L is a block diagonal matrix L = diag( LI,I, LII,II ) with LII,II = diag(0ds,ds

, 0) and

LI,I = diag
(
0,
∑

i∈D

κ

T
∇vi⊗bi

)
.

A consequence of (4.31) is notably that the hyperbolic blocks A′ I,I
i and A

I,I
i coincide.

We then deduce that the first equation of (4.29) governing ρ̃ is in the form

(m+
1

ρT
∂ρp)(∂tρ̃+ v·∇ρ̃+ ρ∇·ṽ) = 0,

so that ∂tρ̃ + v·∇ρ̃ + ρ∇·ṽ = 0 and the equation governing ∇ρ̃ is next obtained by applying the ∇

operator. The second equation of (4.29) governing w̃, after simplification by the κ/T factor, is obtained
in the form

∂tw̃ + v·∇w̃ +w∇·ṽ + ρ∇(∇·ṽ) +∇vt·w̃ = 0.

Subtracting the ∇ρ̃ equation from the w̃ equation then yields

∂t(w̃ −∇ρ̃) + v·∇(w̃ −∇ρ̃) + (w −∇ρ)∇·ṽ +∇vt·(w̃ −∇ρ̃) = 0, (4.33)
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and this equation was the motivation for choosing (4.28). The Friedrichs system (4.33) with respect to
w̃−∇ρ̃ thus implies that w̃−∇ρ̃ = 0 provided that the constraint w−∇ρ = 0 holds, that the solutions
w and w̃ are smooth enough, that the constraint w̃0 −∇ρ̃0 = 0 holds at the initial time t = 0, and that
the state at infinity w̃⋆ is naturally such that w̃

⋆ = 0 [6]. The natural gradient constraint may thus
be transmitted from w to w̃ by using suitable linearizations like (4.29). The right hand sides are also
naturally related by

∑
i∈D

(
A′
i(w) − Ai(w)

)
∂iw + L(w,∇wII)w + h(w,∇w) = h′(w,∇w) for any regular

function w.

5 Linearized equations

In order to establish the existence of strong solutions to the system in normal form (4.10), we need
to investigate linearized equations in the form (4.29). A priori estimates and existence theorems are
obtained in this section for abstract linearized systems that cover the particular situation of diffuse
interface fluids (4.29).

5.1 Linearized estimates

An abstract hyperbolic-parabolic linearized system is considered in the form

A0(w)∂tw̃ +
∑

i∈D

A′
i(w)∂iw̃−

∑

i,j∈D

Bd
ij(w)∂i∂jw̃ −

∑

i,j∈D

Bc
ij(w)∂i∂jw̃+ L(w,∇wr)w̃ = f + g, (5.1)

where t denotes the time variable, ∂i the derivative in the ith spatial direction, w a given function, wr a
subset of w components that have more regularity, and w̃ the linearized unknown. The variables w and w̃

are assumed to have n ≥ 1 components and R
n is decomposed into R

n = R
nI ×R

nII with n = nI + nII and
the subvariable wr is composed of nr components of w with 1 ≤ nr ≤ n. The bloc structure induced by
the partitioning of Rn is used in the following so that w̃ is decomposed into w̃ = (w̃I, w̃II)

t with w̃I ∈ R
nI

and w̃II ∈ R
nII . The integer l0 denotes the minimum integer for an embedding of the Sobolev space

H l0(Rds) into the space of bounded continuous functions l0 = [ds/2] + 1 and l is an integer such that
l ≥ l0 + 2.

The following assumptions are made concerning the linearized equations (5.1). The matrix A0 is
symmetric, positive definite, block diagonal A0 = diag(AI,I

0 ,A
II,II
0 ), and the block A

II,II
0 only depends on

the subvariable wr. The matrices A′
i(w) ∈ R

n,n, i ∈ D, have their hyperbolic blocks A
′I,I
i symmetric,

the dissipation matrices are such that (Bd
ij)

t = Bd
ji, i, j ∈ D, have nonzero components only into the

right lower B
d II,II
ij blocks, and Bd II,II =

∑
i,j∈D B

d II,II
ij ξiξj is positive definite for ξ ∈ Σds−1 where Σds−1

is the sphere in ds dimension. The matrices Bc
ij are such that (Bc

ij)
t = −Bc

ji, the blocks B
c,I,I
ij vanish

B
c,I,I
ij = 0, and the blocks B

c,I,II
ij and B

c,II,I
ij only depend on the subvariable wr. The matrix L = L(w, pr)

is block diagonal L = diag( LI,I, LII,II ) and is a linear function of pr ∈ R
nr,ds so that LI,I = LI,I(w)pr and

LII,II = LII,II(w)pr where LI,I ∈ R
nI,nI,nr,ds and LII,II ∈ R

nII,nII,nr,ds depend on w. The system coefficients
A0, A

′
i B

d
ij , B

c
ij , i, j ∈ D, LI,I, and LII,II are smooth functions of w ⊂ R

n defined over an open set Ow with

at least Cl+2 regularity. The right hand sides f and g as well as w are given functions of time and space
defined over [0, τ̄ ]× R

ds for some given positive time τ̄ > 0.
The norm in the Sobolev space H l = H l(Rd) is denoted by | • |l and otherwise by | • |A in the

functional space A. Similarly, 〈 , 〉 denotes the scalar product in R
n, | • | the Euclidean norm in R or

R
n, the Frobenius norm in R

n,n, and the Euclidean distance between w ∈ Ow and the boundary ∂Ow is
denoted by dist(w, ∂Ow). If α = (α1, . . . , αds

) ∈ N
ds is a multiindex, ∂α denotes the differential operator

∂α1

1 · · · ∂αds

ds
and |α| the order |α| = α1 + · · · + αds

. The square of kth derivatives of scalar functions φ,
like T , ρ, or vi, 1 ≤ i ≤ ds, is defined by

|∂kφ|2 =
∑

|α|=k

|α|!
α!

(∂αφ)2 =
∑

1≤i1,...,ik≤ds

(∂i1 · · · ∂ikφ)2, (5.2)

where |α|!/α! are the multinomial coefficients and similarly for a vector function like v the norm |∂kv|2
stands for |∂kv|2 =

∑
1≤i≤ds

|∂kvi|2. Finally, for any map φ : [0, τ̄ ]×R
ds 7→ R

n, where τ̄ > 0 is positive,

φ(τ) denotes the partial map x 7→ φ(τ,x) from R
ds to R

n and for τ ∈ [0, τ̄ ].
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Denoting by w⋆ ∈ Ow a constant state in the w variable, it is assumed that w is such that
{
wI − w⋆

I
∈ C0

(
[0, τ̄ ], H l

)
∩ C1

(
[0, τ̄ ], H l−2

)
,

wII − w⋆
II
∈ C0

(
[0, τ̄ ], H l

)
∩ C1

(
[0, τ̄ ], H l−2

)
∩ L2

(
(0, τ̄ ), H l+1

)
,

(5.3)

and the quantities M , Mt and Mr are defined by

M2 = sup
0≤τ≤τ̄

|w(τ) − w⋆|2l , M2
t =

∫ τ̄

0

|∂tw(τ)|2l−2 dτ, M2
r =

∫ τ̄

0

|∇wr(τ)|2l dτ. (5.4)

The quantities M and Mt are traditionally used to estimate solutions of hyperbolic-parabolic linearized
systems. The nonstandard use of Mr is required due to the strong couplings arising from the antisym-
metric blocks Bc,I,II(wr)ij and Bc,II,I(wr)ij and from the matrix L = L(w,∇wr). It is assumed that O0 is
an open set such that O0 ⊂ O0 ⊂ Ow, that a1 is such that 0 < a1 < dist(O0, ∂Ow), and the open set O1

is defined by
O1 = {w ∈ Ow; dist(w,O0) < a1 }. (5.5)

It is further assumed that w0(x) = w(0,x) ∈ O0, and that w(t,x) ∈ O1, for (t,x) ∈ [0, τ̄ ]×R
ds so that

the values of w are controlled with the open set O1.
Let now l′ be such that 1 ≤ l′ ≤ l and assume that the right hand sides f ∈ R

n and g ∈ R
n are such

that
f ∈ C0

(
[0, τ̄ ], H l′−1

)
∩ L1

(
(0, τ̄ ), H l′

)
, (5.6)

g ∈ C0
(
[0, τ̄ ], H l′−1

)
, gI = 0. (5.7)

Denoting by w̃⋆ a constant state in R
n such that L(w, pr)w̃

⋆ = 0 for any w ∈ Ow and pr ∈ R
nr,ds , a priori

estimates of w̃−w̃⋆ are obtained in the following theorem for solutions w̃ to the linearized equations (5.1).

Theorem 5.1. Assume that the solution w̃ of the linearized system (5.1) is such that

w̃I − w̃⋆
I
∈ C0

(
[0, τ̄ ], H l′

)
∩C1

(
[0, τ̄ ], H l′−2

)
,

w̃II − w̃⋆
II
∈ C0

(
[0, τ̄ ], H l′

)
∩C1

(
[0, τ̄ ], H l′−2

)
∩ L2

(
(0, τ̄), H l′+1

)
,

(5.8)

where 1 ≤ l′ ≤ l and denote by w̃0 the initial state w̃0(x) = w̃(0,x). Then there exists constants
c1(O1) ≥ 1 and c2(O1,M) ≥ 1, with c2(O1,M) increasing with M , such that for any t ∈ [0, τ̄ ]

sup
0≤τ≤t

|w̃(τ) − w̃⋆|2l′ +
∫ t

0

|w̃II(τ) − w̃⋆
II
|2l′+1 dτ ≤ c21 exp

(
c2
(
t+Mt

√
t+Mr

√
t
))(

|w̃0 − w̃⋆|2l′

+ c2

{∫ t

0

|f|l′ dτ
}2

+ c2

∫ t

0

|gII|2l′−1 dτ
)
, (5.9)

These estimates differ from classical estimates for hyperbolic-parabolic linearized systems in several
points. The Sobolev order l associated with w is first larger than l0 + 2, rather than l0 + 1, since the
time derivative ∂twII is only in H l−2 due to the coupling blocks B

c,II,I
ij and the apparition of second

derivatives of the hyperbolic variable. The extra coupling terms Bc,I,II(wr)ij and Bc,II,I(wr)ij also require
more regularity by solely depending on the subvariable wr. There is also a new contribution Mr

√
t in

the exponential term of the right hand side of (5.9).

Proof. The proof of the estimates (5.9) is divided in several steps, i.e., preliminaries, zeroth order esti-
mates and l′th order estimates.

Step 0. Preliminaries. In order to alleviate notation in the proof δw̃ denotes for short δw̃ = w̃− w̃⋆ and
since L(w, pr)w̃

⋆ = 0 for w ∈ Ow and pr ∈ R
nr,ds we may replace w̃ by δw̃ in the linearized equations. In

the following c0 denotes a generic constant independent of both O1 and M , δ1 = δ(O1) ≤ 1 a generic
small constant only depending on O1, c1 = c1(O1) ≥ 1 a generic large constant only depending on O1,
and c2 = c2(O1,M) ≥ 1 a generic large constant depending on O1 and M . The various occurrences of
these constants may be distinguished and the minimum of all δ1 and the maxima of all c1 and c2 may
be taken at the end of the proof so that only single constants ultimately remain. The dependence on
ds, l, n, as well as on the system coefficients of these estimating constants is left implicit. For k ≥ 0 and
φ ∈ Hk the norm E2

k(φ) is defined by

E2
k(φ) =

∑

0≤|α|≤k

|α|!
α!

∫

Rds

〈
A0(w)∂

αφ, ∂αφ
〉
dx. (5.10)
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In order to establish the a priori estimates, it is sufficient to consider the situation where w̃ is smooth
since one may use mollifiers [48].

We will use the classical nonlinear estimate

|f(φ) − f(0)|k ≤ c0‖f‖Ck(Oφ)
(1 + ‖φ‖L∞)k−1 |φ|k, k ≥ 1, (5.11)

valid for φ ∈ Hk(Rds), Oφ an open ball containing the range of φ, and f a Ck function over Oφ. For any

u ∈ H l and v ∈ Hk with 0 ≤ k ≤ l and l ≥ l0 = [ds/2] + 1 we also have

|uv|2k ≤ c0|u|2l |v|
2
k, 0 ≤ k ≤ l. (5.12)

We further have the Sobolev type inequality valid for any l ≥ l0

‖φ‖L∞ ≤ c0|φ|l. (5.13)

Denoting by [∂α, u]v = ∂α(uv)− u∂αv the commutator between ∂α and u, and assuming that 1 ≤ l′ ≤ l
and l ≥ l0 + 1 we have the commutator estimate

∑

0≤|α|≤l′

∣∣[∂α, u]v
∣∣
0
≤ c0|∇u|l−1

|v|l′−1, (5.14)

valid for any u and v with ∇u ∈ H l−1 and v ∈ H l′−1. Finally, we also have the Garding inequality
[65, 64]

δ1|φII|21 ≤
∑

i,j∈D

∫

Rds

〈Bd II,II
ij (w)∂jφII, ∂iφII〉 dx+ c2|φII|20, (5.15)

valid for φII : R
ds 7→ R

nII vector valued function in H1(Rds).

Step 1. The zeroth order inequality. Multiplying (5.1) by δw̃ = w̃ − w̃⋆ and integrating over R
ds , we

obtain that
∫

Rds

〈δw̃,A0(w)∂tδw̃〉 dx+
∑

i∈D

∫

Rds

〈δw̃,A′
i(w)∂iδw̃〉 dx−

∑

i,j∈D

∫

Rds

〈δw̃,Bd
ij(w)∂i∂jδw̃〉 dx

−
∑

i,j∈D

∫

Rds

〈δw̃,Bc
ij(w)∂i∂jδw̃〉 dx+

∫

Rds

〈δw̃, L(w,∇wr)δw̃〉 dx =

∫

Rds

〈δw̃, f〉 dx+

∫

Rds

〈δw̃, g〉 dx.

(5.16)

The time derivative term in (5.16) is rewritten by using the symmetry of A0

〈δw̃,A0(w)∂tδw̃〉 = 1
2∂t〈δw̃,A0(w)δw̃〉 − 1

2 〈δw̃, ∂tA0(w)δw̃〉,

and ∂tA0(w) = ∂wA0 ∂tw is estimated with |∂tA0|L∞ ≤ c0|∂tA0|l−2 ≤ c1|∂tw|l−2.
For the convective terms in (5.16) the products 〈δw̃,A′

i(w)∂iδw̃〉 are evaluated by blocks and the (I, I)
terms are rewritten by using the symmetry of A′I,I

i

〈δw̃I,A
′I,I
i (w)∂iδw̃I〉 = 1

2∂i〈δw̃I,A
′I,I
i (w)δw̃I〉 − 1

2 〈δw̃I, ∂iA
′I,I
i (w)δw̃I〉,

and ∂iA
′I,I
i (w) = ∂wA

′I,I
i ∂iw is estimated with |∂iA′I,I

i |L∞ ≤ c0|∂iA′I,I
i |l−2 ≤ c1M ≤ c2. The (I, II) and

(II, II) convective terms are directly estimated as

∣∣∣
∫

Rds

〈δw̃I,A
′I,II
i (w)∂iδw̃II〉 dx

∣∣∣ ≤ c1|δw̃I|0|δw̃II|1,

∣∣∣
∫

Rds

〈δw̃II,A
′II,II
i (w)∂iδw̃II〉 dx

∣∣∣ ≤ c1|δw̃II|0|δw̃II|1.

The (II, I) terms are integrated by parts

∫

Rds

〈δw̃II,A
′II,I
i (w)∂iδw̃I〉 dx = −

∫

Rds

〈∂iδw̃II,A
′II,I
i (w)δw̃I〉 dx−

∫

Rds

〈δw̃II, ∂iA
′II,I
i (w)δw̃I〉 dx,
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so that ∣∣∣
∫

Rds

〈δw̃II,A
′II,I
i (w)∂iδw̃I〉 dx

∣∣∣ ≤ c1|δw̃I|0|δw̃II|1 + c2|δw̃I|0|δw̃II|0 ≤ c2|δw̃I|0|δw̃II|1,

using |Ai|L∞ ≤ c1 and |∂iAi|L∞ ≤ c2 since ∂iAi = ∂wAi ∂iw.
The dissipative terms in (5.16) only involve II components and are integrated by parts

−
∑

i,j∈D

∫

Rds

〈δw̃,Bd
ij(w)∂i∂jδw̃〉 dx =

∑

i,j∈D

∫

Rds

〈∂iδw̃II,B
d II,II
ij (w)∂jδw̃II〉 dx

+
∑

i,j∈D

∫

Rds

〈δw̃II, ∂iB
d II,II
ij (w)∂jδw̃II〉 dx.

The first sum is estimated by using Garding inequality whereas the remaining terms are estimated by
using |∂iBd

ij(w)|L∞ ≤ c2.
For the antisymmetric terms, we first integrate by parts to get that

−
∑

i,j∈D

∫

Rds

〈δw̃,Bc
ij(w)∂i∂jδw̃〉 dx =

∑

i,j∈D

∫

Rds

〈∂iδw̃,Bc
ij(w)∂jδw̃〉 dx

+
∑

i,j∈D

∫

Rds

〈δw̃, ∂iBc
ij(w)∂jδw̃〉 dx.

The first sum vanishes ∑

i,j∈D

∫

Rds

〈∂iδw̃,Bc
ij(w)∂jδw̃〉 dx = 0,

from the antisymmetric properties (Bc
ij)

t = −Bc
ji of the Bc

ij matrices and the remaining terms are

decomposed by using the underlying block structure. The (I, I) contributions vanish since B
c I,I
ij = 0

whereas both (I, II) and (II, II) contributions are estimated as

∑

i,j∈D

∣∣∣
∫

Rds

〈δw̃I, ∂iB
c I,II
ij (w)∂jδw̃II〉 dx

∣∣∣ ≤ c2|δw̃I|0|δw̃II|1,

∑

i,j∈D

∣∣∣
∫

Rds

〈δw̃II, ∂iB
c II,II
ij (w)∂jδw̃II〉 dx

∣∣∣ ≤ c2|δw̃II|0|δw̃II|1.

The more difficult (II, I) terms are first integrated by parts

∑

i,j∈D

∫

Rds

〈δw̃II, ∂iB
c II,I
ij (w)∂jδw̃I〉 dx =−

∑

i,j∈D

∫

Rds

〈∂jδw̃II, ∂iB
c II,I
ij (w)δw̃I〉 dx

−
∑

i,j∈D

∫

Rds

〈δw̃II, ∂i∂jB
c II,I
ij (w)δw̃I〉 dx.

The terms of the first sum are estimated as the (I, II) terms whereas the terms in the second sum are
estimated by using |∂i∂jBc II,I

ij | ≤ c2 since l ≥ l0 + 2 and ∂i∂jB
c II,I
ij = ∂2

ww
B
c II,I
ij ∂iw∂jw+ ∂wB

c II,I
ij ∂i∂jw so

that the (II, I) terms are also majorized by c2|δw̃I|0|δw̃II|1.
The L terms are finally evaluated by using

∣∣L(w,∇wr)
∣∣
L∞

≤ c2 so that

∫

Rds

〈δw̃, L(w,∇wr)δw̃〉 dx ≤ c2|δw̃|20,

and the right hand side terms with

∫

Rds

〈δw̃, f〉 dx ≤ c1|δw̃|0|f|0,
∫

Rds

〈δw̃, g〉 dx ≤ |δw̃|0|g|0.

Combining the previous inequalities and using |δw̃|0 ≤ c1E0(δw̃) it has been established that

∂tE
2
0(δw̃) + δ1|δw̃II|21 ≤ c1|f|0|δw̃|0 + c1|gII|20 + c2(1 + |∂tw|l−2)E

2
0(δw̃). (5.17)
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Step 2. The l′th order inequality. Multiplying (5.1) by A−1
0 , applying the αth spatial derivative operator

∂α, and multiplying again by A0 first yields

A0(w)∂t∂
αw̃ +

∑

i∈D

A′
i(w)∂i∂

αw̃−
∑

i,j∈D

Bd
ij(w)∂i∂i∂

αw̃−
∑

i,j∈D

Bc
ij(w)∂i∂i∂

αw̃+L(w,∇w)∂αw̃ = hα, (5.18)

where

hα = A0∂
α
(
A−1
0 f

)
+ A0∂

α
(
A−1
0 g

)
−

∑

i∈D

A0

[
∂α,A−1

0 A′
i

]
∂iw̃

− A0

[
∂α,A−1

0 L
]
w̃+

∑

i,j∈D

A0

[
∂α,A−1

0 Bd
ij

]
∂i∂jw̃ +

∑

i,j∈D

A0

[
∂α,A−1

0 Bc
ij

]
∂i∂jw̃. (5.19)

We next multiply scalarly (5.18) by ∂αδw̃, myltiply by |α|!/α!, integrate over Rd, sum over 1 ≤ |α| ≤ l′,
and add the zeroth order estimate. We then proceed exactly as for the zeroth order estimate (5.17)—with
∂αδw̃ in place of δw̃—in order to first rewrite the terms arising from the left hand side of (5.18). Further
using |δw̃|l′ ≤ c1El′(δw̃), it is obtained that

∂tE
2
l′(δw̃) + δ1|δw̃II|2l′+1 ≤ c2(1 + |∂tw|l−2)E

2
l′(δw̃) +

∑

0≤|α|≤l′

|α|!
α!

∫

Rds

〈hα, ∂αδw̃〉 dx,

and we now need to estimate all terms
∫
Rds

〈hα, ∂αδw̃〉 dx arising from the right hand side hα (5.19). Since
the zeroth order terms with α = 0 in the residuals

∫
Rds

〈hα, ∂αδw̃〉 dx have already been examined with
(5.17), it is sufficient to analyze the terms such that 1 ≤ |α| ≤ l′ and we note that for such multiindex α
we have ∂αw̃ = ∂αδw̃.

The right hand side contributions involving f may be directly be estimated as

∣∣∣
∫

Rds

〈
A0∂

α
(
A−1
0 f

)
, ∂αδw̃

〉
dx

∣∣∣ ≤ |A0|∞ |A−1
0 f|l′ |δw̃|l′ ≤ c2|f|l′ |δw̃|l′ ,

by using
|A−1

0 f|l′ ≤ c1
(
1 + |A−1

0 (w)− A−1
0 (w⋆)|l

)
|f|l′ ≤ c2|f|l′ .

For the right hand side terms involving g, the cases where |α| ≤ l′−1 and |α| = l′ must be distinguished.
In the situation where |α| ≤ l′ − 1 we may proceed as for the f term, keeping in mind that g = (0, gII)

t

and that A0 is block diagonal, to get that

∣∣∣
∫

Rds

〈
A0∂

α
(
A−1
0 g

)
, ∂αδw̃

〉
dx

∣∣∣ ≤ |A0|∞ |A−1
0 g|l′−1 |δw̃II|l′−1 ≤ c2|g|l′−1 |δw̃II|l′ .

When |α| = l′, we may select any spatial direction i0 such that α = α′+bi0 , |α′| = l′−1 and ∂α = ∂α
′

∂i0 ,
and integrate by parts the i0th derivative with

∫

Rds

〈
A0∂

α
(
A−1
0 g

)
, ∂αδw̃

〉
dx = −

∫

Rds

〈
∂α

′(
(AII,II

0 )−1gII

)
, ∂i0(A

II,II
0 ∂αδw̃II)

〉
dx.

Using then
∣∣(AII,II

0 )−1gII

∣∣
l′−1

≤ c2|gII|l′−1 and |∂i0(AII,II
0 ∂αδw̃II)|l′ ≤ c2|δw̃II|l′+1 we obtain that

∣∣∣
∫

Rds

〈
A0∂

α
(
A−1
0 g

)
, ∂αδw̃

〉
dx

∣∣∣ ≤ c2|gII|l′−1 |δw̃II|l′+1.

The convective and dissipative contributions may next be estimated by using commutator estimates
(5.14) and this yields ∣∣∣

∫

Rds

〈
A0

[
∂α,A−1

0 A′
i

]
∂iw̃, ∂

αδw̃
〉
dx

∣∣∣ ≤ c2|δw̃|2l′ ,
∣∣∣
∫

Rds

〈
A0

[
∂α,A−1

0 Bd
ij

]
∂i∂jw̃, ∂

αδw̃
〉
dx

∣∣∣ ≤ c2 |δw̃II|l′+1 |δw̃II|l′ ,

using the block structure of the dissipation matrices and of A0.

22



For the antisymmetric terms
∫

Rds

〈
A0

[
∂α,A−1

0 Bc
ij

]
∂i∂jw̃, ∂

αδw̃
〉
dx,

we must again use the underlying block structure. The (I, I) terms first vanish and the (I, II) and (II, II)
terms are estimated using the commutator inequality as for the dissipative terms. The difficult terms
are the (II, I) terms that are integrated by parts using the commutator identity

[∂α,V]∂iφ = ∂i([∂
α,V]φ)− [∂α, ∂iV]φ, (5.20)

with V = (AII,II
0 )−1 B

c II,I
ij and φ = ∂jδw̃I and this yields

−
∑

i,j∈D

∫

Rds

〈
A

II,II
0

[
∂α, (AII,II

0 )−1 B
c II,I
ij

]
∂i∂jδw̃I, ∂

αδw̃II

〉
dx =

∑

i,j∈D

∫

Rds

〈[
∂α, (AII,II

0 )−1 B
c II,I
ij

]
∂jδw̃I, ∂i(A

II,II
0 ∂αδw̃II)

〉
dx

+
∑

i,j∈D

∫

Rds

〈
A

II,II
0

[
∂α, ∂i

(
(AII,II

0 )−1 B
c II,I
ij

)]
∂jδw̃I, ∂

αδw̃II

〉
dx,

where we have used the symmetry of AII,II
0 and integrated by parts all terms of the first sum. We may

then use the commutator estimates for both sums and that (AII,II
0 )−1 B

c II,I
ij only depends on wr, for the

terms of the second sum, to get an upper bound in the form

c2|δw̃I|l′ |δw̃II|l′+1 + c2|∇wr|l|δw̃I|l′ |δw̃II|l′ ≤ c2|δw̃|l′ |δw̃II|l′+1 + c2|∇wr|l|δw̃|2l′ .

The term associated with A0

[
∂α,A−1

0 L
]
w̃ is also easily controlled in terms of |∇wr|l and |δw̃|l with

∣∣∣
∫

Rds

〈
A0

[
∂α,A−1

0 L
]
w̃, ∂αδw̃

〉
dx

∣∣∣ ≤ c2|∇wr|l|δw̃|2l′ ,

since L = diag( LI,I, LII,II ) is a linear function of ∇wr.
Collecting all contributions and using |δw̃|l′ ≤ c1El′(δw̃) it has been established that

∂tE
2
l′(δw̃) + δ1|δw̃II|2l′+1 ≤ c2

(
1 + |∂tw|l−2 + |∇wr|l

)
E2

l′(δw̃) + c2|f|l′El′(δw̃) + c2|gII|2l′−1. (5.21)

We may then apply Gronwall lemma in order to deduce the required a priori estimates.

5.2 Existence of solutions to linearized equations

We investigate in this section existence of solutions to the linearized equations (5.1). Existence of
solutions is obtained by first regularizing the antisymmetric strongly coupling terms Bc

ij∂i∂jδw̃ and next
by letting the regularizing parameter ǫ to go to zero. The regularization allows in particular to uncouple
the hyperbolic and parabolic problems.

We introduce a mollifying sequence of functions aǫ = ǫ−dsa(r/ǫ) where 0 < ǫ ≤ 1 and a is a smooth
function positive in the ball |r| < 1 of Rds and zero otherwise with its integral equal to unity

∫
a dr = 1.

The corresponding mollifying convolution operators are denoted by Rǫ

Rǫφ(r) =

∫
aǫ(r− r̂)φ(r̂) dr̂, φ ∈ L1(Rds) 0 < ǫ ≤ 1. (5.22)

The regularizing operators Rǫ, 0 < ǫ ≤ 1, are symmetric, commute with differentiation operators, and
for any integers k ≥ 0 and j ≥ 0 and any φ ∈ Hk we have [63, 48]

|Rǫφ|k ≤ c0|φ|k, (5.23)

lim
ǫ→0

|Rǫφ− φ|k = 0, (5.24)

|Rǫφ|k+j ≤
c0

ǫj
|φ|k. (5.25)
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Denoting by [Rǫ, φ] the commutator defined by [Rǫ, φ]ψ = Rǫ(φψ)−φRǫ(ψ) we also have the estimates [48,
20] ∣∣[Rǫ, φ]∇ψ

∣∣
k
≤ c0(|φ|L∞ + |∇φ|l−1)|ψ|k, (5.26)

as well as the limit [48, 20]
lim
ǫ→0

[Rǫ, φ]∇ψ = 0. (5.27)

The antisymmetric strongly coupling terms are regularized in the form

−
∑

i,j∈D

RǫB
c
ij(w)Rǫ∂i∂jw̃ = −

∑

i,j∈D

RǫB
c
ij(w)∂i∂jRǫw̃,

and the regularized equations read

A0(w)∂tw̃ +
∑

i∈D

A′
i(w)∂iw̃−

∑

i,j∈D

Bd
ij(w)∂i∂jw̃

−
∑

i,j∈D

RǫB
c
ij(w)Rǫ∂i∂jw̃ + L(w,∇wr)w̃ = f + g. (5.28)

We first establish an existence result for the regularized equations (5.28) with ǫ fixed and then let
the regularizing parametrer ǫ to go to zero. The assumptions on the system coefficients A0, A

′
i, B

d
ij ,

Bc
ij , i, j ∈ D L and L = (LI,I,LII,II) of Section 5.1 are kept as well as the assumptions (5.3) on w. We

remind that L = L(w, pr) is block diagonal L = diag( LI,I, LII,II ) and is a linear function of ∇wr with
LI,I = LI,I(w)∇wr and LII,II = LII,II(w)∇wr. The system coefficients are thus of class at least Cl+2 over
Ow and the right hand sides are assumed to be such that

f ∈ C0
(
[0, τ̄ ], H l−1

)
∩ L1

(
(0, τ̄ ), H l

)
, (5.29)

g ∈ C0
(
[0, τ̄ ], H l−1

)
, gI = 0. (5.30)

We also denote by w̃⋆ a constant state in R
n such that L(w, pr)w̃

⋆ = 0 for any w ∈ Ow and any pr ∈ R
nr,ds .

Proposition 5.2. Assuming that w̃0 is such that w̃0 − w̃⋆ ∈ H l, there exists a unique solution w̃ǫ to the
regularized linearized equations (5.28) with initial condition w̃0 and regularity (5.8).

Proof. Solutions of the linearized coupled system (5.28) are obtained as fixed points ˜̃w = w̃ of the following
linearized uncoupled system in the unknown ˜̃w = (˜̃wI, ˜̃wII)

A
I,I
0 (w)∂t ˜̃wI +

∑

i∈D

A
′I,I
i (w)∂i ˜̃wI + LI,I(w,∇wr)˜̃wI = f̃I(ǫ,w, w̃,∇˜̃wII), (5.31)

A
II,II
0 (w)∂t ˜̃wII −

∑

i,j∈D

B
d II,II
ij (w)∂i∂j ˜̃wII + LII,II(w,∇wr)˜̃wII = f̃II(ǫ,w, w̃,∇w̃), (5.32)

with the initial condition ˜̃w(0,x) = w̃0(x). In these equations we have denoted

f̃I = fI −
∑

i∈D

A
′I,II
i (w)∂i ˜̃wII +

∑

i,j∈D

RǫB
c I,II
ij (wr)Rǫ∂i∂j ˜̃wII (5.33)

f̃II = f
II
+ g

II
−

∑

i∈D

(
A
′II,I
i (w)∂iw̃I + A

′II,II
i (w)∂iw̃II

)

+
∑

i,j∈D

(
RǫB

c II,I
ij (wr)Rǫ∂i∂jw̃I + RǫB

c II,II
ij (w)Rǫ∂i∂jw̃II

)
, (5.34)

keeping in mind that the coupling blocks Bc II,I
ij and B

c I,II
ij only depends on wr.

The system defining ˜̃wII is symmetric strongly parabolic and classical existence theorems [48] warrants
the existence of ˜̃wII such that

˜̃wII − w̃⋆
II
∈ C0

(
[0, τ̄ ], H l

)
∩ C1

(
[0, τ̄ ], H l−1

)
∩ L2

(
(0, τ̄ ), H l+1

)
,
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with the following estimates for 0 ≤ t ≤ τ̄

sup
0≤τ≤t

|˜̃wII − w̃⋆
II
|2l +

∫ t

0

|˜̃wII − w̃⋆
II
|2l+1 dτ ≤

c̃ 2
1 exp

(
c̃2(t+Mt

√
t+Mr

√
t )
)(

|w̃0,II − w̃⋆
II
|2l + c̃2

∫ t

0

|̃fII|2l−1 dτ
)
,

where the constants c̃1 and c̃2 depend on ǫ, that is, c̃1 = c̃1(ǫ,O1) and c̃2 = c̃2(ǫ,O1,M). Similarly, the
system defining ˜̃wI is symmetric hyperbolic and classical existence theorems [48] warrants the existence
of ˜̃wI such that

˜̃wI − w̃⋆
I
∈ C0

(
[0, τ̄ ], H l

)
∩ C1

(
[0, τ̄ ], H l−1

)
,

with the estimates for 0 ≤ t ≤ τ̄

sup
0≤τ≤t

|˜̃wI − w̃⋆
I
|2l ≤ c̃ 2

1 exp
(
c̃2(t+Mt

√
t+Mr

√
t )
)(

|w̃0,I − w̃⋆
I
|2l + c̃2 t

∫ t

0

|̃fI|2l dτ
)
.

We may now define the successive approximation sequence {w̃k}k≥0 with w̃0 = w̃⋆ and w̃k+1 = ˜̃wk

for k ≥ 0 and letting for short δk+1w̃ = w̃k+1 − w̃k we have to estimate δk+1w̃ in order to establish that
(w̃k)k≥0 is a Cauchy sequence. Forming the difference between two iterations, letting δk+1 f̃I = f̃I

k+1 − f̃I
k

and δk+1 f̃II = f̃II
k+1 − f̃II

k, and using similar estimates for linear symmetric hyperbolic systems and linear
symmetric strongly parabolic systems, it is obtained that

sup
0≤τ≤t

|δk+1w̃II(τ)|2l +
∫ t

0

|δk+1w̃II|2l+1 dτ ≤ c̃ 2
1 exp

(
c̃2(t+Mt

√
t+Mr

√
t )
)(

c̃2

∫ t

0

|δk+1 f̃II|2l−1 dτ
)
,

as well as

sup
0≤τ≤t

|δk+1w̃I(τ)|2l ≤ c̃ 2
1 exp

(
c̃2(t+Mt

√
t+Mr

√
t )
)(

c̃2 t

∫ t

0

|δk+1 f̃I|2l dτ
)
.

Defining then
γk(t) = sup

0≤τ≤t
|δkw̃(τ)|2l ,

and using (5.23) and (5.25), we obtain that

|δk+1 f̃I|l ≤ c̃2
(
|δkw̃|l + |δk+1w̃II|l+1

)
, |δk+1 f̃II|l−1 ≤ c̃2|δkw̃|l,

so that

γk+1(t) ≤ C

∫ t

0

γk(τ) dτ,

where C = C(ǫ,O1,M,Mt, τ̄) depends on ǫ, O1, M , Mt and τ̄ . Since γ1 is bounded over [0, τ̄ ], say
γ1(t) ≤ K, it is thus obtained that

γk+1(t) ≤ K
Cktk

k!
, 0 ≤ t ≤ τ̄ , k ≥ 0,

so that (w̃k)k≥0 is a Cauchy sequence. The limit of this Cauchy sequence is then a fixed point of the
iteration system and thus a solution of the linearized system (5.1) in C0

(
[0, τ̄ ], H l

)
. It is further obtained

from the estimates and standard functional analysis argument that
∫ t

0
|w̃II − w̃⋆

II
|2l+1 dτ is finite so that

the fixed point has the required regularity properties.

We now investigate new a priori estimates independent of ǫ for the solutions w̃ǫ of the regularized
equations (5.28).

Proposition 5.3. Keep the assumptions of Proposition 5.2 and denote by w̃ǫ the solution of (5.28)
with regularity (5.8). There exists constants c1(O1) ≥ 1 and c2(O1,M) ≥ 1 increasing with M and
independent of ǫ, such that for any t ∈ [0, τ̄ ] and any 1 ≤ l′ ≤ l

sup
0≤τ≤t

|w̃ǫ(τ) − w̃⋆|2l′ +
∫ t

0

|w̃ǫ
II
(τ) − w̃⋆

II
|2l′+1 dτ ≤ c21 exp

(
c2
(
t+Mt

√
t+Mr

√
t
))(

|w̃ǫ
0 − w̃⋆|2l′

+ c2

{∫ t

0

|f|l′ dτ
}2

+ c2

∫ t

0

|gII|2l′−1 dτ
)
. (5.35)
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Proof. The proof is similar to that of Theorem 5.1 and only the differences involving the second order
regularized matrices RǫB

c
ijRǫ need to be analyzed. We denote for short δw̃ǫ = w̃ǫ − w̃⋆ and the main

idea is to avoid the use of (5.25) and to only use (5.23) in all estimates. For the zeroth order estimates,
integrating by parts and using that Rǫ are symmetric operators, it is obtained that

−
∑

i,j∈D

∫

Rds

〈δw̃ǫ,RǫB
c
ij(w)Rǫ∂i∂jδw̃

ǫ〉 dx =
∑

i,j∈D

∫

Rds

〈Rǫ∂iδw̃
ǫ,Bc

ij(w)Rǫ∂jδw̃
ǫ〉 dx

+
∑

i,j∈D

∫

Rds

〈δw̃ǫ, ∂iRǫB
c
ij(w)Rǫ∂jδw̃

ǫ〉 dx.

The first sum vanishes ∑

i,j∈D

∫

Rds

〈Rǫ∂iδw̃
ǫ,Bc

ij(w)Rǫ∂jδw̃
ǫ〉 dx = 0,

from the symmetry properties of Rǫ and the antisymmetry properties of the Bc
ij matrices and the re-

maining terms of the second sum are then decomposed by using the underlying block structure. The
(I, I) contributions also vanish since Bc I,I

ij = 0, both (I, II) and (II, II) contributions are estimated as in the
proof of Theorem 5.1 by using (5.23) so that

∑

i,j∈D

∣∣∣
∫

Rds

〈δw̃ǫ
I
,Rǫ∂iB

c I,II
ij (w)Rǫ∂jδw̃

ǫ
II
〉 dx

∣∣∣ ≤ c2|δw̃ǫ
I
|0|δw̃ǫ

II
|1,

∑

i,j∈D

∣∣∣
∫

Rds

〈δw̃ǫ
II
,Rǫ∂iB

c II,II
ij (w)Rǫ∂jδw̃

ǫ
II
〉 dx

∣∣∣ ≤ c2|δw̃ǫ
II
|0|δw̃ǫ

II
|1.

The last terms (II, I) are again integrated by parts in the form

∑

i,j∈D

∫

Rds

〈δw̃ǫ
II
,Rǫ∂iB

c II,I
ij (w)Rǫ∂jδw̃

ǫ
I
〉 dx =−

∑

i,j∈D

∫

Rds

〈∂jδw̃ǫ
II
,Rǫ∂iB

c II,I
ij (w)Rǫδw̃

ǫ
I
〉 dx

−
∑

i,j∈D

∫

Rds

〈δw̃ǫ
II
,Rǫ∂i∂jB

c II,I
ij (w)Rǫδw̃

ǫ
I
〉. dx.

The terms of the first sum are estimated as the (I, II) terms whereas fo the second sum we may use that
|∂i∂jBc II,I

ij | ≤ c2 since l ≥ l0 + 2 so that the (I, II) terms are also majorized by c2|δw̃I|0|δw̃II|1. We have
thus established an inequality in the form (5.17) for the solutions of the regularized system.

For the l′th estimates, the antisymmetric terms are again integrated by parts and from the symmetry
properties of Rǫ and the antisymmetry properties of the Bc

ij matrices we have for any 1 ≤ |α| ≤ l′

∑

i,j∈D

∫

Rds

〈Rǫ∂i∂
αw̃ǫ,Bc

ij(w)Rǫ∂j∂
αw̃ǫ〉 dx = 0.

The remaining terms are treated as for the zeroth order estimates and it is obtained that

∑

i,j∈D

∣∣∣
∫

Rds

〈∂αw̃ǫ
I
,Rǫ∂iB

c I,II
ij (w)Rǫ∂j∂

αw̃ǫ
II
〉 dx

∣∣∣ ≤ c2|δw̃ǫ
I
|l′ |δw̃ǫ

II
|l′+1,

∑

i,j∈D

∣∣∣
∫

Rds

〈∂αw̃ǫ
II
,Rǫ∂iB

c II,II
ij (w)Rǫ∂j∂

αw̃ǫ
II
〉 dx

∣∣∣ ≤ c2|δw̃ǫ
II
|l′ |δw̃ǫ

II
|l′+1.

The last terms (II, I) are integrated by parts in the form

∑

i,j∈D

∫

Rds

〈∂αw̃ǫ
II
,Rǫ∂iB

c II,I
ij (w)Rǫ∂j∂

αw̃ǫ
I
〉 dx =−

∑

i,j∈D

∫

Rds

〈∂j∂αw̃ǫ
II
,Rǫ∂iB

c II,I
ij (w)Rǫ∂

αw̃ǫ
I
〉 dx

−
∑

i,j∈D

∫

Rds

〈∂αw̃ǫ
II
,Rǫ∂i∂jB

c II,I
ij (w)Rǫ∂

αw̃ǫ
I
〉 dx.

The terms in the first sum is then estimated as the (I, II) terms and the terms in the the second sum may
be estimated by using |∂i∂jRǫB

c II,I
ij | ≤ c2.
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It now only remains to analyze the antisymmetric commutator terms in the form

∫

Rds

〈
A0

[
∂α,A−1

0 RǫB
c
ij

]
Rǫ∂i∂jw̃

ǫ, ∂αδw̃
〉
dx,

and we again use the underlying block structure with a treatment similar to the proof of Theorem 5.1.
The (I, I) terms first vanish and the (I, II) and (II, II) terms are estimated using the commutator and
convolution operators inequalities. The difficult terms are only the (II, I) terms that are integrated by
parts using (5.20) so that

−
∫

Rds

〈
A0

[
∂α,A−1

0 RǫB
c
ij

]
Rǫ∂i∂jw̃

ǫ, ∂αδw̃
〉
dx =

∫

Rds

〈[
∂α,A−1

0 RǫB
c
ij

]
Rǫ∂jw̃

ǫ, ∂i(A0∂
αδw̃)

〉
dx

+

∫

Rds

〈
A0

[
∂α, ∂i(A

−1
0 RǫB

c
ij)

]
Rǫ∂i∂jw̃

ǫ, ∂αδw̃
〉
dx.

We then use that (AII,II
0 )−1 RǫB

c II,I
ij only depends on wr so that an inequality similar to (5.21) is then

obtained and using Gronwall lemma completes the proof.

Existence of solutions to the linearized equations (5.1) in finally obtained by letting the regularizing
parameter ǫ to go to zero.

Theorem 5.4. Keep the assumption on the system coefficients of Theorem 5.1. Denote by w̃0 an initial
state with w̃0 − w̃⋆ ∈ H l and assume that the right hand sides f ∈ R

n and g ∈ R
n are such that (5.29)

and (5.30) hold. There exists a solution w̃ to the linearized equations (5.1) with regularity (5.8) and such
that the estimates (5.9) hold.

Proof. We first establish that the family of solutions (w̃ǫ)0<ǫ≤1 obtained in Proposition 5.2 and estimated
in Proposition 5.3 form a Cauchy sequence in C0

(
[0, τ̄ ], H l−1

)
.

We note that the difference w̃ǫ − w̃ǫ′ is the solution of the system of partial differential equations

A0(w)∂t(w̃
ǫ − w̃ǫ′) +

∑

i∈D

A′
i(w)∂i(w̃

ǫ − w̃ǫ′)−
∑

i,j∈D

Bd
ij(w)∂i∂j(w̃

ǫ − w̃ǫ′)

−
∑

i,j∈D

RǫB
c
ij(w)Rǫ∂i∂j(w̃

ǫ − w̃ǫ′) + L(w,∇wr)(w̃
ǫ − w̃ǫ′)

=
∑

i,j∈D

(
RǫB

c
ij(w)Rǫ − Rǫ′B

c
ij(w)Rǫ′

)
∂i∂jw̃

ǫ′ . (5.36)

The right hand side is written in the form f + g with f = (fI, 0)
t and g = (0, gII)

t and from the linearized
estimates for regularized systems applied to w̃ǫ− w̃ǫ′ and with l′ = l−1, we deduce that for any t ∈ [0, τ̄ ]

sup
0≤τ≤t

|w̃ǫ − w̃ǫ′ |2l−1 +

∫ t

0

|w̃ǫ
II
− w̃ǫ′

II
|2l dτ ≤ c21 exp

(
c2
(
t+Mt

√
t+Mr

√
t
))

×
(
c2 t

∫ t

0

∣∣∣
(
RǫB

c I,II
ij (w)Rǫ − Rǫ′B

c I,II
ij (w)Rǫ′

)
∂i∂jw̃

ǫ′

II

∣∣∣
2

l−1
dτ

+ c2

∫ t

0

∣∣∣
(
RǫB

c II,I
ij (w)Rǫ − Rǫ′B

c II,I
ij (w)Rǫ′

)
∂i∂jw̃

ǫ′

I

∣∣∣
2

l−2
dτ

+ c2

∫ t

0

∣∣∣
(
RǫB

c II,II
ij (w)Rǫ − Rǫ′B

c II,II
ij (w)Rǫ′

)
∂i∂jw̃

ǫ′

II

∣∣∣
l−2

dτ
)
.

(5.37)

We then note that the right hand side converge to zero as ǫ and ǫ′ go to zero from (5.24) so that the
family (w̃ǫ)0<ǫ≤ form a Cauchy sequence in C0

(
[0, τ̄ ], H l−1

)
as ǫ→ 0. We may then define

w̃ = lim
ǫ→0

w̃ǫ,

so that w̃ ∈ C0
(
[0, τ̄ ], H l−1

)
and using standard argument from functional analysis and the estimates of

Proposition 5.3 we obtain that w̃ is in L∞
(
(0, τ̄), H l

)
and that

∫ t

0
|w̃II(τ) − w̃⋆

II
|2l+1 dτ is finite.
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In order to establish that w̃ is indeed in C0
(
[0, τ̄ ], H l

)
we introduce the regularized solutions w̃δ = Rδw̃

and establish that the family (w̃δ)0<δ≤1 form a Cauchy sequence in C0
(
[0, τ̄ ], H l

)
. To this aim, we note

that

A0(w)∂tw̃
δ +

∑

i∈D

A′
i(w)∂iw̃

δ −
∑

i,j∈D

Bd
ij(w)∂i∂jw̃

δ −
∑

i,j∈D

Bc
ij(w)∂i∂j w̃

δ

+ L(w,∇wr)w̃
δ = A0Rδ

(
A−1
0 f

)
+ A0Rδ

(
A−1
0 g

)
+ hδ, (5.38)

where

hδ = −
∑

i∈D

A0

[
Rδ,A

−1
0 A′

i

]
∂iw̃ − A0

[
Rδ,A

−1
0 L

]
w̃

+
∑

i,j∈D

A0

[
Rδ,A

−1
0 Bd

ij

]
∂i∂jw̃+

∑

i,j∈D

A0

[
Rδ,A

−1
0 Bc

ij

]
∂i∂jw̃. (5.39)

We may thus write that

A0(w)∂t(w̃
δ − w̃δ′) +

∑

i∈D

A′
i(w)∂i(w̃

δ − w̃δ′)−
∑

i,j∈D

Bd
ij(w)∂i∂j(w̃

δ − w̃δ′)

−
∑

i,j∈D

Bc
ij(w)∂i∂j(w̃

δ − w̃δ′) + L(w,∇wr)(w̃
δ − w̃δ′) =

A0(Rδ − Rδ′)
(
A−1
0 f

)
+ A0(Rδ − Rδ′)

(
A−1
0 g

)
+ hδ − hδ

′

. (5.40)

We then note that A0(Rδ − Rδ′)
(
A−1
0 f

)
goes to zero in H l and A0(Rδ − Rδ′)

(
A−1
0 g

)
goes to zero in

H l−1 from (5.24) and that the I components of both hδ and hδ
′

go to zero in H l and II components of
both hδ and hδ

′

go to zero in H l−1 from (5.27) so that the family (w̃δ)0<δ≤1 form a Cauchy sequence in
C0

(
[0, τ̄ ], H l

)
from the linearized estimates and this completes the proof.

6 Nonlinear equations

A local existence theorem of strong solutions is first established in an abstract framework and then
applied to the particular situation of diffuse interface fluids.

6.1 Structural assumptions

An abstract symmetric-antisymmetric hyperbolic-parabolic augmented system in normal form is consid-
ered in the form

A0(w)∂tw +
∑

i∈D

Ai(w)∂iw−
∑

i,j∈D

Bd
ij(w)∂i∂jw −

∑

i,j∈D

Bc
ij(w)∂i∂jw = h(w,∇w), (6.1)

where t denotes the time variable, ∂i the derivative in the ith spatial direction, w the normal variable,
ds the space dimension and D = {1, . . . , ds} the indexing set of spatial directions. The variables w has
n ≥ 1 components and R

n is decomposed into R
n = R

nI ×R
nII with n = nI + nII so that w is decomposed

into w = (wI,wII)
t where wI ∈ R

nI denotes the hyperbolic components and wII ∈ R
nII the parabolic

components. The system (6.1) is assumed to be an augmented system in the sense that wI should be
wI = (wI

′ ,wI
′′)t with wI

′′ = ∇wI
′ . The augmented system (6.1) has thus been built by adding the

gradient wI
′′ of a scalar hyperbolic component wI

′ to the unknowns. More complex situations with extra
hyperbolic components or systems augmented with higher order derivatives lay out of the scope of the
present work. We denote by wr the subset of nr = 1 + nII components of w defined by wr = (wI

′ ,wII)
t

that will have more regularity.
The following general assumptions are made concerning the system (6.1). The matrix A0 ∈ R

n,n

is symmetric, positive definite, block diagonal A0 = diag(AI,I
0 ,A

II,II
0 ), and the block A

II,II
0 only depends

on the subvariable wr. The matrices Ai ∈ R
n,n, i ∈ D, are symmetric, the dissipation matrices are

such that (Bd
ij)

t = Bd
ji, i, j ∈ D, have nonzero components only into the right lower B

d II,II
ij blocks,
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and Bd II,II =
∑

i,j∈D B
d II,II
ij (w)ξiξj is positive definite for ξ ∈ Σds−1. The matrices Bc

ij are such that

(Bc
ij)

t = −Bc
ji, the blocks B

c,I,I
ij vanish B

c,I,I
ij = 0, and the blocks B

c,I,II
ij and B

c,II,I
ij only depend on the

subvariable wr. The right hand side h = (hI, hII)
t is in the general form

hI =
∑

i∈D

m
I

i(w)∂iwr +
∑

i,j∈D

m
I,I
ij (w)∂iwr∂jwr, (6.2)

hII =
∑

i∈D

m
II

i (w)∂iw+
∑

i,j∈D

m
II,II
ij (w)∂iw∂jw, (6.3)

where mI

i ∈ R
nI,nr , mI,I

ij (w) ∈ R
nI,nr,nr , mII

i ∈ R
nII,n, and m

II,II
ij ∈ R

nII,n,n are linear operators. The hyperbolic
components hI thus includes linear and quadratic contributions in terms of∇wr whereas hII includes linear
and quadratic contributions in terms of ∇w. All the system coefficients A0, Ai, i ∈ D, Bd

ij , B
c
ij , i, j ∈ D,

m
I

i, m
I,I
ij , m

II

i , and m
II,II
ij are assumed to have at least regularity Cl+2(Ow) where Ow is a simply connected

open set in R
ds . We also denote by w⋆ a constant state in the open set Ow such that w⋆

I
′′ = 0. In addition,

it is assumed that whenever w0I′′ = ∇w0I′ , the regular solutions of (6.1) are such that wI
′′ = ∇wI

′ .
We further assume that there exists a linearized version of (6.1) in the form

A0(w)∂tw̃ +
∑

i∈D

A′
i(w)∂iw̃−

∑

i,j∈D

Bd
ij(w)∂i∂j w̃−

∑

i,j∈D

Bc
ij(w)∂i∂jw̃+ L(w,∇wr)w̃ = h′(w,∇w). (6.4)

The hyperbolic blocks A
′I,I
i of the matrices A′

i are assumed to be given by A
′I,I
i = A

I,I
i and are thus

symmetric. The matrix L = L(w, pr) is assumed to be block diagonal L = diag( LI,I, LII,II ) and to be a
linear function of pr ∈ R

nr,ds so that LI,I = LI,I(w)pr and LII,II = LII,II(w)pr where LI,I ∈ R
nI,n,nr,ds and

LII,II ∈ R
nII,n,nr,ds depend on w. The systems coefficients are naturally related by

∑

i∈D

(
A′
i(w)− Ai(w)

)
p+ L(w, pr)w+ h(w, p) = h′(w, p) (6.5)

for any w ∈ Ow and any vector p ∈ R
n. From (6.5) and the relations A

′I,I
i = A

I,I
i we notably deduce

that h′ has a structure similar to that of h with corresponding matrices m
′I
i , m

′I,I
ij , m′II

i , and m
′II,II
ij . The

matrices A′
i(w), the coefficients LI,I and LII,II, and the coefficients m′I

i , m
′I,I
ij , m′II

i , and m
′II,II
ij are assumed

to have at least regularity Cl+2 over Ow. The state w⋆ is also such that L(w, pr)w
⋆ = 0 for any w ∈ Ow

and pr ∈ R
nr,ds . We further assume the linearized version (6.4) of the system is such that the constraint

wI
′′ = ∇wI

′ is transmitted from w to w̃, that is, whenever w and w̃ are regular, wI
′′ = ∇wI

′ , w̃0I′′ = ∇w̃0I′ ,
and w̃⋆

I
′′ = 0 then that w̃I

′′ = ∇w̃I
′ . The structural assumptions of Section 5.1 are notably satisfied by

the linearized system (6.4).

6.2 Existence of solutions to nonlinear equations

We establish in this section local existence of solutions for augmented systems in the general form (6.1)
under the structural assumptions listed in Section 6.1.

Theorem 6.1. Let d ≥ 1, l ≥ l0 + 2, l0 = [d/2] + 1, be integers and let b > 0. Let O0 be such that
O0 ⊂ Ow, a1 such that 0 < a1 < dist(O0, ∂Ow), and O1 = {w ∈ Ow; dist(w,O0) < a1 }. There exists
τ̄ > 0 depending on O1 and b such that for any w0 with w0 ∈ O0, w0 − w⋆ ∈ H l, w0I′′ = ∇w0I′ and

|w0 − w⋆|2l < b2, (6.6)

there exists a unique local solution w to the system (6.1) with initial condition w(0,x) = w0(x), such
that w(t,x) ∈ O1 for (t,x) ∈ [0, τ̄ ]×R

ds , wI
′′ = ∇wI

′ , and

wI − w⋆
I
∈ C0

(
[0, τ̄ ], H l

)
∩ C1

(
[0, τ̄ ], H l−2

)
,

wII − w⋆
II
∈ C0

(
[0, τ̄ ], H l

)
∩ C1

(
[0, τ̄ ], H l−2

)
∩ L2

(
(0, τ̄), H l+1

)
.

Moreover, there exists cloc ≥ 1 only depending on O1 and b such that

sup
0≤τ≤τ̄

|w(τ)− w⋆|2l +
∫ τ̄

0

|wII(τ) − w⋆
II
|2l+1dτ ≤ c2loc|w0 − w⋆|2l . (6.7)
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Proof. Solutions to the nonlinear system (6.1) are fixed points w̃ = w of the linearized equations (6.4).
Fixed points are investigated in the space w ∈ Xl

τ̄

(
O1,M

)
, whereM is a positive number that will be de-

termined later, and defined by w−w⋆ ∈ C0
(
[0, τ̄ ], H l

)
, ∂tw ∈ C0

(
[0, τ̄ ], H l−2

)
, wII−w⋆

II
∈ L2

(
(0, τ̄), H l+1

)
,

w(t,x) ∈ O1, wI
′′ = ∇wI

′ , and

sup
0≤τ≤τ̄

|w(τ) − w⋆|2l +
∫ τ̄

0

|wII(τ) − w⋆
II
|2l+1 dτ ≤M 2, (6.8)

∫ τ̄

0

|∂tw(τ)|2l−2 dτ ≤M 2,

∫ τ̄

0

|∇wr(τ)|2l dτ ≤M 2. (6.9)

We first have to establish that the space Xl
τ̄

(
O1,M

)
is invariant by the map w 7→ w̃ for a suitable

M and for a time τ̄ small enough, where w̃ denotes the solution of the linearized system (6.4) with w0

as initial condition and with w̃⋆ = w⋆. For w in Xl
τ̄

(
O1,M

)
the solution w̃ of the linearized equations

(6.4) exists from Theorem 5.4, the estimates of Theorem 5.1 hold as well as the gradient constraint
w̃I

′′ = ∇w̃I
′ . Letting then

M̃2 = sup
0≤τ≤τ̄

|w̃(τ) − w⋆|2l +
∫ τ̄

0

|w̃II(τ) − w⋆
II
|2l+1 dτ,

M̃2
t =

∫ τ̄

0

|∂tw̃(τ)|2l−2 dτ, M̃2
r =

∫ τ̄

0

|∇w̃r(τ)|2l dτ,

we have to estimate M̃ , M̃t and M̃r.

From the estimates of Theorem 5.1 with l′ = l, further using (6.9) and
(∫ τ̄

0
|h′

I
|l dτ

)2

≤ τ̄
∫ τ̄

0
|h′

I
|2l dτ ,

we may write that

M̃2 ≤ c21 exp
(
c2
(
τ̄ + 2M

√
τ̄
))(

|w̃0 − w⋆|2l + c2τ̄

∫ τ̄

0

|h′
I
|2l dτ + c2

∫ τ̄

0

|h′
II
|2l−1 dτ

)
, (6.10)

with constants c1(O1) and c2(O1,M). On the other hand, using the structure (6.2) and (6.3) of the right
hand side h, the relation (6.5) expressing h′, les nonlinear estimates (5.11) and (5.12), and the definition
of Xl

τ̄

(
O1,M

)
, we obtain

∫ τ̄

0

|h′
I
|2l dτ ≤ c2(O1,M)M 2,

∫ τ̄

0

|h′
II
|2l−1 dτ ≤ τ̄c2(O1,M)M 2.

Moreover, from the linearized equations (6.4), we may evaluate the time derivative ∂tw̃ in term of the
spatial gradients in the form

∫ τ̄

0

|∂tw̃(τ)|2l−2 dτ ≤ τ̄c′2(O1,M)
(
M̃2 +M2

)
, (6.11)

for some constant c′2(O1,M) ≥ 1 increasing with M . We now define Mb by

Mb = 2c1(O1)b,

and assume that τ̄ ≤ 1 is small enough such that

exp
(
c2(O1,M b)(τ̄ +M b

√
τ̄ )
)
≤ 2, (6.12)

2c22(O1,M b)τ̄
(
2c1(O1)

)2 ≤ 1, (6.13)

2τ̄c′2(O1,Mb) ≤ 1, (6.14)

as well as c0M b

√
τ̄ < a1 where c0 is such that ‖φ‖L∞ ≤ c0|φ|l−2.

We claim that for any w in Xl
τ̄

(
O1,Mb

)
, any w0 such that w0 − w⋆ ∈ H l, w0I′′ = ∇w0I′ , w0 ∈ O0,

and |w0 −w⋆|2l < b2, the solution w̃ to the linearized equations (6.4) with initial condition w̃0 = w0 stays
in the same space Xl

τ̄

(
O1,Mb

)
. We first obtain from (6.12) and (6.13) that

M̃2 ≤ 2c21(b
2 + 2τ̄c22M

2
b) ≤ 4c21b

2 =M2
b .
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Moreover from the gradient constraint transmitted to w̃, and since τ̄ is such that τ̄ ≤ 1, we have an
estimate in the form

M̃2
r =

∫ τ̄

0

|∇w̃r(τ)|2l dτ ≤ M̃2 ≤M2
b .

In addition, for the time derivatives, we obtain from (6.11) and (6.14) that

M̃2
t ≤ τ̄c′2(O1,M

b 2)
(
M̃2 +M2

b

)
≤M2

b ,

and we also have w̃I
′′ = ∇w̃I

′ . Finally, from the time derivative estimates and c0Mb

√
τ̄ < a1 we also

obtain that w̃ ∈ O1 and we have established that Xl
τ̄

(
O1,Mb

)
is invariant.

Noting that the constant state w⋆ is in Xl
τ̄

(
O1,Mb

)
, the sequence of successive approximations

{wk}k≥0 starting at w0 = w⋆ is thus well defined with wk+1 = w̃k, i.e., with wk+1 is obtained as
the solution w̃ = wk+1 of linearized equations with w = wk and with the initial condition w0. Let δkw
denotes the difference δkw = wk+1 −wk for k ≥ 0. For a suitable τ small enough, we claim that the map
w 7→ w̃ is a contraction for a weaker norm. Consider w and ŵ in Xl

τ̄

(
O1,Mb

)
, and define δw = w − ŵ

and δw̃ = w̃ − ˜̂w where w̃ and ˜̂w are the solutions of the corresponding linearized equations with initial
condition w0. Forming the difference between the linearized equations, one may obtain that

A0(ŵ)∂tδw̃ +
∑

i∈D

Ai(ŵ)∂iδw̃−
∑

i,j∈D

Bd
ij(ŵ)∂i∂jδw̃

−
∑

i,j∈D

Bc
ij(ŵ)∂i∂jδw̃ + L(ŵ,∇wr)∂i∂jδw̃ = δh′, (6.15)

where

δh′ = −
∑

i∈D

(
A0(ŵ)A

−1
0 (w)A′

i(w)− A′
i(ŵ)

)
∂iw

+
∑

i,j∈D

(
A0(ŵ)A

−1
0 (w)Bd

ij(w)− Bd
ij(ŵ)

)
∂i∂jw

+
∑

i,j∈D

(
A0(ŵ)A

−1
0 (w)Bc

ij(w)− Bc
ij(ŵ)

)
∂i∂jw

+
(
A0(ŵ)A

−1
0 (w)− I

)
h′(w,∇w) + h′(w,∇w)− h′(ŵ,∇ŵ).

These relations and the structural assumptions (6.2) (6.3) and (6.5) imply that |δh′
I
|l−2 ≤ c2|δw|l−2 +

c2|δwII|l−1 and |δh′
II
|l−3 ≤ c2|δw|l−2. The linearized estimates with l′ = l − 2 then yield that

sup
0≤τ≤τ̄

|δw̃(τ)|2l−2 +

∫ τ̄

0

|δw̃II(τ)|2l−1 dτ ≤ c2τ̄
(

sup
0≤τ≤τ̄

|δw(τ)|2l−2 +

∫ τ̄

0

|δwII(τ)|2l−1 dτ
)
.

Assuming that c2τ̄ ≤ 1
2 , we then have

sup
0≤τ≤τ̄

|δw̃(τ)|2l−2 +

∫ τ̄

0

|δw̃II(τ)|2l−1 dτ ≤ c0

2k
, 0 ≤ k, (6.16)

where c0 depends on O1, b, and the data but is independent of k. The sequence of successive approxima-
tion {wk}k≥0 is thus convergent over [0, τ̄ ] for the norm sup0≤τ≤τ̄ |δw̃(τ)|2l−2 +

∫ τ̄

0 |δw̃II(τ)|2l−1 dτ towards

a fixed point w ∈ C0
(
[0, τ̄ ], H l−2

)
that is a solution of (6.1). Since the sequence {wk}k≥0 is bounded in

the space Xl
τ̄

(
O1,M b

)
, it follows from standard functional analysis arguments that the limit function w

is also in L∞
(
(0, τ̄), H l

)
and such that wII − w⋆

II
∈ L2

(
(0, τ̄ ), H l+1

)
.

In order to establish that the limit w is also in the space C0
(
(0, τ̄), H l

)
we consider the regularized

functions wδ = Rδw and we establish that the family (wδ)0<δ≤1 form a Cauchy sequence in C0
(
[0, τ̄ ], H l

)
.

We indeed note that

A0(w)∂tw
δ +

∑

i∈D

A′
i(w)∂iw

δ −
∑

i,j∈D

Bd
ij(w)∂i∂jw

δ −
∑

i,j∈D

Bc
ij(w)∂i∂jw

δ

+ L(w,∇wr)w
δ = A0Rδ

(
A−1
0 h̄′

)
+ h′δ, (6.17)
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where h̄′ = h′(w,∇w) with

h′δ = −
∑

i∈D

A0

[
Rδ,A

−1
0 A′

i

]
∂iw− A0

[
Rδ,A

−1
0 L

]
w (6.18)

+
∑

i,j∈D

A0

[
Rδ,A

−1
0 Bd

ij

]
∂i∂jw +

∑

i,j∈D

A0

[
Rδ,A

−1
0 Bc

ij

]
∂i∂jw. (6.19)

We may then write that

A0(w)∂t(w̃
δ − w̃δ′) +

∑

i∈D

A′
i(w)∂i(w̃

δ − w̃δ′)−
∑

i,j∈D

Bd
ij(w)∂i∂j(w̃

δ − w̃δ′)

−
∑

i,j∈D

Bc
ij(w)∂i∂j(w̃

δ − w̃δ′) + L(w,∇wr)(w̃
δ − w̃δ′) =

A0(Rδ − Rδ′)
(
A−1
0 h̄′

)
+ h′δ − h′δ

′

. (6.20)

We may then observe that the I component of A0(Rδ − Rδ′)
(
A−1
0 h̄′

)
, h′δ and h′δ

′

go to zero in H l from

from (5.24) and the II component of A0(Rδ −Rδ′)
(
A−1
0 h̄′

)
, h′δ and h′δ

′

go to zero in H l−1 from (5.27) so

that the family (w̃δ)0<δ≤1 form a Cauchy sequence in C0
(
[0, τ̄ ], H l

)
and this completes the proof.

6.3 Application to diffuse interface fluids

We apply in this section Theorem 6.1 to the diffuse interface fluid equations in normal form (4.10) under
the assumptions (H1)-(H5). The unknown vector reads w = (ρ,w,v, T )t and has n = 2ds+2 components
with nI = ds +1 hyperbolic components wI = (ρ,w)t and nII = ds +1 parabolic components wII = (v, T )t

and the subvariable wr is given by wr = (ρ,v, T )t with nr = 1 + nII. Letting Ow to be the open set Oz

of (H1), we select w⋆ = (ρ⋆, 0,v⋆, T ⋆)t ∈ Ow, an open set O0 with O0 ⊂ Ow and w⋆ ∈ O0, a1 such that
0 < a1 < dist(O0, ∂Ow), and we define O1 = {w ∈ Ow; dist(w,O0) < a1 }.

It is assumed that the regularity class of thermodynamic functions γ is such that γ−2 ≥ l+2 ≥ l0+3
so that all the system coefficients A0, Ai, i ∈ D, Bd

ij , B
c
ij , i, j ∈ D, have at least regularity Cl+2 over

Ow. Moreover there exists a linearized version in the form (6.4) that enforce that gradient constraint.
The matrix L = L(w,∇wr) is block diagonal L = diag( LI,I, LII,II ) with LII,II = 0 and LI,I is a linear
function of ∇wr so that LI,I = LI,I(w)∇wr and the right hand sides are in the form (6.2) and (6.3). The
systems coefficients LI,I, m′I

i , m
′I,I
ij , m′II

i , and m
′II,II
ij also have at least regularity Cl+2(Ow). Application of

Theorem 6.1 then yields the following existence result.

Theorem 6.2. Let d ≥ 1, l ≥ l0+2, and b > 0. There exists τ̄ > 0 depending on O1 and b such that for
any w0 with w0 ∈ O0, w0−w⋆ ∈ H l, w0 = ∇ρ0 and |w0−w⋆|2l < b2 there exists a unique local solution w

to the system (4.10) with initial condition w(0,x) = w0(x), w(t,x) ∈ O1 for (t,x) ∈ [0, τ̄ ]×R
ds , w = ∇ρ

and with

ρ− ρ⋆ ∈ C0
(
[0, τ̄ ], H l+1

)
, (6.21)

v − v⋆ ∈ C0
(
[0, τ̄ ], H l

)
∩ L2

(
(0, τ̄), H l+1

)
(6.22)

T − T ⋆ ∈ C0
(
[0, τ̄ ], H l

)
∩ L2

(
(0, τ̄), H l+1

)
. (6.23)

The time derivatives are also such that ∂tρ ∈ C0
(
[0, τ̄ ], H l−1

)
∩ L2

(
(0, τ̄ ), H l

)
, ∂tv ∈ C0

(
[0, τ̄ ], H l−2

)

and ∂tT ∈ C0
(
[0, τ̄ ], H l−2

)
. Moreover, there exists cloc ≥ 1 only depending on O1 and b such that

sup
0≤τ≤τ̄

|ρ(τ) − ρ⋆|2l+1 + sup
0≤τ≤τ̄

|v(τ)− v⋆|2l + sup
0≤τ≤τ̄

|T (τ)− T ⋆|2l +
∫ τ̄

0

|v(τ) − v⋆|2l+1dτ (6.24)

+

∫ τ̄

0

|T (τ)− T ⋆|2l+1dτ ≤ c2loc

(
|ρ0(τ)− ρ⋆|2l+1 + |v0(τ) − v⋆|2l + |T0(τ)− T ⋆|2l

)
. (6.25)

Proof. In order to apply Theorem 6.1 we have to check that the assumptions listed in Section 6.1 are
satisfied for the system in normal form (4.10).
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The matrix A0 given by (4.15) is symmetric positive definite, block-diagonal A0 = diag(AI,I
0 ,A

II,II
0 ),

with A
II,II
0 only depending on (wI

′ ,wII), and is positive definite form (4.16). The convective matrices
Ai, i ∈ D, given by (4.17) are also symmetric. The dissipation matrices have been decomposed in
the form (4.18) with Bv

ij , B
η
ij , and Bλ

ij given repectively by (4.19), (4.20), and (4.21). The reciprocity

relations (Bd
ij)

t = Bd
ji, i, j ∈ D, thus hold and the matrices Bd

ij have nonzero components only into the

lower right B
d II,II
ij blocks. Moreover, from the expression of the quadratic form (4.22) we deduce that

Bd II,II =
∑

i,j∈D B
d II,II
ij (w)ξiξj is positive definite for ξ ∈ Σds−1. The matrices Bc

ij are given by (4.23) and

are such that (Bc
ij)

t = −Bc
ji, the blocks B

c I,I
ij vanish B

c I,I
ij = 0, and the strongly coupling blocks Bc I,II

ij and

B
c II,I
ij only depend (ρ,v, T ). The right hand side h(w,∇w) is given by (4.24) and (4.25) that is covered

by the more general situation (6.2) and (6.3). The system coefficients A0, Ai, i ∈ D, Bd
ij , B

c
ij , i, j ∈ D,

m
I

i, m
I,I
ij , m

II

i , and m
II,II
ij obtained in Section 4.2 have at least regularity Cl+2(Ow) since the regularity class

γ of thermodynamic functions is such that γ − 2 ≥ l + 2.
There exists also a linearized version of (6.1) in the form (6.4) that enforce the gradient constraint.

This linearized version (4.29) has been obtained in Section 4.3 and the corresponding coefficients A′
i,

L, and h′ satisfy all assumptions listed in Section 6.1 as well as Section 5.1. More specifically, as
a consequence of (4.31), the hyperbolic blocks A

′ I,I
i and A

I,I
i coincide, the matrix L = L(w, pr) is block

diagonal L = diag( LI,I, LII,II ) with LII,II = 0 and LI,I is a linear function of pr ∈ R
nr,ds so that LI,I = LI,I(w)pr

where LI,I ∈ R
nI,n,nr,ds depend on w. The systems coefficients are naturally related by

∑
i∈D

(
A′
i(w) −

Ai(w)
)
p+L(w, pr)w+h(w, p) = h′(w, p) as established in Section 4.3. The matrices A′

i(w), the coefficients

LI,I, and the coefficients m
′I
i , m

′I,I
ij , m′II

i , and m
′II,II
ij also have at least regularity Cl+2 over Ow since the

regularity class γ of thermodynamic functions is such that γ − 2 ≥ l + 2. The state w⋆ is finally such
that L(w, pr)w

⋆ = 0 for any w ∈ Ow and pr ∈ R
nr,ds since w⋆ = 0. All assumptions listed in Section 6.1

are thus satisfied and this completes the proof.

We thus conclude that there exists local strong solutions to the system of diffuse interface fluids.
The model notably takes into account the temperature dependence of the capillarity coefficient and
general assumptions for the transport coefficients. The model also takes into account the presence of
mechanically unstable points with a nonideal thermodynamics.

7 Conclusion

The mathematical modeling of diffuse interface fluids has been investigated. The mathematical struc-
ture of classical thermodynamics with instabilities as well as that of extended thermodynamics with
temperature dependent capillarity coefficients has been presented. Normal forms have been obtained for
the equations governing diffuse interface fluids with symmetric second order dissipation matrices and
anti-symmetric second order capillarity matrices. The couple (ρ,∇ρ) has been shown to be an hyper-
bolic variable whereas (v, T ) is the traditional parabolic variables as in the Navier-Stokes-Fourier system.
The antisymmetric type second order terms of capillary origin introduce strong couplings between the
hyperbolic and parabolic variables.

New linearized estimates have been obtained for augmented systems in normal form. Local existence
has been obtained for diffuse interface fluids in an Hilbertian framework using a normal form. A key
point has been the use of the gradient constraint.

Natural extension of high scientific interest would be to consider boundary value problems in bounded
domains with proper boundary conditions. Existence of global solutions around thermodynamically sta-
ble constant states as well as around nonconstant liquid-vapor steady equilibrium profiles in an Hilbertian
framework is also of high scientific interest and will require using a new Kawashima condition for aug-
mented systems.
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A Entropy production

Denoting by Dt the convective derivative Dt = ∂t + v·∇ we obtain from Gibbs’ relation (2.4) that

TDtS = DtE − gDtρ− κ∇ρ·Dt∇ρ.

The convective derivatives DtE , Dtρ, and Dt∇ρ may then be evaluated from the governing equations
(2.5)–(2.7) and after some algebra and integrations by parts it is obtained that

∂tS +∇·(vS) +∇·

(
Q

T
− κρ∇·v∇ρ

T

)
=− 1

T

(
P − pI − κ∇ρ⊗∇ρ+ ρ∇·(κ∇ρ)I

)
:∇v

−
(
Q− κρ∇·v∇ρ

)
·
∇T

T 2
, (A.1)

where v:w denotes the full contraction between any two tensors v and w. Using the expressions of for
P and Q as well as (A.1) we obtain the equation (2.13) and there is no entropy production associated
with capillary phenomena.
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