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Abstract—Since the Paris Agreement, academics and industry
have dedicated efforts to reducing Information and Communica-
tions Technology (ICT) greenhouse gas (GHG) emissions. Data
centers play a key role in ICT electricity consumption since they
are built to run 24/7. One way to reduce these emissions is
to switch from brown energy to green energy from renewable
sources (RES). However, RES introduce several uncertainties
due to their intermittence. This work is part of the Datazero2
Project. This project aims to design a data center powered only
by RES production and storage elements. Datazero2’s clean-by-
design data center requires several decisions at different levels of
management. Usually, research works focus on offline decisions
(e.g., decisions for the next three days) or online decisions (e.g.,
decisions in real-time). This work proposes a mix of offline and
online decisions producing a reliable and change-aware solution.
While the offline focuses on the long-term renewable usage
plan, online adapts it according to the power fluctuations. The
results demonstrate that this mixed management approximates
the planned and real storage levels with a low impact on the
Quality of Service (QoS).

Index Terms—Power decisions, Data center, Renewable sources

I. INTRODUCTION

Information and Communications Technology (ICT) pro-
duce around 1.8-2.8% of the world’s total greenhouse gas
(GHG) [1]. The data centers sector is one of the most
electricity-expensive ICT actors due to its uninterrupted oper-
ation [2]. A report revealed that Google data centers consumed
the same amount of energy as the entire city of San Francisco
in 2015 [3]. In addition, the situation tends to get even worst
due to the predicted expansion of internet usage [4] and the
reduction of the improvements in processor technologies [1].
Aiming to reduce the impact of data center providers’ emis-
sions, the IT community has started investigating the replace-
ment of brown energy with renewable energy [5]. Renewable
sources (RES), such as wind and sunlight, can provide clean
energy. However, they introduce uncertainties due to weather
conditions. Big cloud providers, such as Google and Amazon,
smooth these uncertainties by inserting grid connections [6].
Therefore, they are not completely clean data centers. This
work is part of the Datazero2 Project [7]. Datazero2 Project
designed a data center operated only by RES without any link
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to the grid. This project aims to provide a feasible architecture
to maintain data centers 100% clean.

A clean-by-design data center must introduce several el-
ements to provide energy to the IT servers, such as Wind
turbines, Solar panels, Batteries, and Hydrogen tanks. Conse-
quently, a manager must predict the weather conditions and
workload. These predictions allow the manager to plan long-
term actions (offline), such as using more storage, recharging
the batteries, discharging hydrogen, turning on servers, etc.
Then, the manager must apply the plan (online). However, the
predictions are not exactly the real values, so the manager must
react to the online events. For example, workload prediction
uses stochastic models to estimate the mass of the load.
However, in online mode, it receives the precise jobs to
execute. This paper proposes a way to mix online and offline
decisions for data centers powered by only RES. The article’s
main contributions are twofold. First, it presents the model to
integrate the two levels with the expected inputs and outputs.
The objective is to maintain the storages’ stability in real-time
while using the offline plan as a guide. Second, this work
details experiments showing the resilience of the proposed
model. For a better understanding of the models, a table of
the notation used is presented in Table I.

This paper is organized as follows. Section II presents the
related work, highlighting the gap in state-of-the-art. Then
Section III shows an overview of the problem. Section IV
addresses the proposed model. Section V presents the experi-
ments and the discussion about the results. Finally, Section VI
concludes the article.

II. RELATED WORK

Several works seek ways to deal with RES uncertainties
but, in many cases, with grid (brown) connections or just
one level of management (online or offline) [8], [9], [10],
[11], [12], [13]. The authors in [8] propose an offline data
service price mechanism to vary the price according to the
grid and RES price. They implemented a Stackelberg game to
stimulate users to participate in the Demand-Response’s load
shift. In work [12], the authors modeled an offline optimization
framework using a model to capture the randomness of the
RES. [13] proposes two online job schedulers to maximize
renewable energy usage. Their objective is to maximize the



Table I
NOTATIONS.

Notation Description

S Number of servers
s Server index
T Number of steps inside the time window
L Step length [s]
t Step index
D Number of states
d State index
j Job index
SoCt State of charge of battery at step t [kWh]
SoCmax Maximal state of charge [kWh]
LoHt Level of hydrogen at step t [kg]
Pprodt Power delivered by power commitment [kW ]
Pmin Power to maintain all servers sleeping [kW ]
Pmax Power to maintain all servers at maximum speed [kW ]
Ppvt Photovoltaic Panel estimated power at time step t [kW ]
Pwtt Wind Turbines estimated power at time step t [kW ]
r Relax factor
Ploadt Estimated IT load at step t [kW ]
σ Self discharge rate
Pcht Power to charge the batteries at step t [kW ]
Pdcht Power to discharge the batteries at step t [kW ]
Pchmax Maximum charge [kW ]
Pdchmax Maximum discharge [kW ]
Pfct Power from fuel cell at step t, discharging from Hydrogen [kW ]
Pezt Power to electrolyzer at t, charging the Hydrogen [kW ]
Prt Estimated renewable power at step t [kW ]
ηch Battery charge efficiency
ηdch Battery discharge efficiency
Es,t Energy usage by server s at step t [J]
Ds,d,t Is the server s at state d at step t? [bool]
ls,d,t Duration that server s stays at state d at step t [s]
Ps,d Power usage of server s at state d [W ]
Fs,d Speed of server s at state d [flop]
wallj Job j walltime [s]
elapTimej Job j elapsed time [s]
jobF lopj (Estimated) total work to do in job j [flop]
elapF lopj Job j elapsed work [flop]
ϵu Calculated walltime error by the user u

number of jobs running when there is more solar irradiation,
using the grid and batteries to deal with the intermittence. The
authors in [11] describe two offline DVFS-aware scheduling
algorithms: a Genetic Algorithm (GA) and a Similar Mathe-
matical Morphology (SMM). SMM is quite similar to GA, but
it uses frames to compare and improve the best solution. In
[9], the authors create an online heuristic to efficiently assign
the user requests to the data centers, reducing the makespan,
energy consumption, and overall cost.

Finally, the authors of [10] proposed a Mixed Integer
Linear Programming (MILP) to optimize the commitment of
a data center powered by only wind turbines, solar panels,
batteries, and hydrogen storage systems. The work is part of
the Datazero2 Project. Their approach uses weather forecasts
to find the optimal long-term decisions to supply a data
center demand. However, the work does not consider real-
time events, such as scheduling and fluctuations in power
usage. Therefore, to the best of our knowledge, no work mixes
offline and online decisions for data centers powered by only
renewable energy.

III. PROBLEM STATEMENT

Figure 1 illustrates the problem, showing all the connections
between the modules. There are four main groups: Offline,
online, power plan, and IT plan. The offline group uses two
predictions (workload and weather) and two constraints (initial

and target storage level) to decide the actions for the next 3-day
time window. Given each time step t with length L = 300s, the
offline generates T = 864 steps. It defines different power and
IT decisions for each step. First, the offline power commitment
finds the optimal power decisions using the predictions and
constraints. The output of this module is the power plan. Also,
it indicates to the server configuration the power available to
maintain the servers. The offline server configuration’s main
objective is to find the data center’s fastest speed (in flops [14])
for the available power. The server configuration can change
the processor’s speed of each server due to Dynamic Voltage-
Frequency Scaling (DVFS) technique. This technique allows
reducing the processor’s frequency to use less energy. The
CPU frequency range is discrete, although some works define
it to be continuous [15]. Table II shows a discretized example
of the relationship between power and speed from Grid5000 1.
The output of the server configuration is each server state at
each time step for the next time window.
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Figure 1. Online and offline integration with the input/output of each decision
module.

Online follows the offline IT and power plans as much
as possible. However, the online’s main objective is to react
and improve in real-time. So, the scheduler module receives
the actual jobs submitted by the users and defines the job
placement in the servers. After that, it evaluates the Quality
of Service (QoS), asking for more power if it is not good
enough. The power commitment verifies if it is possible to
deliver more power without violation in the storage levels.
If so, the power commitment changes the power usage and
demands the server configuration to change the speed of the
servers. The server configuration adapts the IT plan for the
new power available, using Table II definition. It is important
to notice that all online decisions must be fast. All this online
process occurs at the beginning of each step. So, these online
modules can not find the optimal solution for the time window.

1www.grid5000.fr



The following sections will detail the modules, presenting the
proposed solution for each one.

Table II
SERVER DEFINITIONS. STATE 6 IS THE SLEEP STATE.

State (d) Paravance Taurus
Ps,d (W) Fs,d (Gflops) Ps,d (W) Fs,d (Gflops)

0 200.5 38.4 223.7 18.4
1 165.1 34.56 189.03 16.56
2 136.76 30.72 161.28 14.72
3 114.69 26.88 139.67 12.88
4 98.10 23.04 123.43 11.04
5 86.22 19.20 111.79 9.20
6 4.5 0 8.5 0

IV. PROPOSED MODEL

A. Offline Model

1) Power Commitment Model: First of all, the management
must create a power plan for the next time window. This
section does not describe the sizing inputs (such as battery
size, solar panel area, etc.) for ease of understanding. However,
the experiments took them into account. As mentioned before,
several works have proposed solutions for offline power com-
mitment. This work uses the same model as [10]. This section
highlights only some important aspects. The Article [10] can
be consulted for more detailed information. This model has
the following input:

• SoC0: The State in Charge at the beginning of the time
window;

• LoH0: The Level of Hydrogen at the beginning of the
time window;

• SoCT : The desired State in Charge at the end of the time
window;

• LoHT : The desired Level of Hydrogen at the end of the
time window;

• Ploadt: The estimated power load demanded by the data
center at each step t;

• Ppvt: Given estimated solar irradiation, the commitment
applies the mathematical model from [16];

• Pwtt: Given an estimated wind, the commitment applies
the mathematical model from [17];

The sum between Ppvt and Pwtt is the total estimated
renewable energy produced Prt at each step t. Using the
targets of SoCT and LoHT as constraints, the model must
finish the time window with both levels equal or greater
than the target. Equation 1 demonstrates the SoCt calculation
using the Pcht−1 and Pdcht−1. There are losses for battery
charging/discharging (ηch and ηdch), and also a self-discharge
(σ). Pprodt is the power delivered to IT servers by all
sources (wind turbines, solar panels, batteries, and hydrogen).
Equations 2 and 3 demonstrate the objective function. Given
the previous constraints, the optimal solution is the closest
value between Pprodt and Ploadt, matching the storage
targets.

SoCt = (SoCt−1×(1−σ))+(Pcht−1×ηch×L)−(
Pdcht−1

ηdch
×L) (1)

Pprodt ⩾ (1− r)× Ploadt (2)

minimize r (3)

The output of this model is:
• Prt: Estimate power from RES at step t. It is given by

Ppvt + Pwtt;
• Pdcht: Power to discharge from batteries;
• Pcht: Power to charge the batteries;
• Pfct: Power to discharge from Hydrogen;
• Pezt: Power to charge the Hydrogen;
• Pprodt: Power for IT servers at step t. It is Pprodt =

Prt − Pcht − Pezt + Pdcht + Pfct;
• SoCt: State of charge at step t;
• LoHt: Level of Hydrogen at step t;
2) Server Configuration Model: After creating a power

plan, the server configuration translates Pprodt into server
states. Equation 4 defines the objective function of the model.
Ds,d,t describes the state d of the server s at step t. So,
Equation 4 finds the highest possible speed delivered by the
IT. Equation 5 introduces the power constraint Pprodt where
Es,t is the energy usage of server s at step t. Equation 6
calculates this energy usage. Ps,d indicates the server s power
usage at state d. Table II shows an example of Ps,d and Fs,d for
each d. Due to size limitations, the article will not present all
equations. Besides the presented formulas, the offline server
configuration also considers the transitions between running
and sleeping. These transitions use energy and take time.
During the transition, the server is unavailable to execute jobs,
so they do not increase the flops in Equation 4. The only output
of this model is Ds,d,t.

maximize
T∑

t=0

S∑
s=0

D∑
d=0

Ds,d,t × Fs,d × ls,d,t (4)

S∑
s=0

Es,t ⩽ Pprodt × L, ∀t (5)

Es,t =
D∑

d=0

Ps,d × ls,d,t,∀s, t (6)

B. Online Model

1) Scheduling: The main objective of a data center is to run
jobs coming from users. The scheduler component defines the
action of running a job j in a server s. The scheduling model is
applied to scientific High-Performance Computing (HPC) data
centers. The user of these data centers submits an expected job
duration (named walltime) with the job. If the job takes more
time than the walltime, the scheduler kills the job. Usually,
the scheduler is driven by some QoS metric. Our QoS metrics
are twofold: Number of jobs killed and slowdown. The former
indicates how many jobs have started but, for some reason, did
not finish their execution. Equation 7 presents the latter QoS
metric [18]. The slowdown indicates the relationship between
the time that the job spends in the system and its size. The
best slowdown value is 1, where the scheduler puts the job to



run as soon as it arrives. It increases according to the waiting
time.

Slowdown =
Waiting time+ Execution time

Execution time
(7)

The model deals with both metrics in two ways. First, the
scheduler decides the placement in the available servers given
by Ds,d,t plan. We chose as the scheduling algorithm the
heuristic EASY-Backfilling [19]. This heuristic naturally im-
proves the slowdown due to its backfilling behavior, but we
also sort the job waiting list by the slowdown. It uses the
walltime as execution time. Secondly, the scheduler maintains
the servers at the minimum speed to avoid killing the jobs
using Equation 8. Equation 9 estimates the job size (in
floating-point operations) using the walltime wallj , a fixed
server’s speed Fs′,d′ , and an error ϵu. In [20], the authors
introduced the error ϵu calculated by each user. They claimed
that the users usually overestimate the execution time by up
to 5 times. Therefore, Equation 8 estimates how many flops
the server must deliver to finish the job before the deadline.
The scheduler will modify the power plan to avoid killing
jobs. However, this modification respects the rules of the next
section.

(wallj − elapT imej)×Ds,d,t × Fs,d ⩾ jobF lopj − elapF lopj (8)

jobF lopj = wallj × Fs′,d′ × ϵu (9)

2) Power commitment: The power commitment has one
objective: to ensure that SoC and LoH end close to the plan.
Hydrogen is harder to work in online mode since it needs
time to turn on/off. So, this model focuses on batteries level
decisions. The battery power usage can vary from the plan.
This variation happens because:

1) Server idleness: The offline estimates that the servers
will spend maximum usage during the time step. How-
ever, the server can stay idle for some time;

2) Renewable production: Renewable production can be
different from the estimated. The batteries will maintain
the servers running at the defined speed;

3) Scheduling changes: The scheduler can ask for more
power;

The power commitment compensates for these variations
in future steps. Figure 2 illustrates the three compensation
policies: Peak, Next, and Last. In the figure example, if the
scheduler demands more power at step 1, it could compensate
for it at step 3 (Next), step 12 (Peak), or step 15 (Last). The
same happens for server idleness and renewable production.
However, since both are unpredictable, their compensation is
reactive (after finishing the step). When the power needed is
less than the plan, the commitment also modifies a future step.
The Next and Last policies are similar independently of the
type of compensation. In Peak policy, in case of less usage, it
will increase a step with the lesser power usage. The power
compensation must observe the rules from Equations 10, 11,
and 12. It is important to notice that Equation 11 uses Prt
to define the maximum possible battery charge. This value is
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Figure 2. Compensation policies.

an estimation given by the offline. So, the power commitment
uses offline prediction to find when to compensate.

Pmin ≤ Pprodt ≤ Pmax,∀t (10)

0 ≤ Pcht ≤ min(Prt, P chmax), ∀t (11)

0 ≤ Pdcht ≤ Pdchmax,∀t (12)

Besides this compensation, power commitment also evaluates
the impact of the power usage variations on the state of charge.
So, it recalculates the state of charge recursively of the future
steps using Equation 1. If this deviation violates a future
SoC, the heuristic changes the usage in the steps before the
violation. A violation is given by Equation 13. For example, if
the algorithm estimates that the SoC will be above 95% in the
future, it will increase the usage backward from this violation.
The heuristic also compensates for this modification using the
same three previous policies. Finally, the last commitment
responsibility is answering the scheduler if it is possible to
modify a usage. The commitment verifies if it is possible to
compensate for the change and if it will not violate the SoC.

0.05× SoCmax ≤ SoCt ≤ 0.95× SoCmax,∀t (13)

3) Server configuration: The last part is transforming the
power change in server configuration. Since the offline server
configuration model is an NP-Complete problem, it is not
possible to run it to find the best solution quickly. So, this
model is a simple heuristic that uses the Ds,d,t given by the
offline plan but changes it according to the power available.
This heuristic uses Equations 5 and 6 as constraints. It creates
a list of power and flop differences from one state to another
(using the data from Table II). So, it can fastly find the possible
speed increases below the power available. When the step has
more power than planned, the heuristic executes the following:

1) Find the highest improvement possible for the servers
running some job;

2) Find the highest improvement possible for the idle
servers.

For example, if there are two Paravance servers: one with
d = 5 and another with d = 2. If the system has 30W to
increase, it will increase first the server with d = 5, because
it will increase 7.68 Gflops (against 3.84 Gflops). When the
step has less power than planned, it runs the following:

1) Reduce the speed of idle servers;



2) Reduce the speed of the servers running jobs with higher
(wallj − elapT imej).

The second step will reduce servers’ speed with more time
to compensate for this reduction in the future. It is better
to maintain jobs closer to finish with the maximum speed,
granting that they will complete.

V. SIMULATION EXPERIMENT

A. Tested Scenarios

The main experiment’s idea is to compare the three com-
pensation policies (Peak, Next, and Last) with a baseline
implementation. The baseline implementation only follows
the offline IT and Power plans with no modifications. The
simulated data center consists of 50 servers from Grid5000:
25 Paravance and 25 Taurus. This setup adds heterogeneity to
the simulation. This configuration has a power demand range
from Pmin = 0.325kW to Pmax = 10.605kW . We have
generated 20 different IT workloads using the Google Trace
Generator from [21] with an arrival rate of 50 jobs per hour
for three days (3600 jobs in total). Also, we have created two
power profiles using different days of irradiation and wind
from the Los Angeles data set [22]. Figure 3 demonstrates
both profiles.
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Figure 3. The renewable produced by the Los Angeles data set.

The first power profile (Predicted) emulates a power predic-
tion. The second (Real) is the power profile used for renewable
production in the experiments. The power system consists of
two wind turbines and 30 m² of photovoltaic panels. The
battery SoCmax = 64kWh. We have taken one of the 20
workloads to generate the input Ploadt for the offline. We
have defined SoC0 = 50%, SoCT = 50%, LoH0 = 300kg,
LoHT = 300kg. Then, we have run two scenarios for all
workloads:
S1 Predicted power profile for offline and the Real power

profile for online. This scenario simulates a poor weather
prediction;

S2 Both offline and online with predicted power profile. This
scenario simulates an excellent weather prediction;

Table III shows the results of the experiments. The best
storage levels are closer to 50% for the battery and 300 kg for
hydrogen (both target levels). We have highlighted the best
results in green and the worst in red. The sum of completed
and killed jobs is not 100% because the simulation rejects all
waiting jobs at the end of the time window.

B. Discussion

Table III shows that the baseline has the best QoS results in
general. This execution stays close to the plan independently
of the power fluctuations. Therefore, it maintains the server

Table III
RESULTS FROM ALL EXPERIMENTS WITH THE AVERAGE (OUTSIDE

PARENTHESES) AND STANDARD DEVIATION (INSIDE PARENTHESES).

Exp Slowdown Completed
jobs (%)

Killed
jobs (%)

Battery
level (%)

Hydrogen
level (kg)

Baseline 7.0 (0.8) 95.85 (0.74) 0.37 (0.07) 30.1 (0.7) 300.4722
(0.0067)

Peak 8.7 (0.7) 94.07 (0.70) 0.36 (0.06) 58.9 (2.3) 300.0003
(0.0013)

Next 10.9 (1.1) 91.77 (0.73) 0.79 (0.15) 36.1 (5.7) 300.0002
(0.0008)S1

Last 8.5 (0.8) 94.03 (0.77) 0.35 (0.06) 53.8 (1.9) 300.0004
(0.0013)

Baseline 7.0 (0.8) 95.85 (0.74) 0.37 (0.07) 71.4 (1.0) 300 (0)
Peak 9.1 (0.8) 94.95 (0.75) 0.38 (0.07) 52.2 (0.4) 300 (0)
Next 7.9 (0.8) 95.17 (0.73) 0.42 (0.06) 49.8 (0.3) 300 (0)S2

Last 9.3 (0.8) 94.28 (0.69) 0.41 (0.07) 66.0 (0.5) 300 (0)

speed, being less likely to kill jobs. However, its hydrogen and
battery levels are the worst in both scenarios due to its lack of
power awareness. In scenario S1 (poor weather prediction), the
baseline execution finished with a low battery level and high
hydrogen level. The power conversion in hydrogen has a high
loss, so it is crucial to use the hydrogen only in (planned)
extreme cases. On the other hand, it ended with the right
hydrogen level but a higher battery level in scenario S2 (good
weather prediction). This variance shows that the baseline is
highly dependent on both renewable production and workload
estimations. Figure 4 highlights this baseline behavior from
the battery level point of view. In S1, the baseline always
finished at around 30%, but in S2, it ended at approximately
70%. Since the baseline does not adapt the power plan, it does
not reintroduce the power not used due to server idleness. So,
both PLoadt and Prt estimation must be almost perfect to
have good results in the baseline approach.
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Figure 4. Battery target distance. The x-axis shows each different workload
execution.

For the policies, the best results are related to the level of
prediction. Under a scenario of high uncertainty (S1), it is
better to compensate in the end. For example, if the scheduler
requires more power at any step, the Last policy will reduce the
usage at the last possible moment. Any other server idleness
from this step will also be compensated at the end. So, idleness
could smooth this change, reaching the planned power from
the beginning. On the other hand, the Next policy will reduce
the usage in the first moment after the scheduler requirement.
Since the scheduler demand is likely at a step with a higher
difference between estimated and real, this behavior could
fastly degrade the storage level. Figure 4 well illustrates the
Next and Last behaviors, with Last outperforming Next in
almost every metric in Scenario S1 from Table III. There is a



small difference between the Next and Last hydrogen levels
that can be ignored. In a scenario of an excellent weather
estimation (S2), it is better to stay close to the plan. Next
outperforms the other policies in almost every metric because
it compensates for the power increasing as soon as possible.
Also, Next is nearly perfect in the battery level, staying very
close to the target level in Figure 4. Putting all compensations
at the end may be too late to use the power. So, the Last policy
finished with higher storage than the target.

Finally, the Peak policy is the more stable execution. Inde-
pendently of the scenario, it delivered a well-balanced solution,
resulting in good QoS and storage level values. It has a slightly
higher storage level on average for scenario S1. For scenario
S2, it is very close to the target level. The Peak policy will
flat the curve of battery usage. In uncertain environments, it
is a reasonable way to smooth the modifications. With good
estimation, it will "steal" from the step where the power is
more abundant. So, this future step could degrade the jobs.
Therefore, the best policy depends on how good are the
weather estimation:

1) Last policy with a poor prediction;
2) Next policy with a good prediction;
3) Peak policy with undefined prediction accuracy.

VI. CONCLUSION

Datazero2 is a project that aims to model a green by-design
data center powered by only renewable sources. Due to the
several elements that compose a renewable-only data center,
it is vital to mix offline and online decisions. This work
presented a model for online management to approximate the
storage level from the offline plan. The results demonstrated
that simply following the offline plan is not enough due
to the variance in workload and renewable production. The
experiments also revealed that the presented policies could
approximate the target storage level without a significant
impact on QoS. Future works will include other policies
linked to the workload estimation (e.g., increase power when
there will be more jobs arriving) and more complex QoS
improvements (e.g., improve future slowdown).
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