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Abstract—Both academics and industry have engaged their
efforts in reducing greenhouse gas (GHG) emissions of Informa-
tion and Communications Technology (ICT). Data centers are
one of the most electricity-expensive ICT actors due to their
uninterrupted service. Reducing the usage of brown energy or
migrating to green energy using renewable sources (RES) is a
way to reduce these emissions. However, this migration is not
straightforward due to intermittence from these sources. This
work is part of Datazero 2 ANR project. This project aims
to design a data center powered only by RES production and
storage elements. This architecture requires several decisions at
different levels of management. This project divides the problem
into two groups: offline and online. On the offline side, it uses
renewable and workload predictions to prepare an offline plan
with a power envelope (power delivered to the servers) and hints
on how to manage the storage (batteries and hydrogen). Given
the offline plan, the article’s contribution is how to deal with real
and dynamic power constraints online while keeping the planned
storage level at the end. So, this article proposes policies to modify
the plan according to the changes in predictions. We evaluate
these policies in a homogeneous and heterogeneous data center.
The results demonstrate that our policies could approach the
storage level and improve Quality of Service (QoS) independently
of data center infrastructures.

Index Terms—Power decisions, Data center, Renewable sources

I. INTRODUCTION

Information and Communications Technology (ICT) emits
around 1.8-2.8% of the world’s total greenhouse gas
(GHG) [1], [2]. Due to its uninterrupted operation, the data
centers sector is one of the most electricity-expensive ICT
actors [3]. A report from 2015 revealed that Google data
centers consumed the same amount of energy as the entire
city of San Francisco [4]. In addition, the situation tends to
get even worse due to the reduction of the improvements in
processor technologies and the predicted expansion of internet
usage [5], [2]. The IT community has started investigating
brown energy’s replacement with renewable energy, aiming
to reduce the impact of data center providers’ emissions [6].
Renewable sources (RES), such as wind and sun irradiance,
can provide clean energy. However, they introduce several
uncertainties, mainly due to weather conditions. Big cloud
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providers (e.g., Google and Amazon) smooth these uncer-
tainties by inserting grid connections [7]. Therefore, they are
not fully clean data centers. This work is part of Datazero
2 Project, which designed a feasible data center architecture
operated only by RES without any link to the grid [8].

A clean-by-design data center must introduce several el-
ements to provide energy to the IT servers, such as Wind
turbines, Solar panels, Batteries, and Hydrogen tanks. Conse-
quently, a manager must predict the weather conditions. It
is also important to predict the IT power demand to deal
with the future workload. This project divides the problem
into two decision levels: offline and online. On the offline
level, it uses both predictions (weather and workload) to create
a plan for a defined next time window (e.g., the next 3-
days). This offline plan consists of the power envelope and
expected storage (battery and hydrogen) level. The power
envelope is the estimated power given to the IT servers. It
is the sum of expected renewable production and planned
storage usage. Then, the online side applies the offline plan.
However, the predictions are not exactly the real values, so
the manager must react to the online events. For example,
workload prediction uses stochastic models to estimate the
mass of the load. However, in online mode, it receives the
precise jobs to execute. Also, renewable production will be
different, demanding modifications in the storage usage plan
to keep the Quality of Service (QoS). However, online must
finish the time window with the storage levels as close to the
plan end as possible.

As QoS, we have considered slowdown and number of
jobs killed. The slowdown is the response time (or time each
job stays in the system) normalized by the running time [9].
These metrics are highly impacted by power decisions. For
example, maintaining a few servers running uses less power
but increases the waiting time, which directly affects the
slowdown. Also, putting a server to sleep during a low renew-
able production could kill the jobs running on it. So, online
must find a balance between the power decisions and QoS
impact. Besides, a heterogeneous data center infrastructure
complicates the decision-making even more. Since all servers
have different characteristics, the choice of the server on which
the job will run is important. Therefore, the server choice could
impact QoS and energy consumption differently. This article



focuses on online plan adaptations. The main contributions are
twofold. First, it presents an online model detailing the the
problem to solve. This model implements three power com-
pensation policies to react to power fluctuations. The objective
is to finish the time window with the storage levels as close as
possible to the planned, improving QoS when it is possible.
The model also takes into account the servers’ heterogeneity
in the decision-making. Second, this work details experiments
showing the improvements of the proposed model compared
to an offline baseline and two reactive executions. The offline
baseline only follows the power plan. The reactive executions
do not use the plan, just reacting to the events.

This paper is organized as follows. Section II presents the
related work, highlighting the gap in state-of-the-art. Then
Section III shows an overview of the problem. Section IV
addresses the proposed online model. Section V presents the
experiments and the discussion about the results. Finally,
Section VI concludes the article.

II. RELATED WORK

Several works pursue ways to deal with RES uncertainties.
However, they introduce, in many cases, grid (brown) connec-
tions or just one level of management (online or offline) [10],
[11], [12], [13], [14], [15]. In work [14], the authors created an
offline optimization framework using a model to capture the
randomness of the RES. The authors in [10] propose an offline
mechanism to vary the price according to the grid and RES
price. They modeled a Stackelberg game to stimulate users
to join the Demand-Response’s load shift. [15] proposes two
online renewable-aware schedulers to maximize RES usage.
The main objective is to maximize the jobs running when
there is more solar irradiation, using the grid and batteries to
deal with the intermittence. The authors in [13] describe two
offline scheduling algorithms: a Genetic Algorithm (GA) and
a Similar Mathematical Morphology (SMM). Both algorithms
use Dynamic Voltage-Frequency Scaling (DVFS) technique to
reduce the processor’s frequency, using less energy. SMM is
similar to GA but uses frames to compare and improve the
best solution. In [11], the authors create an online heuristic
to assign the user requests to the data centers. Their objective
is to reduce the makespan, energy consumption, and overall
cost.

Finally, the authors of [12] proposed a Mixed Integer
Linear Programming (MILP) to optimize the commitment of
a data center powered by only wind turbines, solar panels,
batteries, and hydrogen storage systems. It is offline and
based on prediction. They use weather forecasts to find the
optimal long-term decisions to supply a data center’s demand.
However, the work lacks real-time events, such as scheduling
and fluctuations in power usage. Therefore, to the best of our
knowledge, no work makes online decisions using offline plans
for data centers powered by only renewable energy.

III. PROBLEM STATEMENT

This project designs a feasible architecture to use only
renewable sources to provide power to the servers in a data

center. This architecture includes several power elements to
maintain the servers, such as Wind turbines, Solar panels,
Batteries, and Hydrogen tanks. Since all power comes from
RES, it must estimate the future renewable production and
power demand from IT. These estimations allow it to find a
match between delivered and demanded power. However, the
actual power demand and renewable production could vary
from the predictions. Therefore, it must react to the actual
events. This project divides the problem into two levels: offline
and online. Figure 1 shows this integration. Since this article
focuses on the online side, we will not detail offline. The
main offline objective is to match the workload demand with
the power delivered to the servers. The power delivered to
the servers is also named the power envelope. The power
envelope is the sum of estimated renewable production and
storage usage.
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Figure 1. Online and offline integration with the input/output of each decision
module. The figure indicates each section that will detail each decision
module.

The online input consists of three time series: storage level
(e.g., batteries’ state of charge), storage usage, and estimated
renewable production. As mentioned before, the two last
time series are the power envelope. The power envelope is
decomposed into two time series because the online handles
both differently. Online can change storage usage, dealing
with renewable power fluctuations. The time series have one
time window size divided into several time steps. Figure 2
demonstrates the time division. Given each time step ¢ with a
length of 300 seconds, a 3-day time window has 864 steps. The
entire data center life management has several time windows.
The main goal of online is to have the storage level as close
to the plan as possible at the end of the time window. So,
it reacts to the events in real-time, improving the QoS when
possible. We have considered slowdown and jobs killed as



QoS metrics because both describe the impact of the power
decisions on the jobs. The jobs’ waiting time directly impacts
slowdown. Thus, maintaining a few servers running or at a
minimal frequency will reduce the power consumption but will
affect the slowdown. Also, if the online puts a server to sleep,
this could kill the jobs running on it.
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Figure 2. Time window definition.

Figure 1 shows that the online decision is composed of three
decision modules. The scheduling module receives the actual
jobs submitted by the users and defines the job placement in
the servers. It is its responsibility also to evaluate QoS and
improve it. For example, it verifies if the power envelope is
sufficient to maintain the jobs running. If it is not, the schedul-
ing module requests more power. The power commitment
module has two responsibilities. First, it evaluates if power
changes in the offline plan violate the battery and hydrogen
levels. For example, if the data center uses more power than
the offline plan, it estimates if this change will dry the batteries
now or in the future. So, it recalculates the state of charge for
all future steps. The second responsibility is to verify if it
is possible to compensate for power changes. It compensates
in a future step for any modification in the power plan. This
compensation is crucial to assure that the storage levels will
be close to the planned at the end of the time window. Finally,
the server configuration module translates the power changes
in server states. For example, if there is more power to use
now, this module can turn on more servers or speed up the
running ones. Since it runs in online mode, all online decisions
must be quick. Thus, these online modules can not find the
optimal solution for the time window. The following sections
will detail the modules, presenting the proposed solution for
each one.

IV. PROPOSED MODEL
A. Offline Plan

As described in Section III, the online receives an offline
plan with three time series: storage level, storage usage,
and estimated renewable production. They are composed as
follows:

o Storage level time series:

— SoC}: Batteries’ state of charge (SoC);
— LoH;: Level of Hydrogen (LoH);

o Storage usage time series:

— Pdch;: Power to discharge from batteries;
— Pchy: Power to charge the batteries;

— Pfc;: Power to discharge from Hydrogen;
— Pez;: Power to charge the Hydrogen;

« Estimated renewable production time series:
— Pry: Estimate power from RES;

All time series have the same number of steps t. As
presented before, with a time window of 3 days and a step
length of L = 300 seconds (or 5 minutes), the time series
have T' = 864 steps. The power envelope Pprod;, used by
the servers, is calculated as follows:

Pprod; = Pry — Pchy — Pez; + Pdchy + Pfce;, (1)

Since the model has an estimated power envelope, it can
define a pre-planned server configuration. This server con-
figuration translates the Pprod; into server states. Then, it
finds the data center’s fastest speed (in flops [16]) for the
available power. The server configuration can change each
server’s processor’s speed due to the DVFS technique. This
technique allows decreasing the processor’s frequency to use
less energy. The CPU frequency range is discrete, although
some works define it to be continuous [17]. So, it must find
the best combination of servers off and on at some speed that
uses equal or less energy than the power envelope. Thus, given
a data center with S servers, each server s has a list of states
D,. Each state d in Dy has two values: F, 4 means the flops
per second of the server s at state d, and Ps 4 symbolizes the
power needed to run the server s at state d at maximum load.
Dy q, is the boolean decision variable that indicates that the
server s is at state d at step t. So, Equation 2 tries to maximize
the flops possible, while Equation 3 is a constraint to maintain
the power lesser or equal to the envelope. Equation 4 assures
that the server s will be at only one state d at time {.

T S Dg
maximize Z Z Z Dg gt X Fs.q @
t=0s=0 d=0
S Ds
D> > Poa X Dgay < Pprody, vt 3)
s=0d=0
S Ds
> Dear =1Vt @
s=0d=0

We have solved it using Integer programming. The online
module receives this pre-planned server configuration and uses
it as an initialization. This online module maintains the server
configuration plan if there is no need to change the power
usage.

B. Online Model

1) Scheduling: The main objective of a data center is to
run jobs coming from users. The scheduler component defines
the action of running a job j in a server s. The scheduling
model is applied to scientific High-Performance Computing
(HPC) data centers. The user of these data centers submits an
expected job duration wall; (named walltime) with the job.
If the job takes more time than the walltime, the scheduler
kills the job. Usually, the scheduler is driven by some QoS
metric. Our QoS metrics are twofold: number of jobs killed



and slowdown. The former indicates how many jobs have
started but, for some reason, did not finish their execution.
Equation 5 presents the latter QoS metric [18]. The slowdown
indicates the relationship between the time that the job spends
in the system and its size. The best slowdown value is 1,
where the scheduler puts the job to run as soon as it arrives.
It increases according to the waiting time.

slow; = wait; + wall; ®)

wall;

The model deals with both metrics in two ways. First, the
scheduler decides the placement in the available servers given
by D4+ plan. We chose as the scheduling algorithm the
heuristic EASY-Backfilling [19]. This heuristic naturally im-
proves the slowdown due to its backfilling behavior, but we
also sort the job waiting list by the slowdown. Due to a
possible heterogeneous data center, our model tries to take first
the servers with higher speed for the jobs at the beginning
of the waiting list. This behavior helps in the slowdown
and maximizes the usage of faster machines. Regarding the
killed jobs, the scheduler tries to maintain the servers at the
minimum speed to avoid killing the jobs using Equation 6,
where elapTime; is the actual execution time of job j
and elapFlop; is how many flops the job j has processed.
Equation 7 estimates the job size jobFlop; (in floating-point
operations) using the walltime wall;, a fixed server’s speed
Fy ¢, and an error ¢,,. In [20], the authors introduced the error
€, calculated by each user. They claimed that the users usually
overestimate the execution time by up to 5 times. Therefore,
Equation 6 estimates how many flops the server must deliver
to finish the job before the deadline. Indirectly, this equation
will adjust the job speed during its execution. For example, if
a job arrives in memory or communication-intensive moment,
it will use less CPU. So, the execution time elapTime; will
increase, but the flops jobFlop; will not, reducing the time
horizon (wall; — elapTime;) and demanding a higher speed
(Dys,q,t X Fs ). Equation 6 also compensates for slower speeds
for a job at the beginning with faster states in the end and
vice-versa. The scheduler asks for more power to maintain the
server at least at the lowest speed. However, this modification
respects the rules of the online power commitment (see the
next section).

(wall; — elapTime;) X Dg g1 X Fs g > jobFlop; — elapFlop; (6)
jobFlop; = wally X Fyr g X €y (7

2) Power commitment: The power commitment adapts the
offline plan according to real-time events. This model focuses
on battery decisions since hydrogen is harder to work in online
mode since it needs time to turn on/off. The battery power
usage can vary from the plan. This variation happens because:

1) Server idleness: The offfine estimates a worst-case sce-
nario where the servers will spend maximum usage
during the time step. However, the server can stay idle
for some time or use less energy (the application can
fluctuate its usage);

2) Renewable production: Renewable production can be
different from the estimated. The batteries will maintain
the servers running at the defined speed or absorb the
over-production;

3) Scheduling changes: The scheduler can ask for more
power to finish the jobs running. Also, it could not use
all the power planned because there are fewer jobs or
the jobs consume less than expected;

Therefore, the power commitment must verify the impact of
these variations on future storage levels. For example, a higher
usage now could dry the batteries in the next steps. Equation 8
shows the constraint that the state of charge must be between
the higher threshold (SoCmax) and the lower threshold
(SoCmin) in all steps. Equation 9 shows how the SoC; is
calculated, where SoC}_; is the previous state of charge, o
is the natural discharge rate, nch is the charge efficiency, and
ndch is the discharge efficiency. Pch;_1 and Pdch;_1 are
the power to charge and discharge from the batteries. This
module changes Pch;_; and Pdch;_; to modify the power
envelope Pprod, (as presented in Equation 1). Then, when it
adjusts the power usage, the power commitment recalculates
the state of charge of all future steps (using the plan for future
Pch and Pdch). During this process, if a future SoC} violates
Equation 8, power commitment adapts Pch and Pdch from
the previous steps to solve it. For example, if the SoCy will
reach SoC'max at ¢/, this module must increase Pdchy 1 (or
decrease Pchy_1) at t' — 1.

SoCmin < SoC¢ < SoCmax,Vt ®)

Pdchi—1

SoCt = (SoCt—1 x(1—0))+(Pcht—1 xnchx L)—(
ndch

xL) (9)

Also, the power commitment can not infinitely increase
or decrease Pch, Pdch, and Pprod. It must respect the
boundaries of each variable. Equation 10 shows the Pprod;
boundary, where Pmsn is the power to maintain all servers
sleeping and Pmaz is the power to run all servers at maximum
speed. For example, inserting more power than Pmaz in
a step is useless since the servers can not use this power.
Equation 11 presents the boundaries to charge the battery.
The maximum possible charge power is the minimum value
between the battery physical charge limit (Pchmax) and the
estimated renewable energy (Pr;). This module can recharge
the batteries using only renewable, so it must limit this value
to the estimated production. Finally, Equation 12 demonstrates
that for discharging, the value goes from 0 to the battery
physical discharge limit (Pdchmax).

Pmin < Pprods < Pmax,Vt (10)
(11)

12)

0 < Pch¢ < min(Pr¢, Pchmax),Vt

0 < Pdcht < Pdchmax,Vt

All previous constraints guarantee the boundaries of stor-
age levels and power envelope. However, the main power
commitment’s objective is to ensure that SoC and LoH are
close to the plan at the end of the time window. Just applying
the previous power changes does not assure that the SoC



and LoH will have the planned values at the end of the last
step. For this reason, the power commitment module must
compensate these changes in a future step. For example, if the
planned SoC at the end is 50% and the power commitment
module increases the usage of the battery by 5% now without
compensation, the SoC will be 45% at the end. So, the
module must reintroduce these 5% (reducing the usage) in
a future step. The question now is: in which future time
step? To answer this, we propose three policies: peak, next,
and last. Figure 3 illustrates an example of these policies. In
the figure, if the scheduler demands more power at step 1,
it could compensate for it at step 3 (next), step 12 (peak),
or step 15 (last). The same happens for server idleness and
renewable production. However, since both are unpredictable,
their compensation is reactive (after finishing the step). The
next and last policies execute the same search independently
of the type of compensation (increase or decrease). The peak
policy finds the higher peak to reduce and the lower peak to
increase. So, for example, if it tries to find a step to increase
the usage, it will take the one with lower usage.
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Figure 3. Compensation policies. The blue curve is the usage plan in step 1.
The green square is the increased power, and the red squares are where the
compensations occur for each policy.

3) Server configuration: The last part is to transform the
power change in server configuration. As mentioned in Sec-
tion IV-A, online receives the server states calculated using
the power envelope. However, if the compensation increases
or decreases the usage in a future step, it must convert this
change in the server states, adapting the given by the offline.
We propose a heuristic to find quick solutions. This heuristic
has a list of all power and speed differences between two
states, so it can fastly decide which one will impact the most
on data center speed. When there is more power than the
usage, it will go through the list searching for the highest
flops improvement below or equal to the power increment. It
will do it in the following order:

1) Find the highest improvement possible for the servers

running some job;

2) Find the highest improvement possible for the idle

Servers.

Table I gives an example of one server. For example, if there
are two servers: one with d = 5 and another with d = 10. If
the system has 30W to increase, it will increase first the server
with d = 10 to d = 3, because it will increase 8.08 Gflops
(against 4.5 Gflops from d = 5 to d = 0). If a server is

sleeping, it also considers the power needed to turn the server
on. When the step has less power than planned, it runs the
following:

1) Reduce the speed of idle servers;

2) Reduce the speed of the servers running jobs with higher

(wall; — elapTime;).

The second step will reduce servers’ speed with more time
to compensate for this reduction in the future. It is better
to maintain jobs closer to finish with the maximum speed,
granting that they will complete.

Table 1
SERVER DEFINITION EXAMPLE. THE VALUES ARE FROM GRID5000°Ss
PARASILO SERVER [21], [22]. STATES 14 AND 15 ARE THE TRANSITION
STATES BETWEEN ON AND OFF, AND VICE-VERSA.

State [ Ps.a W) [ Fs q (Glops)

0 221.77 38.4

1 216.77 37.78

2 213.58 36.93

3 208.90 36.01

4 204.45 34.72

5 200.62 33.90

6 197.28 32.84

7 192.49 31.72

8 184.26 30.63

9 182.04 29.25

10 179.75 27.93

11 176.70 26.37

12 175.53 25.01
13 (sleep) 4.5 0
14 (on—soff) | 114.12 0
15 (off—on) 164.14 0

V. SIMULATION EXPERIMENT
A. Experiment environment

This section details the experiments, comparing the three
compensation policies (next, peak, and last) with a baseline
and two reactive algorithms (power reactive and workload
reactive). All executions use the same EASY-Backfilling im-
plementation. The baseline execution just applies the offline
plan without any modification. The power reactive algorithm
does not use the offline but adapts the server configuration
using only the renewable source. It defines the server states
using the same algorithm from IV-B3. So, this power reac-
tive algorithm will try to maximize the usage of renewable
sources. Finally, the workload reactive algorithm also ignores
the offline, allocating servers according to the jobs’ arrival.
When a new job arrives, this algorithm tries to put it in a
running server with the Easy-Backfiling scheduling. If it is not
possible, it turns on a new server. It turns off a server using
the Dynamic power management (DPM) technique [23]. This
technique verifies if the server is idle for a defined time. If
so, the algorithm turns the server off. We have calculated the
time values using the same equation from [24].

We have simulated two data center infrastructures: homo-
geneous and heterogeneous. The homogeneous infrastructure
uses 400 Parasilo servers from Grid5000 !. The heterogeneous

Thttps://www.grid5000.fr/



has 400 servers also, but for eight different types: Dahu,
Grvingt, Parasilo, Chifflet, Grisou, Chetemi, Gros, and Graffiti.
They have distinct power consumption and speed. The power
usage with all servers at maximum speed on homogeneous
configuration is around 88 kW and for heterogeneous is about
111 kW. Regarding the speed, the homogeneous’ max speed
is 15360 Gflop/s and for the heterogenous is 17680 Gflop/s.
Thus, the heterogeneous is faster but more power-hungry. The
data center values (power and speed) come from previous
experiments in Grid5000 [21], [22]. We have simulated this
platform in the BATSIM simulator [25], which operates using
the SIMGRID framework [26].

Another input for our model is renewable production. We
have generated two profiles with the renewable production
of three days in the city of Toulouse from the Renewable
ninja website 2. We have used wind speed and irradiation to
calculate renewable production, resulting in the profiles from
Figure 4. Offline creates the offline plan using profile 1. For
the online, we have executed two experiments. First, online
receives profile 1 as renewable production, simulating a good
weather prediction and offline plan. Second, the online re-
ceives profile 2, adding uncertainties in the weather prediction.
Regarding the workload, we have selected nine different 3-day
workloads from MetaCentrum 2 trace [27]. Figure 5 shows the
nine different workloads patterns with the execution of EASY-
Backfilling with all servers available all the time. We have used
as offline workload prediction the workload W5 pattern from
the figure. Then, we have defined the initial storage and target
storage as SoC' = 50% and LoH = 300kg. Using all these
inputs, we have calculated the offline plan using the MILP
from [12]. This plan is the input for the policies and baseline
execution. After that, we have executed all workloads for all
algorithms. We have chosen to run only one time window (3
days) because if the algorithms can finish one time window
with a good storage level, it can be applied in a continuous
execution (with several time windows, one after another).
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Figure 4. Two different profiles from Toulouse, France.

B. Results

This section presents the results, highlighting some elements
of the executions. Our focus is both power and QoS-related.
Regarding power, we show the distance from the target level
of hydrogen and batteries. The objective is to finish as close to

Zhttps://www.renewables.ninja/
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Figure 5. The nine different workloads server usage pattern if all servers are
available.

the target as possible. We discuss the QoS metrics presenting
the slowdown and number of jobs killed over the different
workloads. First, we present the results with a perfect renew-
able estimation. After, we discuss the execution with different
profiles for offline and online.

1) Perfect Renewable Estimation: First, this section details
the results of a perfect renewable estimation (the estimation
is equal to the real). Regarding the storage level, Figure 6
shows the battery and hydrogen level at the end of the time
window. The baseline execution has an overall higher storage
level than planned since it does not reintroduce the not used
planned power. For example, if a server stays idle for some
moments, the difference between usage and planned stays in
the storage. This behavior explains these results. However, the
power reactive execution is even worst. This execution uses
mainly renewable power to maintain the servers. The storage
is used only when there is no power sufficient to maintain
the servers sleeping or going to sleep. The workload reactive
algorithm has the second-worst storage management due to its
lack of storage awareness. The workload load highly impacts
the results of this reactive algorithm. So, it tends to use more
storage independently of the power constraints in a high load
and low power scenario.

The three policies have better results in storage level. At the
Hydrogen level, only the last policy has some values different
from the target level. The next policy has the best storage
results. It has almost every workload around 10% of the battery
target level and several values with a difference of less than
1%. It achieves these results because it compensates as soon
as possible. So, it has time to deal with possible fluctuations.
On the other hand, the /ast policy has values quite similar to
the baseline since it puts all the compensations in the end.
Therefore, it has no time to use this compensation since it
needs to run jobs to use power. Peak has the second-best
storage level at the end of the time window. This policy tends
to smooth the peaks, resulting in more constant power over
time. However, in the last steps, it could not have enough time
to use the power. Regarding homogeneous and heterogeneous
infrastructure, it is possible to realize that the results of the
next and peak policies are closer to the target level in the
heterogeneous infrastructure. As mentioned before, the het-
erogeneous infrastructure is more energy-hungry. Therefore,
when the policy uses more power to approximate the target
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Figure 6. Storage level for each workload at the end of the time window
with perfect renewable estimation.

level, this decision has a higher impact on the battery level in
the heterogeneous data center.

Regarding QoS, Figure 7 presents the slowdown over the
workloads. The power reactive algorithm has higher slowdown
values than all the other algorithms. This algorithm suffers
from periods of low renewable production (e.g., at night),
putting all servers to sleep during these periods. This behavior
makes the jobs wait, increasing the average waiting time
and impacting the slowdown. The baseline has good values.
However, as mentioned before, it could use more power to
improve it. The workload reactive algorithm also has good
results. This algorithm is workload-driven, so it will have
a good slowdown naturally. Nevertheless, it turns servers
according to the job arrival. Thus, sometimes, the jobs must
wait until the server finishes the turning-on procedure. The
algorithms with offline prediction have some servers waked
up and ready to run the jobs. The best slowdown results come
from the peak policy. It uses the offline estimation to turn on
the servers in advance and reintroduce the power difference for
improving QoS. As mentioned before, it smooths the power
usage curve, which helps to improve the waiting time in the
different workloads patterns. The last policy has similar results
to the baseline because this policy leaves the power at the end.
So, it could not improve the QoS so much.

The next policy has difficulties with some workloads be-
cause it compensates in the first possible step. Figure 8
exemplifies one of these workloads. In the figure highlighted
moment, the policy stops all servers because the state of charge
is too close to zero. Since the main focus of the policies is
to finish with the target SoC, it prefers to stop the servers
than start to use more hydrogen. After that, it maintains no
server running for a long period, increasing the slowdown.
This undesirable effect occurs because the next policy tends to
compensate near the step when it is demanded. So, if the load
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Figure 7. Slowdown over the different workloads with different policies and
with perfect renewable estimation.

is high, the scheduler demands more power, and the power
commitment delivers it, compensating for it in the next step,
where maybe the load continues high. So, when the state of
charge is too close to zero, the policy stops all servers, killing
the jobs running on it. This behavior affects the QoS, but it is
important to notice that, in the end, the SoC is near 50%.
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Figure 8. Battery level with next policy for workload W4 and heterogeneous
server. The highlighted area is the moment when the policy turns off all
machines because the SoC is close to a dangerous value.

Finally, Table II shows the total execution of each experi-
ment. The total work to do is calculated using the job size in
flops. So, if an algorithm kills a big job, it has a higher impact
than a small one. The worst algorithm is the power reactive
since it kills the jobs when there is no power to maintain them
running. The workload reactive has almost every execution
with all jobs finished. It can run more jobs than the others
because it does not have power constraints, using as much
power as it wants. The policies have quite good results, with
several 100% execution. The values below 100% come from
the same reason presented in Figure 8. The policies kill jobs
and turn off the servers when the SoC is close to a dangerous
value. The heterogeneous data center has some values lower
than 100% because it can arrive at a low SoC more easily.

2) Different Profiles: While the previous section describes
a perfect renewable estimation, this section analyzes the im-
pact of a not-so-good prediction. With a good estimation,
the policies can trust in the future values. However, a poor
prediction introduces uncertainties in the plan. For example,
a policy can define that it will recharge the batteries in a



Table 11
TOTAL EXECUTION (IN %) FOR A PERFECT RENEWABLE PREDICTION. EACH COLUMN IS A DIFFERENT WORKLOAD AND INFRASTRUCTURE. THE HIGHER
VALUES ARE THE BEST ONES (MAXIMUM OF 100%). WE HIGHLIGHTED THE BEST AND WORST VALUES FOR EACH COLUMN. IN GREEN THE BEST AND
RED THE WORST. A KILLED JOB WILL REDUCE THE TOTAL EXECUTION.

Homogeneous T Heterogeneous
Execution [ [ Wl [ w2 [ W3 [ W4 [ W5 [ W6 [ W7 [ W8 [ w9 [ [ W1 [ w2 [ W3 [ W4 [ W5 [ W6 [ W7 [ W8 [ w9
Baseline 100 100 100 98.3 100 93.9 97 42.6 100 100 100 100 100 100 99.4 100 47.3 100
Pow.reactive 69.8 66.3 85 57.5 60.9 68.3 70.7 24.6 65.2 75.6 68.4 92.5 64.9 61.1 75.7 70.2 29.3 88.9
Work.reactive 100 100 100 100 100 100 100 62.9 100 100 100 100 100 100 100 100 67.2 100
Peak 100 100 100 100 100 98.4 100 59.4 100 100 100 100 99.6 100 85.8 100 64.3 100
Next 100 100 100 100 100 100 85.6 59.4 100 100 100 100 88.2 100 922 99.3 429 100
Last 100 100 100 98.9 100 94.2 99.1 59.3 100 100 100 100 100 100 99.7 100 67.5 100

future step. However, this future step could not have enough
power incoming. So, it could not recharge as planned. Figure 9
illustrates the results of both storage levels. The battery levels
are very high when compared with a perfect estimation. The
biggest problem with profile 2 compared with profile 1 is
that there is more power in the time window end. So, the
policies do not have time to use the difference properly,
resulting in a high battery state of charge. However, the next
and peak policies are in general better than the reactive and
baseline executions. The baseline execution has almost every
battery level at 100% and several hydrogen levels above the
target level. Nonetheless, the next policy is perfect regarding
Hydrogen levels, finishing with 300 kg in every execution.
The second-best is the peak policy, having only one workload
with a slightly high Hydrogen level. The other executions vary
according to the workload.
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Figure 9. Storage level for each workload at the end of the time window
with different online and offline power profiles.

Profile 2 has more energy than profile 1. Table III demon-
strates the total work finished using profile 2. The baseline and
workload reactive do not change their results since the former
only follows the plan independently of the renewable power,
and the latter allocates as many servers as possible for the
incoming workload. The power reactive improved its overall
results because it has more energy to spend. However, it is
the worst execution yet. The table also shows that the policies

use more energy to increase the total work finished, resulting
in 100% in almost every workload (except only W8). These
results are very similar to the workload reactive algorithm.

Regarding the slowdown, Figure 10 demonstrates that the
results are similar to the execution with a perfect estimation.
As the total work finished metric, the baseline and workload
reactive algorithms have the same slowdown independently of
the power profile. The power reactive algorithm improved the
slowdown but is still worst than other values. The next policy
presents better results now, even better than the peak in the
homogeneous data center. With more power, the next policy
could avoid the problem illustrated in Figure 8.
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Figure 10. Slowdown over the different workloads with different policies and
with a renewable production different from the planned one.

3) Discussion: The previous results demonstrate that using
only an offline plan is not enough to deal with power fluctua-
tions. Both workload and renewable production uncertainties
demand an online adjustment. The baseline and workload re-
active present stable results in QoS, ignoring what is incoming
from renewable in their decision-making process. This could
seem a good approach since the QoS metrics are good, but
it has a huge impact on the power side. When renewable
production is superior to the estimation, baseline and workload
reactive will not take advantage of it (even if the QoS is not so
good). On the other hand, with low renewable production, they
will maintain the QoS and use more storage power (maybe
drying both batteries and hydrogen). So, in a renewable-only
data center, these solutions are not feasible. The power reactive
algorithm uses the power only from renewable sources, killing



Table III
TOTAL EXECUTION (IN %) WITH DIFFERENT OFFLINE AND ONLINE POWER PROFILES. EACH COLUMN IS A DIFFERENT WORKLOAD AND
INFRASTRUCTURE. THE HIGHER VALUES ARE THE BEST ONES (MAXIMUM OF 100%). WE HIGHLIGHTED THE BEST AND WORST VALUES FOR EACH
COLUMN. IN GREEN THE BEST AND RED THE WORST. A KILLED JOB WILL REDUCE THE TOTAL EXECUTION.

Homogeneous T Heterogeneous
Execution [ [ Wi [ w2 [ W3 [ w4 [ W5 [ Woé [ w7 [ W8 [ W9 [ [ Wi [ w2 [ W3 [ w4 [ W5 [ Wé [ w7 [ W8 [ W9
Baseline 100 100 100 98.3 100 93.9 97 42.6 100 100 100 100 100 100 99.4 100 47.3 100
Pow.reactive 77.4 67.7 86.3 54.3 60.3 75.9 78.7 36.7 59.9 85.7 70.2 93.4 60.9 60.4 82.7 75.7 41.2 71.1
Work.reactive 100 100 100 100 100 100 100 62.9 100 100 100 100 100 100 100 100 67.2 100
Peak 100 100 100 100 100 100 100 59.3 | 100 100 100 100 100 100 100 100 67.5 | 100
Next 100 100 100 100 100 100 100 59.3 | 100 100 100 100 100 100 100 100 67.5 | 100
Last 100 100 100 100 100 100 100 59.3 100 100 100 100 100 100 100 100 67.5 100

jobs even if it has power in batteries. On the power side, it
does not reintroduce the power from servers’ idleness. This
algorithm is not a good solution either.

The policies present a simple implementation and good
balance between the storage target level and QoS, mainly the
peak policy. This policy achieves good storage levels (not
the best ones but around the best values) and the best QoS
overall performance. Regarding QoS, it has the best slowdown
(see Figures 7 and 10) and has a good percentage of total
completed work (see Tables II and III). The policies can
perform better than the other algorithms because they awake
the servers in advance. The last policy puts the compensation
at the end, having less time to use the power and resulting
in similar QoS performance as the baseline. The next suffers
from the problem presented in Figure 8. It could arrive at a
dangerous SoC level during a high load moment, killing jobs
and impacting slowdown. However, if the next policy can avoid
these moments, it is even better than the peak (as demonstrated
in the executions with different profiles). Of course, in an
unpredictable lower renewable production the policies will
degrade QoS to maintain the storage levels. However, this is
the expected behavior in a renewable-only data center.

On the power side, next has the best results. This policy
compensates as soon as possible, which gives time to apply
the difference between planned and real. The last is the worst
policy concerning storage level because it is the opposite of
the next. Peak has mid-term values between next and last. Peak
behavior reduces the Figure 8 problem while compensating in
a step where there is time to use the power. Then, this policy
uses the best behaviors of the two others. The experiments lead
us to explore, in the future, other perspectives. For example,
we could introduce another policy that compensates in the mo-
ments with a higher deficit between the workload demanded
load and the provided power. However, this behavior could
suffer from wrong workload estimations. While peak tries to
smooth the curves, this workload policy could put too much
power in a step that maybe will not have this much demand.
Future experiments will introduce this policy. Finally, the best
implementation could be a mix of the previous algorithms,
changing the policy according to the system’s state.

VI. CONCLUSION

A renewable-only data center introduces several elements,
such as batteries, hydrogen, wind turbines, and solar panels.
It demands a plan for the following days using workload and

weather predictions. However, just following this plan may
not be sufficient. This work presented a model for online
adaptations to change an offline plan, aiming to improve QoS
and deal with power fluctuations. The results demonstrated that
simply following the offline plan or only reacting to the online
events is not enough due to the variance in workload and
renewable production. The experiments also revealed that the
presented policies could approximate the target storage level
and improve QoS when possible. Future works will include
other policies linked to workload estimation (e.g., increase
power when workload prediction shows that more jobs would
arrive), a mix of policies, more complex QoS improvements
(e.g., improve slowdown), and a more complete job description
(I/0, network communication, etc).
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