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Symmetrization and local existence of strong solutions
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Vincent Giovangigli, Yoann Le Calvez and Flore Nabet
CMAP, CNRS, Ecole Polytechnique, 91128 Palaiseau, FRANCE

Abstract

We investigate compressible nonisothermal diffuse interface fluid models also termed capillary
fluids. Such fluid models involve van der Waals’ gradient energy, Korteweg’s tensor, Dunn and
Serrin’s heat flux as well as diffusive fluxes. The density gradient is added as an extra variable
and the convective and capillary fluxes of the augmented system are identified by using the Legendre
transform of entropy. The augmented system of equations is recast into a normal form with symmetric
hyperbolic first order terms, symmetric dissipative second order terms and antisymmetric capillary
second order terms. New a priori estimates are obtained for such augmented system of equations in
normal form. The time derivatives of the parabolic components are less regular than for standard
hyperbolic-parabolic systems and the strongly coupling antisymmetric fluxes yields new majorizing
terms. Using the augmented system in normal form and the a priori estimates, local existence of
strong solutions is established in an Hilbertian framework.

1 Introduction

Diffuse interface models conceive liquid-gas interfaces as changeover zones where state variables are
smoothly varying [62, 59, 1]. Diffuse interface models of second gradient type have successfully been used
to describe vaporization fronts, three phase contact lines, surface diffusion as well as complex liquid-gas
interfaces with topological changes [59, 1, 47, 14, 30, 2, 58]. These are strong motivations for investigating
the mathematical structure and properties of the corresponding systems of partial differential equations
as well as the existence of solutions.

The thermodynamics of diffuse interface models has been built by van der Waals [62] using a gradient
squared term in the free energy. The associated pressure tensor has been obtained by Korteweg [51] and
the heat flux by Dunn and Serrin using rational thermodynamics [23]. These equations have alternatively
been derived from the kinetic theory of dense gases by Giovangigli [34, 35]. Bulk phases classical nonideal
thermodynamics furthermore involve non monotone pressure laws allowing the simultaneous presence of
liquid and gaseous states. The dissipative fluxes are similar to that of Navier-Stokes-Fourier fluids and
the capillarity coefficient depends on temperature as deduced from the kinetic theory. The extra higher
order derivative terms of capillary origin in thermodynamic functions and governing equations ensure a
smooth variation of fluid properties at liquid-vapor interfaces [62, 59, 1, 47, 30, 2, 58].

In the isothermal situation, Hattori and Li [45] have first established the local existence of strong
solutions to the Cauchy problem with constant capillarity and transport coefficients. Danchin and
Desjardins have further obtained the existence and uniqueness of solutions in critical Besov space [18].
Kotschote has established the local existence of strong solutions in bounded domains with coefficients
independent of the solution [26]. Bresch, Desjardins and Lin [8] and Bresch, Gisclon and Lacroix-Violet [9]
have investigated the global existence of weak solutions in periodic or strip domains with a monotone
pressure and density dependent capillarity coefficients associated with quantum fluids.

In the multi-dimensional non-isothermal situation, Haspot has investigated the well-posedness in
critical spaces with a monotone pressure and a density dependent capillarity coefficient [44]. Kotschote
has studied the well-posedness of strong solutions in bounded domains with very general coefficients and
pressure laws [27]. Bresch et al. [9, 10], Benzoni et al. [3, 4, 5], Donatelli et al. [22] and Tzavaras et
al. [7, 32] have further considered Euler-Korteweg models. Hattori and Li [46] and Kotschote [28] have
studied the stability of stationary states and Nabet [57], Miranville [56], and Cances et al. [15] have
investigated related Cahn-Hilliard fluid equations.



Symmetrization is a requisite for analyzing the structure of systems of partial differential equa-
tions. Symmetrized forms have notably been used for hyperbolic systems of partial differential equa-
tions modeling fluids [42, 29, 55, 61, 17, 41, 19, 50, 6, 11] as well as for hyperbolic-parabolic sys-
tems [63, 48, 49, 36, 37, 33, 60, 21, 24, 40]. In order to symmetrize the diffuse interface fluid equations,
a first step is to consider an augmented system by adding the gradient of density w = Vp as an extra
unknown following Gavrilyuk and Gouin [31], Benzoni et al. [3], Bresch et al. [10], and Kotschote [27]. In
the same vein, two velocity hydrodynamics with augmented systems have been considered by Bresch et
al. [12, 13]. Gavrilyuk and Gouin [31] have established that the resulting augmented system of equations
can be symmetrized by using entropic variables in the special situation of inviscid fluids. The specific
entropy has been used as a conserved variable—thanks to the inviscid framework—with energy playing
the role of entropy [31]. We first revisit the Gavrilyuk and Gouin symmetrization method, still keeping
the density gradient as an extra variable, but using the energy as a conserved unknown and restoring
the natural role of entropy as is mandatory for fluids with dissipative effects. We correspondingly use of
the Legendre transform of entropy—instead of energy—in order to identify the convective and capillary
fluxes of the augmented system. The entropic symmetrized form is then obtained and the corresponding
matrices relating the dissipative and capillary fluxes to the gradient of the entropic variable involve sym-
metric parts arising from dissipative effects and antisymmetric parts arising from capillarity. A major
drawback of such entropic symmetrized forms, however, is that the map u +— v from the conservative
variable u to the entropic variable v is not globally invertible, due to the presence of mechanical ther-
modynamic instabilities [3]. In addition, the dissipative effects are mixed between the entropic variable
components. In order to solve these difficulties, we investigate normal variables w and normal forms for
the augmented system of partial differential equations.

Normal forms for the augmented system are obtained by using for convenience the normal variable
w = (p,w,v,T)" where p denotes the density, w the density gradient, v the fluid velocity, and T the
absolute temperature. The map u — w remains globally invertible even if neither u — v nor w + v are
globally invertible. This normal variable may be split between its hyperbolic w; = (p, w)? and parabolic
components wy; = (v,T)!, and the hyperbolic component w; may further be split as w; = (wy, wyr)?
where wy = p and wy» = w. The unknown w thus has n = 2dg + 2 component with ds denoting the
space dimension wheras w; and wy both have n; = n; = ds + 1 components. The corresponding vector
and matrix block structure associated with the partitioning of R" into R" = R™ x R" is used in the
following. The resulting equations in normal form constitute a quasilinear symmetric-antisymmetric
hyperbolic-parabolic composite system in the form

Ao(wW)dw + > Aiw)dw — > BLw)a,0,w — Y B (w)d,0;w = h(w, Vw), (1.1)
ieD i,je€D i,jE€D

where Ag is symmetric positive definite, block-diagonal Ay = diag(A;', Ay™"), with Ag™" only depending
on (wy,wy). The convective matrices A, i € D, are symmetric and a multiple of the mass conservation
equation has been added to the first equation to ensure that Ay remains positive definite. The dissipation
matrices satisfy the reciprocity relations (§§lj)t = §§»11-, 1,7 € D, have nonzero components only into the
lower right §?jn’n blocks, and B4™! = >ijeD §?jn’n(w)§i§j is positive definite for & € ©%~! where X% 1
is the sphere in d dimension. The matrices BY; are such that (Bf;)" = —BS;, the blocks Bj;" vanish
EC-;’I = 0, and the strongly coupling blocks EC-;’H and EZC-jH’I only depend on (wy,wy). The right hand
side h(w, Vw) is in the form h = (h;, hy)? with h; = h;(w, Vwy) and h; = h;(w, Vw). We next consider
a constant equilibrium state w* = (w}, w})? with w¥ = (p*,0)! and w} = (v*,T*)! so that w* = 0 and
investigate the Cauchy problem looking for solutions such that w — w* € H'(R%).

The structure of the system of partial differential equations may be analyzed by using its normal
form (1.1). The components w; = (p, w)* first form an hyperbolic variable of dimension n; = 1 + dg and
the components wy, = (v,T)? form a parabolic variable of dimension n; = ds + 1 using the terminology
of traditional hyperbolic-parabolic systems although the matrices Efj introduce extra coupling. The
variable w; = (p, w)" = (p, Vp)! being an hyperbolic variable, the density p will have more regularity
inherited from that of w but p is not a parabolic variable. A priori estimates given in Theorem 6.2 are
obtained in the spaces

w; —wi e ([0, 7], HY) nC* ([0, 7], H?),
wy —wj € CU([0,7], H') nC* ([0, 7], H %) N L*((0,7), H'),

where I > lp + 2, lp = [ds/2] + 1 and [ ] denotes the integer part. In particular, density estimates are
in the form p — p* € C°([0,7], H'!) instead of solely p € L?([0,7], H'*') as would be the case for a



parabolic variable. More regularity is also required with [ > [y 4 2 rather than [ > [y + 1 as for standard
hyperbolic-parabolic systems [48, 33, 60]. The time derivative Oywy, is indeed only in C°((0,7), H'~?)
due to the antisymmetric coupling terms Efj (w)@iajw involving second derivatives of hyperbolic
variables.

A priori estimates and existence of solutions are established for an abstract augmented system of
equations in normal form that will encompass the special situation of diffuse interface fluids. Linearized
equations are initially considered and new a priori estimates are obtained for symmetric-antisymmetric
linearized systems of hyperbolic-parabolic type. An important property of nonlinear as well as linearized
systems is notably to maintain the natural constraint w;» = Vwyp. In order to establish the existence
of solutions for linearized equations, the higher order capillary terms Zi, jep Efj (W)9;0;w are first reg-
ularized using mollifiers and the hyperbolic and parabolic components are uncoupled. The limit with
respect to the regularizing parameter is next performed and yields existence results for the linearized
equations. Only the symmetry of the hyperbolic blocks Ki’l, 1 € D, is required for such local existence
theorems and key points are the anti-symmetry relations (Ef-j)t = —E;i ensuring elimination of the cap-

i,jED

illary terms of entropy production, the vanishing of the blocks Efj“ = 0, and the extra regularity of
the coefficients Efjl’n and Efjn’l that only depend on more regular components of w denoted by w,. The
nonlinear equations are next considered and a local existence theorem of strong solutions is obtained
using the symmetrized normal form as well as linearized iterates with w, = (wlx,wn)t. The functional
setting is a classical Hilbertian framework that differ from previous existence theorems [44, 8, 27]. To
the best of the authors’ knowledge, it is the first time that symmetrized normal form is introduced for
augmented system and used to establish local existence theorem of strong solutions for diffuse interface
fluid models with natural general assumptions on the system coefficients.

The equations governing capillary fluids are presented in Section 2 and the augmented system is
investigated in Section 3. The symmetrization of diffuse interface fluid models is addressed in Section 4.
Linearized estimated and existence of solutions to the linearized equations are then studied in Section 5.
Local existence of solutions to the nonlinear equations is finally obtained in Section 6.

2 Diffuse interface fluids

We present in this section the governing equations of diffuse interfaces fluids also termed Korteweg,
capillary, or cohesive fluids. These equations involve van der Waals’ gradient energy [62], Korteweg’s
tensor [51] and Dunn and Serrin’s heat flux [23]. Such capillary fluids models have successfully been
used for the study of phase change problems including complex liquid-gas interfaces with topological
changes [1, 47, 2, 30, 58].

2.1 Van der Waals free energy
The free energy per unit volume A in a second gradient theory is in the form
A=A+ L5 Vp)?, (2.1)

where A°! denotes the classical free energy per unit volume, p the mass density, V = (01,...,0,.)" the
differential operator in the physical space R%, dy the space dimension, and s the diffuse interface or
capillarity coefficient. The superscript ¢! is used to denote classic or bulk thermodynamic properties that
do not involve gradients. The classic free energy A only depends on the densities p and the absolute
temperature 7" whereas the gradient squared term %%|Vp|2 in A represents an excess free energy of
the interfacial region [62, 51, 59, 1]. As deduced from the kinetic theory of dense gases [34, 35] and
from experimental measurements [53], the diffuse interface coefficient s is assumed to only depend on
temperature » = 3(T'), at variance with the case of quantum fluids.

Using the thermodynamic relations d A = —SdT + ¢'dp, OrA = —S, and 0,A = g, the entropy
per unit volume S and the Gibbs function per unit mass g are found in the form

§=38— %8T%|Vp|2, g =g (2.2)

The equality of the entropy S with the classic entropy S¢! when s is independent of temperature is
in agreement with van der Waals theory [62, 51, 59] and the Gibbs function per unit volume G is
G = pg = G°'. The energy per unit volume £ = A + T'S and pressure p = G — A are further obtained as

E=E"+ (e —Tor=)|Vpl*,  p=p"—=1xVpl (2:3)



and the fluid enthalpy per unit volume H = & + p reads H = H — %T@T%|Vp|2. The generalized
volumetric Gibbs relation is finally in the form

TdS = d€ — gdp — %V p-dV p, (2.4)
where d denotes the differentiation operator. We also introduce for later use the thermodynamic functions

per unit mass s = S/p, e = E/p, and h = H/p.

2.2 Equations for capillary fluids
The equations governing capillary fluids may be written in the form [1, 47, 34, 35]

Op + V- (pv) =0, (2.5)
,(pv) + V- (pv@v) + V-P =0, (2.6)
0,(€ + LplvP) + V-(v(E + Splv]?)) + V-(Q + Pv) =0, (2.7)

where 0; denotes the time derivative operator, V the spatial differential operator in physical space R%,
v the fluid velocity, P the total pressure tensor, @ the total heat flux, and where the pressure p and the
energy £ are given by (2.3). Vectors and tensors of physical origin in R% or R%% are denoted by using
bold symbols. The transport fluxes P and Q contain capillary as well as dissipative contributions

P =pl+ xVpaVp—pV-(%xVp)I + P, (2.8)
Q =5pV-wVp+Qf, (2.9)

with I denoting the ds-dimensional unit tensor, P4 the viscous pressure tensor, and Q% the Fourier heat
flux [1, 47]. The dissipative fluxes P4 and QY are classically of Navier-Stokes-Fourier type (16, 25, 33]

Pl =—oVwI—n(Vo+ Vo' — 2Vul), (2.10)
Q= \VT, (2.11)

where v denotes the volume viscosity, n the shear viscosity and A the thermal conductivity. The transport
coefficients v, 1, and A may be obtained from the kinetic theories of dense or dilute gases and only depend
on pand 7.

Remark 2.1. The dissipative pressure tensor P is normally obtained in the form
Pl=—o'Vol—n(Vv+ Vo' —2VwlI), (2.12)

where v’ denotes the physical volume viscosity. The original pressure tensor is indeed a matriz of di-

mension three with a coefficient 2/3 instead of the coefficient 2/ds. However, the spatial dimension of

the model ds may possibly be reduced and the equations considered in R% with 1 < dy, < 3. Using then

for convenience a coefficient 2/ds instead of 2/3 in (2.12) is equivalent to increasing the physical volume
2

viscosity v’ by the amount 7](dz - 5). The effective volume viscosity with dg spatial dimensions is then

v=1v+ n(d—i — 2) and we note that v + (1 — d%) ="+ 4 remains positive.

Using Gibbs’ relation (2.4), the governing equations (2.5)—(2.7), and the expression of transport
fluxes, the entropy balance equation may also be written after some algebra as

Q  xpV-vVp\ A 5 D 5 M ¢ 9
at$+v-(v5)+v-(——7) = SIVIP + Z(V0) + 57| Vo + Vo' = 2VeoT

2
2.13
=2 . (213)

and there is no entropy production associated with capillary phenomena. The word capillary is tradi-
tionally used to denote the extra gradient terms in the energy, the pressure tensor, and the heat flux.
A better terminology, however, is that of diffuse interface since the higher order derivative terms lead
to thin transition zones between phases with smooth variation of fluid properties. Another very good
terminology is that of cohesive fluids since the extra gradient terms are due to cohesive forces.



2.3 Classical thermodynamics

The mathematical properties of the classical thermodynamic functions £, p°!, and S are presented in
this section [43, 39, 40]. The properties of the extended thermodynamic functions &, p, S, the capillarity
coefficient s, and the transport coefficients v, n, A will be addressed in the fluid section using augmented
variables. We denote for convenience by z¢! the variable z°! = (p, T')! and by u®! the variable u! = (p, £)*.
The superscript ! is generally used to denote quantities associated with classical thermodynamics. We
may commit the traditional abuse of notation of using the same symbol for a given quantity as function
of different state variables. We denote in the following by 0 the derivation operator with respect to the
variable z°!. The first property (Hil) is associated with the smoothness of thermodynamic functions and
the regularity class v denotes an integer such that v > 3.

(HS") The thermodynamic functions £, p, and S are C7 functions of the variable z&' = (p, T)!
defined over a simply connected nonempty open set O,a C (0,00)2.

The second property (Hgl) concerns Gibbs relation between the differentials of £ and S!. There
is also a natural constraint associated with G since we only consider a volumetric Gibbs differential
relation [39].

(HY)  Assuming that (HS') holds and defining G = £ + p — TS and ¢° = G/p, we have the
volumetric Gibbs’ relation between the differentials dS°' and d€!

TdS® = de&t — g%dp. (2.14)

Defining s = 8 /p and e! = £/p we have g = e + p!/p — T's! and it is obtained from (2.14)
that T'ds! = de! — (p°'/p?)dp. A fundamental question associated with nonideal thermodynamics is
that of thermodynamic stability. According to the second principle of thermodynamics, the evolution
of an isolated system tends to maximize its entropy. The entropy of a stable isolated system should
thus be a concave function of its volume and internal energy [43]. Whenever it is not the case, the
system may loose its homogeneity and split between several phases in order to reach equilibrium. This
notably arises with mechanically unstable fluids that split between vapor and liquid phases [43]. From
a mathematical point of view, these unstable points are associated with a loss of definiteness of entropy
Hessian matrices [43, 38, 39].

Proposition 2.2. Assume that (HS)) and (HS) hold and that z¢' — u€! is locally invertible. Denoting
by O the derivation operator with respect to u®, the following statements are equivalent :

(7) 52%01801 s negative definite.

u
(ii) 0,EY >0 and 9,p°' > 0.
Proof. From Gibbs’ relation (2.14) it is obtained that 55C18C1 = 1 and 5PSC1 = 79%1 and this implies
the compatibility relation 5gd (;79:_1) = 5,3(%) Moreover, for any function ¢ we have the differential
relations

5gc1¢ = 8T¢ 5gc1T, 8T¢ == 5gcl¢ aT(S‘Cl, (215)
0,0 =0,0+0,60,T,  0,0=0,0+eadp 0, (2.16)

We then note that 5§c15c15d = 591(%) so that 5§c15c15d = fggclT/TQ. Similarly, we have 5§C1p8d =

0,(%) so that 92, S = 75PT1T2. Upon letting ¢ = T in (2.16) we obtain that ~5pT = —0puT 0,

and we have established that dipdSCl = 85c1T8p5C1/T2. Combining 9,T = fangapecl with the
~ c ~ o al

compatibility relation d,. (Z%L]) = 0,(7) and (2.15), we also deduce that 6T(9Tl) = _QPTST_ In addition,

1 cl

from 5§pSC1 = 75/)(%) and from (2.16) we deduce that 5§pSC1 = 78/)(9%1) —0p(%) 5pT so that 5§pSC1 =

09" 9eaT @8N \uo Lave thus established that T282,..,89 — —8.., T, T?52, S — 8..T 9 £
- - T2 . e have thus established that eiga = —0cad, ce1 = Jga A

and T252p801 = —T9,9" — 5SC1T (9,€)2. We have already derived that T'ds” = de! — (p'/p?)dp so
that dg®! = —sdT + (1/p)dp®" and 8pgd = 8ppd/p, and letting ¢ = T in (2.15) yields 9,.E¢! 5501T =1.

Combining these relations, we have established that for any test vector x¢! = (xp,xg)t € R?

= 1 1

a2c . Scl cl ey -9 SCI 2 cl 2 217

< uclyel XX > T20T5C1 (XS P XP) oT oD Xy ( )
in such a way that thermodynamic stability is equivalent to 97! > 0 and appd > 0. O



The inequality d-€' > 0 is the thermal stability condition and the inequality 9,p! > 0 the mechanical
stability condition [43, 39]. In order to integrate with respect to the variable T" in the open set O,a it is
further required that the open set O,a is increasing with respect to temperature.

Definition 2.3. A nonempty open set O,a C (0,00)? is said to be increasing with respect to temperature
if for any %' = (p, T)* € O,a we have {p}x[T,00) C Oya.

The construction of thermodynamics from state laws also requires the open set O,a to be decreasing
with respect to density [39] but such a property is not needed for an existence theorem [40]. We now
assume that the fluid is thermally stable and this will allow the use of the u' variable.

(Hg') Assuming that (Hil) holds, the open set O, is increasing with respect to temperature and the
volumetric specific heat is positive OrE > 0 over O,a.

Under such a property (H3) we may change of variable from z¢! = (p,T)! to u! = (p,EN? as
investigated in the next lemma.

Lemma 2.4. Assuming that (Hfl) and (Hgl) hold, the map z¢' — u° is a C7 diffeomorphism from O,a
onto an open set Oyer.

Proof. The map z° +— u! is C7 from (Hil) and the jacobian matrix d,au®! has determinant d7£¢'. This
jacobian 0,au is thus nonsingular from (Hgl) so that z°! + u is locally invertible and the image O,a
of O,a is an open set. Assuming next that (pb,SCI(pb,Tb)) = (p*,E%p", T%)) and letting p = 0° = pt,

we deduce from £%(p, T?) = £%(p, T*) that fTTfang(p, s)ds = 0 keeping in mind that O,a is increasing
with respect to temperature. Since the specific heat 97E! remains positive over the integration segment
{p}x[T”, T*] we obtain that 7° = T*. The map z°' — u°! is thus one-to-one and is therefore a global C
diffeomorphism from O,a onto Oa. O

The fluid thermodynamic functions are further compatible with that of perfect gases when the density
goes to zero p — 0 [39]. This yields boundary conditions at zero densities for the construction of nonideal
fluid thermodynamics from equations of state [39]. However, such a property is not required in order to
investigate well posedness of diffuse interface fluid models. We neither assume that the Hessian matrix
83“”01801 is negative definite since we anticipate the presence of mechanical instabilities where 8ppd <0

cl

and only thermal stability is assumed with (Hgl). We will still need an instability indicator m® in order

to control negative values of the derivative d,p! as investigated in the next lemma.

Lemma 2.5. Assuming that (HS') holds and that § > 0 is given there exists a C7~'(O,a) function m!
such that m >0, m + 9,p/pT > 0 and m®' = 0 if 9,p°/pT > 6.

Proof. Let ¢ € C*°(R) be such that ¢(z) =1 if 2 <1/2, ¢ is decreasing, ¢(x) =0 if z > 1, and define

i) - (5 ) ().

It is then easily checked that me! > 0, that m! + 9,p!/pT" remains greater than §/2 that m(p,T) = 0
whenever 9,p°'/pT > § and m is C7~1(O,a) from (H{). O

Whenever stability is lost, we will add m! to 8ppd /pT in order to obtain a positive quantity. When
a thermodynamical state z¢! is stable in the sense that appd /pT > § the instability indicator m¢! also
vanishes in the neighborhood of z¢.

Remark 2.6. The Van der Waals pressure law is in the form [43]

~prT
B 1- pbvw

cl

p — Avw (T)/’Qv

where T is the gas constant per unit mass, byy a positive constant—the covolume—and ayw(T) a non-
negative C7 function of temperature arising from attractive potential forces [43, 34]. The mass density
p is such that 1 — pbyy > and the open set O,a is then given by Oua = (0,1/byy) X (Tiin, 00) where
Tmin 18 @ positive minimum temperature. It may then be established that e = eP8 — (ayy — TOrayyw)p and
s = sP& 4 Oraywp + 7log(l — bywp) where ePE and sPE are the energy and entropy per unit mass of a
perfect gas, respectively [39], as well as —2ayy/Tmin < 0,p%/(pT) so that m®! is also uniformly bounded

for these fluids. Similar properties also hold for modified van der Waals state laws like the SRK equation
of state that has been found to be accurate [38, 39].



The mathematical structure of classical thermodynamics and their construction from state laws has
been investigated [39]. From a physical point of view, classical thermodynamic functions for fluids may
first be obtained by extending the thermostatic framework to fluids using the idea of local states [43].
A more satisfactory derivation is that from the kinetic theory of gases [16, 25, 33] since it is does take
into account the presence of macroscopic gradients. The idealized vision that there exists a local state is
replaced by the more satisfactory argument that the gas distribution function is a Maxwellian at zeroth
order of Enskog expansion. Extended thermodynamics further valid in the presence of microscopic
gradients and steep interfaces, that may also be derived from the kinetic theory [34, 35], are discussed
in the next section using augmented variables.

3 The augmented system

We recast in this section the equation governing cohesive fluids as a quasilinear second order system of
partial differential equations. A first step is to add the gradient of density as an extra unknown [31, 3,
10, 27]. A second step is to identify the proper convective, capillary and dissipative fluxes [31].

3.1 Augmented variables

An important step in order to restructure the system of partial differential equations governing diffuse
interface fluids is to introduce the extra unknown vector [31, 3, 10, 27]

w = Vp. (3.1)

The vector w is in R%, where dy denotes the space dimension, and the w governing equation is obtained
by applying the differential operator V to the mass conservation equation (2.5). The resulting equation
is written in the form
Orw + Z 0;(wv; + pVy), (3.2)
ieD

where we have denoted by D = {1,...,ds} the indexing set of spatial directions, v; the velocity in the

ith spatial direction and 9; the derivative in the ith spatial direction so that v = (v1,...,vq,)" and
V = (01,...,04.)t. The augmented conservative unknown u is then in the form
u= (p,w,pv,gmt)t, (3.3)

and thus includes w as well as the density p, the fluid momentum pv and the total energy per unit
volume £% = £ + % p|v|?. Note that the transposition operation is made by block for column vectors
like u for the sake of notational simplicity. The augmented natural variable z € R" is correspondingly
defined as

z= (p,w,v,T)t, (3.4)

and will be convenient for deriving differential identities. Both u and z are in R" where n = 2d; 4 2 is
the augmented number of unknowns.

We may then express the thermodynamic functions £, p, and S in terms of the augmented natural
variable z

E=E"+ L5 — TOrs)|w|?, S =8~ Lorsw)?, p=p" — txw|? (3.5)

as well as H = H — %T@T%|w|2 and ¢ = ¢°'. We may also introduce fluid thermodynamic quantities
taking into account the kinetic energy as functions of z

£ =4 bl H = H A Bl g =g Sl (36)

as well as the densities per unit mass s = S/p, e = E/p, h = H/p, et = £ /p, and h*°' = H"'/p. The
mathematical properties of the thermodynamic functions as functions of z or u are investigated in the
next section.



3.2 Fluid extended thermodynamics

The investigate in this section the mathematical properties of the thermodynamic functions £, p, and S,
given by (3.5), as functions of z or u and this next yields the properties of £* and H'°* given by (3.6).
We simply denote by 0 the derivation operator with respect to the variable z. The first assumption (Hy)
is a natural extension of (Hfl) and the regularity class v denotes an integer with v > 3.

(H1) The thermodynamic functions €, p, and S are C" functions of the variable z defined over a
simply connected nonempty open set O, C (0,00) x R% x R% x (0,00) and the capillarity
coefficient s is a CV*L function of temperature over O,. For any (p,T)! € O,a we have
(p,0,0,T)t € O, and for any (p,w,v,T)t € O, we have (p,T)* € O,ar.

The capillarity coefficient » needs to be C7*! in order to obtain C7 extended thermodynamic func-
tions £, p and S from (3.5) and the classical thermodynamic functions £, p°, and S are naturally
defined over O,. The capillarity coefficient s only depends on temperature following the kinetic theory
of dense gases [34, 35]. The next property (Hz) concerns Gibbs relation between the differentials of £
and S with a natural constraint for G since we consider volumetric quantities [39)].

(H2) Assuming that (Hy) holds and defining G =& +p—TS and g = G/p, we have the volumetric
Gibbs’ relation between the differentials dS and d& over O,

TdS = d€ — gdp — »w-dw. (3.7)

When (H;) and (Hz) hold, the following Gibbs’ relation TdS = d&*" — g*°*dp — sw-dw — pv-dv is
also established in terms of S, £'°' and ¢'°*. Concerning thermodynamic stability, a result similar to
that of Proposition 2.2 is established in the next proposition taking into account the w and v variables.

Proposition 3.1. Assume that (H1) and (Hz2) are satisfied and that the map z — u is locally invertible.
Denoting by O the derivation operator with respect to u, the following statements are equivalent :

(1) 5&,5 is negative definite.
(it) Op€ >0, O,p >0, and » > 0.

Proof. The proof is similar to that of Proposition 2.2 and is based on the following expression of the
quadratic form associated with the entropy Hessian matrix 92,8

- 1 2
(02,Sx, x) = — 20,8 (Xg — 0,E%, — vexy — (30— T@T%)w-xw)
d,p ” 2 2
_pLTX’%_T’ w’ —p—T’xv—vxp , (3.8)

where x = (X7, X, X», x¢)' denotes an arbitrary vector of R". This expression then directly yields that
stability is equivalent to 97& > 0, 0,p > 0 and s > 0, keeping in mind that 7" and p are positive. O

Note that the same mechanical instabilities are obtained in both Proposition 3.1 and Proposition 2.2
since Opp = 8pp01. This is a natural result since vaporization fronts are stabilized by higher order density
derivatives and not by first order density gradients w. We now generalize Definition 2.3 and Lemma 2.4
to the situation of augmented variables.

Definition 3.2. A nonempty open set O, C (0,00) x R2% x (0, 00) is said to be increasing with respect
to temperature if for any z = (p,w,v,T)* € O, we have {p, w,v}x[T,00) C O,.

The strengthened assumption (H3) now includes the former assumption (Hgl) of Section 2.3 and
assumption (Hg) naturally assumes that the capillarity coefficient is positive.

(H3) Assuming that (H1) holds, the open set O, is increasing with respect to temperature and the
volumetric specific heat is positive OrE = OpE©t > 0 over O,.

(Ha) The capillarity coefficient is positive ¢ > 0 over O,.

With Proposition 3.1 and under assumptions (Hsz) and (Ha4) only mechanical instabilities may arise.
Under assumption (H3) we may also change of variable from z to u as investigated in the next lemma.
This notably allows to consider all thermodynamic functions as functions of the conservative variable u.



Lemma 3.3. Assume that (H1)-(Hs) hold. Then the map z — u is a C7 diffeomorphism from the open
set O, onto an open set O,.

Proof. The proof is similar to the situation without the v and w variables. Under the assumptions
(H1)-(H2) the map z +— u is C7 and its Jacobian may be evaluated in the form

1 Ol,ds Ol,ds 0
04, I Od.,a. Oq,
aZU _ ds,1 ds,ds ds,1 (39)
v Ods,ds ,OI Ods,l

0,E° (= Topx)w* pv* 0pE

where 0,E%" = 0, + L|v|?, Or& = OpE — $TO%3|w|? and 0;; denotes a zero block with i lines
and j columns. Since p and dr& are positive over O, the Jacobian matrix d,u is nonsingular and the
local inversion theorem may be used. Moreover, proceeding as in Lemma 2.4, using again the positivity
of p and Or€ and the increasing property of the open set O, with respect to temperature, the map
(p,w,v,T) — (p,w, pv,E*®) is into and we conclude that z — u is a C7 diffeomorphism. The inverse
Jacobian matrix may further be obtained after some algebra in the form

1 01,4, 01,4, 0
Od,,1 I Od.,d, Od,1
Oz = 3.10
’ -7 Od,d, s Oan |’ (810)
e L € X M LAY 1
6’1‘8 BTS BTS 6’1‘5

and these matrices d,u and 0,z will later be useful in order to establish various differential identities. [

Remark 3.4. As a typical exemple of open set O,, let us assume that O, C (0,00) X (Tinin, 00) where
Tin > 0 is positive and that » as well as &L are smooth up to Tmin. We may then introduce

Clp)=__ inf  9r&p,T), K(p)= sup [T7x,

 T€[Timin,00) T€[Tinin,0)
and assuming that C(p) is positive and K(p) is finite, we may then define
0r= {2 (0,00) x B x B x (Tuim00); (0. T) € O, K(o) Jol? < C(p) ). (3.11)
and Property (Hs3) is then easily established.

The thermal stability condition 97& = 9rE° — %T@%%|w|2 > 0 naturally introduce limitations on
the norm of w. However, the order of magnitude of s shows that such conditions may hold even when
w is of the order of the inverse of the range of interaction potential [35]. We do not assume that the
Hessian matrix 5&,8 is negative definite since we anticipate the presence of mechanical thermodynamic
instabilities. We will also need an instability indicator m in order to control negative values of the
derivative d,p = appd and that may be taken to be the instability indicator m®! of Lemma 2.5.

Lemma 3.5. Assuming that (Hy) holds, that § > 0 is given, and letting m(z) = m(p,T), then m is
C7=1 over O,, and such that m >0, m + 89,p/pT >0 and m =0 if d,p/pT > .

We finally need to introduce the mathematical assumptions concerning the transport coefficients that
may be obtained from the kinetic theory of gases, the theory of moderately dense gases or from empirical
correlations [16, 25, 33, 38]. The property that v + n(1 — d%) > 0 is deduced from the relation involving
the physical volume viscosity v’ since v + n(1 — dz) = v’ + Z. The transport coefficients only depend on
(p, T) but including a dependence on w introduce no difficulty.

(Hs) The coefficients v, n and X are C7 functions over O,. The coefficients n and X\ are positive,
the coefficient v is nonnegative and such that v + n(1 — dz) is positive over O,.

Assumptions (Hp)-(Hs) are assumed to hold in the remaining part of the paper whenever the diffuse
interface fluid equations are considered. Since the map z — u is a C7 diffeomorphism, all the thermo-
dynamic functions and transport coefficients are also C7 functions of the conservative variable u and
defined over the corresponding open set O,.



3.3 Augmented entropic variable

The mathematical entropy o is taken in the form
o=-8=-8"+L10p|w), (3.12)

and includes capillary contributions when ¢ depends on temperature. The mathematical entropy o is a
C7 function of z or u from assumptions (H;)-(Hs). Differentiating o with respect to z, we obtain from
Gibb’s relation (3.7) that

oré

(920 = (% — %,8T%wt,017ds,fT).

Multiplying next by dyz on the right, and using 0,0 = 0,0 0,z, we obtain the expression of the augmented
entropic variable v = (9,0)*

t
v:—< f%|v|2,%w,v,71) . (3.13)
The augmented entropic variable v is formally similar to that of compressible non capillary gases [48,

49, 33] with the addition of the extra vector sw associated with the w component of u. We may then
evaluate the useful matrix 9,v in the form

app 1 ¢ 6,,5“0(‘7\1)\2
o7 Onde —7v — T
—TOrsx
Od 1 zZ1 Od d —E LT Xy
S5 T s50s T2
Dy = (3.14)
1 1
0 Odsyds TI 7—T2’U
1
0 014 01,4, T

In the situation of mechanical stability we have d,p°! = 9,p > 0 so that d,v is nonsingular and the inverse
Jacobian matrix is given by

b O G0 S
o ZIr o T(e=Trx), .,
0z = T g . (3.15)
0 Oq.4 TI Tv
0 01,9, 01,4, T2

The Jacobian matrix d,v has determinant »9,p/pT™ and the map z — v is not globally invertible
in the presence of mechanical instabilities when 0,p = appd is changing sign. This is notably the case
in liquid-vapor flows and denoting by 1 and g the indices of a liquid and its vapor at equilibrium, the
classical equilibrium relations yield 1; = Ty, pfl = pgl, and g1 = gg. These equilibrium conditions between
a liquid and its vapor, completed with the conditions w; = wg = 0 and v; = v, = 0, mean that the
entropic variables v; and v, coincide even though the corresponding natural variables z; and z, differ.
We denote in the following by O5' C O, the subset of stable states in O,

0y ={z€0,|9,p>0}, (3.16)

with similar definition for O5t. Then for any z € O, the map z ~ v is locally a C7~! diffeomorphism
and thermodynamic functions may locally be considered as C?~! functions of v. In this situation, the
map u + v is also a local C7~! diffeomorphism [40] whereas in the situation of perfect gases z + v and
u — v are always global diffeomorphisms [33].

3.4 Augmented fluxes

The governing equations of the augmented system are written in vector form

O+ > 0;(Fi+F; +F) =0, (3.17)
i€D

where F; denotes an augmented convective flux, F¢ an augmented capillary flux, F¢ an augmented
dissipative flux in the ith direction and D the spatial direction indexing set. Both augmented convective
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F; and capillary F¢ fluxes have to be identified whereas the augmented dissipative fluxes F¢ are naturally
given by [48, 49, 33]

Fd = (0, 0a.1, P, QF + Z Pidjvj)t, ieD, (3.18)
jED
where P§ = (’Pidl, . ,P?dS)t and are simply obtained by adding null components for the extra hyperbolic
w variable. In order to identify the proper convective F; and capillary F§ fluxes we adapt the method of
Gavrilyuk and Gouin [31] using the Legendre transform of entropy instead of energy, although it is also
possible to use thermodynamic arguments [52].

We first assume to be in the neighborhood of a stable point z € O5' in such a way that u +— v is
locally invertible. The Legendre transform £ of entropy is given by £(v) = (v,u) — o since 9,0 = v! and
may locally be defined as a function of v. In this situation, differentiating £(v) with respect to v, it is
obtained that u® = 9,£. We may evaluate £ from the expressions (3.12) of o and (3.13) of v and it is
obtained that ) 1
L={uv)—0c= ?(pCl+%%|w|2) = ?(p+%|w|2). (3.19)
The Legendre transform of o(u) is then £(v) and conversely. This expression for £ differs from that of
classic compressible fluids by the extra capillary term %%|w|2. It also differs from the Legendre transform
of energy by the 1/T factor. Adapting Gravilyuk and Gouin procedure [31] and following the structure
of classical compressible fluids, it is then enforced that L; = Lv; and F; = (&,(EUZ-))t. The fluxes F;
may then be evaluated by using the identity 0, (Lv;) = uv; + LO,v;. From the expression of the entropic
variable v it is obtained after some algebra that the convective flux F; is given by

t
Fi = (pvi7wvia pPUV; + (p + %|w|2)b“ (HtOt + %|’UJ|2)’U1) ’ 1€ D7 (320)

where b; is the ith basis vector in the physical space R%. This flux is similar to that of classic fluid with
the exceptions that we have an extra capillary component wuw; associated with the w variable and that
»|w|? has been added to the pressure. Even though these fluxes have been derived in the situation of
thermodynamic stability, these expressions are now adopted for all states z € O,.

Entropic relations are then recovered from the expressions of o and F;, i € D. Defining naturally the
entropy flux in the ith direction by q; = o v; for i € D, we have the traditional relations

Ouo O F; = auqi, i€ D. (3.21)

It is indeed first obtained by differentiating (3.20) and using (3.13) that 9,0 0,F; = 9,q; and multiplying
on the right by 9,z then yields (3.21). We thus have q; = o v;, £; = Lv;, and the Legendre transform of
qi(F;) is £;(v) when stability holds and when z — F; is invertible as for instance when v; is large enough.

On the other hand, the capillary fluxes F{ include all higher order terms of the momentum and energy
equation and will lead to an antisymmetric structure

t
F; = (O,pV’UZ‘, —pV (3ew;), prew-Vv; — pv-V(%wi)) , i€D. (3.22)

It is then necessary to check that the governing equations associated with the fluxes F; and F{ for ¢ € D
coincide with the original equations for capillary fluids (2.6) and (2.7). This is obtained by using the
following differential identities for the momentum (2.6) and energy (2.7) equations

V- (%Vp@Vp —pV-(5Vp)I — %|Vp|2I) =-— Z 9;(pV (ew;)),
i€D

V. (%pV-va + #xVpVpwv — pV-(xVp)v — »|Vp|? v) = Z@i (prw-Vv; — pv-V (ew,)).

€D

3.5 Quasilinear form

We have obtained in Section 3.4 the augmented convective F;, capillary F§, and dissipative fluxes F?
in the ith spatial direction. From the expressions (3.22) and (3.18), the capillary F§ and dissipative F¢
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fluxes may also be written in the form F = — djeD @%(’%Z and F§ = -3, p @Z@j@jz where @% and §ch

are uniquely defined matrices in R™". We may thus write F$ and F$ in the form

Fi=-) Blou, Fi=-> Bjou icD, (3.23)

V) V)
JjED Jj€D

where B?j and Bj; are given by B?j = E?jauz and B, = @fjauz. The dissipation matrix B?j then relates
the dissipative flux in the ith direction F{ to the gradient of the conservative variable in the jth direction
0;u and the cohesive matrix Bf; relates the capillary flux in the ith direction F{ to the gradient of the
conservative variable in the jth direction d;u.

We may next introduce the jacobian A; = 0,F; of the convective flux F; with respect to the conser-
vative variable u and the governing equations (3.17) may finally be written in the form of an augmented

quasilinear second order system of partial differential equations

O,u + ZAi(u)@-u — Z ai(B?j(u)aju) — Z 9, (B§;(u)o;u) = 0. (3.24)

i€D i,j€D i,j€D

The coefficient matrices A; = 0,F;, B?j, and Bj;, for ¢, j € D, have at least regularity C7~1 over the open
set Oy. It is then remarquable that the original system (2.5)—(2.7), that involves third order derivatives of
density in the momentum equation, has been rewritten in the form of a quasilinear second order system.
Symmetrization of the corresponding augmented system of partial differential equation is investigated in
the next section.

4 Normal form of the augmented system

We investigate in this section symmetrized forms of the augmented system of conservation equations
(3.24) as well as the properties of convective, dissipative and capillary matrices.

4.1 Entropic symmetrization

An entropic symmetrized form of the quasilinear system in conservative form (3.24) may be obtained
by using the entropic variable v around a stable state. Assuming that z is a stable state z € O with
Opp > 0, the map z — v is locally invertible so that u ~ v is also locally invertible from Lemma 3.3.
Proceeding as for classic fluids [48, 49, 33], the symmetrized entropic form is obtained in the form

AowW)dv + > Aiw)dy — > 0,(BEWAv) — > 9;(B5;(v)a,v) =0, (4.1)

ieD i,jED i,jED

with ;&0 = oyu, A; = A;0u, §?j = B?j&,u, and §ZC] = Bf;0wu, for 4,5 € D.

The matrix ,Ko = Oyu may be evaluated as 2‘:0 = 0,ud,v and is found to be

LT oT ot T tot
Opp Ol’ds appv appapg
0 Tr 0 T —T0
_ do1 ~ do,ds (5 T30 )w
Ao=1 0 214 oL 2T 5 gqtot ’ (4.2)
5,9 d,ds T+ 5,599V 550
T tot T _ t  pT tot,,t
5500 (3 = TOr»)w bp0pH T
where
_ T

T
T (0,E°%)2 + ;(%fTaT%)2|w|2 + pT|v|* + T?*0rE.

)

The matrix AO is symmetric Aé = KO and it is easily established that 2‘:0 is positive definite since z is
assumed to be a stable state with d,p > 0. Its determinant, directly obtained from d,u = d,ud,z, is

given by det Ag = p2T°0pE [ 30,p.
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Denoting by & an arbitrary vector of R%, the convective matrices A; = O,F; owu, i € D, that may
conveniently be evaluated as A; = 0,F; 0,z, i € D, are given by

0 Oug, pE! pv-€

0g.,1 04, 4. wWRE v-€w

S5

Z‘fiﬂi =v-EAg+ T (4.3)

ieD P  EQw p(vRE + Exv) (HO + s|w]|?)€ + pv-€v
po-€ v-bw' (H' + xw|?)E" + pv-ot  2(H™" + s|w|?)v-€

These convective matrices R are symmetric 7&5 = Ki, i € D, and underline the role of the modified
pressure p + »|w|?. If the lines and columns associated with the extra variable w are removed and if
the capillarity coefficient s is set to zero, the resulting matrices are formally similar to that obtained for
compressible Navier-Stokes-Fourier equations [48, 33].

The second order dissipative flux matrices E~3fj may further be decomposed in the form

5d _ .5 SA
Bi; = anj + 1B, + ABj;,

(4.4)

where v denotes the volume viscosity, 1 the shear viscosity and A the thermal conductivity. Denoting by

& and ¢ arbitrary vectors of R% the matrices ij, B" and B’\ are found in the form

0 01,4, 01,4, 0

Od.1 Odgd, Odpde Odgit

Z G¢BYy =T ‘ ‘ ‘ ) (4.5)
ijeD 04,1 Od.a. €C  &ECv
0 01,4, Ctﬁ-v Eviv
0 Opq 01,4, 0
04,1 Od,d, 04, ,d, 04,1
Z €ijBn = 9 9 s (46)
ijeD 0d.1 Odpa,  &CI+CRE— 7E0C  &CQu+(&v— FECv
0 Ong &Cu'+Cvé — Z&v¢" &¢vv+(1—F)vio
0 014 01,4, 0
-\ ) 0d.,1 Od,,d. Ody,d. 04,1
D &GBY =T%¢ . (4.7)

i,j€D Odsal Odsads Odsads Odsal

0 01,4 0149, 1

These dissipative second order matrices B”, B;’], i and B;\], 1,7 € D, are similar to those for compress-
ible fluids except that there are extra line and columns of zeros associated with the w variable [49, 33].
We have the reciprocity relations (Bf;)" = B;il, i,j € D, and the blocks 3=, ;cp, &i&; B?jn’n is positive
definite for any ¢ € X% ~1

On the other hand, the cohesive flux matrices are found in the form

0 01,d, 01,d, 0
~ 0a,1 Oayaq, —C®& —(¢& v
> &GB = pT . (4.8)
i,je€D Ods,l C®£ Ods,dS %Cﬁ'w

0 &¢v —xE Cw x(Ewlv— Evlw)

The cohesive matrices EC are such that (gc )= ng 1,7 € D, and introduce extra coupling between

the hyperbolic and pambolw variables. The blocks BC " vanish BC " = 0 and the blocks E%LH and g%“’l
only depend on (p,v,T). We also note that the matrices AO, Az, 1 € D, Bd and ij, i,j € D have at
least regularity C7=2 over O,.
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The entropic symmetrized form introduced by Gravilyuk and Gouin was concerned with inviscid
fluids with capillary effects [31]. The corresponding governing equations may be obtained from (2.5)—
(2.9) by letting to zero the dissipative fluxes P4 =0 and Q% = 0. Gravilyuk and Gouin have used the
conservative variable (p, w, pv, S)! with the entropy equation 9;S+ V+(Sv) = 0 and the energy € playing
the role of entropy. This procedure, however, is only valid for inviscid fluids and this is why we have
restored the natural role of entropy. On the other hand, a major difficulty with the entropic variable
v, notably identified by Benzoni et al [3], is that the map u +— v is generally not globally invertible.
The matrix ,KO also becomes singular at points where d,p = 0 and is not anymore positive definite in
the presence of mechanical instabilities when 0,p becomes negative. This is why it is mandatory to use
normal variables w such that u — w remains invertible as investigated in the next section.

4.2 Normal symmetrization

We investigate in this section a normal form of the augmented system of equations using the augmented
natural variable .
w = (p,w,v,T) . (4.9)

In the particular situation of the compressible Navier-Stokes equations without capillarity effects, it
has been established that the variable (p,v,T)" may be used as a normal variable [49, 33]. It is thus
natural to seek if the particular augmented variable w = (p, w, v, T)lt that coincide with z also leads to
a normal symmetrized form of the augmented system. We use in the following the vector and matrix
block structure induced by the partitioning of R" into R" = R" x R™ with n = n;+ny, n, = ny = ds+ 1,
and w = (wy, wy)? with wy = (p, w)? and wy = (v, T)*. Tt will also be convenient in the following to split
the hyperbolic variable w; as w; = (wy, wy )t where wy = p and wyr = w.
The normal form of the system is written for convenience in nonconservative form

Ao(w)O,w + ZKZ-(W)GZ-W — Z §?j (W)@Z—@jw — Z E‘fj (W)GZ@]—W = h(w, Vw), (4.10)

i€D i,jED i,jED

where h has the structure .
h= (hI(W,VWH), hH(W,VW)) . (4.11)

The standard method in order to derive normal forms for systems of conservation laws is to substitute
v = v(w) in the entropic symmetrized form and to multiply on the left by (d,v)! in order to maintain the
symmetry properties of convective and dissipative matrices [49, 33]. The matrix in front of dyw would
then be (8Zv)t;&082v, that may be rewritten (9,v)'d,u, and the matrix in front of 9,w would be (8Zv)tz\i82v,
that may also be rewritten (9,v)!d,F;. This standard procedure, however, must be modified in order to
take into account the apparition of singularities due to thermodynamic mechanical instabilities arising
when 8,p vanishes and becomes negative. To this aim, after multiplication on the left by (8,v)", we add
the total mass conservation equation multiplied by the instability indicator m of Lemma 3.5 to the first
equation.
The matrices Ag and A; are thus taken in the form

KO = (awv)tawu + me;®eq, Kl = (&Nv)t@WFi 4+ mu; e1®e;, © €D, (4.12)

where e;, 1 < i < n, denotes the canonical basis of R". There is also a cancelation of singularities
when rewriting (Owv)!O,udyv as (Owv)!Oyu and (Oyv)'O,F; Ouv as (Oyv)'OyF;. The right hand side is
correspondingly in the form

h= > (0w)'0,BLOW+ > (0wv)'0,B5,0,w — mpV-vey, (4.13)

i,jED i,jED
where we ha\ie used F¢ = — ZJED @?jajw and F{ = — ZjGD Efjajw keeping in mind that B?j = @_?j&,w
and Bf;, = Bj;0,w with w = z. The second order matrices, that are initially in the form B?j =

(&,VV)tgfjawv and §fj = (8Wv)t§§jawv, are also simplified by using @?a and ESJ in the form

§?j = (6Wv)tB?j, Eij = (&,VV)tBC

75

ieD, (4.14)
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We may now obtain the matrices of the normal form (4.10) using previous expressions for dyv and
Owu in (3.14) and (3.9) and using the matrices Oy F;, gfj, and @fj that are easily evaluated. The matrix
Ap is found in the form

m + % 01,d, 01,4 0

s

_ 0d,,1 ZI 0Oa.a. Oa.1

Ao = : (4.15)
Og.,1 Oq,,d, %I 04,1
0 01,d, O1,4, 6TT—25

and is thus symmetric Ay = A} and block diagonal Ag = diag(A;', Ay™"). The matrix Ay positive definite
since Or€ > 0 from (H3) and m + % > 0 from Lemma 3.5 and Ay only depends on (p,v,T), that is,
on (wy,wy). The corresponding quadratic form may be written as

or€

WXT, (416)

— 0 P
(Rox) = (m o+ 201+ bl + bl +

where the vector x € R" has been decomposed in the form x = (Xps Xw, Xu, x7)". Denoting by & an
arbitrary vector of R%, the matrix > ien §iAi is found to be

0 Oua, Dpp &’ 0
— _ 1 0.1 Od,,d. HW®RE 04,1
ieZ'DgiAi =v-£Ap + T | 0pp€ »E@w 0d..d. (Orp + Orsdw|?)e |7 (4.17)
0 Org (Irp+Orsw]’)€’ 0

and all the matrices A; are symmetric A = Kﬁ for i € D.
The second order flux matrices are split in the form

Rd _ \R R RA
Bl = vBY; + 1B}, + AB}), (4.18)

and, denoting by € and ¢ arbitrary vectors of R% . it is found that
0 014 014 O

Od.,1 Od.,d, Odg,d, Odg1

— 1
6B = (4.19)
Z-,;D LT 0d,,1 Odua, €RC 04,1
0 014 01,4 0
0 01,d, 01,4, 0
_ 1 | Ods1 Od,.d, 0d,, d, 0d,,1
D &GBY == , (4.20)
i,jeD Od,1 Odgd, §-CT +C®E — 7€R¢ 04,1
0 01,d, 01,4, 0
0 01,4, 014 0
- 1 | Q4.1 Oagd, Oa.a. Odg1
> GGBY =7 . (4.21)

i,jED 0d,,1 Odsde Odeyds Ods1
0 01,4 014 1
The matrices §%, Efj, Eyj, and §g\j, i,7 € D, are similar to those of compressible fluids except that there
are extra lines and columns of zeros associated with the w variable [49, 33] and we have the reciprocity
relations (E?j)t = E?m i,7 € D. Denoting by gfjn’n the lower right bloc of size dg + 1 of E?j and by B4
the matrix B4™" = Zi,jeD «fi«fjg?jn’n where & € £%~! we have

T2 (B ) = T 0+ (1 = £) ) (€x0)? + T ol + A (4.22)
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for any test vector x; = (X, xg)" so that BA™I is positive definite under assumption (Hs).
The cohesive matrices Bf; are also found in the form

0 0Oy, 01,d, 0
— p | Y1 Odga — —2C®E 01
> GGBG = (4.23)
i,jED 04,1 #CRE Od,,d. Orxw-£C

0 Ol,ds *aT%UPCét 0

The (1,1) upper left block vanishes B = 0 and the coupling (1,11) and (11,1) blocks B;j"" and B’
only depend on (p,v,T), that is, on (wy,wy), so that they will have more regularity. The antisymmetric
reciprocity relations (@fj)t = fgﬁi, 1,7 € D, also hold and are associated physically with the fact that
capillarity does not produce entropy.

After some calculus, the hyperbolic part h; of the right hand side in (4.10) is found to be

3 t
h, :<7mpV.v,fwaini) , (4.24)

€D
where w = (wy,...,wq.)'. The derivatives of density appearing in h;» of h; have notably been written

as components of w to ensure that the gradient constraint holds for linearized equations as investigated
in the next section. On the other hand, the parabolic part is in the general form

hy = hy(w, Vw), (4.25)

and depends on the complete gradient Vw. The term hy is linear in the gradient Vwy and arises from
the stabilization procedure wheras h;» has been rewritten formally as linear in Vwy, for convenience by
using w = Vp but is intrinsically quadratic. The term hy is quadratic in terms of the gradient Vw with
coefficients depending on w that have at least regularity C7~2. We finally note that the matrices Ag, A,
1€ D, ggj and Efj, i,7 € D, as well as the coefficients in front of the gradients of the right hand sides h,
and hy have at least regularity C7~2 over O,,.

The general structure of the system of partial differential equations (3.17) may then be discussed
with the normal form (4.10). The variable w; = (p, w)" with w = Vp is first an hyperbolic variable,
i.e., when wy is given, w; is governed by a symmetric hyperbolic system of conservation laws. Similarly,
wy; = (v, T)% is a parabolic variable, i.e., when w; is given, wy is governed by a strongly parabolic system
of conservation laws. Incidentally, for such symmetric system, Petrovsky parabolicity is equivalent to
strong parabolicity [40]. As a consequence, the variable p is not a parabolic variable but rather the couple
(p, Vp)! is an hyperbolic variable. We have also obtained a new type of composite hyperbolic-parabolic
system involving matrices §?j with symmetry properties and matrices Efj with antisymmetry properties.

The matrices §fj introduce extra couplings between the hyperbolic and parabolic variables and these

coupling blocks EC-;’H and Egjn’l will require more regularity. Last but not least, it will be important in
practice to maintain the constraint Vp = w that is discussed in the next section.

4.3 Gradient constraint and linearization

We investigate in this section how the natural gradient constraint w = Vp is a consequence of the
governing equations (4.10) with the hyperbolic part of the right hand side in the form (4.24). This natural
gradient constraint will be a key point in order to establish that the density p has more regularity. The
nonlinear equations in normal form are first considered and then the more complex situation of linearized
equations.

Considering the nonlinear equations in normal form (4.10) we note that, after some calculus, the first
equation governing the density p is in the form

(m+ —0,0) 019+ V() =0

Since m + /%Tapp > 0 from Lemma 3.5 we deduce that d;p + V-(pv) = 0 and (2.5) has been recovered.
Note the importance of the stabilizing terms in (4.12) involving the instability indicator m of Lemma 3.5.
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Taking the gradient of this relation we obtain that ,(Vp) + V+(Vp@v + p(Vv)") = 0. On the other
hand, after some algebra, the second equation of (4.10) governing w reads

%(&w +v-Vw +wV-v+pV(V-v) + (Vo) -w) =0.
Dividing by 3¢/T and subtracting the Vp equation then yields
O(w —Vp) +v-V(w—Vp)+ (w—Vp)V-v + (Vo)(w—Vp) =0, (4.26)

and this Friedrichs system with respect to w — Vp implies that w — Vp = 0 provided that the solution w
is smooth enough, that the constraint wg — Vpg = 0 holds at the initial time ¢ = 0, with w(0, -) written

in the form w(0,z) = (po(z), wo(x), vo(a:),To(a:))t, and that the state at infinity w* is naturally such
that w* =0 [6].

In order to establish existence results for the nonlinear system (4.10), we will need to use linearized
equations. In is then mandatory to ensure that the natural gradient constraint w = Vp also holds
for solutions of some properly selected linearized equations. To this aim, the linearized unknown w is
decomposed in the form w = (W;, w,)* = (p, w, v, T)t and the linearized system taken in the form

W)W + > Aw)dw — Y BLw)3,0;w — > B (w)d;0,;% = (hy, hy(w, Vw))", (4.27)

€D 1,j€D 4,j€D

where the hyperbolic part of the right hand side HI is taken to be

~ _ 2 t
h, = (—mpv-v,fz ?invi) . (4.28)
€D
The linearized equations may thus be rewritten as

(W)W + > Ajw)ow — Y BL(w)a0;w — > B (w)d,0,W + L(w, Vwy)w = h'(w, Vw), (4.29)

€D 1,j€D 1,j€D
where ,
h' = (Om,h hy (w, Vw)) , (4.30)
_ — — »
Ai(w) = Ay(w) + mpei®eqt1+i, L(w, Vwy) = Z f(oa Vi, 01,01, 0) @€ 41, (4.31)
ieD
with e, ..., e, denoting the canonical basis of R" = R2%+2_ We have in particular that

t
S (A (w) — Ay(w)) 3@ = (mpV-,04.1,00.1.0)",  T(w, Vwg)w = (o, 3 %@-wi, Oa. 1. o) ,
i€D i€D

(4.32)
and L is a block diagonal matrix L = diag( L™, L™") with L™" = diag(0g4, 4., 0) and

Lo = diag((), Z %Vvi@)bi).
i€D

A consequence of (4.31) is notably that the hyperbolic blocks A, and A coincide.
We then deduce that the first equation of (4.29) governing p is in the form

1 ~ ~ ~
—0,p)(Op +v-Vp+ pV-v) =0,

(m+pT

so that dp + v-Vp + pV-v = 0 and the equation governing Vp is next obtained by applying the V
operator. The second equation of (4.29) governing w, after simplification by the s /T factor, is obtained
in the form

Qw +v-Vw +wV-v+pV(V-0) + Vo'-w = 0.
Subtracting the Vp equation from the w equation then yields

0(W — V) +v-V (W — V) + (w — V) V-3 + Vo' (@ — V) =0, (4.33)
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and this equation was the motivation for choosing (4.28). The Friedrichs system (4.33) with respect to
w — Vp thus implies that w — Vp = 0 provided that the constraint w — Vp = 0 holds, that the solutions
w and w are smooth enough, that the constraint wg — Vpg = 0 holds at the initial time ¢ = 0, and that
the state at infinity w* is naturally such that w* = 0 [6]. The natural gradient constraint may thus
be transmitted from w to w by using suitable linearizations like (4.29). The right hand sides are also
naturally related by >, p (Al(w) — A;(w))d;w + L(w, Vwy)w + h(w, Vw) = h'(w, Vw) for any regular

function w.

5 Linearized equations

In order to establish the existence of strong solutions to the system in normal form (4.10), we need
to investigate linearized equations in the form (4.29). A priori estimates and existence theorems are
obtained in this section for abstract linearized systems that cover the particular situation of diffuse
interface fluids (4.29).

5.1 Linearized estimates

An abstract hyperbolic-parabolic linearized system is considered in the form

w)0,w —|—ZA’ 8W—ZB GGW—ZB aaw—l—L(wVWr)w—f—l—g, (5.1)

i€D i,j€D i,j€D

where t denotes the time variable, 0, the derivative in the ith spatial direction, w a given function, w, a
subset of w components that have more regularity, and w the linearized unknown. The variables w and w
are assumed to have n > 1 components and R" is decomposed into R" = R™ x R™ with n = n; + ny and
the subvariable w, is composed of n, components of w with 1 < n, < n. The bloc structure induced by
the partitioning of R" is used in the following so that w is decomposed into w = (Wy, wy;)? with w; € R™
and wy € R™. The integer [y denotes the minimum integer for an embedding of the Sobolev space
H'(R%) into the space of bounded continuous functions Iy = [ds/2] + 1 and [ is an integer such that
[>1+2.

The following assumptions are made concerning the linearized equations (5.1). The matrix Aq is
symmetric, positive definite, block diagonal Ay = diag(KIO’I,KIOI’H), and the block KS’H only depends on
the subvariable w,. The matrices Al(w) € R™", i € D, have their hyperbolic blocks A;"' symmetric,
the dissipation matrices are such that (E?j) = B;lz, i,7 € D, have nonzero components only into the
right lower gfjn’n blocks, and Bd™! = > ijeD B?jH ¢,&; is positive definite for € € X%~ where X% 1
is the sphere in ds dimension. The matrices Bf; are such that (BS;)" = —BS;, the blocks Bj;"" vanish
Bj:*' = 0, and the blocks Bj;"" and Bj;"™" only depend on the subvariable w,. The matrix L = L(w, p;)
is block diagonal L = diag(L"',L™") and is a linear function of p, € R™% so that L' = £ (w)p, and
Lo = g T(w)p, where €01 € RMeneds and g e RMMeNeds depend on w. The system coefficients
Ao, Al Ew’ BU7 ,j €D, £5 and £ are smooth functions of w C R" defined over an open set O,, with

at least C'*2 regularity. The right hand sides f and g as well as w are given functions of time and space
defined over [0,7] x R% for some given positive time 7 > 0.

The norm in the Sobolev space H' = H!(R?) is denoted by | e |; and otherwise by | e |, in the
functional space A. Similarly, ( , )} denotes the scalar product in R", | e | the Euclidean norm in R or
R", the Frobenius norm in R™", and the Euclidean distance between w € O,, and the boundary 90,, is
denoted by dist(t, 90,,). If @ = (v, ..., aq,) € N% is a multiindex, 9 denotes the differential operator
Ot -+ 9™ and |af the order || = a1 + -+ 4 aq,. The square of k™ derivatives of scalar functions ¢,
like T', p, or v;, 1 < i < dg, is defined by

oo = 3 Lloog= 3 (@ ---0,002 (5.2

lajl=k 1<iy,eeyin <ds

where |a|!/a! are the multinomial coefficients and similarly for a vector function like v the norm |9¥v|?
stands for |0Fv|? = D i<i<d, |0%v;]2. Finally, for any map ¢ : [0, 7]xR% — R", where 7 > 0 is positive,
#(7) denotes the partial map = + ¢(7, ) from R% to R" and for 7 € [0, 7].
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Denoting by w* € O,, a constant state in the w variable, it is assumed that w is such that

wi —w} € CO([0,7), HY) 0 € ([0, 7], H'?), (5.3)
wi —wj € CU([0,7], H') n C* ([0, 7], H'=2) N L*((0,7), H'T), '
and the quantities M, M; and M, are defined by
M= sup wr)—w M= [(owpdr M= [ [P G
o<r<7 0 0

The quantities M and M; are traditionally used to estimate solutions of hyperbolic-parabolic linearized
systems. The nonstandard use of M, is required due to the strong couplings arising from the antisym-
metric blocks B¢ (w,);; and B¢™(w,);; and from the matrix L = L(w, Vw,). It is assumed that Oy is
an open set such that Oy C Oy C O, that a; is such that 0 < a; < dist(Og, 0Oy ), and the open set Oy
is defined by

O, = {W € Ow; diSt(W,@o) < ay } (55)

It is further assumed that wy(z) = w(0,z) € Oy, and that w(t,x) € Oy, for (t,z) € [0,7]xR% so that
the values of w are controlled with the open set O;.
Let now I’ be such that 1 <1’ <[ and assume that the right hand sides f € R" and g € R" are such
that
fec(o,7], H' ~Y) nL*((0,7), H"), (5.6)

g e Cc(o,7], H' 1Y), g =0. (5.7)

Denoting by W* a constant state in R" such that L(w, p,)w* = 0 for any w € O,, and p, € R™%  a priori
estimates of w—w* are obtained in the following theorem for solutions w to the linearized equations (5.1).

Theorem 5.1. Assume that the solution W of the linearized system (5.1) is such that
W, —wy € C°([0,7], H") nC*([0,7], H'~2),

4 / ’ 5.8
Wy — W € CO([0,7], H') nC ([0, 7], H'=2) n L*((0,7), H'+Y), (58)

where 1 < 1" < 1 and denote by Wq the initial state wo(x) = w(0,x). Then there exists constants
c1(01) > 1 and c2(O1, M) > 1, with c2(O1, M) increasing with M, such that for any t € [0, 7]

t
sup |w(7) — W*|12/ + / |Wy (T) — v~vH|12,+1 dr < ¢ exp(cz(t + MVt + Mr\/f)) (|V~V0 _ "~V*|12'
0

0<7r<t
t 2 t
+C2{/|f|w dT} +CQ/|gH|l2,_1dr), (5.9)
0 0

These estimates differ from classical estimates for hyperbolic-parabolic linearized systems in several
points. The Sobolev order [ associated with w is first larger than [y + 2, rather than [y + 1, since the
time derivative dywy is only in H'~? due to the coupling blocks EEH’I and the apparition of second
derivatives of the hyperbolic variable. The extra coupling terms B®""(w,);; and B¢ (w,);; also require
more regularity by solely depending on the subvariable w,. There is also a new contribution M,v/¢ in

the exponential term of the right hand side of (5.9).

Proof. The proof of the estimates (5.9) is divided in several steps, i.e., preliminaries, zeroth order esti-
mates and ['th order estimates.

Step 0. Preliminaries. In order to alleviate notation in the proof éw denotes for short dw = w —w* and
since L(w, p,)Ww* = 0 for w € O, and p, € R™% we may replace W by dw in the linearized equations. In
the following ¢y denotes a generic constant independent of both Oy and M, §; = 6(O1) < 1 a generic
small constant only depending on O, ¢c; = ¢1(O1) > 1 a generic large constant only depending on Oy,
and co = ¢co(O1, M) > 1 a generic large constant depending on O; and M. The various occurrences of
these constants may be distinguished and the minimum of all §; and the maxima of all ¢; and co may
be taken at the end of the proof so that only single constants ultimately remain. The dependence on
ds, I, n, as well as on the system coefficients of these estimating constants is left implicit. For £ > 0 and
¢ € H” the norm E3Z(¢) is defined by

HOENSY @ {Ao(W)0%p,0%¢) d. (5.10)

ds
0< o<k R
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In order to establish the a priori estimates, it is sufficient to consider the situation where w is smooth
since one may use mollifiers [48].
We will use the classical nonlinear estimate

1£(@) = FO)l < coll fllewo,) X+ N0l o) Slk, k=1, (5.11)

valid for ¢ € H¥(R%), O, an open ball containing the range of ¢, and f a C* function over Oy. For any
u€ H and v € H* with 0 <k <l and [ >ly = [ds/2] + 1 we also have

luvlf < colufflvff,  0<k<I (5.12)
We further have the Sobolev type inequality valid for any [ > I,
[¢ll L < coldl;. (5.13)

Denoting by [0, u]v = 8% (uv) — ud*v the commutator between 9% and u, and assuming that 1 <1’ <1
and [ > [p + 1 we have the commutator estimate

> 0% vl < col Vauly_ o]y, (5.14)

0<al<l

valid for any u and v with Vu € H"! and v € H V-1 Finally, we also have the Garding inequality
(65, 64]

51|¢H|1 = Z/ BdHH J¢H; z¢n>dw+c2|¢n|oa (5-15)

i,j€D

valid for ¢y : R% s R™ vector valued function in H*(R%).

Step 1. The zeroth order inequality. Multiplying (5.1) by 6w = w — w* and integrating over R% we
obtain that

/ (6w, Ag (W), 6w) da:JrZ/ (6w, Al (w)d;6w) dmfZ/ (6w, Bd )0;0;6w) dx
Rds

i€D i,j€D

,Z/ (0w, B ( 885w>dm+/
Rds R

i,j€D

(6w, L(w, Vw, )oW) d = /

Rds

<5v~v,f>da:+/ (0w, g) dx

ds Rds

(5.16)

The time derivative term in (5.16) is rewritten by using the symmetry of Ag
(6W, Ao (W)IpowW) = %8t<5v~v,ﬂo(w)5v~v> — %<5\7\7, 0, Ao (W)oW),

and 9,Ag(w) = OyAg Osw is estimated with |9,Ag|p~ < c0|8 Aoli_2 < c1]|Ow|i_a.
For the convective terms in (5.16) the products (6w, Al(w)0,6W) are evaluated by blocks and the (1,1)
terms are rewritten by using the symmetry of A/

(W, AL (w)D,0W;) = L0,

K2

(O, AT (W)OW) — & (5, O, AL (w) o),

K2

and 9,A;" (w) = O, A" O;w is estimated with [0,A)" L < col);A;" |12 < ctM < co. The (1,11) and
(11,11) convective terms are directly estimated as

| / (590, A ()0, 65) iz < 16 o |50,
Ris

} (F, A ()0, 5 d:c‘ < 1|6 o[ 1.
Rds

The (11,1) terms are integrated by parts

[ G R )0 5 dw =~ [ (0,500, R wisi) de— [ (500, O ) ) e
Rds Rds

Rds
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so that
‘ / <6\7VIIaK;H7I(W)ai5VT’1> d:l:‘ < C1|6WI|O|6WII|1 + C2|6WI|O|6WII|O < C2|6WI|O|6WII|13
Ris

using |KZ-|L°0 < ¢y and |aiKi|Loc < ¢y since 9;A; = O A; Diw.
The dissipative terms in (5.16) only involve 11 components and are integrated by parts

-> / (6W, B, (w)0,0,0W) dx = (0;0Wy, B (W)0;0Wy) de
Rds

d.
1,J€D i,j€D Rds

+ Z / 5W117 azB?]H H( )aJ 5WH> dx

4,J€D

The first sum is estimated by using Garding inequality whereas the remaining terms are estimated by
using |9,BL (w)| e < ca.

1719
For the antisymmetric terms, we first integrate by parts to get that

= > (0w, B( 886wdw—2/ (0,00, BS; (w)0;0W) da

ds
i,j€D R i,j€D

+ > / (6w, 0,5, (w)0,6W) d

i,j€D

The first sum vanishes
> (0,6, BS; (w)0,;6W) dax = 0,

d
i,j€D Res

from the antisymmetric properties (Bf-j)t = —E;i of the §§j matrices and the remaining terms are

decomposed by using the underlying block structure. The (1,1) contributions vanish since Egj” =0
whereas both (1,11) and (11,11) contributions are estimated as

3 ‘/ (0%, ;B (w )8]-5\W/H>dm’§c2|5v~vl|0|5ﬁln|1,
Rds

4,J€D

3 ‘/R (3, OB ()0 000} | < ol |5 .

i,j€D

The more difficult (11,1) terms are first integrated by parts

> (6Wn, 0,85 (W)0,6W,) da = — / (9;0Wy, 0;B5" (w)ow,) dae

ds
i,j€D R i,j€D

-y (6Wii, 8,0, B (wW)oW,) da.

19571y

i,J€D Res
The terms of the first sum are estimated as the (1,11) terms whereas the terms in the second sum are
estimated by using |9, @ijn '| < cg since I > 1o+ 2 and 9,0.B;"" = 92,B5"" 0, wWO;W + Dy BCII "o, d;w 50

N " ] ww g5
that the (11,1) terms are also majorized by ca|0w; |o|dWy|;.

The L terms are finally evaluated by using ’L(W, Vwr)’ < cg so that

LOO
/ (6w, L(w, Vw, )dw) dz < co|dw|3,
Rds
and the right hand side terms with
[ 6.0 e <alsolflo. [ (o.g)de < [6alglo
Rs Rs
Combining the previous inequalities and using |[dw|o < ¢ Ep(dw) it has been established that

O 5 (0W) + 01 |0Wn T < c1[flo|oWlo + c1lgul§ + c2(1 + [Ow], o) EG (5W). (5.17)
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Step 2. The ['th order inequality. Multiplying (5.1) by Kofl, applying the ath spatial derivative operator
0%, and multiplying again by Aq first yields

Ao(w)D,0°W +Y AL (w)d,0°W— Y B (w)d,0,0"W— Y B (w)9;0,0"W+L(w, Vw)d*W = h®, (5.18)

€D 1,j€D 4,j€D

where

= A0 (Ay ) + A0 (Ay 'g) — > Ag[0% Ay A0, W
€D
—Ag[0" A LW+ Y Ag[0%, A BY 00w+ Y A0 Ay B 10,0,w.  (5.19)
i,jED i,je€D

We next multiply scalarly (5.18) by 9“dw, myltiply by |a|!/a!, integrate over R%, sum over 1 < |a| < I/,
and add the zeroth order estimate. We then proceed exactly as for the zeroth order estimate (5.17)—with
0“0w in place of dw—in order to first rewrite the terms arising from the left hand side of (5.18). Further
using |[dw|; < ci By (0w), it is obtained that

! .
OE} (6W) + 61(6Wn |7y < ca(1 +|Opw|,_o) Ef (6W) + Z @ ) (h®, 0%6W) dz
0<al<V s

and we now need to estimate all terms [p,. (h*, 9*6w) da arising from the right hand side h* (5.19). Since
the zeroth order terms with o = 0 in the residuals [g,, (h®, *0W) de have already been examined with
(5.17), it is sufficient to analyze the terms such that 1 < |a| <1’ and we note that for such multiindex o
we have 0w = 9“0w.

The right hand side contributions involving f may be directly be estimated as

| / (Rod" (Ag'F),0°6%) da| < [Roluc [Ag 1y [5%], < calfl 59,
Rds

by using _ — x
Ayl < cu(L+ Ay (w) — Ag (w)|o) [fly < calf]y.

For the right hand side terms involving g, the cases where |a| <1’ —1 and |«| = I’ must be distinguished.
In the situation where |a| <1’ — 1 we may proceed as for the f term, keeping in mind that g = (0, gu)"
and that Ag is block diagonal, to get that

[ (Rodr (A tg), 006} de < Aol A5 Mgl [5l—1 < calgli—a |5l
Rds

When |a| = I, we may select any spatial direction ig such that o = o/ +b,,, |o/| = '—1 and * = 9 ;,,
and integrate by parts the igth derivative with

[ oo (A te). %) dw = [ (0% (R )00 (R 000 da

II II

Using then ‘ gH

vy < calguli—1 and |0;, (Ay 0% 0wy ) |1y < C2|0Wy |, We obtain that

}/ (Rod (A5 &), 0°6%) da| < colguly—y |69l
Rds
The convective and dissipative contributions may next be estimated by using commutator estimates
(5.14) and this yields
| / (Rol0° By A0, 0°6w) da| < colow?,
Rds
‘/ (Ro[0, Ay ' BL]0,0,, 0°0w) dm‘ < o |6Wu 1 |0Wlr,
Rds

using the block structure of the dissipation matrices and of Ag.
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For the antisymmetric terms
N a A —1p oy S
/Rds<A0 (0%, A ng]aiajw,a SW) d

we must again use the underlying block structure. The (1,1) terms first vanish and the (1,11) and (11, 11)
terms are estimated using the commutator inequality as for the dissipative terms. The difficult terms
are the (11,1) terms that are integrated by parts using the commutator identity

0%, 9]0, = 9,(10%,U]¢) — [0%, 0, V], (5.20)

with U = (Ag™) 7' Bj;"" and ¢ = 9;0W, and this yields

B Z / nn aa ( IIII)—l BCI”M@ Swy, 0% 6WH>d:B_
Rds

4,J€D

Z / aa AL H) -1 BC T, I] 6 (SWI, GZ(AH "o% 6w II)>
Rds

i,j€ED
n Z / II 1 aa (( IOIH)_l BCH I)]aj5WI,5a5v~vn> dr
i,j€ED

and integrated by parts all terms of the first sum. We may
Ag™y ! BCH’I only depends on w,, for the

where we have used the symmetry of Aj’
then use the commutator estimates for both sums and that (A,
terms of the second sum, to get an upper bound in the form

Col Wi |17 [6Wn |11 + Co| Vw1 |0Wi |1 [6Wr | < c2l6W|ir [0Win|1r-41 + co Vwe |1 oW [

The term associated with Ag [80‘,K0_1 L |w is also easily controlled in terms of [Vw,|; and |éw|; with
\/ (Rol0" A T]w, 0°6%) da| < col Vwe 63
Rds

since L = diag(L"",L™") is a linear function of Vw,.
Collecting all contributions and using |dw| < c; Ep (0w) it has been established that

NEL(6W) 4 6110Wn|7 41 < co(1 4 |0ew|i_y + [Vwe|i) B (6W) + cof|; By (W) + calgulf_s - (5.21)

We may then apply Gronwall lemma in order to deduce the required a priori estimates. O

5.2 [Existence of solutions to linearized equations

We investigate in this section existence of solutions to the linearized equations (5.1). Existence of
solutions is obtained by first regularizing the antisymmetric strongly coupling terms Bf;0,0,0w and next
by letting the regularizing parameter € to go to zero. The regularization allows in particular to uncouple
the hyperbolic and parabolic problems.

We introduce a mollifying sequence of functions a. = e %a(r/e) where 0 < € < 1 and a is a smooth
function positive in the ball |r| < 1 of R% and zero otherwise with its integral equal to unity Jadr =1.

The corresponding mollifying convolution operators are denoted by R.

Reo(r) = /ag(r —#)p(#)dE, s L'RE)  0<e<l. (5.22)

The regularizing operators R., 0 < € < 1, are symmetric, commute with differentiation operators, and
for any integers k¥ > 0 and j > 0 and any ¢ € H* we have [63, 48]

IReolr < col@lk, (5.23)
lim [Re¢p — ol = 0, (5.24)
IRe|rtj < |¢|k (5.25)
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Denoting by [Re, ¢] the commutator defined by [Re, ¢]1) = Rc(¢ 1) —d Rc(¢0) we also have the estimates [48,
20]
[Re, 9]V|, < col|plroe + [Vlim1)¥]k, (5.26)
as well as the limit [48, 20]
hn%[ , ¢V = 0. (5.27)

The antisymmetric strongly coupling terms are regularized in the form

fZRB W)RD,0,W = — ZRB w)9,0;ReW,

i,j€D i,j€D

and the regularized equations read

W)W + Y A(w)O W — Y B (w)d,0,w

1€D 1,J€D

fZRB W)R0;0,W + L(w, Vw, )W = f + g. (5.28)

4,J€D

We first establish an existence result for the regularized equations (5.28) with e fixed and then let
the regularizing parametrer € to go to zero. The assumptions on the system coefficients Ay, sz E?j,
Bf;, i,j € D Land £ = (£, £"") of Section 5.1 are kept as well as the assumptions (5.3) on w. We
remind that L = L(w,p,) is block diagonal L = diag(L"“,L™") and is a linear function of Vw, with
LY = £0(w)Vw, and L™" = £ (w)Vw,. The system coefficients are thus of class at least C'*2 over

O,, and the right hand sides are assumed to be such that
fe (o, 7, H= ) nL((0,7), H'), (5.29)

geC'(0,7],H"),  g=0. (5.30)

We also denote by W* a constant state in R" such that L(w, p,)W* = 0 for any w € O,, and any p, € R"%

Proposition 5.2. Assuming that Wq is such that Wo —w* € H!, there exists a unique solution W€ to the
reqularized linearized equations (5.28) with initial condition wWo and reqularity (5.8).

Proof. Solutions of the linearized coupled system (5. 28) are obtained as fixed points w = W of the following
linearized uncoupled system in the unknown w = (W, Wy

W)W + > AL (W)W, + LTV (w, Vwi )Wy = Fi(e, w, W, Vi), (5.31)
€D
KIOI "(w)o,w Wy — Z BdH "(w)o, o;w Wy 4 L™ T(w, Vwr)wII = fn(e w, w, VW), (5.32)
i,j€D

with the initial condition w(0,2) = Wo(z). In these equations we have denoted

fi=f =) AN W)W+ > RBS (w)ReD,0, Wy (5.33)

€D i,j€D

EI = fn + gn - Z( /H I( )a Wy + A/H H( )az\}v\lﬂ)

€D

+ 3 (RBS (we)Re0,0,W, + RBS (W)R.0;0; W) (5.34)
i,j€D

keeping in mind that the coupling blocks Ef-jn’l and EC-;’H only depends on w;.

The system defining Wy is symmetric strongly parabolic and classical existence theorems [48] warrants
the existence of wy such that

W — Wy € C°([0,7), H'Y) n ¢t (0, 7], H'=Y) N L2((0,7), B,
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with the following estimates for 0 <t < 7T

t
sup. [in = ylF o+ o — i dr <
0<r<t 0

t
&2 exp (&t + MyVi + Mrﬁ))(mo,n — w2 +EQ/|fH|%,1dT),
0

where the constants ¢; and ¢y depend on €, that is, ¢; = ¢1(e,O;) and ¢ = Ca(e, Oy, M). Similarly, the
system defining w, is symmetric hyperbolic and classical existence theorems [48] warrants the existence
of vzvI such that

w, —w; e ([0, 7], HY) nCc* ([0, 7], HY),

with the estimates for 0 <t < 7T

t
sup [y — ;7 < €2 exp(@lt + MvE+ MvE)) ([ — ;[ + t/ [} dr).
0<r<t 0

1 k

We may now define the successive approximation sequence {W*};>o with w® = w* and wk*! = w
for k> 0 and letting for short 6"'w = w*™! — w* we have to estimate §**!w in order to establish that
(WF)g>0 is a Cauchy sequence. Forming the difference between two iterations, letting 6*+1f, = ff+1 — fF
and 5k+1EI = E’f“ fE’f, and using similar estimates for linear symmetric hyperbolic systems and linear
symmetric strongly parabolic systems, it is obtained that

¢ t
sup |65t Wy (7)]? + /|5k+1\/~\/n|12+1 dr <l exp(ca(t + MVt + Mr\/f)) (Eg /|5k+1fﬂ|1271 dT),
0 0

0<r<t

as well as

¢
sup |0 IW, (1)[? < €2 exp(Ca(t + MVt + Mt ) (EQ tf 6% 1|2 dT) .
0<7<t 0

Defining then
At = sup |0*W(7)[F,
0<7<t

and using (5.23) and (5.25), we obtain that
65T, < (05, + 05 Wl )y 19Tl < Galo%W],
so that .
F) <€ [,
0

where C = C(e, 01, M, M;,7) depends on ¢, O1, M, M; and 7. Since ~! is bounded over [0,7], say

~v(t) < K, it is thus obtained that

Ckt*
k'

YL < K 0<t<r, k>0,

so that (W*);>0 is a Cauchy sequence. The limit of this Cauchy sequence is then a fixed point of the
iteration system and thus a solution of the linearized system (5.1) in C° ([0, 7, H l). It is further obtained

from the estimates and standard functional analysis argument that fot Wy — W|7,, dr is finite so that
the fixed point has the required regularity properties. [l

We now investigate new a priori estimates independent of ¢ for the solutions w¢ of the regularized
equations (5.28).

Proposition 5.3. Keep the assumptions of Proposition 5.2 and denote by w® the solution of (5.28)
with regularity (5.8). There exists constants c1(O1) > 1 and ca(O1, M) > 1 increasing with M and
independent of €, such that for any t € [0,7] and any 1 <U' <1

t
sup [#(r) @i+ [ ()~ Wilf oy dr < o explca(t + MovE+ MVE)) (15 - 7
0

0<r<t
t 2 t
vaf [fvdar} +e [lafdr). (639
0 0
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Proof. The proof is similar to that of Theorem 5.1 and only the differences involving the second order
regularized matrices Rﬁgfj R need to be analyzed. We denote for short ow® = w® — w* and the main
idea is to avoid the use of (5.25) and to only use (5.23) in all estimates. For the zeroth order estimates,
integrating by parts and using that R. are symmetric operators, it is obtained that

-y /]R (6W°, RcBS; (W)R:0,0,0W°) d = > /]R ds(Rﬁaiéwﬁ,gfj(w)R€8j6W€>d:c

i,j€D i,j€D
+ > / (6W€, O;R.BS; (W)R.D,0W°) dex.
ijep /R

The first sum vanishes

S [ R00, B, (wR.2,05) do .

i,j€D
from the symmetry properties of R, and the antisymmetry properties of the Ef-j matrices and the re-
maining terms of the second sum are then decomposed by using the underlying block structure. The
(1,1) contributions also vanish since ggj“ =0, both (1,11) and (11,11) contributions are estimated as in the
proof of Theorem 5.1 by using (5.23) so that

S| [ e ROBE " w)R.0,08) da < calo o5 .
ijep YR

> /]R (W5 R0 B (W)R0, 5 d| < cal g ol 65 .
i,jED ®

The last terms (11,1) are again integrated by parts in the form

3 / (07, ROB (WR0,0) da = — 3 / | (0,0, RO (WR0W;) d

i,j€D iGep
- Z /Rd (6\7\/;,Rgaiajgfjnvl(w)RﬁévT/f)_d:c,
i,jE€ED s

The terms of the first sum are estimated as the (1,11) terms whereas fo the second sum we may use that
0,0;B;;""| < ca since | > lp + 2 so that the (1,11) terms are also majorized by ca|0W,|o|0Wy|1. We have
thus established an inequality in the form (5.17) for the solutions of the regularized system.

For the I'th estimates, the antisymmetric terms are again integrated by parts and from the symmetry
properties of R, and the antisymmetry properties of the E@j matrices we have for any 1 < |a| <V

> /  (R0,0°W", B, (W)R.0;0°W") dw = 0.
ijep VR
The remaining terms are treated as for the zeroth order estimates and it is obtained that

S| [ 07 RO w)R.0,0°) da < coln 5.
i,j€D ®
S| [ 07, ROBE ™ (wR.0,075) d| < caldwil 165 1.
4,J€D °
The last terms (11,1) are integrated by parts in the form
3 / (075, ROB (W)R.D,0M0) dw = — 3 / (0,075, ROBL™ (W)RO™W) da
ijep R ijep TR

-y / (0°W§, Re0,0;B5/" (W)RO™Ws) daw.

i,jep /R

The terms in the first sum is then estimated as the (1,11) terms and the terms in the the second sum may

be estimated by using |0;0; R€E5j11’1| < co.
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It now only remains to analyze the antisymmetric commutator terms in the form
/ (Bo[0° Ag ! RBY|R.0,0,¢, 0°6w) dae
Rds

and we again use the underlying block structure with a treatment similar to the proof of Theorem 5.1.
The (1,1) terms first vanish and the (1,11) and (11,11) terms are estimated using the commutator and
convolution operators inequalities. The difficult terms are only the (11,1) terms that are integrated by
parts using (5.20) so that

— /R CL(KO [0, Ay ' ReBS;[R0;0,we, 0%6W) daw = / ([0%, Ay " RBY;|RO;WE, 9;(Ag0%oW)) dae

Rds

+ / (Bo[0%, 0,(Bg* RBS, ) R.0;0,°, 0°6) da
Rds

We then use that (Ag™) ™' R, BCII " only depends on w, so that an inequality similar to (5.21) is then
obtained and using Gronwall lemma completes the proof. O

Existence of solutions to the linearized equations (5.1) in finally obtained by letting the regularizing
parameter € to go to zero.

Theorem 5.4. Keep the assumption on the system coefficients of Theorem 5.1. Denote by wo an initial
state with wo — W* € H' and assume that the right hand sides f € R" and g € R" are such that (5.29)
and (5.30) hold. There exists a solution W to the linearized equations (5.1) with regularity (5.8) and such
that the estimates (5.9) hold.

Proof. We first establish that the family of solutions (W¢)g<e<1 obtained in Proposition 5.2 and estimated
in Proposition 5.3 form a Cauchy sequence in C°([0, 7], H'~1).

We note that the difference w¢ — w¢ is the solution of the system of partial differential equations
Ao (W), (W€ — W)+ ZA' 0;(We — we Z Egj(w)aiaj(vﬁe - VT/E/)
ic€D i,5€D

— Y RBS(WR:D,0; (W — W) + L(w, Vw, ) (W — &)
i,j€D

= > (ReBS;(w)R. — RoBS; ()R ) 9,0, W . (5.36)

i,jED

The right hand side is written in the form f + g with f = (f;,0)! and g = (0, g;)? and from the linearized
estimates for regularized systems applied to w® —w*® and with I’ = — 1, we deduce that for any ¢ € [0, 7]

t
sup |WE — w7, + / WE — W [Fdr < cf exp(ca(t+ MVt + MVt))
0<r<t 0

2
CQt/‘ ReB;; " (W)Re — R/BJ " (w)R. )610]~€ dr
-1
+co (R B (W)Re — Re/B (w)Rer) 9,0,W¢ L,
+62/‘ Bcnu R 7R5/BCHH( ) e’)aiajvvfl l72d7_)-
(5.37)

We then note that the right hand side converge to zero as ¢ and €' go to zero from (5.24) so that the
family (W)g<.< form a Cauchy sequence in CO([O, 7], Hlfl) as € — 0. We may then define

w = lim w®
e—0
so that w € C° ([O, 7], H l_l) and using standard argument from functional analysis and the estimates of

Proposition 5.3 we obtain that w is in L>*((0,7), H') and that fot |Wi(T) — W dr is finite.

* |2
H|l+1
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In order to establish that w is indeed in C°([0, 7], H') we introduce the regularized solutions w’ = Rsw
and establish that the family (W°)o~s<1 form a Cauchy sequence in C’O([O, 7], Hl). To this aim, we note
that

W)W + Y A W)W — Y B (w)a;0,W — > B (w)9,0;w

i€D i,j€D i,j€D
+ L(w, Vw, )W’ = AgR; (Ag 'f) + AoRs (Ay 'g) + h°, (5.38)
where

—> A¢[Rs, Ag A0 W — Ag[Rs, Ag LW

1€D
+ ) Ao[Re, Ay T B]0:0,W + Y Ao[Rs, Ayt BY;]0,0,W. (5.39)
4,j€D ©,j€ED
We may thus write that
Ao(w)d, (W® — W’ —l—ZA’ d;(W° —w° Z B (W @)
i€D i,j€D
-3 By (W — W) + L(w, Vw) (W — &) =
i,j€D
Ao(Rs — Rs/) (Ag M) + Ag(Rs — Rsr) (Ag'g) +h? —h?". (5.40)

We then note that Ag(Rs; — Rs/) (A 'f) goes to zero in H' and Ag(Rs — Rs/) (A 'g) goes to zero in
H'"' from (5.24) and that the 1 components of both h® and h® go to zero in H' and 11 components of
both h® and h® go to zero in H'~! from (5.27) so that the family (W°)g<s<1 form a Cauchy sequence in
C°([0,7], H') from the linearized estimates and this completes the proof. O

6 Nonlinear equations

A local existence theorem of strong solutions is first established in an abstract framework and then
applied to the particular situation of diffuse interface fluids.

6.1 Structural assumptions

An abstract symmetric-antisymmetric hyperbolic-parabolic augmented system in normal form is consid-
ered in the form

W)ow + > Aiw)dw — Y BL(w)9,0w — > BE(w)d,0;w = h(w, Vw), (6.1)

€D 4,J€D 1,j€D

where ¢ denotes the time variable, 0, the derivative in the ith spatial direction, w the normal variable,
ds the space dimension and D = {1,...,ds} the indexing set of spatial directions. The variables w has
n > 1 components and R" is decomposed into R" = R"™ x R™ with n = n; 4+ ny so that w is decomposed
into w = (wy,wy)? where w; € R™ denotes the hyperbolic components and wy; € R"™ the parabolic
components. The system (6.1) is assumed to be an augmented system in the sense that w, should be
w; = (wp,wpr )t with wyr = Vwy. The augmented system (6.1) has thus been built by adding the
gradient wy» of a scalar hyperbolic component wy to the unknowns. More complex situations with extra
hyperbolic components or systems augmented with higher order derivatives lay out of the scope of the
present work. We denote by w, the subset of n, = 1 + n; components of w defined by w, = (wlr,wn)t
that will have more regularity.

The following general assumptions are made concerning the system (6.1). The matrix Ao € R™"
is symmetric, positive definite, block diagonal Ay = diag(A;', Ag™), and the block Aj™" only depends
on the subvariable w,. The matrices A; € R™", i € D, are symmetric, the dissipation matrices are

such that (B;)" = BY;, 4,j € D, have nonzero components only into the right lower §§ljn’n blocks,
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and BIm = >ijen B! S (w)EiE; is positive definite for € € $% 1. The matrices B¢, are such that
(B§;)" = —BS;, the blocks Bj;*" vanish B = 0, and the blocks Bj;"" and B only depend on the
subvariable w;. The right hand side h = (hI, h;)? is in the general form

he =Y MW dwr + Y W (W) wed;w, (6.2)

i€D i,j€D
hy = ZMH )o,w + Z MII "(w)o, wo,w, (6.3)
i€D i,j€D

where M; € R™"™ My (w) € R™"" 3 € R"", and M;;" € R"™" are linear operators. The hyperbolic
components h; thus includes linear and quadrat1c contnbutlons in terms of Vw, whereas h;; includes linear
and quadratic contributions in terms of Vw. All the system coefficients Ag, A;, i € D, BL, B, i,j € D,

ijr Pijo
M;, My, My, and M;;" are assumed to have at least regularity C'*2(0O,) where O,, is a simply connected

open set in Rd . We also denote by w* a constant state in the open set O,, such that wj, = 0. In addition,
it is assumed that whenever wg» = Vwgy, the regular solutions of (6.1) are such that wy» = Vwy.
We further assume that there exists a linearized version of (6.1) in the form

(W)W + > A W)O W — Y BL(w)d,0,w — > B (w),0,W + L(w, Vwe )W = h'(w, Vw).  (6.4)

€D 1,j€D 4,j€D

The hyperbolic blocks A]*" of the matrices A} are assumed to be given by AJ"' = A;" and are thus
symmetric. The matrix L = L(w, p,) is assumed to be block diagonal L = dlag( L LII 1) and to be a
linear function of p, € R™% so that L' = £/(w)p, and L™" = £ (w)p, where SI’I € Romneds g5
gl ¢ Rhmneds depend on w. The systems coefficients are naturally related by

> (Aj(w) = Ai(w))p + L(w, pr)w + h(w, p) = h'(w, p) (6.5)

€D

for any w € O,, and any vector p € R". From (6.5) and the relations K'I’I = K we notably deduce

that h’ has a structure similar to that of h with corresponding matrices M M;IJI, M, and M/II ", The
—/1,1 —/11

matrices Al(w), the coefficients £4' and £™" and the coefficients M;' s My, M

/II 1

and M, are assumed

to have at least regularity C'*2 over O,,. The state w* is also such that L(w,p,)w* = 0 for any w € Oy,
and p, € R4, We further assume the linearized version (6.4) of the system is such that the constraint
wyr = Vwy is transmitted from w to w, that is, whenever w and w are regular, wy» = Vwy, worr = Vwgy,
and w}, = 0 then that w,» = Vwy. The structural assumptions of Section 5.1 are notably satisfied by
the linearized system (6.4).

6.2 Existence of solutions to nonlinear equations

We establish in this section local existence of solutions for augmented systems in the general form (6.1)
under the structural assumptions listed in Section 6.1.

Theorem 6.1. Let d > 1,1 > Iy +2, lo = [d/2] + 1, be integers and let b > 0. Let O be such that
Oo C Ow, a1 such that 0 < a; < dist(Op, d0,), and O1 = {w € Oy;dist(w, Q) < ay }. There exists
7 > 0 depending on Oy and b such that for any wo with wg € Og, wo —w* € H', woyr = Vwoy and

lwo — w* |7 < b (6.6)

there exists a unique local solution w to the system (6.1) with initial condition w(0,x) = wo(x), such
that w(t,x) € Oy for (t,x) € [0,7]xR%, wyr = Vwy, and

w, —w; € CO([0, 7], H') n C*([o, 7], H'~2),
wy —wji € CO([0, 7], HY) n ([0, 7], H'=2) n L*((0,7), H"T1).

Moreover, there exists cjoc > 1 only depending on Oy and b such that

f
sup. w(r) ~ w4 [ fwa(r) = wiadr < el — wl (©.7)
0<r<7 0
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Proof. Solutions to the nonlinear system (6.1) are fixed points w = w of the linearized equations (6.4).
Fixed points are investigated in the space w € XL ((’)1, M ), where M is a positive number that will be de-
termined later, and defined by w—w* € C°([0, 7], H'), O,w € C°([0, 7], H'=2), wy—w}; € L*((0,7), H'*1),
w(t,x) € O1, wyr = Vwy, and

sup. w(r) = w? + [ wa(r) ~ wilf, dr < 372, (6.8)
o<r<7 0
/ Oow(r)|2_, dr < BT2, / Ve (7)|2 dr < TT2. (6.9)
0 0

We first have to establish that the space XL ((91, M ) is invariant by the map w +— w for a suitable
M and for a time 7 small enough, where w denotes the solution of the linearized system (6.4) with wg
as initial condition and with w* = w*. For w in le ((91, M ) the solution w of the linearized equations
(6.4) exists from Theorem 5.4, the estimates of Theorem 5.1 hold as well as the gradient constraint
V~\II// = VWI/. Letting then

B
M? = sup |w(r)—w*|? +/ Wi (7) — wil7y, dr,
0

0<r<7
P = / O, dr, NP = / VW ()2 dr,

we have to estimate M, ]\Z and ]\Ajr

_ 2 _
From the estimates of Theorem 5.1 with I’ = [, further using (6.9) and <f0T|h§|z dT) < 7 [, |7 dr,

we may write that
0 < & exp(ea (7 + 200V7)) (| — w7 —l—cﬁ/ N2 dr +c2/ W7 dr), (6.10)
0 0

with constants c1(0O7) and c2(Oy, M). On the other hand, using the structure (6.2) and (6.3) of the right
hand side h, the relation (6.5) expressing h’, les nonlinear estimates (5.11) and (5.12), and the definition
of XL ((91, M), we obtain

/ N2 dr < co(Oy, M),
0

/ I 7oy dr < Tea(Or, M)M 2.
0

Moreover, from the linearized equations (6.4), we may evaluate the time derivative 9,w in term of the
spatial gradients in the form

/ 0,@(F)[2_y dr < 7cy(Oy, 3) (M2 + 312), (6.11)
0

for some constant ¢, (O, M) > 1 increasing with M. We now define M, by
]Wb = 2C1(01)b,

and assume that 7 < 1 is small enough such that

exp(c2 (01, My) (7 + MyV/7)) < 2, (6.12)
2¢3(01, My)7(2¢1(01))* < 1, (6.13)
27¢, (01, My) < 1, (6.14)

as well as coM /7T < a1 where cq is such that ||¢]|;~ < col@|i_2-

We claim that for any w in le ((’)1, ]\71,), any wp such that wog —w* € H! wopr = Vwor, wy € O,
and |wo —w*|? < b?, the solution w to the linearized equations (6.4) with initial condition wo = wyq stays
in the same space XL (O, M,). We first obtain from (6.12) and (6.13) that

M? < 263 (b? + 272 M3) < 4c3h? = M.
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Moreover from the gradient constraint transmitted to w, and since 7 is such that 7 < 1, we have an
estimate in the form

M? = / VWi ()[F dr < M? < M3.
0
In addition, for the time derivatives, we obtain from (6.11) and (6.14) that
M? < 7ch(Oy, MP?)(M? + M3) < M3,

and we also have wy» = Vwy. Finally, from the time derivative estimates and coMy\/T < a1 we also
obtain that w € @7 and we have established that le ((91, M, b) is invariant.

Noting that the constant state w* is in XL ((’)1,]\7 b), the sequence of successive approximations
{wF} >0 starting at w® = w* is thus well defined with w**! = Wk, ie., with w**! is obtained as
the solution w = w**! of linearized equations with w = w* and with the initial condition wg. Let 6*w
denotes the difference 6*w = w**! —w* for k > 0. For a suitable 7 small enough, we claim that the map
W+ W is a contraction for a weaker norm. Consider w and w in XL ((’)1, ]\71,), and define dw = w — w
and 6w = w — W where w and W are the solutions of the corresponding linearized equations with initial
condition wy. Forming the difference between the linearized equations, one may obtain that

(W)0,0W + > Ay(W)d,0w — Y B (W)0,0;0W

i€D i,j€D

= ) B (W)0,0,0W + L(W, Vw,)9;0;0W = 6h', (6.15)
i,J€D

where

€D

2 (Ro(@)Ag " (w)B (w) — B (@))2,0w

+ 3 (Ro(W)A; L (w)BE; (w) — BY () 9,0, w
i,j€D

+ (Ag(W)Ag ! (w) — I) h'(w, Vw) + h'(w, Vw) — h'(W, V).

These relations and the structural assumptions (6.2) (6.3) and (6.5) imply that |dh!|;—2 < caldw|;—2 +
Co|dwy|i—1 and |6h]|;—3 < ca|dw|;—2. The linearized estimates with I’ = [ — 2 then yield that

sup [65(r)fF+ [ [60(r)F - dr < cor( sup w(r)fEy + [ Iowa(r)Eydr).
0 0

Osr=7 0<r<7
Assuming that coT < < =, we then have

sup [5W(r)[2_ + / G dr < o<k, (6.16)
0<r<7 0 2

where ¢y depends on Oy, b, and the data but is independent of k. The sequence of successive approxima-
tion {w*} >0 is thus convergent over [0, 7] for the norm supg<, < |[0W(7)|7_, + [y [6Wn(7)[%, dT towards
a fixed point w € C°([0, 7], H'~2) that is a solution of (6.1). Since the sequence {w*};>¢ is bounded in
the space XL ((91, M, b), it follows from standard functional analysis arguments that the limit function w
is also in L>°((0,7), H') and such that w, —w} € L2((0,7), H'1).

In order to establish that the limit w is also in the space CO((O, 7), H l) we consider the regularized
functions w® = RsW and we establish that the family (w®)o<s<1 form a Cauchy sequence in C°([0, 7], H').

We indeed note that
W)ow’ + > AW — > BLW)I,0w — > B (W)9,0,w°

€D 4,j€D 1,j€D

+ L(w, Vw, )w’ = AgRs (Ag'h) + h", (6.17)
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where h' = h'(W, VW) with

ho = — ZKO [Rs,Aq " Al]o;w — Ag[Rs, Ag ' LW (6.18)
€D

+ Z Ao[Rs, Ay ' B ]0,0,W + Z Ao[Rs, Ay ' BS;]0,0,W. (6.19)

i,J€D i,j€D

We may then write that
Ao (W)0,(W° — W° +ZA' d,(W® — w° ZB (W o @
i€D i,j€D
-3 B (W — W) + Lw, Vw,) (W — ) =
i,j€D

Ao(Rs — Rs/) (AgHh') + b — b, (6.20)

We may then observe that the 1 component of Ag(Rs — Rg/)(ﬂoflﬁ’), h’® and h'® go to zero in H' from
from (5.24) and the 11 component of Ag(Rs —Rs/) (A 'h’), h’0 and h'?" go to zero in H=! from (5.27) so
that the family (W°)o<s<1 form a Cauchy sequence in C°([0, 7], H') and this completes the proof. [

6.3 Application to diffuse interface fluids

We apply in this section Theorem 6.1 to the diffuse interface fluid equations in normal form (4.10) under
the assumptions (H;)-(Hs). The unknown vector reads w = (p, w, v, T)! and has n = 2ds + 2 components
with n; = ds + 1 hyperbolic components w;, = (p, w)t and n, = ds + 1 parabolic components wy, = (v, T)t
and the subvariable w, is given by w, = (p,v,T)! with n, = 1 + ny. Letting O,, to be the open set O,
of (Hy), we select w* = (p*,0,v*, T*)* € Oy, an open set Oy with Oy C O,, and w* € Op, a; such that
0 < a; < dist(Op, 00y), and we define O = {w € O;dist(w, Op) < a; }.

It is assumed that the regularity class of thermodynamic functions v is such that v —2 > 1+2 > [y +3

so that all the system coefficients Ao, A;, i € D, B?j, Bf , i,j € D, have at least regularity C'*2 over
Oyw. Moreover there exists a linearized version in the form (6.4) that enforce that gradient constraint.
The matrix L = L(w, Vw,) is block diagonal L = diag(L",L"™") with L™" = 0 and L"" is a linear
function of Vw, so that L"" = £41(w)Vw, and the right hand sides are in the form (6.2) and (6.3). The
systems coefficients £, M M;IJI, M, and M M 1 also have at least regularity C'+2(0,). Application of
Theorem 6.1 then yields the following ex1stence result.
Theorem 6.2. Letd>1,1>1y+2, and b > 0. There exists T > 0 depending on Oy and b such that for
any wo with wg € O, wo —w* € H', wy = Vpo and |wg —W*|12 < b2 there exists a unique local solution w
to the system (4.10) with initial condition w(0,x) = wo(x), w(t,x) € Oy for (t,x) € [0,7]xR%, w = Vp
and with

p—p*eC([0,7], HT), (6.21)
v—v*e 00,7, H) N L*((0,7), H) (6.22)
T-T*e 0,7, H) N L*((0,7), H). (6.23)

The time derivatives are also such that 9,p € C°([0,7], H'=') N L?((0,7),H'), d,v € C°([0,7], H'7?)
and 9,T € C°([0, 7], H'=2). Moreover, there exists cioc > 1 only depending on Oy and b such that

sup [9(r) = s+ sup_folr) v+ swp (1) -7+ [ o)~ o adr (620

0<r<7
+ / IT() = T*edr < e (Ip0(7) = 9"y + foo(r) = o[ +1To(r) = T*F). (6:25)

Proof. In order to apply Theorem 6.1 we have to check that the assumptions listed in Section 6.1 are
satisfied for the system in normal form (4.10).
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The matrix Ag given by (4.15) is symmetric positive definite, block-diagonal Ay = diag(Ag", Ag™"),
with Ag" only depending on (wy,wy), and is positive definite form (4.16). The convective matrices
Ai, i € D, given by (4.17) are also symmetric. The dissipation matrices have been decomposed in
the form (4.18) with §fj, §?j, and Ez)} given repectively by (4.19), (4.20), and (4.21). The reciprocity
relations (§§lj)t = §§»11-, i,j € D, thus hold and the matrices E?j have nonzero components only into the
lower right §?jn’n blocks. Moreover, from the expression of the quadratic form (4.22) we deduce that
BItT =% p E%H’H(w)gifj is positive definite for £ € X% 1. The matrices BY; are given by (4.23) and
are such that (BY;)" = —BS;, the blocks Bj;”' vanish Bf;"" = 0, and the strongly coupling blocks Bj;"" and
B;;"" only depend (p,v,T). The right hand side h(w, Vw) is given by (4.24) and (4.25) that is covered
by the more general situation (6.2) and (6.3). The system coefficients Ao, A;, i €D, §?j, §§j, i,7 €D,
M;, M;;, M;, and M;;" obtained in Section 4.2 have at least regularity C'*?(O,) since the regularity class
v of thermodynamic functions is such that v —2 > [+ 2.

There exists also a linearized version of (6.1) in the form (6.4) that enforce the gradient constraint.
This linearized version (4.29) has been obtained in Section 4.3 and the corresponding coefficients A,
L, and h’ satisfy all assumptions listed in Section 6.1 as well as Section 5.1. More specifically, as
a consequence of (4.31), the hyperbolic blocks A" and A}" coincide, the matrix L = L(w, p,) is block
diagonal L = diag(L"",L™" ) with L™" = 0 and L"" is a linear function of p, € R™% so that L' = £ (w)p,
where £ € R"-™Mds depend on w. The systems coefficients are naturally related by Y iep (Ki (w) —
A;(w))p+L(w,p.)w+h(w,p) = h'(w,p) as established in Section 4.3. The matrices A(w), the coefficients
£ and the coefficients M., ij’l, M, and M;I;’H also have at least regularity C'*2 over O,, since the
regularity class v of thermodynamic functions is such that v — 2 > [ + 2. The state w* is finally such
that E(W, po)w* =0 for any w € O,, and p, € RM4s gince w* = 0. All assumptions listed in Section 6.1
are thus satisfied and this completes the proof. O

We thus conclude that there exists local strong solutions to the system of diffuse interface fluids.
The model notably takes into account the temperature dependence of the capillarity coefficient and
general assumptions for the transport coefficients. The model also takes into account the presence of
mechanically unstable points with a nonideal thermodynamics.

7 Conclusion

The mathematical modeling of diffuse interface fluids has been investigated. The mathematical struc-
ture of classical thermodynamics with instabilities as well as that of extended thermodynamics with
temperature dependent capillarity coefficients has been presented. Normal forms have been obtained for
the equations governing diffuse interface fluids with symmetric second order dissipation matrices and
anti-symmetric second order capillarity matrices. The couple (p, Vp) has been shown to be an hyper-
bolic variable whereas (v, T') is the traditional parabolic variables as in the Navier-Stokes-Fourier system.
The antisymmetric type second order terms of capillary origin introduce strong couplings between the
hyperbolic and parabolic variables.

New linearized estimates have been obtained for augmented systems in normal form. Local existence
has been obtained for diffuse interface fluids in an Hilbertian framework using a normal form. A key
point has been the use of the gradient constraint.

Natural extension of high scientific interest would be to consider boundary value problems in bounded
domains with proper boundary conditions. Existence of global solutions around thermodynamically sta-
ble constant states as well as around nonconstant liquid-vapor steady equilibrium profiles in an Hilbertian
framework is also of high scientific interest and will require using a new Kawashima condition for aug-
mented systems.
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A Entropy production
Denoting by D, the convective derivative D, = 9, + v-V we obtain from Gibbs’ relation (2.4) that
TD,S =D, —gD,p—»Vp-D,Vp.

The convective derivatives D, £, D,p, and D,V p may then be evaluated from the governing equations
(2.5)—(2.7) and after some algebra and integrations by parts it is obtained that

Q »xpV-wVpy 1 )
8,8 + V-(vS) + V- (? - T) -—= (P —pl — %V pRVp + pV-(%Vp)I) Vo
vT

where viw denotes the full contraction between any two tensors v and w. Using the expressions of for
P and Q as well as (A.1) we obtain the equation (2.13) and there is no entropy production associated
with capillary phenomena.
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