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Abstract Background:
The widespread use of nano-biomaterials (NBMs) has increased the chance of human exposure.
Although ingestion is one of the major routes of exposure to NBMs, it is not thoroughly studied to date.
NBMs are expected to be dramatically modified following the transit into the oral-gastric-intestinal
(OGI) tract. How these transformations affect their interaction with intestinal cells is still poorly
understood. NBMs of different chemical nature—lipid-surfactant nanoparticles (LSNPs), carbon
nanoparticles (CNPs), surface modified Fe3O4 nanoparticles (FNPs) and hydroxyapatite nanoparticles
(HNPs)—were treated in a simulated human digestive system (SHDS) and then characterised. The
biological effects of SHDS-treated and untreated NBMs were evaluated on primary (HCoEpiC) and
immortalised (Caco-2, HCT116) epithelial intestinal cells and on an intestinal barrier model.
Results:
The application of the in vitro SDHS modified the biocompatibility of NBMs on gastrointestinal cells.
The differences between SHDS-treated and untreated NBMs could be attributed to the irreversible
modification of the NBMs in the SHDS. Aggregation was detected for all NBMs regardless of their
chemical nature, while pH- or enzyme-mediated partial degradation was detected for hydroxyapatite or
polymer-coated iron oxide nanoparticles and lipid nanoparticles, respectively. The formation of a bio-
corona, which contains proteases, was also demonstrated on all the analysed NBMs. In viability assays,
undifferentiated primary cells were more sensitive than immortalised cells to digested NBMs, but neither
pristine nor treated NBMs affected the intestinal barrier viability and permeability. SHDS-treated NBMs



up-regulated the tight junction genes (claudin 3 and 5, occludin, zonula occludens 1) in intestinal barrier,
with different patterns between each NBM, and increase the expression of both pro- and anti-
inflammatory cytokines (IL-1β, TNF-α, IL-22, IL-10). Notably, none of these NBMs showed any
significant genotoxic effect.
Conclusions:
Overall, the results add a piece of evidence on the importance of applying validated in vitro SHDS
models for the assessment of NBM intestinal toxicity/biocompatibility. We propose the association of
chemical and microscopic characterization, SHDS and in vitro tests on both immortalised and primary
cells as a robust screening pipeline useful to monitor the changes in the physico-chemical properties of
ingested NBMs and their effects on intestinal cells.

Keywords (separated by '-') Nano-biomaterials - In vitro simulated digestion - Biotransformation - Toxicity - Caco-2 - HCT116 -
HCoEpiC - Gastro-intestinal barrier - Permeability - Inflammation
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RESEARCH

Changes of physico-chemical properties 
of nano-biomaterials by digestion fluids affect 
the physiological properties of epithelial 
intestinal cells and barrier models
Giulia Antonello1,2,3, Arianna Marucco4, Elena Gazzano4, Panagiotis Kainourgios5, Costanza Ravagli6, 
Ana Gonzalez‑Paredes7, Simone Sprio8, Esperanza Padín‑González9, Mahmoud G. Soliman9, David Beal10, 
Francesco Barbero1, Paolo Gasco7, Giovanni Baldi6, Marie Carriere10, Marco P. Monopoli9, Costas A. Charitidis5, 
Enrico Bergamaschi2, Ivana Fenoglio1*† and Chiara Riganti3*† 

Abstract 

Background: The widespread use of nano‑biomaterials (NBMs) has increased the chance of human exposure. 
Although ingestion is one of the major routes of exposure to NBMs, it is not thoroughly studied to date. NBMs are 
expected to be dramatically modified following the transit into the oral‑gastric‑intestinal (OGI) tract. How these 
transformations affect their interaction with intestinal cells is still poorly understood. NBMs of different chemical 
nature—lipid‑surfactant nanoparticles (LSNPs), carbon nanoparticles (CNPs), surface modified  Fe3O4 nanoparticles 
(FNPs) and hydroxyapatite nanoparticles (HNPs)—were treated in a simulated human digestive system (SHDS) and 
then characterised. The biological effects of SHDS‑treated and untreated NBMs were evaluated on primary (HCoEpiC) 
and immortalised (Caco‑2, HCT116) epithelial intestinal cells and on an intestinal barrier model.

Results: The application of the in vitro SDHS modified the biocompatibility of NBMs on gastrointestinal cells. The 
differences between SHDS‑treated and untreated NBMs could be attributed to the irreversible modification of the 
NBMs in the SHDS. Aggregation was detected for all NBMs regardless of their chemical nature, while pH‑ or enzyme‑
mediated partial degradation was detected for hydroxyapatite or polymer‑coated iron oxide nanoparticles and lipid 
nanoparticles, respectively. The formation of a bio‑corona, which contains proteases, was also demonstrated on all 
the analysed NBMs. In viability assays, undifferentiated primary cells were more sensitive than immortalised cells to 
digested NBMs, but neither pristine nor treated NBMs affected the intestinal barrier viability and permeability. SHDS‑
treated NBMs up‑regulated the tight junction genes (claudin 3 and 5, occludin, zonula occludens 1) in intestinal 
barrier, with different patterns between each NBM, and increase the expression of both pro‑ and anti‑inflammatory 
cytokines (IL‑1β, TNF‑α, IL‑22, IL‑10). Notably, none of these NBMs showed any significant genotoxic effect.
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Background
In the last few years, nano-biomaterials (NBMs) have 
been widely used for manufacturing innovative food 
packaging [1, 2] nutraceuticals [3], cosmetics [4, 5], as 
well as in dentistry [6], precision medicine [7–9] and 
agriculture [10, 11], increasing the likelihood of human 
exposure through ingestion and transit through the gas-
tro-intestinal (GI) tract [12].

A growing number of studies suggested a possible 
interference of ingested NBMs with the gut microen-
vironment [13]. The human digestive apparatus is com-
posed of many sections with different structures and 
functions. The most complex part is the intestinal tract. 
In particular, the small intestine mediates the absorption 
of nutrients through transcellular processes or paracellu-
lar diffusion. The latter is limited by the presence of tight 
junction (TJs) complexes, formed by zonula occludens-1, 
occludin and claudin proteins [14]. In physiological con-
ditions, TJs prevent water and electrolyte leakage and 
avoid lumen infections. However, some conditions, such 
as inflammatory bowel disease [15, 16], can alter the 
structure of TJs, increasing the intestinal barrier perme-
ability. Two studies report that nanometric  SiO2 or  TiO2 
can induce similar effects [17, 18].

While a substantial amount of knowledge has been 
accumulated for the inhalation route, only recently the 
fate of the ingested NBMs has gained interest in the 
nanotoxicology community [19]. The poor awareness 
of ingestion’s relevance as exposure route to NBMs, the 
non-suitability of the available models, and the lack of 
consensus on the most suitable in vitro models reproduc-
ing the complexity of the Oral-Gastro-Intestinal (OGI) 
tract are the main reasons for this delay.

In the last few years, some models to mimic the intes-
tinal barrier in vitro and study the toxicity of NBM have 
been proposed, as co-cultures of different intestinal cell 
types. Co-culture monolayers, composed by enterocyte-
like cells with TJs and brush border (Caco-2), and goblet 
cells secreting mucus (HT29-MTX), have been used to 
investigate the toxicity of NBMs such as  TiO2 nanopar-
ticles [20–23] and multi walled carbon nanotubes [24]. 
The effect of halloysite clay nanotube on intestinal bar-
rier [25] has been also studied on Caco-2/HT29-MTX 

co-culture plus Raji B cells (that promote Caco-2 differ-
entiation into M cells, characterised by the typical diges-
tive function of enterocytes). The results have indicated 
the absence of cytotoxicity despite the high production 
of pro-inflammatory cytokines and the increase in cell 
growth and proliferation [26].

Recently, newly intestinal mucosa 3D models have 
been developed culturing Caco-2 cells on a layer of mac-
rophages and dendritic cells embedded in collagen scaf-
folds. Indeed, these immune cells are both present in 
the intestinal lamina propria and react to inflammatory 
stimuli, by producing pro-inflammatory cytokines (e.g. 
interleukin (IL)-6, tumour necrosis factor (TNF)-α) and 
anti-inflammatory mediator (e.g. IL-10) [27, 28], as a 
possible compensation mechanism. Interestingly, some 
of these mediators such as IL-6 and TNF-α are involved 
in the pathogenesis of inflammatory bowel disease, pro-
moting gut damage and loss of intestinal barrier integrity, 
while IL-10 reduces the inflammation typically associated 
with this pathology [29]. Some NBMs have been shown 
to induce intestinal cells to assume the phenotype of 
inflammatory bowel disease. For instance, the model pro-
posed by Susewind and co-workers to assess the safety of 
 TiO2, Ag and Au nanoparticles [30] is characterised by 
the loss of barrier function and the increased production 
of inflammatory cytokines that regress after the treat-
ment with anti-inflammatory drugs [31], well recapitulat-
ing the situation occurring in vivo.

Furthermore, some authors proposed ex-vivo systems 
derived from murine, porcine, or human bowel to study 
the intestinal permeability after the exposure to nanopar-
ticles [32, 33].

Although these models are closer to the intestinal anat-
omy and physiology than conventional monocultures, 
the most used model for the evaluation of the exposure 
to NBMs is still the culture of Caco-2 cells on porous 
membrane inserts. In these conditions the cells rapidly 
differentiate into an intestinal barrier [34–37]. In addi-
tion the HCT116 model, another colon cancer cell line, 
is a widely accepted tool to evaluate the genotoxicity of 
NBMs [38–41].

Another important issue to be considered in in  vitro 
intestinal models is the biological identity of the NBMs 

Conclusions: Overall, the results add a piece of evidence on the importance of applying validated in vitro SHDS 
models for the assessment of NBM intestinal toxicity/biocompatibility. We propose the association of chemical and 
microscopic characterization, SHDS and in vitro tests on both immortalised and primary cells as a robust screening 
pipeline useful to monitor the changes in the physico‑chemical properties of ingested NBMs and their effects on 
intestinal cells.

Keywords: Nano‑biomaterials, In vitro simulated digestion, Biotransformation, Toxicity, Caco‑2, HCT116, HCoEpiC, 
Gastro‑intestinal barrier, Permeability, Inflammation
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that are in contact with cells, because ingested NBMs 
interact with different fluids characterised by specific 
pH, ionic strength, and composition. This interaction 
may dramatically modify NBMs’ properties. For instance, 
the exposure may lead to dissolution [42], aggregation/
agglomeration [43], and formation of bio-molecular 
corona [44] that may change over time. Monitoring such 
biotransformations is crucial to understand the NBMs 
biological fate in the gut environment and the impact on 
their toxicity [19, 45].

Recently, several in  vitro digestion models have been 
proposed to investigate the digestion-driven modifica-
tions of NBMs. Sequential incubations in simulated 
gastric and intestinal fluids have been used to study the 
bioactivity of starch nanocapsules [46] and zein-pectin 
nanoparticles [47]. A similar protocol, improved with 
longer incubation times and the addition of simulated 
saliva, has been set up to study the dissolution of  Fe2O3 
nanoparticles [48], the agglomeration of  TiO2 nanoparti-
cles and their interaction with proteins [49]. Several other 
models have been proposed, differing in fluid composi-
tion or incubation times, such as the simulated digestion 
system reported in Sohal et al. [50] and slightly modified 
by Marucco et al. [39]. Most of these models have been 
used to describe the transformation occurring to NBMs 
during the digestive process. Nevertheless, few stud-
ies have been published on the effects that such changes 
have on intestinal cells [51–54].

To fill this gap, in this study we adopted a simulated 
human digestion system (SHDS) consisting of sequen-
tial incubations in simulated saliva fluid (SSF), simulated 
gastric fluid (SGF) and simulated intestinal fluid (SIF) to 
investigate the biotransformation of NBMs of different 
chemical nature. Samples representative of NBMs with 
potential applications in oral drug delivery or nutraceu-
tical field have been selected, i.e. hydroxyapatite, carbon 

nanoparticles, lipid-surfactant nanoparticles and surface 
modified magnetite nanoparticles [55–58]. The effects 
of SHDS-treated or untreated NBMs on viability, barrier 
integrity and intracellular inflammation were evaluated 
on primary and immortalised epithelial intestinal cells.

Results
Properties of the NBMs
In this study, we selected the following NBMs: three col-
loidal formulations composed by elemental carbon nano-
particles (CNPs), lipid-surfactant nanoparticles (LSNPs) 
and PLGA-PEG coated magnetite nanoparticles (FNPs), 
and one powder sample of hydroxyapatite nanoparticles 
(HNPs).

The main properties of the materials are summarized 
in Table 1.

The size distribution and the surface properties of 
the NBMs were investigated by Dynamic Light Scatter-
ing (DLS) and Electrophoretic Light Scattering (ELS), 
respectively (Table 1 and Fig. 1A and B).

Because of the presence of particles/aggregates larger 
than the upper limit of detection of the DLS technique 
(5  µm), LSNPs and HNPs were also analysed by flow 
particle imaging analysis (FPIA) (size range 1–150  µm) 
(Fig. 1C and D).

Based on the low polydispersity index (PDI) values 
and on the small standard deviation (SD) of the size 
distribution (Table  1), CNPs and FNPs appeared sta-
ble and monodisperse colloidal suspensions. CNPs 
and FNPs were mainly composed of nanometric parti-
cles (< 100 nm), albeit particles/agglomerates or aggre-
gates in the nanometric/sub-micrometric range were 
detected as well (Fig.  1A). According to DLS, LSNPs 
had a larger size than CNPs and FNPs, mainly in the 
sub-micrometric range (Fig.  1A). However, it might 
correspond to the presence of few sub-micrometric 

Table 1 Physico‑chemical properties of samples

PDI is referred to Polydispersity Index
* DLS measurement, samples diluted in water (100 µg/ml)
** ELS and pH measurement, samples diluted in water (100 µg/ml)

Samples Appearance Concentration 
(mg/ml)

Z-average 
hydrodynamic 
diameter (nm)*

ζ-potential (mV)** Suspension 
pH**

LSNPs
Lipid‑surfactant nanoparticles

Colloidal suspension 12 135.0 ± 0.5
PDI 0.244

−16.3 ± 1.5 5.46

CNPs
Carbon nanoparticles

Colloidal suspension 1.2 130.8 ± 1.0
PDI 0.170

−52.6 ± 1.0 4.60

FNPs
PLGA‑PEG coated  Fe3O4 nanoparticles

Colloidal suspension 2 83.2 ± 0.5
PDI 0.169

−40.8 ± 1.0 6.84

HNPs
Hydroxyapatite nanoparticles

Powder 1 3126 ± 523
PDI 0.648

−2.0 ± 0.2 7.75
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particles, since DLS techniques overestimate the abun-
dance of particles with larger sizes. FPIA confirms the 
presence of few particles with a diameter between 1 
and 10  μm (Fig.  1C). As far as HNPs are concerned, 
particles were distributed in a wide range of sizes, from 
400  nm to 20  μm (Fig.  1D). In water HNPs formed 
unstable suspensions, with clear sedimentation during 
time. More details on the structure of the four NBMs 
were provided by transmission electron microscope 
(TEM) analysis (following section). As expected, LSNPs 
and CNPs exhibited negative ζ-potential values in the 
whole pH range (Fig.  1B), suggesting the presence 
of negatively charged surface groups. FNPs showed 
positive ζ-potential values only at very low pH values 
(Fig. 1B), likely because of the contribution of the mag-
netite core. HNPs had ζ-potential values close to 0 mV 
at all pH (Fig. 1B) that well agree with the instability of 
the suspensions.

Effect of the simulated human digestive system (SHDS) 
on the measured particles size
The transformation of the NBMs was monitored in terms 
of changes in size distribution, surface modifications, and 
degradation or dissolution by enzymatic digestion.

The changes in size distribution of NBMs during the 
SHDS treatment were firstly measured by integrating 
DLS and FPIA data. In Fig. 2 the hydrodynamic distribu-
tion in the different compartments was compared with 
those measured in water.

No changes of size distribution were found for LSNPs 
and CNPs in SSF (Fig. 2A and B), while a shift of the dis-
tribution curve toward higher diameters was observed 
for FNPs (Fig.  2C), suggesting agglomeration/aggrega-
tion. In the SGF a clear destabilization of the colloidal 
suspensions was observed for all NBMs, as inferred by 
the diameters shift towards high values and the increase 
in the standard deviation among the measurements 

Fig. 1 Size distribution and ζ‑potential of the NBMs. A Hydrodynamic diameter  (dH) distribution of the samples in water (100 µg/ml), evaluated by 
DLS. Each line represents the mean values of 15 measurements that were obtained in three independent experiments. ± SD; B ζ‑potential versus pH 
of the samples evaluated by ELS; C, D Size distribution of C LSNPs and D HNPs evaluated by FPIA. The concentration is reported as the number of 
micrometric particles
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(Fig.  2A–D). This was expected, because of the low pH 
and high ionic strength of the media. Because of the 
intrinsic instability of HNPs suspension, the effect of the 
SGF was less evident (Fig. 2D). The suspensions remained 
highly unstable also in the SIF and the presence of large 
aggregates was optically visible in the final suspension 
(Additional file  1: Fig S1). The presence of micrometric 
particles/aggregates or agglomerates was evaluated by 
FPIA (Fig.  2E–H). Micrometric particles were detected 
in all cases, albeit in different amounts. LSNPs (Fig. 2E) 
exhibited a concentration of micrometric particles higher 
than the untreated material, while for HNPs (Fig. 2H) a 
decrease was observed.

The size distribution was also measured by incubat-
ing the NBMs directly in the intestinal fluid (Additional 
file 1: Fig S2). In this case, the suspension appeared more 
stable and less aggregated than after the SHDS, suggest-
ing that the aggregation occurred in the SGF, and was 
irreversible for all NBMs.

TEM analysis of the SHDS-treated and untreated 
NBMs was also performed (Fig. 3).

Untreated LSNPs (Fig.  3A) were composed by quasi-
spherical particles of different size, confirming the 
DLS analysis (Fig.  1A). SHDS-treated LSNPs (Fig.  3A′) 
appeared of smaller dimensions, suggesting degradation, 
but organized in large aggregates surrounded by biologi-
cal material deriving from the SHDS fluids.

Untreated CNPs (Fig.  3B) appeared spherical, well 
dispersed, and had a narrow size distribution around 
120  nm, in agreement with the DLS data, whereas the 
SHDS-treated CNPs (Fig.  3B′) resulted in an agglomer-
ated and entangled state with associated biological mate-
rial, similarly to LSNPs (Fig. 3A′).

Untreated FNPs (Fig.  3C) appeared as small spheri-
cal iron oxide particles embedded inside the PLGA-PEG 
polymer matrix. After the SHDS (Fig.  3C′) the polymer 
matrix was apparently removed, likely because of the bio-
degradable nature of the PLGA polymer [59]. Transpar-
ent spherical structures, which can be attributed to the 
polymeric residues still present after a partial biodegra-
dation or to the biological matrix, were visible. Iron oxide 
particles appeared highly aggregated, because of the deg-
radation of the polymeric matrix, in line with the results 
obtained by the DLS analyses (Fig.  2C). No significant 
alterations of the iron oxide particles morphology were 
observed.

Large particles of very different shapes such as rods, 
rectangles or spheres were observed for HNPs (Fig. 3D). 

This shape/size diversity can justify the instability of 
the colloidal suspensions and the inconclusive results 
in the DLS analysis. Nevertheless, SHDS-treated HNPs 
(Fig.  3D′) apparently underwent a dramatic transfor-
mation in terms of morphology with evident biological 
material surrounding the HNPs. Being soluble at acidic 
pH (Additional file 1: Fig S3) HNPs are expected to dis-
solve in the SGF [60], and eventually re-precipitate in the 
SIF.

On the other hand, LSNPs were likely subjected to 
hydrolysis by lipases [61]. To investigate the susceptibil-
ity of LSNPs to enzymatic degradation, this NBM was 
incubated in a solution of lipase in water at the same 
pH as the intestinal fluid, and the size distribution was 
monitored up to 24 h (Additional file 1: Fig S4). A shift 
of the  dH distribution towards lower values was observed 
already after 15 min (Additional file 1: Fig S4A) indicating 
degradation; a decrease of approximately 8% in the mean 
 dH value occurred after 24 h (Additional file 1: Fig S4B). 
These data confirm the partial degradation of LSNPs 
observed by TEM analysis (Fig. 3A′).

Bio-molecular corona formation during SHDS
The formation of a bio-molecular corona was investi-
gated on CNPs and FNPs, because these NBMs exhibit a 
surface reactivity that can be used as a probe to monitor 
the extent of coverage of the surface.

The SHDS was performed firstly with and without 
active components (proteins, bile and uric acid, Table 4), 
and the size distribution changes were monitored (Fig. 4).

In both SGF and SIF a higher Z-average and PDI values 
in the absence of active components was observed com-
pared to fluids with active components. The suspensions 
were largely unstable, and the particles slowly depos-
ited on the bottom of the flask, as shown in Fig. 4. This 
confirms the formation of a bio-molecular corona in the 
SHDS that stabilizes the colloids.

To gain information on the extent of the surface cover-
age, the NBMs were analysed for their surface charge by 
ELS and reactivity by electron paramagnetic resonance 
(EPR) spectroscopy (Fig.  5). The experiments were per-
formed after washing steps aimed at removing the soft 
corona.

The ζ-potential was measured in ultrapure water by 
varying the pH of the suspension (Fig.  5A and B). The 
ζ-potential curves of CNPs treated with SHDS were dif-
ferent compared to untreated CNPs, suggesting the pres-
ence of biomolecules at the surface. Similarly, treated 

(See figure on next page.)
Fig. 2 Size distribution changes after incubation with the SHDS. Upper panels: DLS patterns of the NBMs in the different fluids of the SHDS; A 
LSNPs; B CNPs, C FNPs; D HNPs. Each line represents the mean values of 15 measurements that were obtained in three independent experiments. 
Lower panels: FPIA size distribution of the NBMs after SHDS; E LSNPs; F CNPs, G FNPs; H HNPs. The concentration is reported as the number of 
micrometric particles. Each line is the mean of three independent experiments ± SD
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Fig. 2 (See legend on previous page.)
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FNPs showed a ζ-potential shift, which might be due to 
the presence of a bio-molecular corona, and/or to the 
removal of the polymeric coating.

The surface reactivity was monitored by using the 
spin-probe TEMPONE-H. This is an unspecific probe 

able to react with Reactive Oxygen Species with redox-
active surface centres leading to the stable radical TEM-
PONE, detectable by EPR spectroscopy [62]. Therefore, 
this system is suitable to monitor the surface reactivity of 
nanomaterials.

Fig. 3 Transformation of NBMs monitored by TEM analysis. Representative TEM images of A LSNPs; B CNPs, C FNPs; D HNPs before SHDS‑treatment 
and A′ LSNPs; B′ CNPs, C′ FNPs; D′ HNPs after SHDS‑treatment
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In the presence of untreated CNPs (Fig. 5A′) or FNPs 
(Fig. 5B′), the typical three-line signal of the TEMPONE 
radicals was observed. When treated with SHDS the sur-
face reactivity of both FNPs and CNPs decreased, but 
was not eliminated, suggesting that the surface was still 
partially exposed to the solvent.

NBMs identity in cell culture medium and in SHDS
In vitro cellular tests require the use of cell medium, 
which contains several components, including proteins. 
During the NBM incubation in this medium, their bio-
logical identity may be further modified due to the parti-
cles interaction with the medium components. Therefore, 
we firstly investigated any changes in the material size 
distribution following exposure to protein rich fluid. 
Fig    6 shows a comparison of treated and untreated 
NBMs diluted in cell medium (Dulbecco’s Modified Eagle 
Medium (DMEM) with 10% Foetal Bovine Serum (FBS)). 

The mean  dH values and PDI are reported in Additional 
file 1: Table S1.

The NBMs exposure to the SHDS resulted in a dra-
matic change of the size distribution for all NBMs.

Treated LSNPs exposed to cell medium were more sta-
ble over time than the untreated ones (Fig. 6A), but they 
displayed a wider range of size, with a population char-
acterised by a mean diameter smaller than the LSNPs 
in water, likely as a consequence of a partial degrada-
tion. Both treated and untreated CNPs were stable in cell 
medium up to 24 h (Fig. 6B). A moderate shift of the sizes 
towards values higher than the particles in water was 
however observed, more evident for the treated CNPs. 
A visible time-dependent instability in cell medium was 
observed for both treated and untreated FNPs (Fig. 6C) 
and HNPs (Fig.  6D). Treated FNPs were largely aggre-
gated in cell medium, while a moderate shift of the curve 
towards higher  dH was observed for the untreated FNPs 

Fig. 4 Effect of the active components on NBMs aggregation. Mean  dH and PDI (left panels) and representative images of the suspensions (right 
panels) of A CNPs and B FNPs in the various OGI compartments in the presence or absence of active components. Each line represents the mean 
values of 15 measurements that were obtained in three independent experiments
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in comparison to water. Untreated HNPs appeared to 
form slightly more stable colloids in cell medium than in 
water; while after SHDS several populations with a wide 
range of size appeared. The formation of aggregates of 
size above the detection limit of DLS was clearly visible 
for all NBMs in cell medium (Additional file 1: Fig S5).

The surface reactivity of CNPs and FNPs in the cell 
medium was also monitored by EPR spectroscopy 
(Fig.  6E and F). Both treated and untreated CNPs had 
similar surface reactivity in cell medium, suggesting that 
the surface of the particles is still exposed to the solvent. 
In the case of FNPs, the SHDS-treated sample exhibited 
an unexpectedly high surface reactivity, likely caused by 
the presence in the bio-molecular corona of some redox-
active components.

The hard protein corona composition was also analysed 
for treated and untreated NBMs after incubation in cell 
medium. For the isolation of the corona-NBM complex, 
three steps of centrifugation were necessary to remove 
the soft corona [63]. However, a protein background was 
detected for the control sample, only composed by SHDS 
and DMEM 10% FBS and no NBMs (Additional file  1: 
Fig S6E), suggesting that the digestion process and the 
long incubation time led to protein aggregation. Unfor-
tunately, it was not possible to discriminate the protein 
corona from the background proteins that co-precipi-
tated during the NBMs-corona isolation protocol. Thus, 
we studied the effect of the treatment with SHDS only for 
FNPs. In fact, for these NBMs a magnetic separation was 
used as an alternative method to remove the soft corona. 

Fig. 5 Extent of surface coverage and reversibility of the bio‑molecular corona. Left panels: ζ‑potential versus pH of A CNPs; B FNPs treated with 
SHDS and washed to remove the soft corona in comparison with the untreated one; right panels: EPR spectra recorded on A′ CNPs; B′ FNPs treated 
with the SHDS in comparison with the untreated one, using the spin‑probe TEMPONE‑H (Ctrl = no particles)
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Fig. 6 Identity of NBMs in cell medium. Upper panels: Comparison of the size distribution (DLS) of untreated and SHDS‑treated NBMs in DMEM 
10% FBS. A LSNPs; B CNPs; C FNPs; D HNPs. Lower panels: representative EPR spectra recorded in a suspension of E CNPs; F FNPs pre‑incubated in 
DMEM 10% FBS in the presence of the spin‑probe TEMPONE‑H
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Fig. 7 Effect of the SHDS on the protein corona composition of FNPs incubated in DMEM 10% FBS for 24 h. A SDS‑PAGE analysis 
(Ctrl = SHDS + DMEM 10% FBS without FNPs). B Heat map showing the relative abundance for each protein normalizing the mean value for the 
same protein. Proteins derived by SHDS are highlighted in the square
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In Fig. 7A the SDS-PAGE analysis of the hard corona is 
shown. Clearly, the treatment with SHDS affected the 
corona composition since treated and untreated samples 
had different protein patterns.

Proteomic analysis by mass spectrometry for these 
samples identified more than 200 proteins for the corona 
of both SHDS-treated and untreated FNPs (Fig. 7B).

The top 20 most abundant proteins are listed in Table 2. 
Label free quantification (LFQ) calculated with Perseus 
was used to compare the protein abundance between the 
two samples.

Within the top 20 most abundant proteins, some serine 
proteases derived from SHDS were found in the SHDS 
treated sample. Different chymotrypsins derived from 

Table 2 Top 20 most abundant proteins for SHDS‑treated and untreated FNPs

* Common proteins; **proteins from SHDS. LFQ was calculated with Perseus (n = 3). SEM refer to the standard error of the mean for n = 3

FNP SHDS + DMEM 10% FBS FNP DMEM 10% FBS

LFQ ± SEM (x1E08) Protein Name Protein ID MW (kDa) LFQ ± SEM (x1E08) Protein Name Protein ID MW (kDa)

1 12.4 ± 3.4 Bovine Alpha‑2‑HS‑
glycoprotein*

P12763 38.4 8.11 ± 1.6 Bovine Haemoglobin 
foetal subunit beta*

P02081 15.9

2 12.3 ± 1.8 Bovine Alpha‑1‑anti‑
proteinase*

P34955 46.1 4.81 ± 0.19 Bovine Alpha‑1‑anti‑
proteinase*

P34955 46.1

3 10.0 ± 0.90 Pig Peptidase S1 
domain‑containing 
protein**

I3LHI7 27.7 3.99 ± 0.050 Bovine Alpha‑2‑HS‑
glycoprotein*

P12763 38.4

4 7.96 ± 0.32 Bovine Albumin* P02769 69.3 3.27 ± 0.34 Bovine Albumin* P02769 69.3

5 6.84 ± 1.1 Bovine Haemoglobin 
foetal subunit beta*

P02081 15.9 3.22 ± 0.70 Bovine Haemoglobin 
subunit alpha*

P01966 15.2

6 4.03 ± 0.60 Bovine Apolipopro‑
tein A‑I*

P15497 30.3 2.67 ± 0.35 Bovine Apolipopro‑
tein A‑I*

P15497 30.3

7 3.42 ± 0.76 Bovine Histone H2A 
type 2‑C

A1A4R1 14 2.45 ± 0.11 Bovine Inter‑alpha‑
trypsin inhibitor 
heavy chain H2*

A0A3Q1LK49 96.8

8 2.45 ± 0.24 Bovine Haemoglobin 
subunit alpha*

P01966 15.2 2.35 ± 0.35 Bovine Angio‑
tensinogen*

P01017 51.4

9 2.43 ± 0.35 Pig Triacylglycerol 
lipase**

F1S4T9 51.6 2.04 ± 0.18 Bovine Alpha‑feto‑
protein*

Q3SZ57 68.6

10 2.42 ± 0.35 Pig HATPase_c 
domain‑containing 
protein**

A0A287A9T4 83 1.90 ± 0.16 Bovine Apolipopro‑
tein A‑II*

P81644 11.2

11 2.32 ± 0.57 Bovine Serpin family 
G member 1

E1BMJ0 51.8 1.88 ± 0.14 Bovine Inter‑alpha‑
trypsin inhibitor 
heavy chain H4

F1MMD7 101.5

12 2.26 ± 0.42 Pig Carboxypepti‑
dase A1**

P09954 47.2 1.87 ± 0.10 Bovine Alpha‑1‑mi‑
croglobulin

F1MMK9 53

13 2.02 ± 0.80 Bovine Angiotensino‑
gen*

P01017 51.4 1.80 ± 0.17 Bovine Beta‑2‑glyco‑
protein 1*

P17690 38.3

14 2.00 ± 0.13 Bovine Alpha‑feto‑
protein*

Q3SZ57 68.6 1.54 ± 0.090 Bovine Alpha‑2‑mac‑
roglobulin

Q7SIH1 167.6

15 1.61 ± 0.85 Bovine Histone H2A F2Z4G5 14.1 1.52 ± 0.15 Bovine Fetuin‑B Q58D62 42.7

16 1.58 ± 0.10 Bovine Beta‑2‑glyco‑
protein 1*

P17690 38.3 1.46 ± 0.24 Bovine Vitronectin* Q3ZBS7 53.6

17 1.58 ± 0.10 Bovine Inter‑alpha‑
trypsin inhibitor 
heavy chain H2*

A0A3Q1LK49 96.8 1.46 ± 0.037 Bovine Complement 
C3

Q2UVX4 187.3

18 1.39 ± 0.16 Bovine Apolipopro‑
tein A‑II*

P81644 11.2 1.39 ± 0.12 Bovine Alpha‑1B‑gly‑
coprotein

Q2KJF1 53.6

19 1.30 ± 0.19 Pig Peptidase S1 
domain‑containing 
protein**

I3LJ52 26.9 1.28 ± 0.11 Bovine Inter‑alpha‑
trypsin inhibitor 
heavy chain H3

P56652 99.6

20 1.14 ± 1.7 Bovine Vitronectin* Q3ZBS7 53.6 1.28 ± 0.11 Bovine Complement 
factor B

P81187 85.4
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pancreatin were also detected among the less abundant 
proteins (data not shown). On the other hand, proteins 
highly abundant in FBS [64], were found in the corona 
for both samples, in particular alpha-2-HS-glycoprotein, 
apolipoprotein AI and AII, bovine haemoglobin alpha 
and beta chain, and alpha-1-antiproteinase. This lat-
ter, alpha-1-antiproteinase, also known as alpha-1-anti-
trypsin, alpha-1-proteinase inhibitor or serpin A1, is an 
inhibitor of serine proteases. A comparison of the abun-
dance of proteases in treated and untreated samples is 
shown in Additional file 1: Fig S7.

Effects of SHDS on the cytotoxicity toward epithelial 
intestinal Caco‑2 cells, HCT116 cells and primary human 
colonic epithelial cells
To investigate the effect of SHDS treatment on the NBMs 
cytotoxicity, a dose-dependent viability assay in Caco-2 
and HCT116 cells, using a dose range from 0 to 150 µg/
ml was performed.

This range was chosen based on the toxicity given by 
the OGI fluids alone tested at the same dilutions used 
for NBMs. Indeed, preliminary experiments indicated 
that OGI fluids were not significantly toxic up to dilution 
corresponding to 150 µg/ml NBMs (Additional file 1: Fig 
S8A).

In both Caco-2 and HCT116 cells, a very low toxic-
ity was observed for untreated LSNPs up to 100  µg/ml. 
However, after the treatment with SHDS a significant 
cytotoxicity was observed for concentrations higher than 
75  µg/ml and 20  µg/ml in Caco-2 and HCT116 cells, 
respectively (Fig.  8A). On the contrary, neither SHDS-
treated nor untreated CNPs were toxic and SHDS did not 
alter the profile of toxicity of this NBM in both cell lines 
(Fig. 8B). On Caco-2 cells, untreated FNPs displayed the 
highest cytotoxicity, starting at 10 µg/ml, but in contrast 
with the other NBMs, SHDS has a cytoprotective effect: 
indeed, SHDS-treated FNPs became toxic at 50  µg/ml 
and were significantly less toxic than untreated ones in 
the range 50–75 µg/ml (Fig. 8C). A similar effect of tox-
icity masking was observed for HNPs: indeed, untreated 
HNPs were toxic from 50 µg/ml, but after SHDS no tox-
icity was detected at all the concentrations tested. As 
further confirmation, SHDS-treated HNPs were signifi-
cantly less cytotoxic than untreated ones (Fig.  8D). On 
HCT116 cells, neither untreated nor SHDS-treated FNPs 
and HNPs induced any significant cytotoxicity (Fig.  8C 
and D).

Caco-2 and HCT116 cells are widely used as models 
of gastrointestinal cells [65]. However, being immortal-
ized, they are expected to be more resistant to external 
stimuli. Therefore, we measured the effect of NBMs also 
in primary non-transformed intestinal epithelial cells 
(HCoEpiC). In general, all the NBMs showed toxicity at 

lower concentrations than on Caco-2 and HCT116 cells 
(Fig.  9). This finding can be partially explained by the 
higher sensitivity of HCoEpiC to SHDS fluids, which are 
toxic at a lower concentration (50  µg/ml) (Additional 
file  1: Fig S8B) than in immortalized cells (Additional 
file 1: Fig S8A). On this basis, we decided to evaluate the 
NBMs at a concentration range (2.5–20 µg/ml) immedi-
ately below the first toxic concentration for SHDS fluids.

The pre-incubation with SHDS increased the cyto-
toxicity of LSNPs and CNPs (Fig.  9A and B). We did 
not detect any significant cytotoxicity changes between 
SHDS-treated and untreated FNPs (Fig. 9C), while HNPs 
were the only NBM showing lower cytotoxicity after 
SHDS towards both Caco-2 (Fig. 8D) and HCoEpiC cells 
(Fig. 9D).

These data show a different behaviour on epithelial 
intestinal cells in relation to the nature of NBMs that can 
undergo different modifications during SHDS. Moreo-
ver, the choice of in vitro model to evaluate cytotoxicity 
is also of paramount importance, as demonstrated by the 
different sensitivity between Caco-2 cells, HCT116 cells 
and primary non-transformed cells.

The genotoxicity of NBMs was then evaluated on 
HCT116 cells because, although it is a cancer-derived 
cell line, it bears wild-type p53 contrarily to Caco-2 cells. 
None of the tested NBM induced any significant increase 
of DNA strand breaks as assessed by counting 53BP1 
DNA repair foci, while the positive control, i.e., cells 
exposed for 24 h to 50 µM etoposide, led to a statistically 
significant increase of 53BP1 foci count (Additional file 1: 
Fig S9).

Effects of SHDS on viability and permeability of Caco‑2 
intestinal barrier model
Finally, we investigated the effects of NBMs on viability, 
permeability, and inflammation parameters in a com-
petent model of GI barrier, i.e. the 21-day differentiated 
Caco-2 model.

When Caco-2 cells grow on specific inserts and reach 
the complete confluence, they begin to differentiate, 
completing the process after 21 days [66]. This model is 
recognized as a valid GI barrier model, widely used in 
permeability assessment tests because it mimics intes-
tinal physiology [67, 68]. Thus, we used this model to 
investigate the effects on cell viability and barrier perme-
ability for all SHDS-treated and untreated NBMs. Since 
there are no literature data about the physiological doses 
in patients exposed to these NBMs but at the same time 
there are also no reports of severe acute toxicity, we 
decided to study the highest non-toxic dose of NBMs for 
Caco-2 undifferentiated cells, to highlight the differences 
in terms of toxicological properties of NBMs, before and 
after the simulated digestive process. Barrier-forming 
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Fig. 8 Cell viability of Caco‑2 (left) and HCT116 (right) cells after incubation with SHDS treated and untreated A LSNPs, B CNPs, C FNPs and D HNPs. 
n = 3; mean ± standard error (SEM); +p < 0.05 versus Ctrl; ++p < 0.01 versus Ctrl; *p < 0.05 versus untreated; **p < 0.01 versus untreated
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cells were thus incubated for 24  h at the highest non-
toxic concentrations of SHDS-treated NBMs (150 µg/ml 
for CNPs and HNPs and 50 µg/ml for LSNPs and FNPs) 
(Fig. 8, left panel).

In the viability assays, neither untreated nor SHDS-
treated NBMs showed toxicity (Fig.  10A). Since toxic 
effects of NBMs may alter barrier integrity and produce 
inflammation [30], we next evaluated integrity param-
eters, in terms of functional assays, TEER and TJ levels, 
and pro/anti-inflammatory cytokines production.

In our model, the absence of toxicity was paralleled 
by the absence in permeability variation, measured by 
the Lucifer Yellow permeability assay (Fig. 10B; Table 3). 
Moreover, the TEER values were always > 600  Ω*cm2 in 
both untreated and NBM-treated barriers (Additional 
file 1: Table S2).

Notably, each NBM increased one or more genes 
involved in TJs with a specific pattern (Fig. 11). Untreated 

LSNPs, FNPs and HNPs down-regulate occludin (OCLN) 
(Fig.  11B) and to a lesser extent zonula occludens-1 
(TJP1) (Fig. 11A), claudin 3 (CLDN3) (Fig. 11C) and clau-
din 5 (CLDN5) (Fig.  11D) genes. SHDS-treated LSNPs 
increased only TJP1 and CLDN5, SHDS-treated FNPs 
increased TJP1, OCLN and CLDN5, SHDS-treated HNPs 
increased the expression of all these genes, although to a 
different extent. Interestingly, CNPs were the only NBM 
that increased the expression of all TJs-encoding genes 
evaluated both in the untreated (except for CLDN5) and 
in the SHDS-treated form (Fig. 11).

This up-regulation of TJs genes may suggest a com-
pensatory response mounted by GI cells in response to 
potentially cytotoxic NBMs. According to the functional 
results in terms of permeability (Fig. 10B), such response 
was successful in preventing the loss of barrier integrity.

Finally, we analysed the gene expression of TNF-α 
and IL-6, two pro-inflammatory cytokines involved in 

Fig. 9 HCoEpiC viability after incubation with SHDS‑treated and untreated A LSNPs, B CNPs, C FNPs and D HNPs. n = 3; mean ± SEM; +p < 0.05 
versus Ctrl; ++p < 0.01 versus Ctrl; *p < 0.05 versus untreated; **p < 0.01 versus untreated
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the pathogenesis of inflammatory bowel disease [69], 
opposed to IL-10, known for its immune-suppressive role 
in inflammatory bowel disease [70], and to IL-22, which 
triggers regeneration after intestinal injuries [71] and 
preserves the intestinal epithelial integrity [72].

None of the untreated NBMs significantly increased 
the cytokines gene expression (Fig.  12), in line with the 
low modulation of TJ-genes (Fig.  11). SHDS-treated 
CNPs did not increase the expression of pro-inflamma-
tory TNF, which was instead increased by SHDS-treated 
LSNPs, FNPs and HNPs (Fig.  12A). All the SHDS-
treated NBMs increased IL6 (Fig. 12B), but they also up-
regulated the anti-inflammatory/immune-suppressive 
cytokines IL10 (Fig. 12C) and IL22 (Fig. 12D), suggesting 
a balance between pro-inflammatory and anti-inflamma-
tory processes that could contribute to preserve the GI 
barrier integrity.

NBM intestinal barrier crossing
The results obtained with the Lucifer Yellow test sug-
gested that the tested NBMs are unable to cross the 

barrier, even after SHDS-treatment. To monitor the 
NBM possible transcellular translocation, the barrier 
model was exposed to CNPs and FNPs and the particle 
concentration in the basolateral compartment of Caco-2 
GI barrier was monitored by Nanoparticle Track Analysis 
(NTA). These samples were selected because the tech-
nique is more sensible on samples with a highly refractive 
index. No particles were found in the basolateral com-
partment after treatment with both SHDS-treated and 
untreated CNPs and FNPs (data not shown). These data 
were confirmed for FNPs using the FerroZine™ assay 
which showed no significant presence of iron (data not 
shown).

Discussion
The exposure to NBMs is becoming more and more com-
mon due to their widespread use in various industrial 
sectors including food and medicine. Consequently, the 
number of studies focusing on NBMs hazard are increas-
ing exponentially [73–75]. Ingestion has been recognized 
as an important route of exposure to both nanomaterials 
and NBMs only recently. For this reason it has been lit-
tle investigated so far. Moreover, because of the complex-
ity of the OGI tract physiology, a consensus on the most 
suitable models and markers for the assessment of NBM 
toxicity has not been reached yet.

Recently, several cellular models have been proposed 
to mimic the manifold gut anatomy and physiology [32, 
33, 76–79]. However, in most of the existing studies cells 
are exposed to untreated NBMs, neglecting the trans-
formations that occur to NBMs during the transit in the 
OGI tract [13]. Recently, different in  vitro systems sim-
ulating digestion have been proposed to monitor such 

Fig. 10 Caco‑2 barrier viability (A) and permeability (B). 24 h of incubation with 50 µg/ml of LSNPs and FNPs, and 150 µg/ml of CNPs and HNPs. 
n = 3. Nude: permeability of Lucifer Yellow across Millicell® inserts without cells. n = 3; mean ± SEM; ++p < 0.01 versus Ctrl

Table 3 Apparent permeability (Papp) values of Caco‑2 barrier 
model after 24 h of incubation

24 h of incubation with 50 µg/ml of LSNPs and FNPs, and 150 µg/ml of CNPs and 
HNPs. n = 3; mean ± SEM

Untreated Papp (cm/s) SHDS-treated Papp (cm/s)

Ctrl 2.61 ×  10–7 ± 2.71 ×  10–8 2.67 ×  10–7 ± 1.40 ×  10–8

LSNPs 2.32 ×  10–7 ± 5.60 ×  10–9 2.26 ×  10–7 ± 3.20 ×  10–9

CNPs 2.38 ×  10–7 ± 1.83 ×  10–8 2.09 ×  10–7 ± 3.37 ×  10–9

FNPs 2.29 ×  10–7 ± 1.08 ×  10–8 2.50 ×  10–7 ± 1.35 ×  10–8

HNPs 2.21 ×  10–7 ± 9.92 ×  10–9 2.18 ×  10–7 ± 1.45 ×  10–8
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biotransformation [50, 80, 81]. Nevertheless, few studies 
have been published on the impact that the NBM bio-
transformation along the OGI tract may have on their 
toxicity toward intestinal cells [39, 52–54, 82].

In the present study we found that the application of 
an in  vitro Simulated Human Digestion System (SHDS) 
induces a significant modification of the bioidentity of 
four NBMs, which in turn modulates their bioactivity 
towards intestinal epithelial cells. Samples representative 
of NBMs with potential applications in oral drug delivery 
(FNPs, CNPs, HNPs, LSNPs) [55–58] or as ingredients of 
nutraceutical formulations have been selected (LSNPs) 
[83].

NBMs acquire a new identity in the OGI tract
The concept that the NBM bioactivity strongly depends 
upon their physical and chemical properties is currently 

well consolidated. Size and surface properties are the 
parameters which have been recognized to modulate the 
NBM toxicity [84–86].

Size primarily affects dosimetry and cellular uptake. 
Smaller particles can penetrate cells more easily by active 
processes such as caveolae- and clathrin-mediated endo-
cytosis, or by passive diffusion across the cell membrane 
[87]. On the other hand, size affects particle sedimenta-
tion and diffusion, thus modifying the kinetics of contact 
with cells and the effective dose [88, 89].

An increase of the particles size consequent to aggre-
gation or agglomeration following contact with simulated 
gastric or intestinal fluids has been previously reported 
for several types of NBMs, as lipid nanoparticles [90], Ag 
nanoparticles [52, 91, 92],  TiO2 nanoparticles [39, 93], 
silica nanoparticles [52, 94], amorphous Mg-Ca phos-
phate nanoparticles [95], Au nanoparticles [96], and 

Fig. 11 Tight junction proteins gene expression in Caco‑2 barrier model after 24 h of incubation with 50 µg/ml of LSNPs and FNPs, and 150 µg/
ml of CNPs and HNPs. A TJP1, B OCLN, C CLDN3 and D CLDN5. n = 3; mean ± SEM; +p < 0.05 versus Ctrl; ++p < 0.01 versus Ctrl; *p < 0.05 versus 
untreated; **p < 0.01 versus untreated
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others [97, 98]. Our study confirms previous reports, 
since a significant increase of the size has been observed 
for all the NBMs investigated (Fig. 2). More importantly, 
we demonstrate that this process, occurring mainly in 
the gastric compartment, is irreversible regardless of the 
chemical composition of the NBMs. In fact, all NBMs 
appear aggregated in the cell media, and in these forms 
have a higher probability to interact with the intestinal 
cells in vivo. The low pH and the high ionic strength of 
the gastric fluid are the main driving force of aggregation, 
as demonstrated for stabilized zero-valent iron nanopar-
ticles [99] and Au nanoparticles [100], while proteins in 
the medium appear to partially inhibit the process.

However, aggregation is not the only transforma-
tion process that NBMs undergo. In fact, in the case 
of HNPs, LSNPs and FNPs the aggregates appear com-
posed of particles smaller than the untreated ones. 

Dissolution, enzymatic degradation or coating degrada-
tion were observed, in line with other studies reporting 
that extreme pH can dissolve pH-sensitive NBMs [101], 
and that enzymes and proteins can contribute to NBMs 
dissolution by digesting NBMs components [102].

Another important aspect is the modification of the 
NBMs surface chemistry. Surface charge both affects 
colloidal stability and nanoparticles-membrane inter-
action [103–105]. On the other hand, the NBM surface 
acts as a scaffold that binds proteins and biomolecules, 
leading to the acquisition of a new biological identity 
[106–110] that influences the NBMs affinity for dif-
ferent cell types and specific receptors [51, 87]. The 
composition of bio-molecular corona and subsequent 
NBMs activity strongly depend on the specific bio-fluid 
in which they are dispersed [111–114].

Fig. 12 Inflammation gene expression in Caco‑2 barrier model after 24 h of incubation with 50 µg/ml of LSNPs and FNPs, and 150 µg/ml of CNPs 
and HNPs. A TNF, B IL6, C IL10 and D IL22. n = 3; mean ± SEM; +p < 0.05 versus Ctrl; ++p < 0.01 versus Ctrl; *p < 0.05 versus untreated; **p < 0.01 versus 
untreated
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Our study clearly shows that proteins and other com-
ponents (e.g., bile salts) can irreversibly bind to the sur-
face by forming a hard corona. Clear-cut differences in 
the bio-molecular corona were found between untreated 
FNPs and SHDS-treated FNPs. Indeed, SDS-PAGE and 
mass spectrometry identified different proteases derived 
from SHDS. This corona also partially protects HNPs 
and LSNPs from degradation. The protective effect of 
proteins has been previously observed for hydroxyapa-
tite nanoparticles after the addition of milk to the in vitro 
digestive process, resulting in a delayed dissolution due 
to the proteins coating [115]. Moreover, Levak et al., and 
Martin et al. demonstrate a minor release of  Ag+ ions by 
silver nanoparticles when coated with proteins [116, 117]. 
On the other hand, the bio-molecular corona modifies 
the surface charge, but does not completely inhibit the 
surface reactivity of CNPs and FNPs, suggesting that the 
surface of the particles is still partially exposed to the sol-
vent, and can interact directly with the cells. This effect is 
clearly dependent on the nature of the materials. Indeed, 
we have previously reported that in the case of  TiO2 the 
treatment with the SHDS completely inhibited the sur-
face reactivity [39]. These results underline the impor-
tance of the presence of active components in SHDS to 
accurately describe the NBMs transformation.

Effect of the biotransformation on the toxicity of NBMs 
toward intestinal cells
The pre-treatment with the SHDS largely affected the 
behaviour of NBMs toward Caco-2 cells. However, the 
effects were different, depending on the type of NBMs 
and on the model/endpoint. The treatment increased the 
toxicity of LSNPs toward undifferentiated Caco-2 cells, 
likely because of the degradation of the outermost layers’ 
and the release of the surfactants, induced by the SHDS. 
On the contrary, the SHDS did not change the cytotox-
icity of CNPs, and reduced the cytotoxicity of FNPs 
and HNPs (Fig.  8). The trend was different in primary 
epithelial intestinal cells. In this case, SHDS increased 
the toxicity of CNPs and FNPs, while LSNPs and HNPs 
maintained a toxicity trend like those observed in Caco-2 
cells (Fig.  9). Overall, the primary cells appeared to be 
more sensitive to homeostatic perturbations. This finding 
is in line with other non-transformed cell lines as CCD-
841, which showed a stronger decrease in viability after 
treatment with isothiocyanate-capped silicon nanopar-
ticles in comparison with Caco-2 cells [118]. Our results 
suggest that the use of primary epithelial cells helps in 
obtaining a more complete picture of the effects of NBMs 
in humans, integrating the results obtained on immortal-
ized cells, useful for preliminary and large-scale screen-
ings, with the results obtained in a model closer to the 
cells of the human GI tract. However, we recommend to 

use both these models in parallel, in order to obtain mul-
tiple information at the same time: if on the one hand, 
primary cells gives more reliable information on the tox-
icity outcome in non-transformed gastro-intestinal tis-
sue, on the other hand the use of immortalised cells that 
can form a competent gastrointestinal barrier allows to 
obtain information about the impact of NBMs on the 
barrier integrity.

Interestingly, both treated and untreated NBMs were 
not cytotoxic in the differentiated Caco-2 cells and did 
not alter the permeability of the intestinal barrier, while a 
clear perturbation of the TJs was observed for all NBMs. 
This may be interpreted as a compensatory mechanism: 
to limit the damage induced by NBMs, GI cells likely 
respond by increasing the expression of specific genes 
encoding for the main TJs proteins. By increasing the 
amount of TJs complexes, this response maintains the 
GI barrier intact, as it occurs as a compensatory mecha-
nism in different diseases [119] or in response to IL-10, 
a cytokine increased by NBMs in our model and known 
to preserve the GI barrier integrity [29]. Indeed, while 
the pro-inflammatory cytokines TNF-α and IL-6, whose 
genes also are up-regulated by NBMs, are known to pro-
mote the disruption of the GI barrier [29], also IL-10 is 
concurrently over-expressed after the exposure to NMBs: 
this balance may promote the recovery of the barrier 
integrity after an initial inflammation-related damage. 
The induction of TJ protein genes was much more evi-
dent in SHDS-treated samples. This might be due to the 
presence of proteases derived from the SHDS in the hard 
corona, as demonstrated for FNPs. In fact, protease/anti-
protease balance has been reported to be important in 
maintaining and regulating the intestinal permeability 
[120]. On the other hand, this effect could be compen-
sated by the high presence of protease inhibitors derived 
from the cell media. This hypothesis should not neces-
sarily apply to the other NBMs tested, since the protein 
corona composition is dependent on the chemical nature 
of the NBM. Conversely, it has been reported that  TiO2 
nanoparticles down-regulated TJs in vivo and ex vivo in 
mice, increasing paracellular permeability [121]. In some 
cases, it is the combination of NBMs as  TiO2 or  SiO2 with 
additives found in food [122] or with bacterial toxins as 
lipopolysaccharide [123] to reduce TJ, adherens junc-
tion and gap junction proteins [123]. Since no increase 
in the permeability of Lucifer Yellow was detected in our 
experimental conditions for all the NBMs tested, we con-
cluded that the increase in TJs genes elicited by NBMs 
was sufficient to prevent any loss of GI barrier integrity. 
Alternatively, we cannot exclude that the integrity of the 
GI barrier that we measured was the result of a com-
plete process of barrier reparation after an initial dam-
age: indeed, it has been documented that Caco-2 cells 

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775



UNCORRECTED PROOF

Journal : BMCTwo 12989 Dispatch : 7-7-2022 Pages : 28

Article No : 491 ¨  LE ¨  TYPESET

MS Code :  þ   CP þ   DISK

Page 20 of 28Antonello et al. Particle and Fibre Toxicology _#####################_

exposed to silica nanoparticles undergo to an initial dis-
ruption of actin cytoskeleton and TJs architecture, fol-
lowed by a recovery phase of actin remodelling and TJs 
reassembly [17]. We recognize that one limitation of our 
work is that we studied the acute effects only. Indeed, our 
main focus was the acute toxicity of NBMs, because the 
NBMs studied are used for medical purposes. Therefore, 
the exposure to the gastrointestinal cells is acute and not 
chronic. As follow up, we plan to monitor the TJ changes 
over time, in order to have a deeper insight into the time-
dependent modulation of these parameters, focusing on 
NBMs whose exposure is chronic for environmental or 
occupational reasons.

As expected, both untreated and treated FNPs and 
CNPs did not cross the barrier by transcellular or para-
cellular routes.

Since NBMs are not-self components it has been 
widely reported that the exposure of GI barrier to NBMs 
induces local inflammation, supported by the presence 
of abundant lymphoid tissues associated with the intesti-
nal mucosa [124] and/or by alterations in the gut micro-
biota [125]. Also, epithelial cells physiologically produce 
cytokines and chemokines that are critical in control-
ling the immune cells activation and the homeostasis 
of microbiota [126]. An altered production of cytokines 
from epithelial cells may result in dysbiosis, pathogenic 
infections or inflammatory bowel disease [126]. As final 
parameter of biocompatibility, we thus evaluated how the 
NBMs tested may alter the production of pro-inflamma-
tory and anti-inflammatory cytokines by Caco-2 cells. 
The increase expression in typical pro-inflammatory 
cytokines as TNF and IL6, but also in anti-inflamma-
tory cytokines as IL10 and in IL22, related to GI epi-
thelial regeneration, elicited by NBMs may suggest the 
development of inflammatory events induced by NBMs 
exposure, paralleled by a compensatory secretion of 
anti-inflammatory and pro-regenerative cytokines. This 
balance, together with the over-expression of TJ genes, 
likely contributes to prevent barrier damage and integ-
rity loss. Our data are in line with the work of Colombo 
and co-workers, reporting that commercial ZnO nano-
particles increase IL-6 and IL-8 production in Caco-2 
barrier model, maintaining barrier integrity [127]. Simi-
larly, polyvinyl chloride particles have been reported to 
induce IL-1β secretion without altering Caco-2/HT29-
MTX/THP1 barrier integrity and viability [128]. All these 
works, however, do not consider the transformation that 
occurs during the NBM digestion. Indeed, in the case 
of SHDS-treated NBMs, we observed a significantly 
stronger increase of TJ and cytokine genes, likely because 
of the dramatic modifications experienced by the NBMs 
following the treatment with the SHDS. However, the 
lack of increased permeability in Caco-2 barrier exposed 

to SHDS-treated NBMs indicates that these modifica-
tions are coupled with preserved barrier integrity. Nota-
bly, CNPs had the lower effects on TJs and cytokines 
genes even after digestion, confirming themselves as the 
NBMs less modified during GI transit and more biocom-
patible after oral ingestion.

Conclusions
In this work we developed a robust and consolidated 
pipeline that combines deep chemical-physical charac-
terization techniques, microscopic analysis, simulated 
digestion and read-out of biological events, including 
biological assays on primary cells, to provide information 
on the toxicity in non-transformed gastro-intestinal tis-
sue, and on barrier-forming immortalized cells, to obtain 
information about gastrointestinal barrier integrity and 
inflammatory events, after acute exposure to NBMs. 
Overall, the results add a piece of evidence on the impor-
tance of associating validated chemical and microscopic 
characterization, SHDS methods and in  vitro models 
for the assessment of NBM intestinal acute toxicity and 
biocompatibility. Our pipeline is versatile, meaning that 
it can be applied to different NBMs that can be ingested 
accidentally, for environmental or occupational reasons. 
At the same time, it could provide a huge amount of 
information on NBMs transformation and acute effects 
on gastrointestinal tract cells. Further studies will be nec-
essary to validate the reported results in vivo.

Materials and methods
Materials and reagents
Plasticware for cell cultures was from Falcon (Becton 
Dickinson, Franklin Lakes, NJ). FBS and culture medium 
were from Invitrogen Life Technologies (Carlsbad, CA). 
If not otherwise specified, reagents were purchased from 
Sigma-Merck.

Nano-biomaterials (NBMs)
CNPs were synthesized by hydrothermal carbonization 
of glucose, following a protocol previously described 
[129]. CNPs are composed of elemental carbon, mainly 
amorphous, and are produced as colloidal suspension in 
water.

LSNPs, developed by Nanovector srl, Torino, Italy, are 
composed by water (Citrate/Phosphate buffer pH 5), glyc-
erol, soy lecithin, glyceryl citrate/lactate/oleate/linoleate 
(E-472), glycerol monostearate (E-471), polysorbate 20, 
ascorbyl palmitate, sodium benzoate, α-tocopheryl ace-
tate, strawberry flavour, sucralose and loaded with Mel-
atonin (0.1% (w/w)). FNPs are a colloidal suspension in 
phosphate buffer (1 mM) of  Fe3O4 nanoparticles embed-
ded in a polymeric matrix (poly-lactic-co-glycolic acid/
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polyethylene glycol) developed by Colorobbia Consult-
ing, Vinci, Italy.

HNPs have been purchased by Sigma Aldrich (Merck 
KGaA, Darmstadt, Germany) in the form of a powder 
made of pure hydroxyapatite with stoichiometric compo-
sition  (Ca5(PO4)3OH).

Dynamic light scattering (DLS)
Size distribution and polydispersity index (PDI) were 
measured on SHDS-treated and untreated NBMs diluted 
in ultrapure water (100 µg/ml) or in cell medium (DMEM 
supplemented with 10% FBS, 1% penicillin/streptomycin 
solution) (100 µg/ml). Measurements were performed by 
using the Zetasizer, Nano instrument (Malvern Instru-
ments, Malvern, UK) with a 633 nm HeNe laser. Instru-
ment settings were: replicate 3, equilibrium time 60  s, 
T = 25  °C, dispersant refractive index 1.330 (water) 
and 1.345 (cell medium), dispersant viscosity 0.8872 cP 
(water) and 0.8000 cP (cell medium), material refractive 
index 1.410 (LSNPs), 2.420 (CNPs), 2.420 (FNPs) and 
1.650 (HNPs), material absorption 1.000.

Untreated CNPs, LSNPs and FNPs were diluted in 
ultrapure water before the analysis, while HNPs were sus-
pended in ultrapure water and sonicated for 5 min with a 
probe sonicator (Sonoplus HD3100 Bandelin, Microtip 
MS73, diameter 3  mm, power 100  W, amplitude 30%). 
SHDS-treated NBMs were analysed in the fluids without 
dilution. In each experiment three subsequent measure-
ments were performed on the same suspension. The data 
were expressed as the mean of three independent experi-
ments, ± standard deviation. Each line represents the 
mean values of 15 measurements that were obtained in 
three independent experiments.

Electrophoretic light scattering (ELS)
ζ-potential was measured using an electrophoretic light 
scattering analyzer (Zetasizer, Nano ZS Malvern Instru-
ments, Malvern, UK). For ζ-potential curve versus pH, 
NBMs were diluted at 500 µg/ml in ultrapure water and 
pH was modified by adding NaOH 0.1 M or HCl 0.1 M. 
Instrument settings were: dispersant (water) dielectric 
constant: 78.5.

Flow particle imaging analysis (FPIA)
FPIA was performed by using a Sysmex FPIA3000 ana-
lyser. High power field (2 × secondary lens) was applied, 
which allows measuring particles from 1 to 40  μm. The 
suspensions of nanoparticles in simulated digestive fluids 
were centrifuged at 8000 rpm for 10 min by Rotina 380 R 
(Hettich Zentrifuger). The suspensions were pelleted, the 
supernatant was removed, and the resulting pellets were 
resuspended in ultrapure water for 2 min in an ultrasonic 

bath. The washing process was repeated three times and 
5 ml of the suspensions were analysed.

Surface reactivity
The NBM surface reactivity was monitored by EPR 
analysis (Miniscope 100 EPR spectrometer, Magnettech, 
Berlin, Germany) using TEMPONE-H (1-hydroxy-
2,2,6,6-tetramethyl-4-oxo-piperidine, Enzo Life Sciences, 
Inc.) as spin probe. Suspension of untreated or SHDS-
treated NBMs in ultrapure water or cell medium (0.5 mg/
ml) was diluted 1:1 in a 100 µM solution of Tempone-H 
and the suspension constantly stirred in a glass vial. The 
EPR spectra were recorded on a sample aliquot (50  µl). 
Instrument settings: microwave power 7  mW, modula-
tion amplitude 1 G, scan time 80 s, two scans.

Transmission electron microscope (TEM) measurements
TEM was accomplished utilizing a FEI CM20 microscope 
operating at 200  kV. TEM samples were prepared by 
placing one drop of a diluted sample on a carbon-coated 
Cu grid and allowing the solvent to evaporate.

Protein corona analysis
NBMs were treated with SHDS following the proto-
col explained below. Treated and untreated NBMs were 
incubated for 24  h in DMEM 10% FBS, 1% penicillin/
streptomycin at 37 °C under agitation (0.5 mg/ml). After 
the incubation, the NBM-corona complex was isolated 
through three centrifugation/dispersion cycles in PBS. 
For FNPs, ferromagnetic spheres were used to isolate 
the complex NBMs-corona (unpublished data). For 
SDS-PAGE, the pellets obtained after the washing were 
stripped using a loading buffer (Cell Signalling Technol-
ogy) in 0.1  M dithiothreitol and heated at 100  °C. The 
obtained solutions were centrifuged before loading the 
samples in a 10% acrylamide gel. SDS-PAGE was car-
ried out using the Mini-Protean (BioRad) system at 120 V 
until the dye front reached the end of the gel. The gels 
were stained using Coomassie (Thermo Scientific) and 
scanned with the Amersham Gel doc system.

For the mass spectrometry analysis, the samples in-
gel were digested with trypsin and treated with differ-
ent solutions to extract the peptides from the gel matrix. 
Raw mass spectrometry data were processed using the 
MaxQuant version 2.0.1.0. [130]. The identification of 
peptides and proteins was done using the UniProt data-
base. Perseus software version 1.6.15.0 [131] allowed the 
analysis of the LFQ intensities obtained. Data were log 
transformed and missing values were replaced with val-
ues from a normal distribution.
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Cell cultures
Caco-2 epithelial colon cells were obtained from Ameri-
can Tissue Culture Collection (ATCC) and were grown 
in DMEM supplemented with 20% FBS, 1% penicil-
lin/streptomycin. For the experiments, cells were used 
between passage 33 and 47, and incubated in DMEM 
supplemented with 10% FBS, 1% penicillin/streptomycin. 
To obtain Caco-2 monolayer forming a competent intes-
tinal barrier model, cells were grown on Millicell®-96 cell 
culture inserts (Merck KGaA, Darmstadt, Germany) for 
21 days [132].

HCT116 cells were obtained from the European Col-
lection of Authenticated Cell Cultures (ECACC, cata-
logue No. #91,091,005) and were grown and exposed 
to NBMs in McCoy’s 5a medium containing 2 mM glu-
tamine, 10% FBS and 1% penicillin/streptomycin. Cells 
were used between passage 15 and 25.

Human colonic epithelial cells (HCoEpiC) were pur-
chased from CliniSciences (CliniSciences, Guidonia 
Montecelio, Italy) and were cultured in Colonic Epithe-
lial Cell Medium (HCoEpiCM) supplemented with 10% 
(v/v) Colonic Epithelial Cell Growth Supplement 
(HCoEpiCGS) and 1% penicillin/streptomycin. Experi-
ments were performed between the passage 5 and 8.

Preparation of simulated digestive fluids
Simulated digestive fluids were prepared following the 
protocol used by Sohal et  al. [50]. The composition of 
each simulated digestive fluid is summarized in Table 4. 
For each fluid, the organic and inorganic parts were pre-
pared separately by adding the components to ultrapure 
water and dissolving them under magnetic stirring. Then, 

the two solutions were mixed in a ratio of 1:1 (v/v) and 
stirred overnight.

The active components were added just before per-
forming the experiment and the solution was vortexed to 
suspend them.

Simulated human digestion system
The protocol used for the simulated human digestion sys-
tem (SHDS) is that used by Sohal et al. [50].

A NBM suspension at the concentration of 1  mg/ml 
was SHDS-treated using an equal volume of simulated 
digestive fluids (Additional file 1: Fig S10). First, the SSF 
was added and the sample was incubated for 15  min at 
37  °C under shaking. After this time, SGF was added 
and incubated for 4  h. Finally, SIF, composed of simu-
lated duodenal fluid (SDF) and simulated bile fluid (SBF) 
in a ratio of 2:1 (v/v), was added and incubated for fur-
ther 4 h. The ratio of simulated digestive fluids was 1:2:3 
(Additional file 1: Fig S10). Table 4 summarises the simu-
lated digestive fluids composition. At the end of the pro-
cess, if necessary, pH was adjusted in the range of 6.5 and 
7.5 using 1 M  NaHCO3 and the suspension was sterilized 
15 min under UV radiations.

For surface reactivity evaluation the suspension was 
centrifuged at 11,000 rpm (Rotina 380 R, Hettich Zentri-
fuger) and, after discarding the supernatant, it was resus-
pended in cell culture medium in a volume depending on 
the desired concentration.

For other tests the suspension was mixed with cell 
medium to obtain the final concentration. Incubation 
with cells or intestinal barrier model was performed for 
24 h.

Table 4 Composition of simulated digestive fluids for the SHDS model (amounts based on 100 ml of fluid)

Fluids Saliva Gastric juice Duodenal fluid Bile

pH 6.5 ± 0.1 1.4 ± 0.1 8.1 ± 0.1 8.0 ± 0.1

Inorganic fraction 89.6 mg KCl
20 mg KSCN
102.2 mg  NaH2PO4xH2O
57 mg  Na2SO4
29.8 mg NaCl
Milli‑Q water

30.6 mg  NH4Cl
40 mg  CaCl2 ×  2H2O
82.4 mg KCl
275.2 mg NaCl
30.6 mg  NaH2PO4xH2O
Milli‑Q water

5 mg  MgCl2 ×  6H2O
56.4 mg KCl
8 mg  KH2PO4
338.8 mg  NaHCO3
701.2 mg NaCl
Milli‑Q water

37.6 mg KCl
578.5 mg  NaHCO3
525.9 mg NaCl
Milli‑Q water

Organic fraction 20 mg urea
Milli‑Q water

8.5 mg urea
65 mg D‑glucose
2 mg glucuronic acid
33 mg D‑glucosamine
hydrochloride
Milli‑Q water

25 mg urea
Milli‑Q water

10 mg urea
Milli‑Q water

Active components 5 mg mucin (porcine stomach)
1.6 mg uric acid
14.5 mg α‑amylase (Bacillus subtilis)

300 mg mucin (porcine 
stomach)
100 mg albumin (bovine 
serum)
100 mg pepsin (porcine 
gastric mucosa)

300 mg pancreatin (por‑
cine pancreas)
50 mg lipase from (Can‑
dida rugosa)
100 mg albumin (bovine 
serum)

600 mg bile 
(bovine)
180 mg albumin 
(bovine serum)
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Viability assay
WST-1 assay, based on the cleavage of the slightly red 
tetrazolium salt WST-1 (4-[3-(4-iodophenyl)-2-(4-
nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate) 
to form a dark red formazan dye by metabolically active 
cells, was used to evaluate the cell viability, as index of 
mitochondrial activity, after the treatment with NBMs. 
WST-1 was added at 10% (v/v) of cell medium and the 
absorbance was read at 440  nm after 2  h for Caco-2 
cells, 1 h and 30 min for HCT116 cells, 4 h for HCoEpiC 
cells and 30 min for the intestinal barrier model using a 
Synergy HT Multi-Detection Microplate Reader (Bio-
Tek Instruments, Winooski, VT) or a Spectramax ID3 
plate reader (Molecular Devices, for HCT116 cells 
only). The absorbance value at the reference wavelength 
(630 nm) was subtracted.

Genotoxicity assay
Genotoxicity was assessed by counting the DNA dou-
ble strand break repair foci, after immunostaining of 
the 53BP1 DNA repair protein, as previously described 
[21, 133]. Briefly, after exposure to NBMs, cells were 
fixed with 4% paraformaldehyde, and permeabilized 
with 0.2% v/v Triton X-100 prepared in PBS containing 
3% w/v bovine serum albumin (PBS-BSA). Non-spe-
cific sites were blocked with PBS-BSA, then incubated 
for 1  h with rabbit polyclonal anti-TP53BP1 antibody 
(Abnova, reference PAB12506) diluted in PBS-BSA, 
washed three times for 5 min with PBS-BSA and incu-
bated for 1  h with an anti-rabbit IgG Atto 633 anti-
body (Sigma-Aldrich, 41,176) diluted in PBS-BSA. 
After three washing in PBS-BSA containing 0.2% Tri-
ton X-100, the nuclei were stained with 0.3  μg/ml 
Hoechst 33,342 (Sigma-Aldrich) for 20  min at room 
temperature. The number of cell nuclei and the average 
number of 53BP1 foci per cell nucleus were counted 
using a CellInsight CX5 High-Content Screening Plat-
form (Thermo Fisher Scientific). This experiment was 
repeated three times independently, with n = 5 repli-
cates in each independent experiment.

Trans-Epithelial Electrical Resistance (TEER)
To evaluate the barrier formation and integrity of Caco-2 
barrier model after the exposure to NBMs, TEER was 
measured using the Millicell® ERS-2 voltohmmeter 
(Merck KGaA, Darmstadt, Germany). The resistance was 
read in ohms and the resistivity was calculated by sub-
tracting the cell-free inserts value from the cell-contain-
ing inserts, multiplying for the cells growth area. Only 
the monolayer with values > 250  Ω*cm2 were used for 
exposure to NBMs.

Evaluation of barrier permeability
To evaluate the permeability of the intestinal barrier 
model the trans-epithelial passage of Lucifer Yellow fluo-
rescent dye [134] was measured following the NANoREG 
SOP (Standard Operating Procedure for evaluation of 
NPs impact on Caco2 cell barrier model). After collec-
tion of the medium, the cells and the basolateral com-
partment of Millicell®-96 cell culture inserts were rinsed 
thrice with Hanks’ Balanced Salt Solution (HBSS). Then 
50 µl/well of a 0.4 mg/ml Lucifer Yellow solution in HBSS 
were added in the apical compartment. After 2 h of incu-
bation at 37  °C, the apparent permeability (Papp) and 
the percentage of fluorophore recovered from the lower 
chamber in cell-free inserts were calculated, reading the 
relative fluorescence units (RFUs) (λ excitation: 504 nm, 
λ emission: 529 nm), with a Synergy HT Multi-Detection 
Microplate Reader.

NBMs absorption through the intestinal barrier 
by Nanoparticle Tracking Analysis (NTA)
The CNPs and FNPs passage through the Caco-2 intes-
tinal barrier was evaluated by measuring the number of 
particles in the initial suspension and in the basolateral 
compartment of the Millicell®-96 cell culture inserts 
using Nanoparticle Tracking Analysis (NTA, ZetaView, 
Particle Metrix GmbH, Germany). The samples were 
diluted in ultrapure water before the analysis. Sensitivity 
was set at 60 and shutter value at 100. In this condition 
neither phenol red nor FBS interference was detected.

FNPs absorption through the intestinal barrier 
by colorimetric assay
For the quantification of FNPs in the basolateral com-
partment the FerroZine™-based colorimetric assay was 
used based on the protocols reported by Balivada and co-
workers [135] and by Jeinter [136]. First, to dissolve and 
reduce the iron contained in FNPs, 150 µl of the samples 
were incubated at 70 °C for 2 h with 150 µl of 1.2 M HCl 
and 60 µl of 1 M ascorbic acid. Then, 300 µl of the result-
ing solution were incubated with 200 µl of 1.5 M sodium 
acetate, 50  µl of 1  M ascorbic acid, 350  µl of ultrapure 
water, and 100 µl of 21 mM FerroZine™ (Thermo Fisher 
Scientific). After 20  min of incubation at room tem-
perature, the absorbance at 562  nm was measured by 
an UV–Vis spectrophotometer (UVICON 930, Kontron 
Instruments, Basel, Switzerland) and the concentration 
was calculated using a calibration curve.

Quantitative Real-Time PCR (qRT-PCR)
mRNA was extracted using the phenol/chloroform/
ethanol method: cells were lysed in 0.5  ml RiboZol 
(VWR; Radnor, PA) and incubated for 10 min at room 
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temperature, and then 0.2  ml chloroform was added. 
Samples were shaken for 15  s and incubated at room 
temperature for 3  min before being centrifuged for 
15  min at 12,000g at 4  °C. Aqueous phase was trans-
ferred in a new tube and 0.2 ml isopropanol was added, 
the samples were incubated for 10  min at room tem-
perature before centrifugation at 12,000g for 10 min at 
4 °C. RNA pellets were washed twice with ethanol 70% 
v/v by centrifuging at 12,000g for 5  min at 4  °C, and 
were resuspended in RNAse-free water. The RNA quan-
tification was performed using the Take3 plate (Syn-
ergy HT Multi-Detection Microplate Reader), reading 
the absorbance at 260 nm. The reverse transcription of 
RNA samples was performed using the iScript cDNA 
synthesis kit (Bio-Rad, Segrate, Italy), according to the 
manufacturer’s instructions.

To quantify the expression of CLDN3, CLDN5, 
OCLN, TJP1, IL-6, IL-10, IL-22 and TNF-α, qRT-PCR 
was carried out using as gene reference the ribosomal 
protein unit S14 coding gene. Briefly, 5 µl of iTaq Uni-
versal SYBR Green Supermix (Bio-Rad Laboratories), 
2 µl of 5 µM primers mix (Table  5) and 3 µl of cDNA 
(5 ng/µl) were used for each sample. Samples were run 
using a CFX96 Real-Time System (Bio-Rad Laborato-
ries) for 30 s at 95 °C, 5 s at 95 °C and 30 s at 60 °C for 
42 cycles. The analysis was performed using Bio-Rad 
CFX Maestro software (Bio-Rad Laboratories).

Statistical analysis
Statistics were performed using ANOVA (ANalysis 
Of VAriance) with post-hoc Tukey Honestly Signifi-
cant Difference Test Calculator for comparing multiple 
treatments [137], using Statistical Package for Social 
Science software (IBM SPSS Statistics v.19). p < 0.05 
was considered significant.
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