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Abstract: A reliable public transport system is beneficial for people traveling in the metropolitan
area. Transfer time in multimodal transit networks has been highlighted as one of the measures of
public transport service quality. In this paper, we propose a novel method to estimate the passengers’
transfer time between the transit modes (i.e., train, metro, and bus) based on the 2018 Household
Travel Survey in the Paris region, France. The transit trips with a single transit leg are primarily
studied, wherein average wait time and mode speeds are estimated through an integrated linear
regression model. Based on these inferences, transfer time is deduced within the trips of multiple
transit legs. The decomposition procedure of journey time facilitates the estimation of the time
components, and reveals the transfer variability in mode, time, and space. From the results, we find
that the transfer to the railway modes, especially to the metro, costs less time on average than the
transfer to the bus in the study area. The transfer patterns in the morning and evening peak hours
are different regarding the transfer duration and locations. Lastly, the results’ reliability, method
scalability, and potential applications are discussed in detail.

Keywords: multimodal transit; average wait time; transit speed; transfer time; linear regression model

1. Introduction

The rapidly developing transportation systems have changed people’s travel be-
haviors, especially in metropolitan areas. Many transport agencies attempt to develop
sustainable public transport systems, which give a promising solution for the problems of
traffic congestion and air pollution. In order to make public transport more attractive, the
main measure is the improvement of public transport service quality, e.g., transit reliability.

In transit systems, transportation characteristics in terms of mode speeds and service
frequency are spatio-temporally different. Transit operators put considerable effort into
improving reliable services via timetable adjustment, network optimization, and infras-
tructure investments. Passengers are considerably attracted to multimodal (or intermodal)
public transport due to its advantages on safety, affordability, environmental impact, etc. [1].
The major concern may refer to the travel time variability (TTV), which has been defined as
the time variance for vehicles traveling similar trips, of either the inter-vehicle, inter-period,
or inter-day type [2]. Previous studies suggested splitting transit journey time into separate
components, assuming the independence of these components, i.e., access time, wait time,
in-vehicle time, transfer time, and egress time [3,4]. The reliability of public transport is
sensitive to the variability in the time components [4]. This variability is mainly affected by
service frequency (or headway) [5] and a range of other variables, such as temporal factors,
infrastructure, and passenger demographics [6,7]. Among the journey components, the
impact of transfers on the reliability of multimodal transit systems has been highlighted
in the literature [6,8-11]. In general, a transfer is defined as the changing act between
modes or between services of the same mode. The concept may include a pure transfer
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(e.g., walking from a bus station to a train platform) and an incidental activity transfer
(e.g., buying a newspaper) [1].

In the literature, there are abundant studies on the estimation of transit travel time
distributions (TTDs), aiming to represent network conditions and get insights on the TTV.
The TTDs are mainly related to two forms: (1) normal, and (2) skewed, e.g., lognormal or
gamma distribution [12,13]. It is said that the decrease in temporal aggregation tends to
increase the normality of travel time distributions [12]. This evidence holds the potential
to model the linear regression relationship between travel time and explanatory variables.
In recent years, many studies have conducted TTV analyses and measured the reliability
of transit systems [4,7,14]. For example, the authors of [7] proposed a method to estimate
passenger waiting time at transit stations and analyzed the effects of influential variables
with a multivariate regression model.

There is very limited literature on the estimation of transfer time distribution between
two transit modes. Existing studies took advantages of transit smart card data to identify
the transfers and estimate the time spent, according to the tap-in and tap-out times of transit
modes [1,11,15,16]. Seaborn et al. [1] established three levels of maximum-elapsed-time
thresholds to identify the transfers between the bus and metro systems in London, using
smart card data. The thresholds’ estimation did not distinguish the impacts from time and
space dimensions. Normally, transfer time includes walking time for a transfer and waiting
time at the platform. However, many studies only estimated one of these two components
and only a few considered them together. Eltved et al. [6] estimated the walking time
distributions from bus stops to train platforms based on a matching of smart card data
and automatic vehicle location data. They found that the passengers’ walking speeds and
the passengers who engage in activities during the transfer have impacts on the walking
time estimation. Sun and Xu, in their work [3], distinguished the O-D metro trips with or
without transfers for the wait time estimation at platforms. The platform elapsed time—PET
(a generalized platform wait time)—was inferred from the trips without transfers, while the
platform elapsed transfer time (i.e., interchange wait time) was inferred based on the trips
with transfers, as well as on the previously deduced PET. Our study is inspired by this stage-
based procedure. Wahaballa et al. [16] estimated the platform waiting time distribution
in London’s underground network, using passive smart card data. Afterward, the same
authors in [11] estimated the distribution of transfer time between bus stops and rail stations,
using the stochastic frontier model. Both the walking time and waiting time distributions
were presented. From the literature review, on one hand, a large amount of studies have
used smart card data for the estimation of travel time or time components, and the study
of socio-economic relationships is rarely mentioned, due to this kind of information being
lacking. On the other hand, to the best of our knowledge, there are no studies using the
household travel survey (HTS) dataset, which includes both the users’ mobility and their
socio-economic information, for the estimation of different time components.

From the HTS without any information of time components, how to infer average wait
time and in-vehicle time for a transit mode? Does the transfer time between two transit
modes have spatio-temporal differences? To answer these questions, this paper proposes
an integrated model framework to estimate the passengers’ average waiting time, transit
mode speeds, and transfer time in the transit system of the Paris region, based on the 2018
HTS. The basic trip-level information (such as departure/arrival times, trip O/D locations,
and purposes) and stage-level information (such as stage start/end locations and travel
modes within a trip) are available in the survey. However, like many other large-scale
HTSs, there is no further information on the time components at the stage level. Therefore,
our study will handle this challenging issue, especially for the estimation of transfer time
between two transit modes or lines.

The remainder of the paper is organized as follows. Section 2 introduces the study
area of the Paris region and the transit data preparation. Section 3 introduces the method,
including the linear regression model and the transfer time estimation based on the multi-
stage transit trips. Section 4 presents the results of average wait time and mode speeds,
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and provides evidence of transit network performance in terms of transfer time in different
time periods and territorial spaces. The topics on data accuracy, model extension, and
applications are discussed in Section 5. Finally, Section 6 provides the main conclusions
and highlights our future work.

2. Study Area and Data Preparation
2.1. Transit Networks in the Paris Region

In France, the Paris region (also called Ile-de-France) includes the city of Paris and
its suburbs (i.e., inner ring and outer ring). About 12.3 million inhabitants resided in this
region in 2020 [17]. In Table 1, we see that the city of Paris and the inner ring have a
relatively high population density, where 6% of the regional territory accommodates more
than 55% of the regional population. The population density even reaches 20,400 hab/km?
in Paris, and about 31% of the total jobs are offered there.

Table 1. Overview of population and territory in fle-de-France (Source: INSEE 2020).

Urbanization Scale Paris Inner Ring Outer Ring
(Department) (75) (92,93,94) (77,78,91,95)
Population (x106) 2.1 47 5.5
Jobs (x10°) 1.8 15 2.6
Surface (km?) 105 657 11,250

This strongly monocentric pattern of urbanization is supported by the start-like trans-
portation network, especially by the powerful public transport network, see Figure 1. As of
2018, the transit services were provided by a variety of sub-modes: there were 16 metro
lines (mainly in the city of Paris), 15 regional rail lines (including Regional Express Railways
(RER) and other “Transilien” lines), 9 tramway lines spanning the inner ring, together with
more than 1400 bus lines. The investment of public transport is currently further accelerated
with the Grand Paris Express Plan, which consists of the development of new automated
metro lines going through the suburbs by 2035.

Number of inhabitants
0-500
500-1000

B 1000-2500

B 2500-10,000

Il >10,000

* Railway transit stops
— Railway transit lines

0 10 20 km
[ S—

Source: INSEE, General Census of Population in Municipality, 2016

Figure 1. Distribution of railway stations and lines.
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2.2. Data Preparation Based on the 2018 HTS

The HTS in the Paris region (“Enquéte Globale Transport” in French, abbr. EGT) has
been conducted every 10 years or so. From the recent official report of the 2018 HTS [18], it
is uncovered that about 43 million trips (after expansion with sample weights) are made
by regional people on an average working day, out of which 34.4% of trips are made by
car, 21.9% by transit modes, 39.9% by walking only, 1.9% by cycling, 1.0% by motorized
two-wheeler, and 0.9% by other modes (scooters, taxi, and vehicle-for-hire, etc.). More
information on the data structure and mobility analysis can be found in [19].

The 2018 HTS corresponds to the first survey stage of the H2020 HTS, and it covers
the period from January 2018 to June 2019 before the COVID-19 outbreak in France. The
sample contains 5143 households, with a total of 11,492 individuals. After filtering out
about 9.8% of the respondents who were out of the range from 5 to 74 years of age and
who had no trips on the surveyed day, the filtered dataset includes 7051 individuals in
3927 households generating 28,873 trips.

As aforementioned, one trip may include multiple modal stages. The trip dataset
and trip-stage dataset are both available from the survey and they are jointly studied here.
In Table 2, the proportional trip frequency is calculated, regarding the six modalities in
number of stages per trip. The simple trips with only one stage comprise 63.1%, and the
trips of multiple stages comprise 36.9%.

Table 2. Trip splits by the number of stages per trip.

No. of Stages Per Trip 1 2 3 4 5 >6
Trip percentage (%) 63.1 10.9 15.8 7.0 2.6 0.6

In the survey, the trip mode is identified by the main transport mode with the longest
distance among all trip stages. For simplification, we categorize three transit modes after
the mode aggregation: train (RER + Transilien), metro (subway + tramway), and bus. For
further analysis on mode speeds, the mode of bus is divided into two sub-modes: bus_urb
(i.e., bus in the urban area—the city of Paris and inner ring) and bus_sub (i.e., bus in the
suburban area—outer ring), according to the bus start/end locations in the region.

The studied dataset of transit trips is prepared by the following four procedures. First,
the trips (including transit and other modal trips) with a number of stages (i.e., modality)
corresponding to three, four, and five are chosen (>6 is ignored with less than 1% of the
total trips), as a transit trip includes at least three modal stages: access, transit ride, and
egress. Second, the complete transit trips are selected on the condition of owning the
information on the stages of the aforementioned transit modes. Third, we specifically
select the transit trips with the first access and the last egress stages performed by walking
and with a walking distance for each stage of less than 1.5 km (accounting for about 97%,
see Figure 2). This filtering rule considers the phenomenon of high frequency of transit
connection by walking in the region. Fourth, we remove the outliers of transit trips and
keep data intervals between the 2.5th and 97.5th percentiles, regarding the transit trip
distances and durations. Finally, there remain 6050 transit trips for the study. For the
following different purposes, we segment the transit trips into three groups: Modality 3
denoting the trip of “walk access—PT (public transport)—walk egress” for average wait
time and transit speed estimation; Modality 4 of “walk access—PT—PT—walk egress” for
transfer time estimation; and Modality 5 of “walk access—PT—PT—PT—walk egress” for
transfer time validation.
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Figure 2. Distribution of walk distance in access and egress stages.

Since public transport offers different service frequencies in different times of the day,
the temporal factor is taken into account to estimate the average wait time to board the first
transit mode. In Figure 3, the distribution of the selected transit trips depicts the volume
patterns in the four time periods: AM peak (6 h to 10 h), inter peak (10 h to 16 h), PM peak
(16 h to 20 h), and off peak (other hours). The same time periods are also defined in the
recent regional transport model—MODUS 3.1 [20].
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Figure 3. Transit trip (with modalities 3, 4, and 5) volumes in different time periods.

3. Method

Here, we distinguish two types of transit trips to infer the journey time components. The
first type of 3-stage trips with one transit leg are used to estimate average platform wait time
and transit speeds (followed by in-vehicle time), using an integrated linear regression model.
The second type of 4-stage trips with two transit legs are used to infer the transfer time between
two transit modes or lines using the estimated wait time and speeds from the first step. Before
introducing the inference procedure above, we establish the following assumptions.
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3.1. Assumptions

The declaration errors of the journey time in the survey are unbiased;
The average wait time (only after the walk access stage) and transit mode speeds
estimated from the 3-stage transit trips are also representative for all transit trips;

e The average wait time is highly relevant to the factors of time periods and transit
modes, and the mode speeds are distinguished in the urban and suburban areas only
for the road transit (i.e., the bus), rather than the railway transit;

e  The transfer time is defined as the time spent from alighting one transit mode (or line)
to boarding another transit mode (or line) in the same trip. The transfer time estimated
from the 4-stage transit trips is also applicable to other multi-stage transit trips.

3.2. Linear Regression Model Based on 3-Stage Transit Trips

Figure 4 illustrates the modal-related 3-stage transit trip with walk access, one transit
leg, and walk egress. Wait time at the platform is included in the trip. The walk access
stage refers to the passengers’ walking distance from the trip origin to the transit platform.
After passengers arrive at the platform, they wait for boarding before the in-vehicle stage.
The walk egress stage includes the passengers’ walking distance from the transit platform
to the trip destination.

Distance
r
N eSS y S <
Q% e de |
Q dat | &
Wait
\ acces e e
W\ N diacc .
: ~“p» Time
t?cc tl\\'ait ' [p: tcur

Figure 4. Diagram of 3-stage transit trip: Walk access—PT—Walk egress.

As shown in Figure 4, transit trip i satisfies the following expressions on trip distance
and duration:
3 _ pt egr
d; = di* +d" +d; @

£ = f2cC . gait 4 4Pt 408 @)

In Equation (1), 49, dft, d?gr and d? are the surveyed distances. Among them, the

stage distances of d?°, d?t, and d?gr have been derived from the declared information, such
as the O/D locations and transit stops. It is worth noting that the related distances are
Euclidian distances. In Equation (2), the trip time #} is surveyed and other travel time
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components are unknown, which signifies that they need to be inferred. According to the
physical kinematics, 7 + t?gr and t}ot can be calculated by:

pace g8 = (HAT) (D)
1 1
pt_d .02

=0

U 1

®)

where u; adopts the average walking speed by age groups from reference [21],

ie.,, 4.3 km/h~4.8 km/h; v; is the average transit speed that needs to be inferred; egl)

@)

and ¢;”’ are error items. In this study, for railway transit modes, such as train and metro

(except tramway), d7°“ and d?gr are both updated by the sum of two parts: (1) the surveyed
values (i.e., distance from origin to station entrance or from station exit to destination), and
(2) the estimated mean distance c inside the station for the access or egress stage. Here, c is
set to 250 m, according to the study in [22]. Thus, Equation (2) is updated by:

dace 4 d8" 4 2c "
i’3 _ i twalt + 4 (4)
Uj 0j

1
We assume that there exists a linear relationship between t3 — (2 + 48" + 2¢) /u and
dPt when the wait time +"2* and transit speed v become constants. Thus, "2 and v can be
estimated by the coefficients through the simple linear regression model y = g + B1x + €.
The passengers’ average wait time for public transport varies by different modes and
time periods of the day. Regarding different land-use patterns and urbanization in the region,
the average transit speeds should be different in the urban and rural areas, particularly for
the bus speeds. Therefore, the trips are segmented by time periods and modes. In other
words, d?t, thait and v; in Equation (4) are associated with these two attributes. For wait
time inferences, we set the indices of time periods p = 1, ...,n and the indices of transit
modes q = 1,...,m. For transit speed inferences, we set the indices of transit sub-modes
r=1,...,1. In our study, there is a total of four time periods (i.e., AM peak, inter peak, PM
peak, and off peak) and three transit modes (i.e., train, metro, and bus), or four sub-modes
(i.e., train, metro, bus_urb, and bus_sub) with the consideration of space.
Giving that y; = £} — (d2 + d?gr +2c)/u., we build the following linear regression
model as:

¢ 2) (2) pt
50+/311 111+/512112+ +5nmeznm+51 311 1+/32 612d1p2+"'+ﬁ§ >e§,1)d51+£i ®)

(1)

where Cing

@)

and ¢;’ are dummy values of 0 or 1. As a whole, there are n x m + I explanatory

variables in Equation (5). Assuming that trip i with the time and mode attributes correspond

1) @)

to the indices of p, g and r, we then have ¢; pg = 1 and e;7’ = 1. According to Equations (4)

and (5), we estimate the wait time and mode speed by:

Bt — By + Bpgely = Bo+ Bha (6)
1 1
Vi = o = o ?)
RGN

The matrix notation for Equation (5) with k observations (i.e.,i=1, 2, ..., k) can be
written as:
y=Xp +¢ ®)
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where
y o =iy u)"
X = ( 1 xﬁ x§12) x,(}m xgz) xéz) xl(2)>
1 1 1 2) pt (2) pt 2) pt
e B e
_ 1 €11 €12 €2,1,m 32,1‘1}29,1 ez,szZ 2 dzp,l
1 1 1 ' ]. 2‘ t 2‘ t 2 t
ey ol ordby ey ol
1) 1) ,(2) L2 2
= (Bo BB B BB, B
€ (61182/"-/ )T

Generally, the above parameters in the vector of 5 can be estimated by the ordinary
least squares (OLSs) method or the maximum likelihood estimation (MLE) method. The
average wait time and transit speeds are finally obtained by:

£t = By + BL) )
1
Oy = @ (10)

3.3. Estimation of Transfer Time Based on 4-Stage Transit Trips

Due to a lack of time components information in the survey, the transfer time between
two transit legs is defined by the total time of covering transfer distance, engaging in
activities if applicable, and waiting for the transit mode. Figure 5 illustrates the modal-
related 4-stage transit trips, including walk access and egress stages, and two PT stages. In
addition, the wait time 3!t for the first PT stage and the transfer time ! for the second
PT stage are included. The wait time is estimated from the previous 3-stage transit trips,
and the transfer time needs to be inferred in this section.

Distance

ti
wa
e ,(Css dcgr
i
é / dip(2
d’
1
fer
Tran® o tra
Y “
ptl
\N"‘\:;S Wait ) d;
acc diacc )
Time
e [\\'ail IP“ ’lra ,Pl2 1o

i i i i i i

Figure 5. Diagram of 4-stage transit trip: Walk access—PT;—PT,-Walk egress.
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Similar to the 3-stage transit trip in Figure 4, the 4-stage transit trip i satisfies Equa-
tions (11) and (12) in terms of travel distance and duration, respectively, and the values of

dagec, dfﬂ, dlf)tz, diegr, d;-l and t? are known from the survey.
d? — d?CC +d?ﬂ +d§ra +d?t2 + d?gr (11)
(= 200 o pwait g P gtra P2 e (12)
From Equation (12), we have #1@ — #4 — (facc 4 48y _ ywait _ Pth P2 A0 oordine to
q 1 1 1 1 1 1 1 g
the inferences of average wait time and transit mode speeds (see Equations (6) and (7) in

Section 3.2), the transfer time for each trip i is estimated by:

ptl pt2
d; d;

egr
t4 . (d?cc + di + ZC) _ twait _

tra ftra
7Y~ = !
i i i u; LpAq

(13)
Uir, Ui

where trip i has the attributes of time period p, the first waiting transit mode g, the transit
sub-modes for the two PT stages r1 and rp, and ffra is the estimated transfer time, being
subject to £ > 0. For the trips with attributes corresponding to p, g, r1, and r;, noted as
p, q, 11, r2 € Z(i), the average transfer time is calculated by:

1
tlgfiﬂz = N 2 f?a (14)
plrlerEZ(i)

4. Results
4.1. Estimated Wait Time and Mode Speeds

The average wait time and transit speeds are calculated by Equations (9) and (10),
according to the linear regression model based on the 3-stage transit trips. The “Im” package

in the R toolbox is used to estimate the parameters of the model. The regression results are
shown in Table 3.

Table 3. Results of the linear regression model.

Variables (X) Coefficients (f3) Std. Error t Values PG Itl)
Intercept 18.03 2.10 8.58 0.00
x§11> ~10.23 2.57 —3.97 0.00
xgl,z) ~15.39 242 —6.37 0.00
xglg —3.24 2.04 ~1.59 0.11
x£11> —9.21 2.57 —3.59 0.00
x5y ~13.70 2.37 ~5.78 0.00
x%) ~3.08 2.02 ~1.53 0.13
2 ~7.67 251 ~3.06 0.00
x5 ~12.64 2.34 ~5.40 0.00
xglg —3.48 2.01 ~1.73 0.08
xfl) ~7.80 3.27 ~2.39 0.02
x£12> —11.47 2.55 —4.49 0.00
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Table 3. Cont.

Variables (X) Coefficients (f3) Std. Error t Values PG Itl)
x? 1.24 0.10 12.24 0.00
) 2.53 0.24 10.72 0.00
P 346 0.32 10.80 0.00
P 2.79 0.32 8.81 0.00
R2: 0.3524

Observations: 1304

We find that the coefficients of the linear model are significantly estimated. The
coefficients that perform the worst are related to the bus mode’s wait time estimations
(i.e.,xg, xg, and x§13)), which still reach the confidence level of 90%. In theory, if two or
more explanatory variables in a model have a perfect linear relationship, then not every

regression coefficient in the model can be estimated due to the singularity. Using the

correlation analysis method in [23], we find that xgg (variable assigned to bus in the off
peak) is the linearly dependent term, and we thus remove it from the model. Through
Equation (9), only the related wait time for the bus in the off peak is equivalent to 3y, namely
the coefficient associated with the intercept of the linear model. Other wait times for the
time period p and the transit mode g are calculated by the sum of By and the coefficient

associated with the variable xg,lg Through Equation (10), the speed of transit mode 7 is

(2)

estimated by the reciprocal value of x;’. Table 4 summarizes the estimated average wait
time and speeds for all transit modes. We find that passengers spent less waiting time at
railway platforms during the AM peak, due to the higher service frequency. The same
evidence can also be found in [3]. On the contrary, the longer waiting time at the PM peak
may reflect the situation of passengers being left at platforms to wait for the next trains due
to the limited train capacity and the high crowding levels at the platforms. It is reasonable
that the average suburban bus speed is higher than the urban bus speed. Regarding the
results’ reliability, we discuss it further in Section 5.

Table 4. Estimation of average wait time and speeds of transit modes.

Train Metro Bus
AM peak 7.8 2.6 14.8
Inter peak 8.8 43 14.9
Wait time (min)
PM peak 10.4 54 14.5
Off peak 10.2 6.6 18.0
Transit speeds (km/h) 48.3 23.7 17.4 (urban),
21.5 (suburb)

In Figure 6, we illustrate the linear regression model in a disaggregate way for the
different transit modes and time periods. The red lines are the fitted linear models. The
black dots are the observed values: y equals the sum of transit in-vehicle time and wait
time (in min), and x is the travel distance (in km). As a whole, the illustration indicates the
acceptable goodness-of-fit case by case, even though the related parameters are concurrently
estimated from our integrated linear regression model, instead of the disaggregate ones
that are based on their own data samples.
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Figure 6. Fitting results of the linear regression model.

4.2. Transfer Time
4.2.1. Transfer Analysis in Time and Space

As mentioned in Section 3.3, the transfer time between two kinds of transit modes or
lines is estimated using the transit trips of Modality 4, i.e., walk access—PT—PT—walk
egress. Table 5 shows the transfer frequency matrix. Besides the train and metro, the
sub-modes of urban bus and suburban bus are included. Most of the transfers happened
between two metro lines (about 35%), followed by the transfers from metro to train, and
then the transfers from train to metro. There are very few transfers between bus_urb and
bus_sub.

Table 5. Transfer frequency between two transit modes.

To Train Metro Bus_urb Bus_sub
Train 120 (11%) 140 (13%) 53 (5%) 39 (4%)
Metro 151 (14%) 376 (35%) 22 (2%) 5 (0%)
From
Bus_urb 41 (4%) 15 (1%) 44 (4%) 0 (0%)
Bus_sub 35 (3 %) 3 (0%) 2 (0%) 27 (3%)

According to Equation (14), we estimate the mean transfer time for each time period, as
shown in Figure 7. For simplification, the modes of train, metro, bus_urb, and bus_sub are
abbreviated by “T”, “M”, “BU”, and “BS”, respectively. As a whole, we find that the transfer
from bus to railway (i.e., train or metro), especially from urban bus to metro, performs
better than the transfer from railway to bus. As for the transfer to train, the suburban bus is
more convenient than the urban bus. This makes sense because more centered transit hubs
were built in the suburb. We also find that the transfers take a relatively long time between
the urban buses or between the suburban buses, more than 15 min on average. For different
time periods, passengers undergo less transfer time from the railway transit modes of train
and metro to the urban bus at the inter-peak hours (about 12.6 min), compared to those
during other periods (15~19 min). This may be explained by the crowding of passengers in
the urban areas, leading to a less efficient transfer experience in the morning and evening
peak hours. The lower transit service frequency at the off-peak hours will also cause more
waiting time in a transfer. On the contrary, in suburbs, the transfer from the train to the bus
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takes more time in the inter peak (about 15.6 min), while it takes less time in the AM and
PM peaks (about 13 min). It is worth noting that the blank parts without values are due to

the lack of trip data.
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Figure 8 shows spatially the transfer time to train, metro, and bus during the AM and
PM peak hours. In Figure 8a, during the AM peak, the transfer time from any mode to the
train is less than 20 min in the urban areas (i.e., Paris and the inner ring), and even less
in some rural areas (less than 10 min). For the transfer to the metro in Paris, it takes less
than 10 min. The transfer time to the bus almost refers to two levels: (1) 10 min to 20 min;
(2) >20 min. Most of the transfers for buses of more than 20 min occurred in the inner ring.
In Figure 8b, during the PM peak, the locations of transfers to train are centered in Paris
and a small part of the transfers are located nearby. The metro transfer locations are clearly
regrouped and some locations near the periphery require more time, i.e., 10 min—20 min.
Most of the transfers to the bus of less 20 min are located in the eastern part of the inner

ring, and some are expanded to the outer ring, compared to those in Figure 8a.
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4.2.2. Validation

The validation process here is conducted by comparing two kinds of transfer time
based on the 5-stage transit trips with three transit legs. The reference transfer time is
calculated based on the transfer time estimated from the 4-stage transit trips (see Figure 7).
We directly add up the two transfer times among the three transit stages as the reference.
The compared transfer time is calculated by the rest of the travel time after subtracting
the average walking time, wait time, and in-vehicle time (derived from the transit mode
speeds), similar to Equations (13) and (14). As a result, we obtain all the pairs of transfer
time for all the chains of three transit legs within the trips, as shown in Figure 9. The chains
of BS—T—BU, BS—T—T, BU—-BU—M, M—M—BU, M—M—M, M—M—T, T—+BS—M,
T—M—BS, and T-T—BU are well validated, in which only small gaps exist. As a whole,
the average validation ratio (i.e., 100% minus the percentage of errors) for all the chains is
76.1%. This “inner” validation process also reflects the biases of transfer time in different

transit trip patterns.
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Figure 9. Comparison of transfer time inferred from the two kinds of trips.

5. Discussion

At first, we discuss the data accuracy and the limitations of using the HTS for this
study. Similar to other traditional and large-scale HTSs, there is no declared information
about transfer time and in-vehicle time, only about the entire journey time from trip origin
to destination. Our proposed method can estimate the transfer time after the decomposition
of the journey time. Thus, precisely estimating the time components becomes the key issue.
As sojourn locations (such as trip O/D, stage-based start/end locations) are easily declared
in the survey, the travel distance per trip or stage is represented by the Euclidian distance
between two recorded locations, instead of the route distance. These Euclidian distances
are used for the estimation of time components at the stage level. The underestimated
distances may cause the bias on time estimation. To reach the real experienced distance, the
Euclidian distance can be weighted by adjusted factors, regarding different travel modes
and GIS information. In the era of big data, it is possible to obtain the route distance, for
example, using GPS tracking data from mobile phones [24].

In the interest of the method’s robustness, we used the integrated linear regression
model with all considered explanatory variables, instead of the disaggregate linear regres-
sion model for each mode and time period. There are two reasons. First, the parameters
associated with transit speeds are estimated by the integrated model with the assumption
of time independence for mode speeds. This reduces the estimation errors caused by insuf-
ficient samples during the off-peak hours (see Figure 6). Second, the integrated model is
more flexible in terms of aggregating the variables that are assumed to have no dependence
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on time and space, so as to reduce the number of variables and ease our analysis. Although
the obtained results have statistical significance, they seem overestimated. For example, in
the Paris region, it is reported that the average commercial speed of RER A (one train line
in the region) is about 49 km/h, the metro speed is between 21 km/h and 27 km/h, and the
speed of bus on priority lanes is about 12 km/h [25]. Our estimated railway transit speeds,
which were estimated based on the Euclidian distance, are close to the aforementioned
commercial speeds, but will be greater after the adjustment by factor over one when consid-
ering the route distance. This overestimation is more evident in the bus speed comparison.
It may be caused by the sample representativeness (e.g., many short bus trips in the sample)
and the declaration bias of travel time in the HTS. One possible solution may be using
the weighted regression model to estimate appropriate parameters [26]. As the model
fitting performance is still satisfied in our study, it has the potential for model extension
in a more general case study. For any modes, as long as the modal distance traveled is
known, the average mode speed can be estimated through the proposed linear regression
model, and the time cost can consequently be calculated. This is also applicable to other
more efficient access and egress modes compared to walking, such as bicycles, scooters,
and shared vehicles.

As for practice, the obtained results have potential to guide transit operations in the
study area. For example, bus frequency needs to be coordinated with the time frequency of
railway systems, especially for the passengers’ transfers from trains to buses in the urban
area (see Figure 7). In some areas where the transfer time for buses is more than 20 min
during the peak hours (see Figure 8), this indicates the imperfect reliability of bus travel
time. We may have two ways to improve it. First, bus stops and passageways can be
designed coordinately to avoid many conflicts with high-density traffic flows. Second, we
can establish bus-dedicated or priority lanes to ensure the bus arrives on time or deploy the
transport hubs in locations that would allow for the transfer to become seamless. Moreover,
the reduction of the transfer time in rural areas deserves a special concern from our study,
and a more accurate time-dependent OD demand might be required for transit operations.
The passenger security at peak hours should also be paid attention to. This is notably
important for the large and complex transit system in the Paris region. A trade-off may
exist between transfer time and ensuring passengers’ security.

6. Conclusions

This paper aims to estimate the transfer time in the multimodal transit networks from
the most recent HTS in the Paris region. The average wait time and transit mode speeds
are initially estimated by the linear regression model. The related inferences of transfer
time in different time periods and space are investigated. From the study, some evidence
is worth mentioning. In the Paris region, the transfer to the train or metro costs less time
than the transfer to the bus. The transfers between the suburban buses cost a little more
than the transfers between the urban buses. Regarding the different time periods, the inter
peak period seems to be the best time for transfers from the railway system (both train
and metro) to the bus. Our preliminary results are more qualitatively reliable than the
estimated values themselves, which are subject to the sample size for the regression model,
declaration bias in the HTS, and some ignored influential variables.

The current work could be extended by three aspects in the future. First, the dataset
of the transit trips is anticipated to be enriched in application to the proposed model.
Once the HTS is completely finished for the survey planning horizon, the study can
be replicated and more representative results may be generated. Second, other kinds
of datasets, such as GPS traces and automated fare collection data, will be considered
to further validate and complement our estimated results. At last, the socio-economic
relationship can be established in the model to find the preferences of targeted passenger
groups in the transit system.
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