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Abstract

Given a graph G, a subset M of V (G) is a module of G if for each
v ∈ V (G) ∖M , v is adjacent to all the elements of M or to none of them.
For instance, V (G), ∅ and {v} (v ∈ V (G)) are the trivial modules of G.
A graph G is prime if ∣V (G)∣ ≥ 4 and all its modules are trivial.

Given a prime graph G, consider X ⊊ V (G) such that G[X] is prime.
Given a graph H such that V (G) = V (H) and G[X] = H[X], G and H
are G[X]-similar if for each W ⊊ V (G)∖X, G[X ∪W ] and H[X ∪W ] are
both prime or not. The graph G is said to be G[X]-birecognizable if every
graph, G[X]-similar to G, is prime. We study the graphs G that are not
G[X]-birecognizable, where X ⊊ V (G) such that G[X] is prime, by using
the following notion of a minimal prime graph. Given a prime graph G,
consider X ⊊ V (G) such that G[X] is prime. Given v,w ∈ V (G) ∖X, G
is G[X ∪{v,w}]-minimal if for each W ⊊ V (G) such that X ∪{v,w} ⊆W ,
G[W ] is not prime.

Mathematics Subject Classifications (2010): 05C75

Key words: Module; Prime graph; Primality birecognition; Minimal prime
graph

1 Introduction

We consider only finite graphs. A graph, with at least 4 vertices, is prime if it
is indecomposable under modular decomposition. We study birecognition (or
mutual recognition) of primality introduced as follows. We consider two graphs
with the same vertex set. We suppose that they coincide on a prime induced
subgraph. We fix this prime induced subgraph from which we introduce the
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birecognition. We suppose also that the subgraphs of both graphs, induced by
the same proper subset of the vertex set, are both prime or not, when they
contain the prime induced subgraph. Under these assumptions, the graphs are
birecognizable if both are prime or not.

We study the prime graphs, that are not birecognizable, by using the notion
of a minimal prime graph introduced by Cournier and Ille [3]. In this manner,
we answer [9, Problem 13] as well.

Consider two graphs with the same vertex set. Another type of primality
birecognition consists in considering the subgraphs of both graphs induced by
the same proper subset of the vertex set, with given sizes (for instance, see [1]).

Lastly, Ille and Villemaire [9] introduced an inner primality recognition.
Precisely, they considered a graph that admits a prime induced subgraph. They
introduced a digraph (called outside digraph, see Subsection 1.1) that yields a
necessary and sufficient condition for G to be prime.

Next, we formalize our presentation. A graph G = (V (G),E(G)) consists of
a finite vertex set V (G) and of an edge set E(G), where an edge is an unordered
pair of distinct vertices. For a graph G, v(G) denotes the cardinality of V (G).
Given a graph G, with each subset X of V (G) associate the subgraph G[X] =
(X,E(G) ∩ (X

2
)) of G induced by X. For convenience, given a subset X of

V (G), G[V (G) ∖X] is also denoted by G −X, and by G − x if X = {x}.

Notation 1. Let G be a graph. Given W ⊊ V (G) and v ∈ V (G)∖W , v ←→G W
means that

vw ∈ E(G) for every w ∈W or vw /∈ E(G) for every w ∈W.

The negation is denoted by v /←→G W .

Given a graph G, a subset M of V (G) is a module [11] (or a closed set [6, 10]
or a homogeneous set [3]) of G if for every v ∈ V (G) ∖M , we have v ←→G W .
For example, ∅, V (G) and {v}, v ∈ V (G), are modules of G called trivial
modules. A graph is indecomposable if all its modules are trivial, otherwise
it is decomposable. A graph G, with v(G) ≤ 2, is indecomposable, whereas a
graph G, with v(G) = 3, is decomposable. Hence, we introduce the following
precision. A graph G is prime if it is indecomposable, with v(G) ≥ 4. For
instance, given n ≥ 4, the path Pn = ({0, . . . , n − 1},{i(i + 1) ∶ i ∈ {0, . . . , n − 2}})
is prime. Sumner [12] showed that every prime graph contains P4 as an induced
subgraph.

We introduce the main notions as follows. For convenience, we use the next
notation.

Notation 2. Let G be a graph. For W ⊊ V (G), W denotes V (G) ∖W .

Definition 3. Given graphs G and H such that V (G) = V (H), G and H
are similar (in terms of modular decomposability) if G and H are prime or
G and H are decomposable. As previously noted, a graph of cardinality 3 is
decomposable. Therefore, all the graphs of cardinality 3 are similar.
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Now, consider graphs G and H such that V (G) = V (H). Suppose that
there exists X ⊊ V (G) such that G[X] is prime and G[X] = H[X]. We say
that G and H are G[X]-similar if for each W ⊊ X, the subgraphs G[X ∪W ]
and H[X ∪W ] are similar.

Definition 4. Let G be a prime graph. Consider X ⊊ V (G) such that G[X]
is prime. The graph G is said to be G[X]-birecognizable if every graph, G[X]-
similar to G, is prime as well.

Ille (1994) conjectured the following.

Conjecture 5. There exists an integer k ≥ 1 satisfying the following. Let G be
a prime graph. Consider X ⊊ V (G) such that G[X] is prime. If ∣X ∣ ≥ k, then
G is G[X]-birecognizable.

Remark 6. In fact, Conjecture 5 is false. Indeed, let n ≥ 7. Consider G = Pn

and H = G−((n−2)(n−1)). Clearly, G is prime. Furthermore, n−1 is an isolated
vertex of H, so H is decomposable. Set X = {0,1,2,3}. We have G[X] = P4

and G[X] = H[X]. Lastly, consider a proper and nonempty subset Y of X. If
n−1 /∈ Y , then G[X ∪Y ] =H[X ∪Y ]. Hence, suppose that n−1 ∈ Y . Since n−1
is an isolated vertex of H, n− 1 is an isolated vertex of H[X ∪Y ], so H[X ∪Y ]
is decomposable. Moreover, since Y ⊊ X, we have {4, . . . , n − 2} ∖ Y ≠ ∅. Set
p = min({4, . . . , n−2}∖Y ). We obtain that {0, . . . , p−1} is a module of G[X∪Y ],
so G[X ∪ Y ] is decomposable. Consequently, G and H are G[X]-similar.

Other types of primality recognition were studied. For instance, Boussäıri
et al. [1] introduced the N -recognition, where N is a set of negative integers, as
follows. Consider graphs G and H such that V (G) = V (H). We say that G and
H are N -similar if for each X ⊆ V (G) such that −∣X ∣ ∈ N and ∣X ∣ ≤ v(G) − 4,
G −X and H −X are similar. Let G be a prime graph. The graph G is said to
be N -birecognizable if every graph, N -similar to G, is prime. It is easy to see
that prime graphs are not {−1}-birecognizable. Boussäıri et al. [1] proved that
prime graphs are not {−2}-birecognizable, but they are {−2,−1}-birecognizable.
Lastly, note that the primality recognition under the assumptions of Ulam’s
reconstruction is demonstrated in [7].

Our purpose is to study the counter-examples to Conjecture 5. We use the
notion of a minimal graph introduced by Cournier and Ille [4].

Definition 7. Let G be a prime graph. Given a nonempty subset W of V (G),
G is said to be G[W ]-minimal if there does not exist W ′ ⊊ V (G) such that
W ⊆W ′ and G[W ′] is prime.

Cournier and Ille [4] characterized the graphs G that are G[W ]-minimal
when ∣W ∣ ≤ 2. Ille and Villemaire [9] characterized the graphs G that are G[X ∪
{v}]-minimal when X ⊊ V (G), G[X] is prime, and v ∈X (see Theorem 16). To
begin, we obtain the following result proved in Section 2.

Proposition 8. Let G be a prime graph. Consider X ⊊ V (G) such that G[X]
is prime. Suppose that ∣X ∣ ≥ 5. If G is not G[X]-birecognizable, then one of the
following statements holds
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• there exists v ∈X such that G is G[X ∪ {v}]-minimal;

• for every u ∈ X, G is not G[X ∪ {u}]-minimal, but there exist distinct
v,w ∈X such that G is G[X ∪{v,w}]-minimal, G− v is prime, and G−w
is prime.

We have the opposite direction when the first statement of Proposition 8
holds. The proof of the next lemma is provided in Section 2.

Lemma 9. Let G be a prime graph. Consider X ⊊ V (G) such that G[X] is
prime. If there exists v ∈ X such that G is G[X ∪ {v}]-minimal, then G is not
G[X]-birecognizable.

Given Proposition 8 and Lemma 9, our aim is to characterize the graphs G
that are G[X ∪ {v,w}]-minimal, where X ⊊ V (G), G[X] is prime, and v,w are
distinct elements of X (see [9, Problem 13]). Furthermore, this characterization
provides the following direct and natural recognition theorem of prime graphs.

Theorem 10 (Theorem 12 of [9]). Given a graph G, consider X ⊊ V (G) such
that G[X] is prime. Suppose that ∣X ∣ ≥ 3. The graph G is prime if and only if
for any v,w ∈X, with v ≠ w, there exists Y ⊆X such that v,w ∈ Y and G[X∪Y ]
is G[X ∪ {v,w}]-minimal.

1.1 Outside partition, graph, and digraph

Definition 11. Let G be a graph. With X ⊊ V (G) such that G[X] is prime,
associate the following subsets of X

• ExtG(X) is the set of v ∈X such that G[X ∪ {v}] is prime;

• ⟨X⟩G is the set of v ∈X such that X is a module of G[X ∪ {v}];

• Given α ∈ X, XG(α) is the set of v ∈ X such that {α, v} is a module of
G[X ∪ {v}].

The family
{ExtG(X), ⟨X⟩G} ∪ {XG(α) ∶ α ∈X}

is a partition of X (see [5, Lemma 6.3]). It is called the outside partition
associated with the prime induced subgraph G[X] of G. It is denoted by p(G,X).

We recall the classic parity theorem [5, Theorem 6.5].

Theorem 12. Given a graph G, consider X ⊊ V (G) such that G[X] is prime
and ∣X ∣ ≥ 2. If G is prime, then there exist v,w ∈ X such that v ≠ w and
G[X ∪ {v,w}] is prime.

The proof of Theorem 12 is based on the outside partition p(G,X). Theo-

rem 12 led Ille [7] to consider the following graph.
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Definition 13. Given a graph G, consider X ⊊ V (G) such that G[X] is prime.
The outside graph Γ(G,X) is defined on X as follows. Given v,w ∈X, with v ≠ w,

vw ∈ E(Γ(G,X)) if G[X ∪ {v,w}] is prime.

The outside graph is a usual tool to study prime graphs. Nevertheless, it is
not precise enough to determine the primality of G even if it is sufficient under
additional assumptions (see [9]). This led Ille and Villemaire [9] to introduce
the following refinement. (Recall that a digraph D = (V (D),A(D)) consists of
a finite vertex set V (D) and of an arc set A(D), where an arc is an ordered pair
of distinct vertices.)

Definition 14. Given a graph G, consider X ⊊ V (G) such that G[X] is prime.
The outside digraph ∆(G,X) is defined on X as follows. Given v,w ∈ X, with

v ≠ w, vw ∈ A(∆(G,X)) if

w ∈ ⟨X⟩G and X ∪ {v} is not a module of G[X ∪ {v,w}]
or

w ∈XG(α), where α ∈X, and {α,w} is not a module of G[X ∪ {v,w}].

The dipaths of the outside digraph play an important role. For instance, they
allow a simple and concise characterization of graphs G that are G[X ∪ {v}]-
minimal, whereX ⊊ V (G) such thatG[X] is prime, and v ∈X (see Theorem 16).

Definition 15. Given a graph G, consider X ⊊ V (G) such that G[X] is prime.
Consider distinct v0, . . . , vm ∈X, wherem ≥ 1. We say that v0 . . . vm is a dipath of
∆(G,X) if vivi+1 ∈ A(∆(G,X)) for i ∈ {0, . . . ,m− 1}. Moreover, a dipath v0 . . . vm
of ∆(G,X) is strict if we have (when m ≥ 2) vivj /∈ A(∆(G,X)) for i ∈ {0, . . . ,m−2}
and j ∈ {i + 2, . . . ,m}. Lastly, a strict dipath v0 . . . vm of ∆(G,X) is an arrow if

there exists B ∈ p(G,X) ∖ {ExtG(X)} such that v0 /∈ B and {v1, . . . , vm} ⊆ B.

Theorem 16 (Theorem 11 of [9]). Given a graph G, consider X ⊊ V (G) such
that G[X] is prime. Given v ∈ X ∖ ExtG(X), G is G[X ∪ {v}]-minimal if
and only if the elements of X can be indexed as v0, . . . , vm in such a way that
v0 . . . vm is an arrow of ∆(G,X), with vm = v.

Notation 17. Given a graph G, consider X ⊊ V (G) such that G[X] is prime.
Consider v ∈ X ∖ ExtG(X). Suppose that there exists Y ⊆ X such that v ∈ Y
and G[X ∪ Y ] is prime. By Theorem 16, there exists m ≥ 1 such that ∆(G,X)
admits an arrow v0 . . . vm with vm = v. The smallest integer m ≥ 1, for which
such an arrow exists, is denoted by δ(G,X)(v).

Definition 18. Given a graph G, consider X ⊊ V (G) such that G[X] is prime.
Consider a nonempty subset W of X. An arrow v0 . . . vm of ∆(G,X) is a W -

dipath if W ⊆ {v0, . . . , vm}, vm ∈ W , and δ(G,X)(vm) = m. When W = {v}, we

say also that v0 . . . vm is a v-dipath. Lastly, we say that W is G[X]-reachable
(in ∆(G,X)) if ∆(G,X) admits a W -dipath. When W = {v}, we say also that v

is G[X]-reachable.
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Warning. We use an environment called Layout. We use it nine times: Layout 1
to Layout 9. In Layouts 1, 2, and 3, we consider the two cases where {v,w} ∩
ExtG(X) ≠ ∅. In Layout 4, we consider the case where there exist distinct
B,C ∈ p(G,X) ∖ {ExtG(X)} such that v ∈ B and w ∈ C. The last five layouts

are devoted to the three cases where there exists B ∈ p(G,X) ∖ {ExtG(X)} such

that v,w ∈ B. The discussion is based on the notion of separated vertices (see
Definition 40).

1.2 The first two results

Layout 1. In this subsection, we consider a graph G, a proper subset X of
V (G) such that G[X] is prime, and distinct elements v,w of X. We suppose
that {v,w} ∩ExtG(X) ≠ ∅.

Remark 19. We are looking for a characterization of G when G is G[X ∪
{v,w}]-minimal. One of our tools for this characterization is the outside digraph
∆(G,X) (see Definition 14). If there exists u ∈ X such that G is G[X ∪ {u}]-
minimal, then Theorem 16 yields such a characterization. Consequently, we can
assume that G is neither G[X ∪ {v}]-minimal nor G[X ∪ {w}]-minimal.

Lastly, observe that if G is G[X ∪ {v,w}]-minimal and {v,w} is G[X]-
reachable, then G is G[X ∪ {v}]-minimal or G[X ∪ {w}]-minimal. Therefore,
since G is supposed to be G[X ∪{v,w}]-minimal, we assume also that {v,w} is
not G[X]-reachable.

Layout 2. We suppose that v,w ∈ ExtG(X).

Theorem 20. Suppose that ∣X ∣ ≥ 3. Set Y = X ∪ {v} and Z = X ∪ {w}. The
graph G is G[X ∪ {v,w}]-minimal if and only if the following statement holds

(S1) the elements of X ∖{v,w} can be indexed as u0, . . . , up in such a way that
u0 . . . upw is a w-dipath of ∆(G,Y ), and u0 . . . upv is a v-dipath of ∆(G,Z).

Layout 3. Now, we suppose that v /∈ ExtG(X) and w ∈ ExtG(X). Hence,
there exists B ∈ p(G,X) ∖ {ExtG(X)} such that v ∈ B. Following Remark 19, we

suppose also that G is not G[X ∪ {v}]-minimal.

Theorem 21. The graph G is G[X∪{v,w}]-minimal if and only if the following
statement holds

(S2) there exist distinct elements v1, . . . , vm of B and v0 ∈X ∖B such that

• w ∈X ∖ {v0, . . . , vm} and X = {w} ∪ {v0, . . . , vm};

• v0 . . . vm is a v-dipath of ∆(G,X);

• for i ∈ {1, . . . ,m}, wvi /∈ E(Γ(G,X)).

Let B and C be distinct elements of p(G,X) ∖ {ExtG(X)}. In Theorem 39,
we consider the case where v ∈ B and w ∈ C. Difficulties appear when v and
w belong to the same block of p(G,X) ∖ {ExtG(X)}. We have to introduce the

6



notion of separated vertices (see Definition 40). The situation becomes arduous
when {v,w} is a module of G[X ∪{v,w}] (see Defintion 24 below). In this case,
v and w are indistinguishable from G[X]. The statements are too long to be
provided in this section.

2 Partially critical graphs

Breiner et al. [2] introduced the following definition.

Definition 22. Let G be a prime graph. Consider X ⊊ V (G) such that G[X]
is prime. The graph G is said to be G[X]-critical if G − x is decomposable for
each x ∈ X. A prime graph G is partially critical if it is G[X]-critical for some
X ⊊ V (G) such that G[X] is prime.

The next result follows from [2, Lemma 4.1].

Fact 23. Given a graph G, consider X ⊊ V (G) such that G[X] is prime.
Suppose that ∣X ∣ ≥ 2. If G is G[X]-critical, then we have

for every Y ⊆X, if ∣Y ∣ = 1 or 3, then G[X ∪ Y ] is decomposable. (1)

Now, we refine the partition p(G,X) in the following way.

Definition 24. Given a graph G, consider X ⊊ V (G) such that G[X] is prime.
Let ε(G,X) be the graph defined on X as follows. Given v,w ∈ X, with v ≠ w,

we have vw ∈ E(ε(G,X)) if {v,w} is a module of G[X ∪ {v,w}]. Note that the

components of ε(G,X) are complete. Let q(G,X) be the partition of X given by
the vertex sets of the components of ε(G,X). Observe that the partition q(G,X)
of X is finer than p(G,X). A partition similar to q(G,X) is directly defined from

p(G,X) in [2].

The next theorem follows from [9, Theorem 17, Lemma 36, and Corollary 38].
The partition q(G,X) is used to state [9, Theorem 17 and Corollary 38]. It is
also used in Sections 4 and 5.

Theorem 25. Given a graph G, consider X ⊊ V (G) such that ∣X ∣ ≥ 2 and
G[X] is prime. Suppose that (1) holds. The graph G is prime if and only if for
each connected component C of Γ(G,X), we have v(C) = 2 or C is prime.

As shown by the next result, partially critical graphs are birecognizable.
This fact is useful to prove Proposition 8.

Proposition 26. Let G be a prime graph. Consider X ⊊ V (G) such that
G[X] is prime. Suppose that ∣X ∣ ≥ 4. If G is G[X]-critical, then G is G[X]-
birecognizable.

Proof. Consider a graph H such that G and H are G[X]-similar. We have to
show that H is prime. Since G is G[X]-critical, with ∣X ∣ ≥ 4, it follows from
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Fact 23 that G satisfies (1). Since G and H are G[X]-similar, with ∣X ∣ ≥ 4, H
satisfies (1) as well. Furthermore, since G and H are G[X]-similar, with ∣X ∣ ≥ 3,
we have

Γ(G,X) = Γ(H,X). (2)

It follows from Theorem 25 applied to G that for each connected component C
of Γ(G,X), we have v(C) = 2 or C is prime. By (2), the same holds for H. By
Theorem 25 applied to H, H is prime.

The next result is the first step in the proof of Proposition 8.

Lemma 27. Let G be a prime graph. Consider X ⊊ V (G) such that G[X] is
prime. Suppose that ∣X ∣ ≥ 4. If G is not G[X]-birecognizable, then there exists
v ∈ X such that G is G[X ∪ {v}]-minimal or there exist distinct u, v ∈ X such
that G is G[X ∪ {u, v}]-minimal.

Proof. Since G is not G[X]-birecognizable, there exists a graph H such that
G and H are G[X]-similar, and H is decomposable. Moreover, it follows from
Proposition 26 that there exists v ∈X such that G− v is prime. Since G and H
are G[X]-similar, H −v is prime as well. Set Y = {v}. Since H is decomposable,
we have v ∈ ⟨Y ⟩H or v ∈ YH(α), where α ∈ Y (see Definition 11). We distinguish
the following three cases.

1. Suppose that v ∈ ⟨Y ⟩H . In this case, G is G[X ∪ {v}]-minimal. Indeed,
consider W ⊊ V (G) such that X ∪ {v} ⊆ W . Since Y is a module of H,
W ∩ Y = W ∖ {v} is a module of H[W ]. Hence, H[W ] is decomposable.
Since G and H are G[X]-similar, G[W ] is decomposable.

2. Suppose that v ∈ YH(α), where α ∈ X. In this case, G is G[X ∪ {v}]-
minimal. Indeed, consider W ⊊ V (G) such that X ∪{v} ⊆W . Since {α, v}
is a module ofH, {α, v}∩W = {α, v} is a module ofH[W ]. Hence, H[W ] is
decomposable. Since G and H are G[X]-similar, G[W ] is decomposable.

3. Suppose that v ∈ YH(α), where α ∈ Y ∖ X. In this case, G is G[X ∪
{α, v}]-minimal. Indeed, consider W ⊊ V (G) such that X ∪ {α, v} ⊆ W .
Since {α, v} is a module of H, {α, v} ∩W = {α, v} is a module of H[W ].
Hence, H[W ] is decomposable. Since G and H are G[X]-similar, G[W ]
is decomposable.

In the proof of the next proposition, we use [2, Corollary 4.5], stated as
follows.

Fact 28. Let G be a prime graph. Consider X ⊊ V (G) such that G[X] is prime.
If G is G[X]-critical, then Γ(G,X) does not have isolated vertices.

Proposition 29. Let G be a prime graph. Consider X ⊊ V (G) such that G[X]
is prime. Suppose that ∣X ∣ ≥ 5. Given distinct v,w ∈ X, if G is G[X ∪ {v,w}]-
minimal, then G − v or G −w is prime.
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Proof. Consider distinct v,w ∈X, and suppose that G is G[X∪{v,w}]-minimal.
For a contradiction, suppose that G is G[X]-critical. By Fact 28, there exists
v′ ∈ X ∖ {v} such that vv′ ∈ E(Γ(G,X)). Set Y = X ∪ {v, v′}, so G[Y ] is prime.

SinceG isG[X∪{v,w}]-minimal and ∣X ∣ ≥ 3 , we obtain w /∈ Y . SinceG isG[X]-
critical, G is G[Y ]-critical too. By Fact 28, there exists w′ ∈ Y ∖ {w} such that
ww′ ∈ E(Γ(G,Y )). Therefore, G[Y ∪{w,w′}] is prime. Since G is G[X ∪{v,w}]-
minimal, we obtain V (G) = Y ∪{w,w′}, that is, V (G) =X∪{v, v′,w,w′}, which
contradicts ∣X ∣ ≥ 5. It follows that G is not G[X]-critical. Hence, there exists
u ∈X such that G−u is prime. Since G is G[X ∪{v,w}]-minimal, we have u = v
or u = w.

Lemma 30. Let G be a prime graph. Consider X ⊊ V (G) such that G[X] is
prime. Let v,w be distinct elements of X. Suppose that G is G[X ∪ {v,w}]-
minimal. Suppose also that G − v is prime, and G is not G[X ∪ {v}]-minimal.
If G −w is decomposable, then G is G[X]-birecognizable.

Proof. Consider a graph H which is G[X]-similar to G. We have to show that
H is prime. Since G −w is decomposable, H −w is decomposable. Since G − v
is prime, H − v is prime. Thus

H − v /≃H −w. (3)

Set Y = {v}. Since G is not G[X ∪ {v}]-minimal, there exists Z ⊊ X such that
v ∈ Z and G[X ∪Z] is prime. Thus, H[X ∪Z] is too. It follows that v /∈ ⟨Y ⟩H .
For a contradiction, suppose that there exists α ∈ Y such that v ∈ YH(α). We
obtain that H[(Y ∖{α})∪{v}] is prime, so G[(Y ∖{α})∪{v}] is as well. Since
G is G[X ∪ {v,w}]-minimal, we obtain w = α. It follows that H − v ≃ H − w
contradicting (3). Consequently, v /∈ YH(α) for every α ∈ Y . It follows that
v ∈ ExtH(Y ), so H is prime.

Proposition 8 is a simple consequence of Lemma 27, Proposition 29, and
Lemma 30. We complete this section with the proof of Lemma 9.

Proof of Lemma 9. Consider the graph H defined on V (G) = V (H) by H − v =
G − v, and v is an isolated vertex of H. Since {v} is a module of H, H is
decomposable. We verify that G and H are G[X]-similar. Let Y ⊊X. If v /∈ Y ,
then G[X∪Y ] =H[X∪Y ] because H−v = G−v. Now, suppose that v ∈ Y . Since

{v} is a module of H, {v} ∩ (X ∪ Y ) = (X ∪ Y ) ∖ {v} is a module of H[X ∪ Y ].
Hence, H[X ∪ Y ] is decomposable. Since G is G[X ∪ {v}]-minimal, G[X ∪ Y ]
is decomposable too. Therefore, G and H are G[X]-similar. Consequently, G
is not G[X]-birecognizable.

3 Proofs of Theorems 20 and 21

Using Notation 17, we obtain the following simple consequences of Theorem 16
that are often used.
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Corollary 31. Given a prime graph G, consider X ⊊ V (G) such that G[X] is
prime.

1. For each v ∈X ∖ExtG(X), ∆(G,X) admits a v-dipath.

2. For each v ∈ X, if v0 . . . vm is a v-dipath of ∆(G,X) (or an arrow of

∆(G,X)), then G[X ∪ {v0, . . . , vm}] is prime.

A simple and important tool follows.

Lemma 32. Let G be a graph. Consider X ⊊ V (G) such that G[X] is prime.
Consider a subset W of V (G) such that X ⊊W . Let W ′ be a nonempty subset
of W ∖X. Suppose that there exists B ∈ p(G,X) ∖{ExtG(X)} such that W ′ ⊆ B.
If

ww′ /∈ A(∆(G,X)) for w ∈ (W ∖X) ∖W ′ and w′ ∈W ′, (4)

then one of the following assertions holds

• B = ⟨X⟩G, and W ∖W ′ is a nontrivial module of G[W ];

• B =XG(α), where α ∈X, and {α} ∪W ′ is a nontrivial module of G[W ].

Consequently, if (4) holds, then G[W ] is decomposable.

Proof. Suppose that (4) holds. To begin, suppose that B = ⟨X⟩G. Let w ∈
(W ∖X) ∖W ′ and w′ ∈ W ′. Since ww′ /∈ A(∆(G,X)), X ∪ {w} is a module of

G[X ∪ {w,w′}]. It follows that W ∖W ′ is a module of G[W ].
Now, suppose that B = XG(α), where α ∈ X. Let w ∈ (W ∖X) ∖W ′ and

w′ ∈ W ′. Since ww′ /∈ A(∆(G,X)), {α,w′} is a module of G[X ∪ {w,w′}]. It

follows that {α} ∪W ′ is a module of G[W ].

Proof of Theorem 20. To begin, suppose that G is G[X∪{v,w}]-minimal. Since
∣X ∣ ≥ 3, w /∈ ExtG(Y ). Since w ∈ ExtG(X), we have w ∈ YG(v). Since G is prime,
it follows from Corollary 31 that ∆(G,Y ) admits a w-dipath w0 . . .wn, and G[Y ∪
{w0, . . . ,wn}] is prime. Since G is G[X ∪ {v,w}]-minimal, we obtain V (G) =
Y ∪{w0, . . . , wn}. Similarly, v ∈ ZG(w), and ∆(G,Z) admits a v-dipath v0 . . . vm.

Moreover, we have V (G) = Z ∪ {v0, . . . , vm}. Therefore, {v} ∪ {w0, . . . ,wn} =
{w} ∪ {v0, . . . , vm}, so m = n. Set p = m − 1. Since w0 . . .wn is a w-dipath of
∆(G,Y ), and w ∈ YG(v), wp is the unique element of X∖{v,w} such that wp /←→G

{v,w} (see Notation 1). Similarly, vp is the unique element of X ∖ {v,w} such
that vp /←→G {v,w}. It follows that vp = wp. Set up = vp. To continue, suppose
that p ≥ 1. We obtain that wp−1 is the unique element of X ∖ {v,w, up} such
that wp−1 /←→G {up, v,w}. Similarly, vp−1 is the unique element of X∖{v,w, up}
such that vp−1 /←→G {up, v,w}. It follows that vp−1 = wp−1. Set up−1 = vp−1. By
proceeding by induction, we obtain the sequence u0, . . . , up, where ui = vi and
ui = wi for every i ∈ {0, . . . , p}.

Conversely, suppose that Statement (S1) holds. By Corollary 31, G[Y ∪
{u0, . . . , up}∪{w}] = G[X∪{u0, . . . , up}∪{v,w}] is prime. SinceX = {u0, . . . , up}∪
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{v,w}, G is prime. To show that G is G[X ∪ {v,w}]-minimal, consider W ⊊
V (G) such that X ∪{v,w} ⊆W . We have to verify that G[W ] is decomposable.
Since X ∪ {v,w} ⊆W ⊊ V (G), there exists i ∈ {0, . . . , p} such that ui /∈W . Set
W ′ = {ui+1, . . . , up+1} ∩W , where up+1 denotes w. By Lemma 32 applied to
G[Y ], G[W ] is decomposable.

Proof of Theorem 21. To begin, suppose that G is G[X∪{v,w}]-minimal. Since
G is prime, it follows from Corollary 31 that ∆(G,X) admits a v-dipath v0 . . . vm.

Set Y =X ∪ {v0, . . . , vm}. By Theorem 16, G[Y ] is G[X ∪ {v}]-minimal. Since
G is G[X ∪{v,w}]-minimal without being G[X ∪{v}]-minimal, we have w /∈ Y .
Since w ∈ ExtG(X), we have w /∈ ⟨Y ⟩G, and w /∈ YG(α) for α ∈ X. Furthermore,
since v1, . . . , vm /∈ ExtG(X) and w ∈ ExtG(X), we obtain w /∈ YG(vi) for i ∈
{1, . . . ,m}. Now, suppose for a contradiction that there exists i ∈ {1, . . . ,m}
such that wvi ∈ E(Γ(G,X)). Let I be the largest element of {1, . . . ,m} such

that wvI ∈ E(Γ(G,X)). We obtain that wvI . . . vm is an arrow of ∆(G,X). By

Corollary 31, G[X ∪ {w} ∪ {vI , . . . , vm}] is prime, which contradicts the fact
that G is G[X ∪ {v,w}]-minimal. Consequently, wvi /∈ E(Γ(G,X)) for every i ∈
{1, . . . ,m}. In particular, we have wv1 /∈ E(Γ(G,X)). It follows that w /∈ YG(v0).
Therefore, w ∈ ExtG(Y ). It follows that G[X ∪ {w} ∪ {v0, . . . , vm}] is prime.
Since G is G[X ∪ {v,w}]-minimal, we obtain X = {w} ∪ {v0, . . . , vm}. Thus,
Statement (S2) holds.

Conversely, suppose that Statement (S2) holds. Set Y = X ∪ {v0, . . . , vm}.
By Corollary 31, G[Y ] is prime. Since w ∈ ExtG(X), we have w /∈ ⟨Y ⟩G,
and w /∈ YG(α) for α ∈ X. Furthermore, since v1, . . . , vm /∈ ExtG(X) and w ∈
ExtG(X), we obtain w /∈ YG(vi) for i ∈ {1, . . . ,m}. Since wv1 /∈ E(Γ(G,X)) and

v0v1 ∈ E(Γ(G,X)), we obtain w /∈ YG(v0). It follows that w ∈ ExtG(Y ), so G is

prime. Lastly, we verify that G is G[X ∪ {v,w}]-minimal. Consider W ⊊ V (G)
such that X ∪ {v,w} ⊆ W . There exists i ∈ {0, . . . ,m} such that vi /∈ W . Note
that i < m because vm = v and v ∈ W . Set W ′ = {vi+1, . . . , vm} ∩W . By
Lemma 32, G[W ] is decomposable.

4 Technical preliminaries

To begin, we recall the definition of a module of a digraph. Given a digraph D,
a subset of M of V (D) is a module of D if for x, y ∈M and v ∈ V (D) ∖M , we
have: xv ∈ A(D) (resp. vx ∈ A(D)) if and only if yv ∈ A(D) (resp. vy ∈ A(D)).
More weakly, we say that M is an absorbing subset of D if for x, y ∈ M and
v ∈ V (D) ∖M , we have: vx ∈ A(D) if and only if vy ∈ A(D). The proof of the
next lemma can be deduced from that of [9, Lemma 28].

Lemma 33. Given a graph G, consider X ⊊ V (G) such that G[X] is prime.
Consider also M ⊆X such that ∣M ∣ ≥ 2. The following two statements hold

1. if M is a module of G, then M is contained in a block of q(G,X), and M
is a module of ∆(G,X);
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2. if M is an absorbing subset of ∆(G,X) such that M ∩ ExtG(X) = ∅, and
M is contained in a block of q(G,X), then M is a module of G.

We complete the section with five technical results.

Claim 34. Let G be a graph. Consider W1,W2 ⊆ V (G) such that W1 ∪W2 =
V (G) and ∣W1 ∩W2∣ ≥ 2. Suppose that G[W1] and G[W2] are prime. Suppose
also that G is decomposable. For each nontrivial module M of G, there exist
w1 ∈W1 ∖W2 and w2 ∈W2 ∖W1 such that M = {w1,w2}.

Proof. Let M be a nontrivial module of G. For a contradiction, suppose that
W1 ⊆M . Since ∣W1∩W2∣ ≥ 2, we obtain ∣M ∩W2∣ ≥ 2. Since M ∩W2 is a module
of G[W2], we obtain M ∩ W2 = W2. Hence M = V (G), which contradicts
the fact that M is a nontrivial module of G. It follows that ∣M ∩W1∣ ≤ 1.
If M ∩W1 = ∅, then M is a nontrivial module of G[W2], which contradicts
the fact that G[W2] is prime. Consequently, there exists w1 ∈ W1 such that
M ∩W1 = {w1}. Similarly, there exists w2 ∈W2 such that M ∩W2 = {w2}. Since
∣M ∣ ≥ 2, we obtain w1 ∈W1 ∖W2, w2 ∈W2 ∖W1, and M = {w1,w2}.

Fact 35. Let G be a graph. Consider X ⊊ V (G) such that G[X] is prime.
Suppose that there exist distinct elements B and C of p(G,X) ∖ {ExtG(X)}.
Consider distinct elements v1, . . . , vm of B, and distinct elements w1, . . . ,wn of
C. Suppose that V (G) = X ∪ {v1, . . . , vm} ∪ {w1, . . . ,wn}. If w1v1 . . . vm and
v1w1 . . .wn are strict dipaths of ∆(G,X), then G is prime.

Proof. Set W1 = X ∪ {w1} ∪ {v1, . . . , vm}. Since v1, . . . , vm ∈ B and w1 /∈ B,
w1v1 . . . vm is an arrow of ∆(G,X). By Corollary 31, G[W1] is prime. Similarly,

by setting W2 =X∪{v1}∪{w1, . . . ,wn}, we obtain that G[W2] is prime. If m = 1,
then V (G) =W1, so G is prime. Hence, suppose that m ≥ 2. Similarly, suppose
that n ≥ 2. Since V (G) =X∪{v1, . . . , vm}∪{w1, . . . ,wn}, V (G) =W1∪W2. Since
X ⊆W1∩W2, we have ∣W1∩W2∣ ≥ 2. Moreover, we have W1∖W2 = {v2, . . . , vm}
and W2 ∖W1 = {w2, . . . ,wn}. Let i ∈ {2, . . . ,m} and j ∈ {2, . . . , n}. Since vi and
wj do not belong to the same block of p(G,X), {vi,wj} is not a module of G. It
follows from Claim 34 that G is prime.

Fact 36. Let G be a graph. Consider X ⊊ V (G) such that G[X] is prime.
Suppose that there exist distinct elements B and C of p(G,X) ∖ {ExtG(X)}.
Consider distinct elements v1, . . . , vm of B, and distinct elements w1, . . . ,wn

of C. Suppose that there exists u ∈ X ∖ (B ∪ C) such that V (G) = X ∪ {u} ∪
{v1, . . . , vm} ∪ {w1, . . . ,wn}. If uv1 . . . vm and uw1 . . .wn are strict dipaths of
∆(G,X), then G is prime.

Since the proof of Fact 36 is close to that of Fact 35, we omit it.

Fact 37. Let G be a graph. Consider X ⊊ V (G) such that G[X] is prime.
Suppose that there exist distinct elements B and C of p(G,X) ∖ {ExtG(X)}.
Consider distinct elements v1, . . . , vm of B, and distinct elements w1, . . . ,wn

of C. Suppose that there exist t ∈ X ∖ (B ∪ {w1, . . . ,wn}) and u ∈ X ∖ (C ∪
{v1, . . . , vm}) such that t ≠ u and V (G) =X∪{t, u}∪{v1, . . . , vm}∪{w1, . . . ,wn}.
Under these assumptions, G is prime if the following statements hold
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• tv1 . . . vm and uw1 . . .wn are strict dipaths of ∆(G,X);

• for i ∈ {1, . . . ,m}, viw1 /∈ E(Γ(G,X));

• for j ∈ {1, . . . , n}, wjv1 /∈ E(Γ(G,X));

• uv1 /∈ A(∆(G,X)) or tw1 /∈ A(∆(G,X)).

Proof. Set W1 = X ∪ {t} ∪ {v1, . . . , vm} and W2 = X ∪ {u} ∪ {w1, . . . ,wn}.
Since v1, . . . , vn ∈ B and t ∈ X ∖ B, tv1 . . . vm is an arrow of ∆(G,X). By

Corollary 31, G[W1] is prime. Similarly, G[W2] is prime. Since V (G) =
X ∪{t, u}∪{v1, . . . , vm}∪{w1, . . . ,wn}, V (G) =W1∪W2. We have ∣W1∩W2∣ ≥ 2
because W1∩W2 =X. Furthermore, W1∖W2 = {t}∪{v1, . . . , vm} and W2∖W1 =
{u}∪{w1, . . . ,wn}. Let i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. Since vi and wj do not
belong to the same block of p(G,X), {vi,wj} is not a module of G. We verify

that {u, vi} is not a module of G. Since uw1 . . .wn is a strict dipath of ∆(G,X),
uw1 ∈ A(∆(G,X)). Furthermore, since vi and w1 do not belong to the same

block of p(G,X), and viw1 /∈ E(Γ(G,X)), we obtain viw1 /∈ A(∆(G,X)). Therefore,

{u, vi} is not a module of ∆(G,X). By Lemma 33, {u, vi} is not a module of

G. Similarly, {t,wj} is not a module of G. Lastly, we verify that {u, t} is not
a module of G. Since tv1 . . . vm and uw1 . . .wn are strict dipaths of ∆(G,X),
tv1, uw1 ∈ A(∆(G,X)). Since uv1 /∈ A(∆(G,X)) or tw1 /∈ A(∆(G,X)), {t, u} is not

a module of ∆(G,X). By Lemma 33, {t, u} is not a module of G. It follows from
Claim 34 that G is prime.

We end this section with the following claim, which is useful to examine non
separated vertices (see Definition 40 and Lemma 43).

Claim 38. Let G be a graph. Consider X ⊊ V (G) such that G[X] is prime.
Suppose that there exists B ∈ p(G,X) ∖ {ExtG(X)} such that ∣B∣ ≥ 2. Consider

distinct elements v and w of B. Suppose that {v,w} is not G[X]-reachable
(see Definition 18). Consider a v-dipath v0 . . . vm of ∆(G,X), and a w-dipath
w0 . . .wn of ∆(G,X). Under these assumptions, the following assertions hold

1. if there exist i ∈ {0, . . . ,m} and j ∈ {0, . . . , n} such that vi = wj, then i = j,
i <m, and i < n;

2. if there exist i ∈ {0, . . . ,m} and j ∈ {0, . . . , n} such that vi ≠ wj and {vi,wj}
is a module of G[X ∪ {v0, . . . , vm} ∪ {w0, . . . ,wn}], then i = j, and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

i =m = n
or

i <m and i < n.

Proof. For the first assertion, suppose that there exist i ∈ {0, . . . ,m} and j ∈
{0, . . . , n} such that vi = wj . Suppose that i = 0. Since v0 /∈ B and wl ∈ B for
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l ∈ {1, . . . , n}, we obtain j = 0. Similarly, if j = 0, then i = 0. Thus, suppose that
i ≥ 1 and j ≥ 1. For a contradiction, suppose that i = m. Hence v = wj . Since
v ≠ w, we obtain j < n, which contradicts the fact that {v,w} is not G[X]-
reachable. It follows that i ∈ {1, . . . ,m− 1}. Analogously, j ∈ {1, . . . , n− 1}. The
sequence v0 . . . vi−1wjwj+1 . . .wn is a dipath of ∆(G,X). We can extract from
v0 . . . vi−1wjwj+1 . . .wn an arrow u0 . . . up of ∆(G,X) such that u0 = v0, up = wn,

and p ≤ n − j + i. Since δ(G,X)(w) = n, we obtain i ≥ j. Analogously, we have
j ≥ i. Therefore i = j.

For the second assertion, set H = G[X ∪ {v0, . . . , vm} ∪ {w0, . . . ,wn}]. Note
that

∆(H,X) = ∆(G,X)[{v0, . . . , vm} ∪ {w0, . . . ,wn}]. (5)

It follows that

v0 . . . vm is a v-dipath of ∆(H,X) and w0 . . .wn is a w-dipath of ∆(H,X). (6)

We obtain that v and w are H[X]-reachable. It follows that

δ(H,X)(v) =m and δ(H,X)(w) = n. (7)

Now, we suppose that there exist i ∈ {0, . . . ,m} and j ∈ {0, . . . , n} such that
vi ≠ wj and {vi,wj} is a module of H. By Lemma 33 applied to H, {vi,wj} is
a module of ∆(H,X). Observe that if i = 0, then j = 0 because v0 and w0 are the

only elements of {v0, . . . , vm}∪{w0, . . . ,wn} that do not belong to B. Similarly,
if j = 0, then i = 0. Now, suppose that i > 0 and j > 0. We distinguish the
following two cases.

First, suppose that i = m. Suppose for a contradiction that 1 ≤ j ≤ n −
1. By (6), w0 . . .wn is a w-dipath of ∆(H,X). Since {v,wj} is a module of

∆(H,X), w0 . . .wj−1vwj+1 . . .wn is an arrow of ∆(H,X). Therefore, {v,w} is

H[X]-reachable, which contradicts the fact that {v,w} is not G[X]-reachable.
It follows that j = n. Thus, {v,w} is a module of ∆(H,X). It follows from (6)

that v0 . . . vm−1w is an arrow of ∆(H,X). Hence, m ≥ δ(H,X)(w). It follows from

(7) that m ≥ n. Similarly, n ≥m. Therefore, we obtain m = n. Consequently, if
i =m, then j = n, and m = n. Analogously, if j = n, then i =m, and m = n.

Second, suppose that m ≥ 2, n ≥ 2, i ∈ {1, . . . ,m − 1}, and j ∈ {1, . . . , n −
1}. We have to show that i = j. Since {vi,wj} is a module of ∆(H,X),
v0 . . . vi−1wjwj+1 . . .wn is a dipath of ∆(H,X). From v0 . . . vi−1wjwj+1 . . .wn,
we can extract an arrow u0 . . . up of ∆(H,X) such that u0 = v0, up = wn, and

p ≤ n − j + i. Since δ(H,X)(w) = n by (7), we obtain n − j + i ≥ p ≥ n, so i ≥ j.
Similarly, j ≥ i. Therefore i = j.

5 The other results

Layout 4. In this section, we consider a graph G, a proper subset X of V (G)
such that G[X] is prime, and distinct elements v,w of X. In Theorems 20 and
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21, we considered the case where {v,w} ∩ExtG(X) ≠ ∅. Now, we suppose that
{v,w} ∩ExtG(X) = ∅. Hence, there exist B,C ∈ p(G,X) ∖ {ExtG(X)} such that
v ∈ B and w ∈ C. To begin, we suppose that B ≠ C.

Theorem 39. The graph G is G[X ∪{v,w}]-minimal if and only if there exist
distinct elements v1, . . . , vm of B, and distinct elements w1, . . . ,wn of C such
that one of the following statements holds

(S3) X = {v1, . . . , vm} ∪ {w1, . . . ,wn} and

• w1v1 . . . vm is a v-dipath of ∆(G,X),

• v1w1 . . .wn is a w-dipath of ∆(G,X),

• for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, if i ≥ 2 or j ≥ 2, then viwj /∈
E(Γ(G,X));

(S4) there exists u ∈X∖(B∪C) such that X = {u}∪{v1, . . . , vm}∪{w1, . . . ,wn},
and

• uv1 . . . vm is a v-dipath of ∆(G,X),

• uw1 . . .wn is a w-dipath of ∆(G,X),

• for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, viwj /∈ E(Γ(G,X));

(S5) there exist t ∈X ∖ (B ∪ {w1, . . . ,wn}) and u ∈X ∖ (C ∪ {v1, . . . , vm}) such
that t ≠ u, X = {t, u} ∪ {v1, . . . , vm} ∪ {w1, . . . ,wn}, and

• tv1 . . . vm is a v-dipath of ∆(G,X),

• uw1 . . .wn is a w-dipath of ∆(G,X),

• for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, viwj /∈ E(Γ(G,X)),

• for i ∈ {1, . . . ,m}, uvi /∈ A(∆(G,X)),

• for j ∈ {1, . . . , n}, twj /∈ A(∆(G,X)).

Proof. To begin, suppose that G is G[X ∪ {v,w}]-minimal. Since G is prime,
it follows from Corollary 31 that ∆(G,X) admits a v-dipath v0 . . . vm, and a
w-dipath w0 . . .wn. We distinguish the two following cases.

1. Suppose that there exist i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} such that viwj ∈
E(Γ(G,X)). Denote by I the largest i ∈ {1, . . . ,m} such that there exists

j ∈ {1, . . . , n} with viwj ∈ E(Γ(G,X)). Now, denote by J the largest j ∈
{1, . . . , n} such that vIwj ∈ E(Γ(G,X)). We obtain that wJvI . . . vm and
vIwJ . . .wn are strict dipaths of ∆(G,X). It follows from Fact 35 that

G[X ∪ {vI , . . . , vm} ∪ {wJ , . . . ,wn}] is prime. Since G is G[X ∪ {v,w}]-
minimal, we obtain V (G) = X ∪ {vI , . . . , vm} ∪ {wJ , . . . ,wn}. It follows
that I = 1, J = 1, v0 = w1, and w0 = v1. Consequently, Statement (S3)
holds.
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2. Suppose that viwj /∈ E(Γ(G,X)) for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. In

particular, we obtain v0 /∈ {w1, . . . ,wn}, and w0 /∈ {v1, . . . , vm}. Thus

v0,w0 ∈X ∖ ({v1, . . . , vm} ∪ {w1, . . . ,wn}). (8)

For a contradiction, suppose that there exists j ∈ {2, . . . , n} with v0wj ∈
A(∆(G,X)). Denote by J the largest j ∈ {2, . . . , n} such that v0wj ∈
A(∆(G,X)). We obtain that v0v1 . . . vm and v0wJ . . .wn are strict dipaths

of ∆(G,X). If v0 ∈ C, then G[X ∪ {v0, . . . , vm} ∪ {wJ , . . . ,wn}] is prime

by Fact 35, which contradicts the fact that G is G[X ∪ {v,w}]-minimal
because w0 /∈ X ∪ {v0, . . . , vm} ∪ {wJ , . . . ,wn} by (8). If v0 /∈ C, then
G[X ∪{v0, . . . , vm}∪{wJ , . . . ,wn}] is prime by Fact 36, which contradicts
the fact that G is G[X ∪ {v,w}]-minimal because w1 /∈X ∪ {v0, . . . , vm} ∪
{wJ , . . . ,wn}. It follows that v0wj /∈ A(∆(G,X)) for j ∈ {2, . . . , n}. Sim-

ilarly, w0vi /∈ A(∆(G,X)) for i ∈ {2, . . . ,m}. We distinguish the following
three subcases.

2.1. Suppose that v0w1 ∈ A(∆(G,X)). If v0 ∈ C, then G[X ∪ {v0} ∪
{v1, . . . , vm} ∪ {w1, . . . ,wn}] is prime by Fact 35. If v0 /∈ C, then
G[X ∪{v0}∪{v1, . . . , vm}∪{w1, . . . ,wn}] is prime by Fact 36. It fol-
lows that G[X ∪{v0}∪{v1, . . . , vm}∪{w1, . . . ,wn}] is prime. Since G
is G[X∪{v,w}]-minimal, we obtain V (G) =X∪{v0}∪{v1, . . . , vm}∪
{w1, . . . ,wn}. Since w0 /∈ {v1, . . . , vm} ∪ {w1, . . . ,wn} by (8), we ob-
tain w0 = v0. Consequently, v0 /∈ B ∪ C, and hence Statement (S4)
holds.

2.2. Suppose that w0v1 ∈ A(∆(G,X)). Similarly, we obtain w0 = v0, and

Statement (S4) holds.

2.3. Suppose that v0w1 /∈ A(∆(G,X)) and w0v1 /∈ A(∆(G,X)). Clearly,

we have v0 ≠ w0. By Fact 37, G[X ∪ {v0, . . . , vm} ∪ {w0, . . . ,wn}] is
prime. Since G is G[X ∪ {v,w}]-minimal, we obtain V (G) = X ∪
{v0, . . . , vm} ∪ {w0, . . . ,wn}. Hence Statement (S5) holds.

Conversely, suppose that there exist distinct elements v1, . . . , vm of B, and
distinct elements w1, . . . ,wn of C such that one of Statements (S3), (S4) or (S5)
holds. We distinguish the following three cases.

(i) Suppose that Statement (S3) holds. By Fact 35, G is prime. Consider
W ⊊ V (G) such that X ∪ {v,w} ⊆ W . We have to verify that G[W ] is
decomposable. For instance, assume that vi /∈ W , where i ∈ {1, . . . ,m}.
Since vm = v, i < m. Set W ′ = {vi+1, . . . , vm} ∩W . Clearly, vm ∈ W ′ and
W ′ ⊆ B. By Lemma 32, G[W ] is decomposable.

(ii) Suppose that Statement (S4) holds. By Fact 36, G is prime. Consider
W ⊊ V (G) such that X ∪ {v,w} ⊆ W . We have to verify that G[W ] is
decomposable. To begin, suppose that u /∈W . Set W ′ = {v1, . . . , vm}∩W .
Clearly, vm ∈ W ′ and W ′ ⊆ B. By Lemma 32, G[W ] is decomposable.

16



Now, suppose that u ∈W . Since X ∪ {v,w} ⊆W ⊊ V (G), we can assume
that vi /∈ W , where i ∈ {1, . . . ,m}. Since vm = v, i < m. Set W ′ =
{vi+1, . . . , vm} ∩W . Clearly, vm ∈W ′ and W ′ ⊆ B. By Lemma 32, G[W ]
is decomposable.

(iii) Suppose that Statement (S5) holds. By Fact 37, G is prime. Consider
W ⊊ V (G) such that X ∪ {v,w} ⊆ W . We have to verify that G[W ]
is decomposable. To begin, suppose that {t, u} ∖W ≠ ∅. For instance,
assume that t /∈ W . Set W ′ = {v1, . . . , vm} ∩W . Clearly, vm ∈ W ′ and
W ′ ⊆ B. By Lemma 32, G[W ] is decomposable. Now, suppose that
{t, u} ⊆ W . Since X ∪ {v,w} ⊆ W ⊊ V (G), we can assume that vi /∈ W ,
where i ∈ {1, . . . ,m}. Since vm = v, i < m. Set W ′ = {vi+1, . . . , vm} ∩W .
Clearly, vm ∈W ′ and W ′ ⊆ B. By Lemma 32, G[W ] is decomposable.

Layout 5. In the sequel, we suppose that B = C.

We use the following notion of separated vertices.

Definition 40. We say that v and w are separated if for every v-dipath v0 . . . vm
of ∆(G,X), and for every w-dipath w0 . . .wn of ∆(G,X), both assertions below
hold

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{v0, . . . , vm} ∩ {w0, . . . ,wn} = ∅
and

G[X ∪ {v0, . . . , vm} ∪ {w0, . . . ,wn}] is prime.

(9)

Layout 6. To begin, we suppose that v and w are separated.

We use the following notation.

Notation 41. Let G be a graph. Consider subsets X and Y of V (G) such that
X ⊊ Y , G[X] is prime, and G[Y ] is prime. Let B ∈ p(G,X) ∖ {ExtG(X)}. Set

B̃Y =
⎧⎪⎪⎨⎪⎪⎩

⟨Y ⟩G if B = ⟨X⟩G,
YG(α) if B =XG(α), where α ∈X.

Clearly, we have B̃Y ⊆ B.

Theorem 42. The graph G is G[X ∪{v,w}]-minimal if and only if there exist
distinct elements v1, . . . , vm of B and v0 ∈X∖B, and there exist distinct elements
w1, . . . ,wn of B and w0 ∈X ∖B, satisfying the following statements

(A1) v0 . . . vm is a v-dipath of ∆(G,X),

(A2) w0 . . .wn is a w-dipath of ∆(G,X),

(A3) X = {v0, . . . , vm} ∪ {w0, . . . ,wn},

and satisfying one of the following statements

(S6) • {v} ∪ {w1, . . . ,wn} is a module of G −w0,
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• for i ∈ {1, . . . ,m} and j ∈ {0, . . . , n}, wjvi /∈ A(∆(G,X));

(S7) Statement (S7) is obtained from Statement (S6) by interchanging the roles
of v and w;

(S8) • for i ∈ {1, . . . ,m} and j ∈ {0, . . . , n}, wjvi /∈ A(∆(G,X)),

• for i ∈ {0, . . . ,m} and j ∈ {1, . . . , n}, viwj /∈ A(∆(G,X)).

Proof. To begin, suppose that G is G[X ∪ {v,w}]-minimal. By Corollary 31,
∆(G,X) admits a v-dipath v0 . . . vm, and a w-dipath w0 . . .wn. Since v and

w are separated, (9) holds. Since G is G[X ∪ {v,w}]-minimal, we obtain X =
{v0, . . . , vm}∪{w0, . . . ,wn}. Set Y =X∪{v0, . . . , vm}, and Z =X∪{w0, . . . ,wn}.
By Corollary 31, G[Y ] and G[Z] are prime. We verify that if w /∈ YG(v), then

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

w ∈ B̃Y (see Notation 41),

and

viwj /∈ A(∆(G,X)) for i ∈ {0, . . . ,m} and j ∈ {1, . . . , n}.
(10)

Indeed, suppose that w /∈ YG(v). Since G is G[X ∪ {v,w}]-minimal and n ≥ 1,
we obtain w /∈ ExtG(Y ). Since v0 /∈ B, we have w /∈ YG(v0). Lastly, suppose
that m ≥ 2, and consider i ∈ {1, . . . ,m − 1}. For a contradiction, suppose that
w ∈ YG(vi). We obtain that G[(Y ∖{vi})∪{w}] is prime, which contradicts the
fact that G is G[X ∪ {v,w}]-minimal. Therefore, w /∈ YG(vi). It follows that
w ∈ ⟨Y ⟩G or w ∈ YG(α), where α ∈ X. If w ∈ ⟨Y ⟩G, then w ∈ ⟨X⟩G. Moreover, if
w ∈ YG(α), where α ∈X, then w ∈XG(α). Consequently,

w ∈ B̃Y . (11)

Furthermore, since G is prime, it follows from Corollary 31 applied to G[Y ]
that ∆(G,Y ) admits a w-dipath z0 . . . zq, and G[Y ∪ {z0, . . . , zq}] is prime. It

follows from (11) that
{z1 . . . zq} ⊆ B̃Y . (12)

Since G is G[X ∪ {v,w}]-minimal, we obtain X = {v0, . . . , vm} ∪ {z0, . . . , zq}.
Therefore,

{w0, . . . ,wn} = {z0, . . . , zq}.
In particular, we have n = q. If w0 ∈ {z1, . . . , zq}, then w0 ∈ B̃Y , and hence
w0 ∈ B. Thus, w0 = z0, and hence {w1, . . . ,wn} = {z1, . . . , zq}. It follows from
(12) that

{w1, . . . ,wn} ⊆ B̃Y .

Let i ∈ {0, . . . ,m} and j ∈ {1, . . . , n}. Since wj ∈ B̃Y , we obtain viwj /∈ A(∆(G,X)).
Consequently, (10) holds. Similarly, if v /∈ ZG(w), then

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

v ∈ B̃Z ,

and

wjvi /∈ A(∆(G,X)) for i ∈ {1, . . . ,m} and j ∈ {0, . . . , n}.
(13)

We distinguish the following three cases.
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1. Suppose that w ∈ YG(v). SinceG is prime, it follows from Corollary 31 that
∆(G,Y ) admits a w-dipath z0 . . . zq, and G[Y ∪{z0, . . . , zq}] is prime. Since

G is G[X ∪ {v,w}]-minimal, we obtain X = {v0, . . . , vm} ∪ {z0, . . . , zq}.
Therefore, {w0, . . . ,wn} = {z0, . . . , zq}. In particular, we have n = q and
Z =X ∪{z0, . . . , zq}. If w0 ∈ {z1, . . . , zq}, then w0 ∈ YG(v), and hence w0 ∈
B because v ∈ B. It follows that w0 = z0, so {w1, . . . ,wn} = {z1, . . . , zq},
and hence {w1, . . . ,wn} ⊆ YG(v). It follows that {v} ∪ {w1, . . . ,wn} is a
module of G −w0.

Now, since z0 . . . zq is a strict dipath of ∆(G,Y ) such that zq = w, we have

zq−1w ∈ A(∆(G,Y )). Since w ∈ YG(v), we obtain that {v,w} is not a

module of G[Y ∪ {zq−1,w}]. Therefore, we have v /∈ ZG(w). It follows
from (13) that for i ∈ {1, . . . ,m} and j ∈ {0, . . . , n}, wjvi /∈ A(∆(G,X)).
Hence, Statement (S6) holds.

2. Suppose that v ∈ ZG(w). We obtain that Statement (S7) holds.

3. Suppose that v /∈ ZG(w), and w /∈ YG(v). It follows from (10) and (13)
that Statement (S8) holds.

Conversely, suppose that there exist distinct elements v1, . . . , vm of B and
v0 ∈ X ∖B, and there exist distinct elements w1, . . . ,wn of B and w0 ∈ X ∖B
satisfying Statements (A1), (A2), (A3), and one of Statements (S6) or (S8).
Since Statement (A1) holds, v0 . . . vm is a v-dipath of ∆(G,X). By Corollary 31,

G[X ∪ {v0, . . . , vm}] is prime. Similarly, since Statement (A2) holds, G[X ∪
{w0, . . . ,wn}] is prime. Since Statement (S6) or (S8) holds, we have wjvi /∈
A(∆(G,X)) for i ∈ {1, . . . ,m} and j ∈ {0, . . . , n}. For a contradiction, suppose

that G is decomposable. Recall that X = {v0, . . . , vm} ∪ {w0, . . . ,wn} because
Statement (A3) holds. By Claim 34 applied withW1 =X∪{v0, . . . , vm} andW2 =
X ∪{w0, . . . ,wn}, there exist i ∈ {0, . . . ,m} and j ∈ {0, . . . , n} such that {vi,wj}
is a module of G. By Lemma 33, {vi,wj} is a module of ∆(G,X). We cannot have

i ≤ m − 1 because vivi+1 ∈ A(∆(G,X)) and wjvi+1 /∈ A(∆(G,X)). Furthermore,

we cannot have i = m and j ∈ {1, . . . , n} because wj−1wj ∈ A(∆(G,X)) and

wj−1vm /∈ A(∆(G,X)). Lastly, we cannot have i = m and j = 0 because vm ∈ B
and w0 /∈ B. It follows that G is prime. Lastly, we have to verify that G is
G[X ∪ {v,w}]-minimal. We distinguish the following two cases.

First, suppose that Statement (S6) holds. Set Y =X ∪{v0, . . . , vm}. We ver-
ify that G is G[Y ∪{w}]-minimal. Recall that G[Y ] is prime because Assertion
(A1) holds. We show that

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

w0 /∈ YG(vm),
{w1, . . . ,wn} ⊆ YG(vm),
and

w0 . . .wn is an arrow of ∆(G,Y ).

(14)

Since vm ∈ B and w0 ∈ X ∖ B, we have w0 /∈ YG(vm). Furthermore, since
Statement (S6) holds, {v} ∪ {w1, . . . ,wn} is a module of G − w0. Therefore,
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{w1, . . . ,wn} ⊆ YG(vm), and {vm} ∪ {w1, . . . ,wn} is contained in a block of
q(G,X). Consider k ∈ {0, . . . , n − 1}. Since w0 . . .wn is a strict dipath of ∆(G,X),
we have wkwk+1 ∈ A(∆(G,X)). Since Statement (S6) holds, we have wkvm /∈
A(∆(G,X)). It follows from Lemma 33 applied to G[X ∪ {vm,wk,wk+1}] that

wk /←→G {vm,wk+1}. Since wk+1 ∈ YG(vm), we obtain wkwk+1 ∈ A(∆(G,Y )).
Suppose that k + 2 ≤ n, and consider l ∈ {k + 2, . . . , n}. Since w0 . . .wn is
a strict dipath of ∆(G,X), wkwl /∈ A(∆(G,X)). Since Statement (S6) holds,

wkvm /∈ A(∆(G,X)). Since vm and wl belong to the same block of q(G,X), it

follows from Lemma 33 that wk ←→G {vm,wl}. Since wl ∈ YG(vm), we obtain
wkwl /∈ A(∆(G,Y )). Therefore, w0 . . .wn is an arrow of ∆(G,Y ). Consequently,

(14) holds. By Theorem 16, G is G[Y ∪ {w}]-minimal.
To continue, we verify that G is G[X ∪ {v,w}]-minimal. Consider a subset

W of V (G) such that X ∪ {v,w} ⊆W ⊊ V (G).

1. Suppose that there exists i ∈ {0, . . . ,m − 1} such that vi /∈ W . Set W ′ =
{vi+1, . . . , vm} ∩W . By Lemma 32, G[W ] is decomposable.

2. Suppose that {v0, . . . , vm} ⊆W . Hence, there exists k ∈ {0, . . . , n−1} such
that wk /∈W . Since G is G[Y ∪ {w}]-minimal, G[W ] is decomposable.

Second, suppose that Statement (S8) holds. We verify that G is G[X ∪
{v,w}]-minimal. Consider a subset W of V (G) such that X ∪ {v,w} ⊆ W ⊊
V (G). By exchanging v and w if necessary, we can assume that there exists
i ∈ {0, . . . ,m−1} such that vi /∈W . Set W ′ = {vi+1, . . . , vm}∩W . It follows from
Lemma 32 that G[W ] is decomposable.

Layout 7. Now, we suppose that v and w are not separated. It follows that
v and w are G[X]-reachable (see Definition 18). Therefore, δ(G,X)(v) and

δ(G,X)(w) are well-defined (see Theorem 16 and Notation 17). For convenience,

set m = δ(G,X)(v) and n = δ(G,X)(w). Moreover, following Remark 19, we

assume that {v,w} is not G[X]-reachable.

We use the following lemma.

Lemma 43. There exists a v-dipath v0 . . . vm of ∆(G,X), and there exist distinct

elements wi+1, . . . ,wn of B∖{v0, . . . , vm}, where i ∈ {0, . . . ,m−1}∩{0, . . . , n−1},
such that the following assertions hold

• v0 . . . viwi+1 . . .wn is a w-dipath of ∆(G,X);

• if G[X ∪ {v0, . . . , vm} ∪ {wi+1, . . . ,wn}] is decomposable, then m = n, i =
m−1, and {vm,wn} is the only nontrivial module of G[X ∪{v0, . . . , vm}∪
{wn}].

Proof. Since v and w are not separated, there exist a v-dipath v0 . . . vm of
∆(G,X), and a w-dipath w0 . . .wn of ∆(G,X) that do not satisfy (9). Since

v0 . . . vm is a v-dipath of ∆(G,X), G[X ∪ {v0, . . . , vm}] is prime by Corollary 31.

Similarly, G[X ∪ {w0, . . . ,wn}] is prime.
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First, suppose that {v0, . . . , vm} ∩ {w0, . . . ,wn} ≠ ∅. We show that there
exists k ∈ {0, . . . ,m − 1} ∩ {0, . . . , n − 1} such that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{v0, . . . , vm} ∩ {wk+1, . . . ,wn} = ∅
and

v0 . . . vkwk+1 . . .wn is a w-dipath of ∆(G,X).
(15)

There exist p ∈ {0, . . . ,m} and q ∈ {0, . . . , n} such that vp = wq. Set

J = max({q ∈ {0, . . . , n} ∶ wq ∈ {v0, . . . , vm}}).

It follows from the maximality of J that {v0, . . . , vm} ∩ {wJ+1, . . . ,wn} = ∅.
Furthermore, since wJ ∈ {v0, . . . , vm}, there exists I ∈ {0, . . . ,m} such that
vI = wJ . By Claim 38, we have I = J , I <m, and I < n. Thus, v0 . . . vIwI+1 . . .wn

is a dipath of ∆(G,X). Since δ(G,X)(w) = n, we obtain that v0 . . . vIwI+1 . . .wn

is a w-dipath of ∆(G,X). Therefore (15) holds for k = I. Let K be the largest

k ∈ {0, . . . ,m − 1} ∩ {0, . . . , n − 1} such that (15) holds.
Lastly, suppose that G[X ∪{v0, . . . , vm}∪{wK+1, . . . ,wn}] is decomposable.

Consider a nontrivial module M of G[X∪{v0, . . . , vm}∪{wK+1, . . . ,wn}]. Recall
that G[X ∪ {v0, . . . , vK ,wK+1, . . . ,wn}] is prime by Corollary 31. By Claim 34
applied with W1 = X ∪ {v0, . . . , vm} and W2 = X ∪ {v0, . . . , vK ,wK+1, . . . ,wn},
there exist k ∈ {K + 1, . . . ,m} and l ∈ {K + 1, . . . , n} such that M = {vk,wl}. By
Claim 38, we have k = l. Moreover, we have k =m = n or k <m and k < n. For
a contradiction, suppose that k < m and k < n. By Lemma 33, {vk,wk} is a
module of ∆(H,X), where H = G[X ∪ {v0, . . . , vm} ∪ {wK+1, . . . ,wn}]. It follows
that v0 . . . vkwk+1 . . .wn is a dipath of ∆(G,X). In fact, v0 . . . vkwk+1 . . .wn is a

w-dipath of ∆(G,X) because δ(G,X)(w) = n. Furthermore, since {v0, . . . , vm} ∩
{wK+1, . . . ,wn} = ∅ and k ∈ {K+1, . . . ,m}, we obtain {v0, . . . , vm}∩{wk, . . . ,wn} =
∅. Hence (15) holds for k, which contradicts the maximality of K. It fol-
lows that k = m = n. Consequently, {vm,wm} is the unique nontrivial mod-
ule of G[X ∪ {v0, . . . , vm} ∪ {wK+1, . . . ,wn}]. We obtain that v0 . . . vm−1wm

is a strict dipath of ∆(G,X). In fact, v0 . . . vm−1wm is a w-dipath of ∆(G,X)
because δ(G,X)(w) = n and m = n. Moreover, wm /∈ {v0, . . . , vm} because

{v0, . . . , vm} ∩ {wK+1, . . . ,wn} = ∅. It follows that (15) holds for k = m − 1.
We obtain K =m − 1 by maximality of K.

Second, suppose that {v0, . . . , vm} ∩ {w0, . . . ,wn} = ∅. Since (9) does not
hold, G[X ∪{v0, . . . , vm}∪{w0, . . . ,wn}] is decomposable. Consider a nontrivial
module M of G[X ∪ {v0, . . . , vm} ∪ {w0, . . . ,wn}]. By Claim 34, there exist
r ∈ {0, . . . ,m} and s ∈ {0, . . . , n} such that M = {vr,ws}. By Claim 38, we have
r = s. Moreover, we have r = m = n or r < m and r < n. We distinguish the
following two cases.

1. Suppose that r = s and r = m = n. Thus, {vm,wm} is a nontrivial
module of G[X ∪ {v0, . . . , vm} ∪ {wm}]. Since G[X ∪ {v0, . . . , vm}] is
prime, {vm,wm} is the only one. Therefore, v0 . . . vm−1wm is a strict
dipath of ∆(G,X). Since δ(G,X)(w) = n and m = n, v0 . . . vm−1wm is
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a w-dipath of ∆(G,X). Moreover, wm /∈ {v0, . . . , vm} because {v0, . . . ,
vm} ∩ {w0, . . . ,wn} = ∅. Consequently, i =m − 1 is suitable to conclude.

2. Suppose that r = s, r <m, and r < n. We obtain that v0 . . . vrwr+1 . . .wn is
a dipath of ∆(G,X). Since δ(G,X)(w) = n, v0 . . . vrwr+1 . . .wn is a w-dipath

of ∆(G,X). Consider the largest element I of {0, . . . ,m−1}∩{0, . . . , n−1}
such that v0 . . . vIwI+1 . . .wn is a w-dipath of ∆(G,X). By Corollary 31,

G[X ∪ {v0, . . . , vI ,wI+1, . . . ,wn}] is prime.

Finally, suppose that G[X ∪ {v0, . . . , vm} ∪ {wI+1, . . . ,wn}] is decompos-
able. Consider a nontrivial module M of G[X ∪ {v0, . . . , vm} ∪ {wI+1, . . . ,
wn}]. By Claim 34 applied with W1 = X ∪ {v0, . . . , vI , vI+1, . . . , vm} and
W2 = X ∪ {v0, . . . , vI ,wI+1, . . . ,wn}, there exist k ∈ {I + 1, . . . ,m} and
l ∈ {I + 1, . . . , n} such that M = {vk,wl}. By Claim 38, we have k =
l. Moreover, we have k = m = n or k < m and k < n. For a con-
tradiction, suppose that k < m and k < n. Since {vk,wk} is a mod-
ule of G[X ∪ {v0, . . . , vm} ∪ {wI+1, . . . ,wn}], it follows from Lemma 33
that v0 . . . vkwk+1 . . .wn is a dipath of ∆(G,X). Since δ(G,X)(w) = n,
v0 . . . vkwk+1 . . .wn is a w-dipath of ∆(G,X), which contradicts the maxi-

mality of I. Consequently, we have k = l and k =m = n. Hence, {vm,wm}
is the unique nontrivial module of G[X ∪ {v0, . . . , vm} ∪ {wI+1, . . . ,wm}].
We obtain that v0 . . . vm−1wm is a dipath of ∆(G,X). In fact, v0 . . . vm−1wm

is a w-dipath of ∆(G,X) because δ(G,X)(w) = n. By maximality of I, we
have I =m − 1. Therefore, i =m − 1 is suitable to conclude.

Notation 44. The largest element i of {0, . . . ,m− 1} ∩ {0, . . . , n− 1} such that
Lemma 43 holds is denoted by I.

Layout 8. We suppose that

I ≤m − 2 or I ≤ n − 2. (16)

Theorem 45. The graph G is G[X ∪{v,w}]-minimal if and only if there exist
distinct elements v1, . . . , vm of B, v0 ∈X∖B, and distinct elements wI+1, . . . ,wn

of B ∖ {v0, . . . , vm} satisfying the following statements

(A4) X = {v0, . . . , vm} ∪ {wI+1, . . . ,wn},

(A5) v0 . . . vm is a v-dipath of ∆(G,X),

(A6) v0 . . . vIwI+1 . . .wn is a w-dipath of ∆(G,X),

and one of the following statements

(S9) I ≤ n − 2, n <m, and

• for i ∈ {I+2, . . . ,m} and j ∈ {I+1, . . . , n}, we have wjvi /∈ A(∆(G,X)),

• {vm} ∪ {wI+2, . . . ,wn} is a module of G −wI+1;
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(S10) Statement (S10) is obtained from Statement (S9) by interchanging the
roles of v and w;

(S11) • if I ≤m− 2, then for i ∈ {I + 2, . . . ,m} and j ∈ {I + 1, . . . , n}, we have
wjvi /∈ A(∆(G,X)),

• if I ≤ n − 2, then for i ∈ {I + 1, . . . ,m} and j ∈ {I + 2, . . . , n}, we have
viwj /∈ A(∆(G,X)).

Proof. To begin, suppose that G is G[X ∪ {v,w}]-minimal. By Lemma 43,
∆(G,X) admits a v-dipath v0 . . . vm and a w-dipath v0 . . . vIwI+1 . . .wn, where

wI+1, . . . ,wn are distinct elements of B ∖ {v0, . . . , vm}. Hence, Assertions (A5)
and (A6) hold. Furthermore, if G[X ∪ {v0, . . . , vm} ∪ {wI+1, . . . ,wn}] is de-
composable, then it follows from Lemma 43 that I = m − 1 and m = n, which
contradicts (16). Thus, G[X ∪ {v0, . . . , vm} ∪ {wI+1, . . . ,wn}] is prime. Since
G is G[X ∪ {v,w}]-minimal, we have X = {v0, . . . , vm} ∪ {wI+1, . . . ,wn}. Hence
Assertion (A4) holds. Set Y = X ∪ {v0, . . . , vm} and Z = X ∪ {v0, . . . , vI} ∪
{wI+1, . . . ,wn}. By Corollary 31, G[Y ] and G[Z] are prime. We show that

if wn ∈ YG(vm), then m > n. (17)

Indeed, suppose that wn ∈ YG(vm). It follows from Lemma 33 that v0 . . . vm−1wn

is a strict dipath of ∆(G,X). Thus m ≥ n. For a contradiction, suppose that
m = n. We obtain that m−1 satisfies Lemma 43. By maximality of I, we obtain
I =m − 1, which contradicts (16). Since m ≥ n, it follows that m > n. Similarly,

if vm ∈ ZG(wn), then n >m. (18)

Now, we show that if I ≤m − 2 and vm /∈ ZG(wn), then

for i ∈ {I + 2, . . . ,m} and j ∈ {I + 1, . . . , n}, wjvi /∈ A(∆(G,X)). (19)

Indeed, suppose that I ≤m − 2 and vm /∈ ZG(wn). We have vI+1 /∈ Z ∪ {vm} be-
cause I ≤m−2. Since G is G[X∪{v,w}]-minimal, we obtain vm /∈ ZG(u) for u ∈
Z ∖X. Furthermore, since G is G[X ∪{v,w}]-minimal and m ≥ I +2, we obtain
vm /∈ ExtG(Z). It follows that vm ∈ B̃Z . Since G is prime, it follows from Corol-
lary 31 that ∆(G,Z) admits a v-dipath y0 . . . yp, and G[Z∪{y0, . . . , yp}] is prime.

Since G is G[X ∪ {v,w}]-minimal, we obtain {y0, . . . , yp} = {vI+1, . . . , vm}.

Since vIvI+1 ∈ A(∆(G,X)) and vI+1 ∈ B, we obtain vI+1 /∈ B̃Z . It follows that

y0 = vI+1 and {y1, . . . , yp} = {vI+2, . . . , vm}. Therefore, {vI+2, . . . , vm} ⊆ B̃Z .
Since {vI+2, . . . , vm} ⊆ B, we obtain wjvi /∈ A(∆(G,X)) for i ∈ {I + 2, . . . ,m} and

j ∈ {I + 1, . . . , n}. Similarly, if I ≤ n − 2 and wn /∈ YG(vm), then

for i ∈ {I + 1, . . . ,m} and j ∈ {I + 2, . . . , n}, viwj /∈ A(∆(G,X)). (20)

To conclude, we distinguish the following three cases.
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1. Suppose that wn ∈ YG(vm). We prove that Statement (S9) holds. Since
{vm,wn} is not a module of G, we obtain vm /∈ ZG(wn). By (17), m >
n. It follows from (16) that I ≤ m − 2. By (19), we obtain wjvi /∈
A(∆(G,X)) for i ∈ {I + 2, . . . ,m} and j ∈ {I + 1, . . . , n}. Since G is prime,
it follows from Corollary 31 that ∆(G,Y ) admits a w-dipath z0 . . . zq, and

G[Y ∪{z0, . . . , zq}] is prime. Since G is G[X ∪{v,w}]-minimal, we obtain
{z0, . . . , zq} = {wI+1, . . . ,wn}. Hence, we have n ≥ I +2 because q ≥ 1. Fur-
thermore, since m ≥ I + 2, vIvm /∈ A(∆(G,X)). Since vIwI+1 ∈ A(∆(G,X)),
it follows from Lemma 33 that wI+1 /∈ YG(vm). Thus, z0 = wI+1, and hence
{z1, . . . , zq} = {wI+2, . . . ,wn}. Therefore {wI+2, . . . ,wn} ⊆ YG(vm). It fol-
lows that {vm} ∪ {wI+2, . . . ,wn} is a module of G − wI+1. Consequently,
Statement (S9) holds.

2. Suppose that vm ∈ ZG(wn). We obtain that Statement (S10) holds.

3. Suppose that vm /∈ ZG(wm) and wn /∈ YG(vm). It follows from (19) and
(20) that Statement (S11) holds.

Conversely, suppose that there exist distinct elements v1, . . . , vm of B, v0 ∈
X ∖B, and distinct elements wI+1, . . . ,wn of B ∖ {v0, . . . , vm} satisfying Asser-
tions (A4), (A5), and (A6). Moreover, suppose that Statement (S9) or (S11)
holds.

First, we prove that G is prime. For a contradiction, suppose that G[X ∪
{v0, . . . , vm} ∪ {wI+1, . . . ,wn}] is decomposable. Since I satisfies Lemma 43, we
obtain m = n and I = m − 1, which contradicts (16). It follows that G[X ∪
{v0, . . . , vm} ∪ {wI+1, . . . ,wn}] is prime.

Second, we prove that G[X∪{v0, . . . , vm}∪{wI+1, . . . ,wn}] is G[X∪{v,w}]-
minimal. Consider a subset W of V (G) such that X ∪ {v,w} ⊆ W ⊊ V (G).
We have to show that G[W ] is decomposable. Suppose that there exists i ∈
{0, . . . , I} such that vi /∈ W . Since Assertions (A5) and (A6) hold, it suffices
to apply Lemma 32 with W ′ = ({vi+1, . . . , vm} ∪ {wI+1, . . . ,wn}) ∩W . Lastly,
suppose that {v0, . . . , vI} ⊆W . We distinguish the following cases.

1. Suppose that Statement (S9) holds. We have I + 2 ≤ m and wjvi /∈
A(∆(G,X)) for i ∈ {I + 2, . . . ,m} and j ∈ {I + 1, . . . , n}. Therefore, if there

exists i ∈ {I+1, . . . ,m} such that vi /∈W , then it suffices to apply Lemma 32
with W ′ = {vi+1, . . . , vm} ∩W . Hence, suppose that {v0, . . . , vm} ⊆ W .
There exists j ∈ {I + 1, . . . , n} such that wj /∈ W . Since w ∈ W , we have
j ≤ n−1. Set M = {vm}∪{wj+1, . . . ,wn}. We prove that M is a module of
G−wj . Since Statement (S9) holds, {vm}∪ {wI+2, . . . ,wn} is a module of
G−wI+1. Hence, M is a module of G−wj if j = I + 1. Thus, suppose that
j ≥ I + 2. Let k ∈ {I + 1, . . . , j − 1}. Since Assertion (A6) holds, we have
wkwl /∈ A(∆(G,X)) for l ∈ {j + 1, . . . , n}. Furthermore, since Statement

(S9) holds, wkvm /∈ A(∆(G,X)). Since {vm} ∪ {wI+2, . . . ,wn} is a module
of G − wI+1, vm and wj+1, . . . ,wn belong to the same block of q(G,X). It
follows from Lemma 33 that wk ←→G M . Consequently, M is a module of
G−wj . It follows that M ∩W is a module of G[W ]. We have ∣M ∩W ∣ ≥ 2
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because v,w ∈ M ∩W . Furthermore, M ∩W ⊊ W because X ⊆ W ∖M .
Therefore, M ∩W is a nontrivial module of G[W ].

2. Suppose that Statement (S11) holds. By exchanging v and w if necessary,
we can assume that there exists i ∈ {I + 1, . . . ,m} such that vi /∈ W .
In particular, we obtain I + 2 ≤ m because vm ∈ W . Since Statement
(S11) holds, we have wjvi /∈ A(∆(G,X)) for i ∈ {I + 2, . . . ,m} and j ∈
{I + 1, . . . , n}. As previously, we conclude by applying Lemma 32 with
W ′ = {vi+1, . . . , vm} ∩W .

Layout 9. In what follows, we suppose that m = n and I =m − 1.

Theorem 46. Suppose that v and w do not belong to the same block of q(G,X).
The graph G is G[X∪{v,w}]-minimal if and only if there exist distinct elements
v1, . . . , vm of B ∖ {w} and v0 ∈X ∖B satisfying the following statement

(S12) v0 . . . vm is a v-dipath of ∆(G,X), v0 . . . vm−1w is a w-dipath of ∆(G,X),
and X = {v0, . . . , vm} ∪ {w}.

Proof. To begin, suppose that G is G[X ∪ {v,w}]-minimal. Since m = n and
I = m − 1, ∆(G,X) admits a v-dipath v0 . . . vm such that v0 . . . vm−1w is a w-

dipath of ∆(G,X). By Corollary 31, G[X ∪ {v0, . . . , vm}] is prime. Set Y =
X ∪ {v0, . . . , vm}. Since {v,w} is not G[X]-reachable, we have w /∈ YG(vi) for
0 ≤ i ≤m−1. Moreover, since v and w do not belong to the same block of q(G,X),
we have w /∈ YG(vm). Lastly, since vm−1w ∈ A(∆(G,X)), we have w /∈ B̃Y . It

follows that w ∈ ExtG(Y ). Consequently, G[Y ∪ {w}] is prime. Since G is
G[X ∪ {v,w}]-minimal, we obtain X = {v0, . . . , vm} ∪ {w}.

Conversely, suppose that there exist distinct elements v1, . . . , vm of B ∖ {w}
and v0 ∈ X ∖ B such that Statement (S12) holds. For a contradiction, sup-
pose that G is decomposable. Since v0 . . . vm is a v-dipath of ∆(G,X), G[X ∪
{v0, . . . , vm}] is prime by Corollary 31. Similarly, G[X ∪ {v0, . . . , vm−1} ∪ {w}]
is prime. It follows from Claim 34 that {vm,w} is a module of G, which con-
tradicts the fact that v and w do not belong to the same block of q(G,X). It

follows that G is prime. Finally, we show that G is G[X ∪ {v,w}]-minimal.
Consider a subset W of V (G) such that X ∪ {v,w} ⊆W ⊊ V (G). There exists
i ∈ {0, . . . ,m − 1} such that vi /∈ W . Set W ′ = ({vi+1, . . . , vm} ∪ {w}) ∩W . By
Lemma 32, G[W ] is decomposable.

Theorem 47. Suppose that v and w belong to the same block D of q(G,X). The

graph G is G[X ∪ {v,w}]-minimal if and only if there exist distinct elements
v1, . . . , vm of B ∖ {w}, v0 ∈ X ∖ B, and distinct elements z0, . . . , zq of X ∖
{v0, . . . , vm} satisfying the following assertions

(A7) v0 . . . vm is a v-dipath of ∆(G,X),

(A8) q ≥ 1, zq = w, and X = {v0, . . . , vm} ∪ {z0, . . . , zq},
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(A9) for r ∈ {0, . . . , q − 1}, {v} ∪ {zr+1, . . . , zq} is a module of G − zr, but not of
G,

(A10) by exchanging v and w if necessary, we can assume that zq−1v /∈ A(∆(G,X))
and zq−1zq ∈ A(∆(G,X)),

(A11) {z0, vm} is not a module of G[X ∪ {v0, . . . , vm} ∪ {z0}],

and satisfying one of the following statements

(S13) z0 /∈ B, and

• z0 . . . zq is an arrow of ∆(G,X),

• zjvi /∈ A(∆(G,X)) for i ∈ {1, . . . ,m} and j ∈ {0, . . . , q};

(S14) z0 ∈ B, m ≥ 2, and there exists k ∈ {0, . . . ,m − 2} such that

• v0 . . . vkz0 . . . zq is an arrow of ∆(G,X),

• zjvi /∈ A(∆(G,X)) for i ∈ {k + 2, . . . ,m} and j ∈ {0, . . . , q};

(S15) z0 ∈ B, m ≥ 2, and viz0 /∈ A(∆(G,X)) for i ∈ {0, . . . ,m − 2};

(S16) z0 ∈ B, and m = 1.

Proof. To begin, suppose that G is G[X ∪ {v,w}]-minimal. Since m = n and
I = m − 1, ∆(G,X) admits a v-dipath v0 . . . vm such that v0 . . . vm−1w is a w-

dipath of ∆(G,X). Hence, Assertion (A7) holds. By Corollary 31, G[X ∪
{v0, . . . , vm}] is prime. Set Y =X∪{v0, . . . , vm}. Since v0 . . . vm and v0 . . . vm−1w
are strict dipaths of ∆(G,X), {vm,w} is a module of ∆(G,X)[{v0, . . . , vm}∪{w}].
Since vm,w ∈ D, it follows from Lemma 33 that w ∈ YG(vm). Since G is
prime, it follows from Corollary 31 that ∆(G,Y ) admits a w-dipath z0 . . . zq and

G[Y ∪ {z0, . . . , zq}] is prime. Since G is G[X ∪ {v,w}]-minimal, we obtain Y =
{z0, . . . , zq}. Hence, Assertion (A8) holds. Since z0 . . . zq is a w-dipath of ∆(G,Y ),
Assertions (A9) holds. Since Assertion (A9) holds, we have zq−1 /←→G {v,w}.
Since v,w ∈D, it follows from Lemma 33 that ∣{zq−1v, zq−1w} ∩A(∆(G,X))∣ = 1.

Therefore, Assertion (A10) holds. Since z0 . . . zq is a w-dipath of ∆(G,Y ) and

w ∈ YG(vm), we have z0 /∈ YG(vm), that is, Assertion (A11) holds.
Since zq−1w ∈ A(∆(G,X)) by Assertion (A10), we consider the smallest ele-

ment L of {0, . . . , q − 1} such that

zLv ∈ A(∆(G,X)) or zLzq ∈ A(∆(G,X)). (21)

We verify that
if L < q − 1, then zLv, zLzq ∈ A(∆(G,X)). (22)

Indeed, suppose that L < q − 1. Since Assertion (A9) holds, we have zL ←→G

{v, zq}. It follows from Lemma 33 that zLv, zLzq ∈ A(∆(G,X)) or zLv, zLzq /∈
A(∆(G,X)). By (21), we have zLv, zLzq ∈ A(∆(G,X)). Hence (22) holds.
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To continue, we verify that z0 . . . zLzq is a strict dipath of ∆(G,X). If L = q−1,

then zq−1zq ∈ A(∆(G,X)) by Assertion (A10). If L < q−1, then zLzq ∈ A(∆(G,X))
by (22). Now, suppose that L ≥ 1, and consider p ∈ {0, . . . , L − 1}. It follows
from Assertion (A9) that {v} ∪ {zp+2, . . . , zq} is a module of G − zp+1. Thus,
zp ←→G {v} ∪ {zp+2, . . . , zq}. By minimality of L, we have zpv /∈ A(∆(G,X))
and zpzq /∈ A(∆(G,X)). It follows from Lemma 33 that zpu /∈ A(∆(G,X)) for

every u ∈ {v} ∪ {zp+2, . . . , zq}. Furthermore, it follows from Assertion (A9) that
{v} ∪ {zp+1, . . . , zq} is a module of G − zp, but not of G. We obtain zp /←→G

{zp+1, v} and zp+1, v ∈D. Since zpv /∈ A(∆(G,X)), it follows from Lemma 33 that

zpzp+1 ∈ A(∆(G,X)). Consequently, z0 . . . zLzq is a strict dipath of ∆(G,X).
We distinguish the following cases.

1. Suppose that z0 /∈ B. We prove that Statement (S13) holds. We have
z1, . . . , zq ∈ YG(vm), so z1, . . . , zq ∈ B. Since z0 /∈ B, z0 . . . zLzq is an
arrow of ∆(G,X). By Corollary 31, G[X ∪ {z0, . . . , zL} ∪ {zq}] is prime.

Set Z = X ∪ {z0, . . . , zL} ∪ {zq}. Since G is G[X ∪ {v,w}]-minimal and
v0 /∈ Z ∪ {vm}, we have vm /∈ ExtG(Z). Since G is G[X ∪ {v,w}]-minimal,
vm /∈ ZG(zr) for 0 ≤ r ≤ L. For a contradiction, suppose that vm ∈ ZG(zq).
Recall that zq ∈ YG(vm). Since {v, zq} is not a module of G, we have
L < q − 1. Since G is prime, it follows from Corollary 31 that ∆(G,Z)
admits a v-dipath y0 . . . yk, and G[Z ∪ {y0, . . . , yk}] is prime. Since G
is G[X ∪ {v,w}]-minimal, we have V (G) = Z ∪ {y0, . . . , yk}. Therefore,
we have Z ∖ ZG(zq) = {y0}. Since ZG(zq) ⊆ B and v0 /∈ B, we obtain
v0 ∈ Z ∖ ZG(zq). Thus, y0 = v0, so Z ∖ ZG(zq) = {v0}. Moreover, since
L < q−1, it follows from Assertion (A9) that zL /←→G {zL+1, zq}. Therefore,
zL+1 /∈ ZG(zq). Clearly, zL+1 ≠ v0, which contradicts Z ∖ZG(zq) = {v0}. It

follows that vm /∈ ZG(zq). Consequently, we have vm ∈ B̃Z . It follows that
zLvm /∈ A(∆(G,X)). By (22), L = q − 1. Hence Z = X ∪ {z0, . . . , zq}, and

Z = {v0, . . . , vm} by Assertion (A8). Since G is G[X ∪ {v,w}]-minimal,
we obtain Z = {y0, . . . , yk}. It follows that {v0, . . . , vm} = {y0, . . . , yk}.
Since y0 . . . yk is a v-dipath of ∆(G,Z), we have {y1, . . . , yk} ⊆ B̃Z ⊆ B.

Since v0 /∈ B, we obtain v0 = y0. Thus {v1, . . . , vm} ⊆ B̃Z . It follows that
zjvi /∈ A(∆(G,X)) for i ∈ {1, . . . ,m} and j ∈ {0, . . . , q}. Hence Statement

(S13) holds.

2. Suppose that z0 ∈ B. If m = 1, then Statement (S16) holds. Therefore,
suppose that m ≥ 2. If viz0 /∈ A(∆(G,X)) for i ∈ {0, . . . ,m − 2}, then

Statement (S15) holds. Lastly, suppose that there exists i ∈ {0, . . . ,m −
2} such that viz0 ∈ A(∆(G,X)). We consider the smallest element k of

{0, . . . ,m − 2} such that vkz0 ∈ A(∆(G,X)). We prove that Statement

(S14) holds. Let j ∈ {1, . . . , q}. As previously seen, zj ∈ YG(vm). Let
l ∈ {0, . . . , k}. Since vlvm /∈ A(∆(G,X)), it follows from Lemma 33 that

vlzj /∈ A(∆(G,X)). Moreover, when k ≥ 1, it follows from the minimality of

k that vlz0 /∈ A(∆(G,X)) for l ∈ {0, . . . , k−1}. Therefore, v0 . . . vkz0 . . . zLzq
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is a strict dipath of ∆(G,X). Since v0 /∈ B and {v1, . . . , vk} ∪ {z0, . . . , zL} ∪
{zq} ⊆ B, v0 . . . vkz0 . . . zLzq is an arrow of ∆(G,X). By Corollary 31,

G[X∪{v0, . . . , vk}∪{z0, . . . , zL}∪{zq}] is prime. Set Z =X∪{v0, . . . , vk}∪
{z0, . . . , zL} ∪ {zq}. Since G is G[X ∪ {v,w}]-minimal, vm /∈ ZG(u) for u ∈
{v0, . . . , vk}∪{z0, . . . , zL}. Since m ≥ k+2, vk+1 ∈ Z ∖{vm}. It follows that
vm /∈ ExtG(Z) because G is G[X ∪ {v,w}]-minimal. For a contradiction,
suppose that vm ∈ ZG(zq). Recall that zq ∈ YG(vm). Since {v, zq} is not
a module of G, we obtain L < q − 1. Since G is prime, it follows from
Corollary 31 applied with G[Z] that ∆(G,Z) admits a vm-dipath y0 . . . yl,

and G[Z ∪ {y0, . . . , yl}] is prime. Since G is G[X ∪ {v,w}]-minimal, we
obtain Z = {y0, . . . , yl}. It follows that Z ∖ZG(zq) = {y0}. Since L < q − 1,
we have zLv, zLzq ∈ A(∆(G,X)) by (22). It follows from Lemma 33 and

Assertion (A9) that zLzL+1 /∈ A(∆(G,X)), so zL+1 /∈ ZG(zq). Furthermore,

since m ≥ k + 2, we have vkzq /∈ A(∆(G,X)). Since vkvk+1 ∈ A(∆(G,X)), it

follows from Lemma 33 that vk+1 /∈ ZG(zq). Therefore, vk+1 ≠ zL+1 and
vk+1, zL+1 /∈ ZG(zq), which contradicts Z ∖ ZG(zq) = {y0}. Consequently,

vm /∈ ZG(zq), and hence vm ∈ B̃Z . If L < q − 1, then zLv ∈ A(∆(G,X))
by (22), which contradicts vm ∈ B̃Z . Hence L = q − 1. Since G is prime,
it follows from Corollary 31 applied with G[Z] that ∆(G,Z) admits a vm-

dipath y0 . . . yl, and G[Z∪{y0, . . . , yl}] is prime. Since G is G[X∪{v,w}]-
minimal, we obtain {vk+1, . . . , vm} = {y0, . . . , yl}. Therefore, we have Z ∖
B̃Z = {y0}. Since vkvk+1 ∈ A(∆(G,X)), we have vk+1 /∈ B̃Z . It follows that

y0 = vk+1, so {vk+2, . . . , vm} = {y1, . . . , yl}, and hence {vk+2, . . . , vm} ⊆ B̃Z .
We obtain that zjvi /∈ A(∆(G,X)) for i ∈ {k + 2, . . . ,m} and j ∈ {0, . . . , q}.

Consequently, Statement (S14) holds.

Conversely, suppose that there exist distinct elements v1, . . . , vm of B ∖{w},
v0 ∈X ∖B, and distinct elements z0, . . . , zq of X ∖{v0, . . . , vm} satisfying Asser-
tions (A7),...,(A11), and one of Statements (S13), (S14), (S15) or (S16).

First, we show that G is prime. By Assertion (A7), v0 . . . vm is a v-dipath of
∆(G,X). By Corollary 31, G[X∪{v0, . . . , vm}] is prime. Set Y =X∪{v0, . . . , vm}.

It follows from Assertion (A9) that z1, . . . , zq ∈ YG(vm). By Assertion (A11),
z0 /∈ YG(vm). Lastly, it follows from Assertion (A9) that z0 . . . zq is a strict
dipath of ∆(G,Y ). Since z0 /∈ YG(vm) and {z1, . . . , zq} ⊆ YG(vm), z0 . . . zq is an

arrow of ∆(G,Y ). By Corollary 31 applied with G[Y ], G[Y ∪ {z0, . . . , zq}] is

prime. It follows from Assertion (A8) that G is prime.
Second, we prove that G is G[X ∪ {v,w}]-minimal. Consider a subset W

of V (G) such that X ∪ {v,w} ⊆ W ⊊ V (G). Suppose that {v0, . . . , vm} ⊆ W .
There exists r ∈ {0, . . . , q−1} such that zr /∈W . As previously seen, zq ∈ YG(vm)
and z0 . . . zq is a w-dipath of ∆(G,Y ). Set W ′ = W ∩ {zr+1, . . . , zq}. It follows

from Lemma 32 applied to G[Y ] that G[W ] is decomposable. Finally, suppose
that there exists i ∈ {0, . . . ,m} such that vi /∈ W . Since v ∈ W , i ≤ m − 1. We
distinguish the following cases.

1. Suppose that Statement (S13) holds. Set W ′ = W ∩ {vi+1, . . . , vm}. By
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Lemma 32, G[W ] is decomposable.

2. Suppose that Statement (S14) holds.

• Suppose that 0 ≤ i ≤ k. Set W ′ =W ∩ ({vi+1, . . . , vm} ∪ {z0, . . . , zq}).
By Lemma 32, G[W ] is decomposable.

• Suppose that k + 1 ≤ i ≤ m − 1. Set W ′ = W ∩ {vi+1, . . . , vm}. By
Lemma 32, G[W ] is decomposable.

3. Suppose that Statement (S15) holds. Set W ′ = W ∩ ({vi+1, . . . , vm} ∪
{z0, . . . , zq}). By Lemma 32, G[W ] is decomposable.

4. Suppose that Statement (S16) holds. Since m = 1, we have i = 0. We
obtain W ∖X ⊆ B. It follows that G[W ] is decomposable.

6 Conclusion

Initially, our aim is to study the counter-examples to Conjecture 5. Proposition 8
leads us to characterize the prime graphs G that are G[X ∪ {v,w}]-minimal,
where X is a proper subset of V (G) such that G[X] is prime, and v,w ∈ X.
Theorem 16 provides a nice characterization when v = w in terms of the outside
digraph ∆(G,X) (see Definiton 14). In Sections 1.2 and 5, we treat the case

v ≠ w. We consider seven situations (see Theorems 20, 21, 39, 42, 45, 46,
and 47) that are induced from the locations of v and w in X, described by
using the outside partition p(G,X) (see Definition 11), and its refinement q(G,X)
(see Definition 24). It is not difficult to provide graphs that correspond with
each of these seven situations. Nevertheless, we did not complete our initial
characterization. Indeed, for each of these seven situations, we have still to
identify the counter-examples to Conjecture 5.
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