
HAL Id: hal-03841713
https://hal.science/hal-03841713

Submitted on 14 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Evaluation of Heuristics to Manage a Data Center
Under Power Constraints

Igor Fontana de Nardin, Patricia Stolf, Stéphane Caux

To cite this version:
Igor Fontana de Nardin, Patricia Stolf, Stéphane Caux. Evaluation of Heuristics to Manage a Data
Center Under Power Constraints. 13th International Green and Sustainable Computing Conference
(IGSC 2022), Oct 2022, Pullman, United States. �10.1109/IGSC55832.2022.9969362�. �hal-03841713�

https://hal.science/hal-03841713
https://hal.archives-ouvertes.fr


Evaluation of Heuristics to Manage a Data Center
Under Power Constraints

Igor Fontana de Nardin∗†, Patricia Stolf∗ and Stephane Caux†
∗Institut de Recherche en Informatique de Toulouse (IRIT), Université de Toulouse, Toulouse, France

Email: [igor.fontana,patricia.stolf]@irit.fr
†Laplace UMR5213, Université de Toulouse, Toulouse, France

Email: stephane.caux@laplace.univ-tlse.fr

Abstract—In recent years, academics and industry have in-
creased their efforts to find solutions to reduce greenhouse gas
(GHG) due to its impact on climate change. Two approaches
to reducing these emissions are decreasing energy consumption
and/or increasing the use of clean energy. Data centers are
one of the most expensive energy actors in Information and
Communications Technology (ICT). One way to provide clean
energy to Data Centers is by using power from renewable sources,
such as solar and wind. However, renewable energy introduces
several uncertainties due to its intermittence. Dealing with these
uncertainties demands different approaches at different levels of
management. This work is part of the Datazero2 Project which
introduces a clean-by-design data center architecture using only
renewable energy. Due to no connection to the grid, the data
center manager must handle power envelope constraints. This
article investigates some scheduling and power capping online
heuristics in an attempt to identify the best algorithms to handle
fluctuating power profiles without hindering job execution. Then,
it details experiments comparing the results of the heuristics. The
results show that our heuristic provides a well-balanced solution
considering power and Quality of Service (QoS).

Index Terms—Power constraints, Data center, Renewable en-
ergy, Heuristics

I. INTRODUCTION

The Information and Communications Technology (ICT)
sector has a significant impact on the global greenhouse
gas (GHG), generating 1.8-2.8% of the global emissions [1].
Despite energy technology improvements, emissions of the
sector have risen steadily. In addition, some experts warn
that improvements in processor technologies could slow af-
ter 2025, creating an even worst scenario [1]. Therefore,
internet providers can not overlook its carbon footprint by
just increasing the number of resources to deal with the
predicted expansion of internet by 2023 [2]. One of the most
crucial elements in providing internet services is the large-
scale data centers [3]. Data centers are a group of computing
resources connected by fast networks and designed to run
diverse applications’ types. Data centers are a notable power
waste actor using around 1% of worldwide electricity [3].
Hence, the ICT community has started to investigate other
power supply possibilities, such as renewable energy usage [3].

Renewable energy employs self-renewing resources, such
as wind and sunlight, providing clean energy. On the one
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hand, renewable sources could provide clean energy, but on
the other hand, they introduce uncertainties due to weather
conditions. Cloud providers, such as Google and Amazon
insert grid connection as a way to deal with renewable sources
uncertainties [4]. Datazero2 Project [5] designed a data center
operated only by renewable sources without any link to the
grid. This project aims to provide a feasible architecture to
maintain data centers 100% clean. This architecture introduces
a global power constraint since all the power usage must be
lower than the power target (also named power capping). The
power comes from several elements, such as solar panels, wind
turbines, batteries, and hydrogen tanks. This article shows
how algorithms can deal with fluctuations in global power
capping without a significant impact on Quality of Service
(QoS). This article investigates scheduling and power capping
heuristics to identify the best algorithms to handle fluctuating
power profiles without hindering job execution. Power capping
heuristics change the machine state (on/off) or speed (using
the Dynamic Voltage-Frequency Scaling (DVFS) technique),
aiming to meet the power available. This article also presents
experiments to evaluate the algorithms’ performance with
different workloads and renewable power production.

This paper is organized as follows: Section II starts with
a brief overview of the state-of-the-art. Then Section III
describes the server configuration problem. Section IV details
the model. Section V presents the algorithms to solve the prob-
lem. Section VI explains the experimental setup. Section VII
analyzes the experimental results, and finally, Section VIII
concludes the article.

II. RELATED WORK

As renewable energy becomes a solution to the data cen-
ter’s carbon footprint reduction, several works deal with this
topic in the literature. [6] proposes a scheduler to define
the workload placement, considering the renewable sources
production, cooling subsystem, and electricity rate structure.
The main objective is to reduce energy costs. In [7], the
authors create an algorithm to efficiently assign the user
requests to the data centers, reducing the makespan, energy
consumption, and overall cost. [8] designed an algorithm to
group similar service-level-objective (SLO) jobs in the same
physical machine group powered by renewable sources. All
previous works aim to maximize renewable energy source



usage but use grid (brown) energy to add reliability. This
connection removes the power constraints since they could use
the energy from the grid when there is no renewable power
available.

A power constraint problem is proposed by [9], but for
embedded systems. Their algorithm uses DVFS to improve
performance and energy efficiency, linking the harvested en-
ergy from the solar panels with the job scheduling. They also
propose a way to deal with the overflow energy. This proposal
applies a different power constraint for each processor. A
renewable-only data center has a global power constraint and
must find the best server combination possible to deal with
it (e.g., how many servers are on at which speed). In [10],
authors defined an energy abstraction for handling intermittent
power constraints. This abstraction disables the server when
there is no energy available which can be useful for web
applications. However, this approach is not so good for other
applications types, such as batch. In web applications, the data
center must respond quickly to user requests. On the other
hand, batches can delay the start of execution to the best time
to execute it. The authors in [11] proposed genetic algorithms
for job scheduling in data centers with power availability
constraints. These algorithms find a near-optimal solution, but
they have a high processing time.

Several works deal with power capping techniques to con-
trol the energy costs and peak power consumption [12], [13],
[14], [15], [16], [17]. However, the majority of them deal with
power capping as a local and not a global constraint [13],
[14], [15], [16]. These works set a power limit for each
processor individually. In [12], the authors proposed a model
to define the processor frequency according to a global power
constraint. They first improve running jobs as much as possible
and then try to run new jobs. Their work has some similarities
with this paper but with significant drawbacks. First, their
jobs can run indefinitely without any QoS evaluation. So,
the jobs do not have any constraint. Secondly, they have a
priory step to profile the power and execution time relationship
for each job submitted. Finally, they did not present how
their algorithm deals with power changes. Their experiments
used only one constant power capping (not realistic in a
system powered by only renewable sources). Finally, the
authors in [17] introduce a dynamic power scheduling with
power constraint fluctuations. The power balancing updates the
processors’ power according to the previous usage. However,
their strategy tends to distribute equally between the processors
when the power capping is low. Also, they do not take into
account the jobs’ QoS in the decision-phase. Therefore, to
the best of our knowledge, no work manages data centers
reactively with fluctuations in global power capping using QoS
in the decision-making process.

III. PROBLEM STATEMENT

Like in [12] and [17], the problem is divided into two:
server configuration and scheduling new jobs. First, the model
defines the server configuration to deal with power capping.
As mentioned before, the Datazero2 project aims to define

a clean-by-design data center. So, the project must introduce
several elements, such as solar panels, wind turbines, batteries,
and hydrogen tanks. This diversity demands varied levels
of management. Therefore, Datazero2 introduces different
modules to deal with all aspects of a data center. A power
management module defines a power target using power from
renewable sources, such as wind turbines and solar panels, and
storage, such as batteries and hydrogen. However, this module
is not the subject of this article. The power management
module defines a different power constraint at each time step.
The main objective of this article is to meet the power target
(capping) in real-time. Thus, a server configuration module
must find the highest speed possible for the nodes below the
power available. It does not know future power constraints, just
the actual power limit. For this reason, sometimes, the server
configuration module can not meet the power constraint. This
occurs mainly because the servers need time and spend energy
to go off. So, if a previous step has high power and in the next
step the power drops, the total energy demanded to put the
servers off could be higher than the available. Section VII-B1
presents a discussion about this point.

One way to measure the server speed is by using floating-
point operations per second (flop/s) [18]. There are two
possible actions for matching the power available. The first
one is related to turning on or off a server. Obviously, when
a server is off, it can not process any task (flop/s is zero),
but it has the lowest power consumption. Nevertheless, both
transitions on→off and off→on are not instantaneous and
waste energy [19]. During these transitions, the server can
not process any job. Also, putting a server off could lead to
killing its running jobs, impacting the QoS and requiring to
restart them later. The second action is changing the server
running speed using the DVFS technique. A server can have
different states (named p-state) when it is on. Each p-state has
different power consumption and speed. Faster states consume
more power than slower states. The CPU frequency range is
discrete, although some works define it to be continuous [20].
The different states values are obtained by profiling the data
center’s servers. Hence, the algorithm needs to find the best
combination of actions to meet the new power capping when it
arrives, considering the impact of these actions. These actions
could be a mix of on/off and DVFS p-state modifications.

After defining the server configuration, the scheduler must
assign jobs to the servers. This article focuses mainly on CPU-
bound scientific high-performance computing (HPC) jobs [21],
[22]. In this application class, the user executes one application
and waits for its end [23]. Another characteristic of this job
type is that the schedule can delay the processing start [22].
This feature allows choosing the best moment to run it.
The main action of the job scheduling is to designate the
server or servers to allocate each job that arrives in the data
center. Each server can run only one job at a time. Since
the server configuration changes the server’s state and speed,
the scheduling must consider these modifications to define
the placement. The scientific HPC applications are submitted
with the following characteristics: arrival date, the number



of parallel resources, and walltime defined by the user [21],
[22]. The first property gives the job submission time. The
second indicates how many servers must process this job in
parallel. Walltime is the total execution time allowed. Since
this type of application is CPU-dependent, we ignored the
communication between the parallel resources. The proposed
algorithms react to possible fluctuations in CPU usage (e.g.,
when the application arrives at a communication-intensive
moment). The principal QoS metric here is to avoid killing
jobs by putting a server off or reaching the job’s walltime.

IV. PROPOSED MODEL

Given a data center with S servers, each server s has an
list of speeds Ds. For each speed inside Ds, there are two
values: Fs,d means the flops per second of the server s at
speed d, and Ps,d symbolizes the power needed to run the
server s at speed d at maximum load. This article considers
a global power constraint coming from an electrical module
dealing with sources’ commitment. However, it could also be
applied to other global power constraints (e.g., a data center
inside a smart city with a mix of power and carbon footprint
to respect). The power is a global constraint defined as P avai

t .
A power profile consists of all values of P avai

t , but the values
are revealed step by step. So, the model only knows the P avai

t

of the actual time step. Time is discretized between time
t = 0 and time t = L with a time step length ∆t. ∆t can
vary according to the specification of the renewable source,
but P avai

t does not change during the time step. The power
module, which gives the power constraint, deals with batteries
that can guarantee stable power even with small fluctuations
during the step length. Therefore, global power usage of the
data center (Ps,t is the power usage for the server s at time t)
must be less or equal to the power available, as demonstrated
by Equation 1. Equation 2 defines the power for each server
(Ps,t) as the state with higher power usage. Ds,d,t is a boolean
that indicates that the server s is at state d at step t.

S∑
s=0

Ps,t ⩽ Pavai
t ,∀t (1)

Ps,t = max
∀d

(Ds,d,t × Ps,d), ∀t, s (2)

The server configuration algorithms will decide the binary
variable Ds,d,t for each time step. The objective is to find
the configuration with the highest speed inside the power
constraint, as presented in Equation 3. Besides the presented
equations, the server configuration also considers the tran-
sitions between running and sleeping. These transitions use
energy and take time. During the transition, the server is
unavailable to execute jobs, so they do not increase the flops
in Equation 3. The variable ls,d,t indicates how many seconds
the server s is in the state d at step t. At each step t, the server
could be only in one final state (running or sleeping). Table I
exemplifies some servers’ values. For example, just one Ds,d,t

between states 0 and 6 could be true at any step t, reducing
switching operations.

maximize
T∑

t=0

S∑
s=0

D∑
d=0

Ds,d,t × Fs,d × ls,d,t (3)

Table I
SERVER DEFINITION EXAMPLE. STATES 0-6 ARE FINAL STATES.

State (d) Paravance Taurus
Ps,d (W) Fs,d (Gflops) Ps,d (W) Fs,d (Gflops)

0 200.5 38.4 223.7 18.4
1 165.1 34.56 189.03 16.56
2 136.76 30.72 161.28 14.72
3 114.69 26.88 139.67 12.88
4 98.10 23.04 123.43 11.04
5 86.22 19.20 111.79 9.20
6 (sleep) 4.5 0 8.5 0
7 (on→off) 65.7 0 106.63 0
8 (off→on) 112.91 0 125.78 0

With the server configuration plan defined (Ds,d,t), it is
possible to choose the job scheduling. Given J jobs, job j
contains a walltime Wj , floating-point operations Flj , arrival
date Arj , and parallel resources Plj . In fact, the scheduler
does not know the floating-point operations Flj . So, it must
infer it using the execution time, for example. The execution
time could also be estimated by the walltime [22]. The main
objective of the scheduling is to find the first possible moment
after Arj to place job j in Plj servers, meeting the constraints
from Equations 4 and 5. Etj is the job’s execution time, and
Efj is the total flops executed. Equation 4 guarantees that the
job will finish in less time than the walltime defined by the
user. Equation 5 indicates that the job will execute the job’s
flops entirely.

Etj ⩽ Wj ,∀j (4)

Efj ⩾ Flj , ∀j (5)

Finally, Equation 6 demonstrates the objective function
of the scheduling. The objective is to minimize the Slow-
down [21], [24]. This metric shows how long a job waits
(waitj) relatively to its size. Values close to 1 are the best
since it indicates a small waiting time. Small jobs are very
sensitive to waiting time.

minimize

J∑
j=0

waitj + Etj

Etj
(6)

V. ALGORITHMS

As mentioned before, the model does not know the incom-
ing events (power and jobs). Therefore, the system must deal
with these changes in real-time. So, the following sections
detail some real-time solutions for both server and scheduling
problems.

A. Server configuration

At each time step t, a new power available P avai
t arrives.

The heuristics define Ds,d,t using P avai
t , trying to assure

the constraint 1. As mentioned before, due to a fast power
avaiable drop, this constraint maybe could not be achieved.
The constraints from Equations 4 and 5 are used to ensure that
jobs will be executed respecting their walltime and entirely.
The following sections present some different heuristics to
deal with this problem. The first two heuristics are quite
straightforward. The last one is our main contribution to server
configuration.



1) Idle Fewest Server Degradation (IFS): The main idea
of this heuristic is maintaining more machines at the fastest
speed. First, the algorithm runs only on idle servers, and after,
if needed, it runs on the running machines. The servers are
sorted by the server’s power consumption, generating two
variations: high power first (Idle Descending Fewest Server
Degradation - IDFS) and low power first (Idle Ascending
Fewest Server Degradation - IAFS). After that, it puts all
machines in the fastest state possible. Then, the algorithm
takes the first machine and reduces its speed one time. It
will reduce the speed of this machine until it goes to sleep
or Equation 1 is met. Taking the idle first helps to meet
Constraints 4 and 5 because it will first reduce the power
consumption without impacting the jobs.

2) Idle Servers Balanced Degradation (ISB): This algo-
rithm is similar to the previous one, and it is similar than
the proposed by [17]. The objective of ISB is to reduce
the speed of the servers equally, maintaining more running
machines. Server Balanced Degradation also has two varia-
tions: Descending Servers Balanced Degradation (IDSB) and
Ascending Servers Balanced Degradation (IASB). This algo-
rithm makes a Round-Robin between the servers, changing the
server in each interaction.

3) Highest Flops Lowest Deadline (HFLD): HFLD is a
heuristic that tries to find the highest speed for the data center
(like Equation 3). The heuristic estimates the changes with
the greatest impact on the data center speed inside the power
available. Its main idea is presented in Algorithm 1. Unlike IFS
and ISB, this algorithm decides the improvements based on the
previous state. Line 2 shows this initialization. Line 3 stops the
algorithm if the power usage is equal to the power available.
Line 6 evaluates if the power usage is lower than the power
available. If so, the function more_power() will use two lists in
its decision: Fs,d,d′ is a list of flops correlations between the
states of each server and Ps,d,d′ is a list of power correlations
between the states. So, the function will search, for each server
s at state d, the state change d

′
with the highest flop increment

(Fs,d,d′ ) inside the power available (Ps,d,d′ ). The server with
the highest possible increment is chosen and improved. This
is the same objective as Equation 3. These lists are calculated
one time for the available hardware. With all the possibilities
mapped on this list, it can fastly decide which one will impact
the most on the data center flops. The function more_power()
finishes when the remaining power (P avai

t −
∑S

s=0 Ps,t) is not
sufficient to make any increase. The function will search the
highest Fs,d,d′ with Ps,d,d′ ⩽ P avai

t −
∑S

s=0 Ps,t.
However, if the power usage is greater than the power

available, the heuristic will try to reduce it. First, it will put
all idle servers to sleep (see line 9). If it is not sufficient (lines
10-12), it will take each running job and put on minimal state
to meet constraints 4 and 5 (lines 13-18). It sorts the running
jobs by the deadline (Wj −Etj) with the highest values first
(line 13). Here, deadline means the time that the job must
finish after starting to run. So, if a job starts at t

′
, the job

deadline will be the sum of this time and the walltime Wj

(so, t
′
+ Wj). The algorithm uses Equation 7 to define the

Algorithm 1: Highest flops with lowest deadline
input : F

s,d,d
′ , P

s,d,d
′ , Ds,d,t−1, and Pavai

t

output: Ds,d,t

1 begin
2 Ds,d,t ⇐ Ds,d,t−1;
3 if calculate_power_usage() = Pavai

t then
4 break;
5 end
6 if calculate_power_usage() < Pavai

t then
7 return more_power();
8 end
9 Ds,d,t ⇐ put_idle_servers_sleep();

10 if calculate_power_usage() < Pavai
t then

11 return Ds,d,t;
12 end
13 for j in J.sort() do
14 Ds,d,t ⇐ minimal_state(j);
15 if calculate_power_usage() < Pavai

t then
16 return Ds,d,t;
17 end
18 end
19 repeat
20 j ⇐ get_highest_deadline(J);
21 Ds,d,t, _sleep ⇐ reduce_speed(j);
22 if _sleep then
23 Ds,d,t = kill_job(j);
24 end
25 if calculate_power_usage() < Pavai

t then
26 return Ds,d,t;
27 end
28 until J = ∅;
29 return Ds,d,t;
30 end

minimal speed Fs,d. The variables Efj and Etj are the flops
and execution time so far. Indirectly, this equation will adjust
the job speed during its execution. For example, if a job arrives
in memory or communication-intensive moment, it will use
less CPU. So, the execution time Etj will increase, but the
flops Efj will not, reducing the time horizon (Wj −Etj) and
demanding a higher speed Fs,d. Equation 7 also compensates
for slower speeds for a job at the beginning with faster states
in the end and vice-versa.

(Wj − Etj)× Fs,d ⩾ Flj − Efj (7)

If it is not sufficient (lines 15-17), it will take the job
with the highest deadline and reduce its speed. The algorithm
maintains closer to finish jobs with a higher speed since they
have less time to compensate for a reduction. The algorithm
does it until killing all jobs (lines 22-24) or reaching the power
(lines 25-27).

B. Scheduling definition

The scheduling algorithms use the output of the previous
algorithm (Ds,d,t) to define, for each new job, the placement.
Two well-known algorithms were used: First-Fit (FF) [25] and
Easy Backfilling (EBF) [26], [21], [24]. The First-Fit in the
heuristics tries to fit the jobs using the jobs’ order in the
available servers until there is no more job to place [25].
Backfilling algorithm, on the other hand, uses the queue as
a priority queue [26]. So, it tries to place all priority jobs on
the servers. When it is not possible to place the next priority



job, the algorithm fills the "holes" with other jobs but without
delaying the priority one. Both, First-Fit and Easy Beackfill-
ing, use four job sorts, aiming to define the job priority [21],
[24]: First-Come-First-Serve (FCFS), Descending size (Also
named Largest Area First or Total Resources), Ascending size
(Also named Smallest Area First), and Slowdown. FCFS sorts
the jobs by the arrival date. Descending and ascending size
calculate the job’s size as the parallel resources multiplied
by the walltime. Finally, the slowdown order calculates the
slowdown of the waiting jobs (similarly to Equation 6).

VI. EXPERIMENTAL ENVIRONMENT

A. Platform

The platform consists of 20 simulated machines from
GRID5000 1, 10 Paravance servers, and 10 Taurus servers. The
experiments use two different servers, adding heterogeneity to
the data center. Therefore, the model’s variable N = 20. The
servers consist of six states, as shown in Table I. These values
are representative and quite similar to other works [27], [28],
[19]. This platform runs in the BATSIM simulator [29]. This
simulator operates using the SIMGRID framework [30].

B. Power profile

Figure 1 demonstrates the three power profiles representing
renewable energy collected from real solar panels and wind
turbines at Toulouse, France [27]. These profiles represent the
P avai
t at each time step. Despite the similarity of the values,

the figure shows different patterns. All three profiles describe
two days of power generation with a new power available
every 5 minutes.
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Figure 1. Power profiles from real solar panels and wind turbines at Toulouse,
France [27].

C. Workload

As workload, the experiments used the traces from
Google [31]. A workload generator based on [32] is used to
generate the jobs. The generator creates several jobs varying
the amount of work in flops, the arrival, and the number
of parallel executions. The workload generator creates 20
different workloads. All workloads consist of 288 jobs, but
they vary in size and arrival. The entire time execution is
one day, with 12 jobs arriving per hour. The first experiment
runs every workload using power profile 3. The first results of
Section VII are an average of these executions. Finally, one
of these workloads is executed with all profiles to evaluate
the influence of the power capping on the algorithms. The
results of this multiple profiles execution are discussed in
Section VII-B4.

1https://www.grid5000.fr/

VII. RESULTS

The following sections detail the metrics used in the com-
parison of the algorithms and the results themselves. After
that, Section VII-B presents a discussion highlighting some
aspects of the experiments. The experiments were realized by
combining each job scheduling possibility with each server
configuration. The next sections describe the results using
the following notation: scheduling algorithm (FF / EBF) +
jobs’ order (Asc / Desc / FCFS / Slow) + server configuration
algorithm (IDFS / IAFS / IDSB / IASB / HFLD). For exam-
ple, EBF Slow HFLD algorithm means Easy-backfilling with
Slowdown jobs’ order and Highest Flops Lowest Deadline
server configuration algorithm.

A. Evaluation metrics

The main objective of the experiments is to evaluate the
influence of the power capping on the algorithms. Therefore,
three metrics are used to compare the algorithms: Number of
power violations, number of jobs killed, and slowdown. The
first metric is energy-related, and the last two are job-related.
A violation is when the power usage is above the power
capping. Even if Equation 1 is a constraint, sometimes the
heuristics can not avoid the power violation due to transition
on→off. Section VII-B1 will discuss this point. The second
metric highlights how many jobs are killed. Usually, a job is
killed when there is not enough energy to maintain its server
running or if it reaches the walltime. Finally, the last metric is
the slowdown (see Equation 6). An algorithm could maintain
a low speed to meet the power capping, but it will increase
the slowdown because the running jobs will spend more time
in the servers, and the waiting time of the queue jobs will
increase. So, the idea of the experiment is to show a balance
between QoS and power. Figure 2 presents the average result
of all executions using Profile 3. The values are inverted (so
the −1), generating a higher area to lower values (which are
the best).

A good option is the algorithm EBF Slowdown HFLD. In
fact, this algorithm showed a good balance. IDSB algorithm
presented a very good slowdown but with a higher number
of power violations. IDFS also resulted in a good balance.
However, this algorithm has, in general, more jobs killed than
the HFLD. We solved the same problem as the heuristics using
Mixed-integer linear programming (MILP). MILP knows the
power profile entirely and all job arrivals, calculating the
optimal solution. However, MILP takes a long time to find
the optimal result. So, the experiments compare with MILP to
illustrate how far the heuristics are from the optimal. Table II
shows the best algorithms chosen. The table values are the
average distance from each algorithm to the best possible
result obtained by the MILP for each workload. The table
also presents the results of the execution of EBF Slowdown
without server configuration, aiming to provide a baseline
for the power fluctuations-aware algorithms. This algorithm
is often used in the literature. EBF Slowdown without server
configuration maintains all servers at maximum speed. The
following sections compare the results presented in Table II.
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Figure 2. Average results for the 20 different workloads with Profile 3. The best values are the executions with the higher area. The power violation range
is between 3 and 7. The number of jobs killed metric is between 14 and 54. Finally, Slowdown values are between 3.5223 and 16.9373.

The experiments run in 3h and 27min on 6 CPUs Core i7-
10700, and draw 0.21 kWh. Based in France, this has a carbon
footprint of 8.13 g CO2e, which is equivalent to 0.01 tree-
months (calculated using green-algorithms.org v2.1 [33]).

Table II
AVERAGE INCREASE COMPARED TO MILP EXECUTION WITH PROFILE 3.

THE MILP HAS NO POWER VIOLATION NOR JOB KILLED WITH A
SLOWDOWN OF 1.44. SO, FOR EXAMPLE, EBF SLOW NO CONFIG. HAS

1.87 OF SLOWDOWN (1.44 FROM MILP PLUS 0.43 FROM THE
DIFFERENCE).

Algorithm Slowdown Kill Viol.
EBF Slow no config. 0.43 0 184
EBF Slow HFLD 2.90 19 3
FF Asc IDFS 2.91 28 3
FF Slow HFLD 4.48 14 3
EBF Slow IDSB 2.12 23 6

B. Discussion

1) Power Violation: The first metric is the power violation.
Figure 3 illustrates two different executions from the power
violation point of view. MILP could avoid all violations using
the entire power profile to decide the configuration in each
time step. HFLD provides a good alternative, dealing with
the power fluctuations reactively. Figure 3 shows that it is
not perfect, having some violations. The main reason for this
violation is the highlighted part of the figure. At this moment,
the algorithm has some machines running because the previous
step has a high power available (so, the heuristic maximizes the
flops with the power available). However, the power drops, and
the algorithm puts all servers on sleep. However, the transition
between on to off is not instantaneous and has considerable
power usage. So, the power will not go from a high value to
zero instantaneously. In consequence, one violation occurs. So,
the heuristics can not completely avoid Equation 1 violation.
However, few violations, such as those presented in the figure,

could be removed using a prediction technique to analyze the
power tendencies.
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Figure 3. A zoomed moment with a violation. MILP avoids all violations,
while HFLD avoids most of them.

2) Jobs Killed: A job is killed when there is not enough
power to maintain it running (so the server goes to sleep)
or if the execution time is greater than the walltime. This
metric is crucial because a high number of jobs killed impacts
the energy usage overall (due to the need to rerun killed
jobs). Figure 4 shows the number of jobs killed over the
20 executions. The execution with no server configuration
does not kill any job since it never changes the server’s
state. Besides this execution, the best algorithm is First-Fit
Slowdown HFLD, having almost every result below 20 jobs
killed. This algorithm achieves that because it is idle-aware
and reduces the speed of the jobs with a longer deadline.
Therefore, it tries to maintain the jobs which are closer to
finish with higher speed. The Easy-Backfilling of the same
algorithm has a good result also, but with some executions
above 30 jobs killed.

First-Fit achieves better results in the jobs killed metric
because it runs more small jobs than Easy-Backfilling. Easy-
Backfilling reserves some future space for the priority job and
just puts small jobs in front of the priority if this allocation
would not change priority allocation. Idle Descending Fewest
Server Degradation (IDFS) executions have high values of this
metric, with their best result between 20 and 25. Finally, Idle
Descending Servers Balanced Degradation (IDSB) results are
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Figure 4. The number of jobs and total of finished work over the 20 executions
for Profile 3.

very different between each execution, demonstrating that this
algorithm struggles to deal with varied workloads. Figure 4
illustrates the total finished work over the 20 different work-
loads. The percentage is related to the size of each workload.
Easy-backfilling without server configuration executes all the
jobs, so it has 100% of finished flops. Each job impacts
differently on this value since they have different sizes. The
size of a job is calculated by the total flops to execute
multiplied by the number of parallel resources. Both HFLDs
have a good value of total finished work compared with IDFS
and IDSB. HFLD achieves these results since it gives more
speed to the closer jobs to finish. So, the other algorithms can
kill jobs that are almost finished.

3) Slowdown: Finally, the last metric is the slowdown.
Figure 5 details the value of each execution. IDSB has good
results, because it maintains more machines running than the
others which allows running more jobs in parallel. However,
it has more violations and more jobs killed than the others.
IDFS good results come from the ascending order that prefers
allocating small jobs first. So, the jobs more waiting time-
sensitive are the priority. First-Fit Slowdown HFLD is worst
than the other heuristics. It presents an outlier above 25, which
is the worst of all executions. The reason for this behavior is
linked with the job placement algorithm. First-Fit ignores the
priority job, allocating all the possible jobs from the queue.
In contrast to this algorithm, Easy-Backfilling will prioritize
the job with a higher slowdown. Nevertheless, the HFLD
heuristics have a slightly higher average value since they run
more jobs, increasing the waiting time. But their values are
quite near the best ones.

4) Multiple profiles: This section presents the experiments
using one workload with the three profiles from Figure 1
to evaluate the behavior under different power constraints.
Figure 6 demonstrates the results. We have run only the best
executions from the previous section with multiple profiles.
The figure shows that IDFS kills more jobs than the other
algorithms for profiles 1 and 3. In profile 2, it is the second-
worst. The HFLD has the best number of jobs killed using both
Easy Backfilling and First-Fit for all profiles. However, the
First-Fit has the highest slowdown on profile 2. As mentioned
before, First-fit will place as many jobs as possible. In a strict
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Figure 5. Slowdown over the 20 executions for Profile 3.
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Figure 6. One workload execution on different power profiles. The power
violation range is between 0 and 6. The number of jobs killed metric is
between 15 and 44. Finally, Slowdown values are between 4.04 and 11.60.

power profile, jobs with higher demand will stay more time in
the queue. Therefore, the slowdown of these jobs will increase.
These results indicate that Easy Backfilling Slowdown HFLD
delivers a quite robust implementation independently of the
power profile and workload.

Table III
OVERALL RESULTS CONSIDERING ALL EXPERIMENTS.

Algorithm Slowdown Kill Viol.
Easy Backfilling Slowdown
Highest Flops Lowest Deadline + ++ ++

First-Fit Ascending
Idle Descending Fewest Server Degradation ++ +++

First-Fit Slowdown
Highest Flops Lowest Deadline + +++ ++

Easy Backfilling Slowdown
Idle Descending Servers Balanced Degradation +++ +

Table III presents a simplified view of the overall results,
aggregating the previous results from the multiple workloads
and multiple profiles. The table highlights that the Highest
Flops Lowest Deadline presents a well-balanced implementa-
tion, independently of the scheduling algorithm. This heuristic
is well-balanced because it considers the state of the jobs in the
decision-making. Therefore, it is more likely to finish jobs than
the other heuristics, even with more restrictive power profiles.
The slowdown is slightly higher than the other heuristics.
However, this is understandable as it executes more jobs.

VIII. CONCLUSION

Datazero2 is a project that aims to model a green by-design
data center powered by only renewable sources. Renewable



sources introduce uncertainties due to their intermittence.
Therefore, it is vital to design algorithms to deal with these
uncertainties. This article investigates a number of scheduling
and power capping heuristics, in an attempt to identify the best
algorithms to handle fluctuating power profiles without hinder-
ing job execution. Combining Easy-Backfilling job scheduling
with Slowdown metric to sort the jobs’ queue and the Highest
Flops Lowest Deadline as the server configuration algorithm
provided the best balance between power violations, killed
jobs, and slowdown. The results also show that it is essential to
consider the impact on the running jobs in the power capping
decisions. Future works will include other workload types,
such as services. Also, we will introduce more flexibility
in the decision-making changing in the power capping to
improve QoS. Finally, we will include power predictions in
the decision-making.
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