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Novel methodology for systematically constructing global effective models from ab

initio-based surfaces: a new insight into high-resolution molecular spectra analysis
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In this paper, a novel methodology is presented for the construction of ab initio

effective rotation-vibration spectroscopic models from potential energy and dipole

moment surfaces. Non-empirical effective Hamiltonians are obtained via the block-

diagonalization of selected variationally-computed eigenvector matrices. For the first

time, the derivation of an effective dipole moment is carried out in a systematic way.

This general approach can be implemented quite easily in most of the variational

computer codes and turns out to be a clear alternative to the rather involved Van

Vleck perturbation method. Symmetry is exploited at all stages to translate first-

principles calculations into a set of spectroscopic parameters to be further refined on

experiment. We demonstrate on H2CO, PH3, CH4, C2H4 and SF6 that the proposed

effective model can provide crucial information to spectroscopists within a very short

time compared to empirical spectroscopic models. This approach brings a new insight

into high-resolution spectra analysis of polyatomic molecules and will be also of great

help in the modelling of hot atmospheres where completeness is important.
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I. INTRODUCTION

Precise knowledge of high-energy molecular states and absorption spectra is of primary

importance because it gives access to the determination of the physical properties of various

planetary objects1,2 and clearly demonstrates the necessity of having consistent line-by-

line molecular databases (e.g. like HITRAN3 or GEISA4 for the modelling of the Earth’s

atmosphere). The interpretation of strong spectral features requires the use of sophisticated

and robust theoretical models (i) for an accurate quantum-mechanical description of highly-

excited molecular states and (ii) for the prediction of line intensities for reliable opacity

calculations. Two approaches are commonly used in spectroscopy for the modelling of

rotation-vibration spectra:

Effective models. For the analysis of absorption spectra of molecules whose energy levels

are organized as small groups of strong interacting vibrational levels, called polyads, the idea

of introducing effective, or phenomenological, models (EM) is now well established5–7. Such

models are defined by a set of empirical parameters, either directly fitted to experiment

or fixed manually by the user. By definition, each polyad is formed by groups of nearly

degenerate vibrational states characterized by the same number, called polyad number

P = c1v1 + c2v2 + · · ·+ cNmvNm (ci ∈ R>0), (1)

where vi are the vibrational quantum numbers and Nm the number of vibrational modes.

In a basis of the type | γ; J,C〉P , every block of the Hamiltonian matrix will be properly

labelled by the total angular momentum J and by the symmetry C. As stated in Ref.8,

the polyad numbers P are approximate good quantum numbers which will be also used

to label every block of the effective Hamiltonian. γ denotes all other labels or quantum

numbers (vi, etc). The first polyad P = 0, or simply denoted as P0, corresponds to the

ground vibrational state. Though the second polyad does not necessarily equal P = 1, it

will be denoted as P1, and so on. The full problem is thus divided into a series of much

smaller problems making EMs. The success of the effective approach in spectra analyses

will be partly governed by a convenient choice of the polyad vector c = (c1, c2, · · · , cNm)t.

Krasnoshchekov and Stepanov9 introduced a number Θ which is interpreted as a measure of

proportionality between the polyad coefficients ci and the vibrational harmonic frequency

ωi. Molecules like methane or phosphine exhibit a clear polyad structure (see Section IV), at

least for the first vibrational states, while many others do not have such a regular structure.
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In the latter case, we propose here to replace (1) by an alternative condition based on the

following energy criterion

Pk ∈ [Ek
min, E

k
max] with Ek

min <
∑
i

viνi ≤ Ek
max, (2)

where νi are the fundamental band centers. Probably the biggest limitation when using

empirical EMs is a proper characterization of the resonance couplings due to missing in-

formation on “dark” states. This generally leads to poorly defined resonance parameters

and makes the extrapolation capabilities of theses models very limited beyond the range of

observed data.

Variational calculations. The variational approach (VA) based on the use of ab initio

potential energy surfaces (PES) is now very common for computing a consistent set of eigen-

values and associated wavefunctions, even for high energies10–27. As stated by Carter and

Handy28, “Potential energy functions have a vital role to play, when linked to the variational

method, in assisting the spectroscopist in his experimental studies“. A recent demonstration

was given in Ref.29 where about 13000 lines in the DAS (Direct Absorption Spectroscopy) and

CRDS (Cavity Ring-Down Spectroscopy) methane 12CH4 spectra30–32 in the icosad (P = 5)

region between 6280 and 7800 cm−1 were assigned in 1 week from accurate first-principles

predictions resulting in the identification of 108 vibrational sub-bands. As a comparison,

the same number of lines up to P = 4 (tetradecad, <6200 cm−1) was assigned over the

past 40 years. With the development of modern and efficient algorithms, combined to the

constant advances in the computer technology, it is now possible to obtain approximate

solutions of the Schrödinger equation for molecules with more than 5 atoms33–50 and to

achieve very satisfactory convergence of (ro)vibrational levels. Several research groups have

followed different strategies to significantly reduce the memory cost (see e.g. Refs.41,51–67)

combined or not with iterative methods68,69 which are widespread choices for solving the

eigenproblem without storing the full Hamiltonian matrices70,71. All this studies mainly ex-

plain why the development of computer codes in the VA generally requires much more effort

than in the effective Hamiltonian approach. It is also worth mentioning that the VA will be

generally preferred for applications where completeness is very important (e.g. astrophysical

applications1,2), though the accuracy of the variationally-computed energy levels does not

reach that of the EMs so far, except for some triatomic molecules72.

The present paper proposes a general and systematic method for the construction of ab
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initio effective Hamiltonian and dipole moment operators. This method combines the best

of both worlds, namely (i) manipulation and diagonalization of block-diagonal matrices of

small dimension for fast calculations, even for very high J values (> 100), with the possibility

of refining some molecular parameters on experiment without much computational effort and

(ii) completeness of the variational method. As a prerequisite, we start from a complete

nuclear motion ab initio Hamiltonian, assumed known here, and compute the variational

solutions of the stationary Schrödinger equation for low-J values only.

In this work, we focus on the study of semirigid molecules in their ground electronic state

belonging to arbitrary Abelian or non-Abelian point groups. The motivations of this work

as well as the methodology for the derivation of ab initio EMs are presented in Section II.

Computational details are given in Section III and the validation of the method is presented

in Section IV on the calculation of rovibrational energy levels and infrared spectra of H2CO,

PH3, CH4, C2H4 and SF6. It is highly likely that this work will be of great help in current and

futures analyses by accompanying spectroscopists in the assignment of rotationally resolved

infrared spectra, even for complex polyads. As to the construction of an effective model for

more flexible molecules, it will be briefly discussed in Conclusion.

II. CONSTRUCTION OF AB INITIO EFFECTIVE MODELS:

MOTIVATIONS AND METHODOLOGY

A. Motivations

Undoubtedly, the effective Hamiltonians have greatly contributed to the “golden age”

of the high-resolution molecular spectroscopy, but the current researches in the study of

various planetary atmospheres require knowledge of increasingly complex molecular systems

over wide wavenumber and temperature ranges2. Unfortunately, empirical EMs are begin-

ning to reach their limits for studying molecules with complex rovibrational energy-level

structures and for which the successive polyads contain many vibrational bands and nu-

merous degeneracies and quasi-degeneracies. Modelling of the “dark states” which are not

directly observable is one of the major obstacles in the empirical effective approach. Another

challenging problem concerns the modelling of line intensities, both for cold and hot band

transitions. Indeed, the density of states may rapidly increase for many molecules resulting
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in strongly congested spectra where almost no individual lines can be extracted easily due

to the overlap of thousand experimental transitions, even at room temperature. This lack

of information may lead to a poor determination of both resonance coupling and effective

dipole moment parameters with possibly wrong intensity transfers between weak and strong

lines.

It is evident that the complete, or even partial line-by-line analysis of very crowded

spectral regions can take years or even decades using “traditional” EMs (see Section IV).

Extrapolation to high temperatures (say >1000 K) is another limiting factor because too

many hot bands are still missing in the available EMs. Consequently, it is highly desirable to

propose an alternative model which is capable of both dealing with complex polyads within

a very short time and accompanying spectroscopists in the assignment of dense and rich

rotationally resolved infrared spectra.

The aim of this paper is to build an ab initio EM whose the key features can be summa-

rized as follows:

- This model must contain most of the resonance coupling terms up to a given polyad

where the polyad scheme defined in Eq. (1) or (2) has to be conveniently chosen

by the user. Contrary to empirical EMs where some vibrational bands in polyads

are sometimes voluntary omitted to simplify calculations, our ab initio EM includes

the major contributions for computing line positions and line intensities over a large

spectral range.

- This model takes full advantage of the symmetry and provides to spectroscopists an

initial set of physically meaningful “ab initio” effective parameters. Except for the

zero order vibrational and the rotational constants, it is common to start an analysis

from parameters initialized to zero whereas those we are able to provide are initialized

to “good” values. An illustrative example on the determination of the ground state

(P = 0) and dyad (P = 1) parameters of PH3 will be given in Section IV.

- A part of the initial set of Hamiltonian parameters can be further optimized by fine

tuning to experimental spectra in order to compute energy levels at the “spectroscopic

accuracy”, say of 10−3 cm−1 which is for example the typical resolution of Fourier

transform rotationally resolved spectra in the infrared. This procedure takes few

seconds and is thus much less demanding than refining some PES parameters.
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- This model allows computing high-J rovibrational energy levels in only few minutes

from the diagonalization of matrices whose the size does not usually exceed 1000.

- If the DMS is available, an ab initio effective dipole moment is derived almost auto-

matically for line intensity calculations.

- Finally, this model attempts changing the time-scale from months or years to some days

or weeks for understanding and modelling the main spectral features of polyatomic

molecules, even for transitions involving high energy rovibrational states.

Usually, the formal derivation of ab initio EMs in quantum mechanics is based on pertur-

bation theory which has a long history (see for example the review by Watson73). The oldest

approach is known as the Rayleigh-Schrödinger perturbation method74 which has been gen-

eralized to tackle the case of quasi-degenerate states75,76. Another approach was suggested by

Van Vleck77 and is known as canonical perturbation theory or contact transformation (CT)

method78–87 falling in the domain of the Lie algebra88. The basic idea is to a apply a series of

unitary transformations TCT to the nuclear motion Hamiltonian in order to transform it to a

new, block-diagonal representation. Very briefly, in perturbation theory the untransformed

Hamiltonian is commonly expanded as a power series H ≡ H(Γ0) = H0 + λH1 + λ2H2 + · · ·

where H0 is the zero order model, λ a small formal parameter and Γ0 the totally symmet-

ric irreducible representation of G. Following Van Vleck, the initial Hamiltonian H(Γ0) is

transformed to an effective one H̃(Γ0) from successive unitary transformations as

H̃(Γ0) = T−1
CT H

(Γ0)TCT,

TCT = e−iλS
(Γ0)
1 e−iλ

2S
(Γ0)
2 · · · ,

(3)

where the S
(Γ0)
n are the generators of the CTs which insure a block-diagonal form. In order

to accelerate calculation of high-order contributions, the modern algorithms employ the

super-operator technique proposed by Primas88 (see e.g. the MOL−CT computer code89 by

Tyuterev & Tashkun designed for rigid asymmetric top molecules of symmetry Cs and C2v).

In this work, we present a numerical method which is not based on perturbation theory.

Some tedious algebraic calculations involved in the derivation of effective Hamiltonian and

transition dipole moment operators are clearly obviated.
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B. Methodology for the derivation of “polyad” Hamiltonian and dipole

moment operators

Before giving more details in Section III, our procedure for building an ab initio EM up

to a polyad PNP can be summarized in three steps as follows.

(i) First, we start from the complete nuclear motion Hamiltonian H(Γ0) and compute the

full matrix

H(J,C) = 〈γ′; J,C | H(Γ0) | γ; J,C〉, (4)

in a basis set {| γ; J,C〉}. This matrix is diagonalized for each block (J,C) for some low-J

values (see Section IV) and the corresponding variational eigenpairs are stored. As already

mentioned in Introduction, a large number of theoretical developments and associated com-

puter codes based on sophisticated algorithms10–27,33–67 are now able to perform accurate

variational calculations, even for molecules with more than 10 atoms.

(ii) Then, we search for a unitary transformation TP ≡ T (J,C)
P that brings H(J,C) into

block diagonal form up to a maximum polyad PNP following a polyad scheme defined by (1)

or (2). In other words, the new matrix

H
(J,C,P )
Polyad = T −1

P H(J,C)TP
= [H

(J,C)
P0
⊕ · · · ⊕H

(J,C)
PNP

]⊕H
(J,C)
R ,

(5)

has the same eigenvalues as H(J,C) but is now composed of NP + 2 blocks. The last block

HR includes all the “remaining” polyads that are not of interest for the present study (see

Section III B).

(iii) In a last step, we assume that there exists a phenomenological Hamiltonian H̃(s̃)

with a set of unknown effective parameters {s̃} = {s̃P0 , s̃P1 , · · · , s̃PNp} associated with each

polyad Pk. We propose to determine these parameters such that the matrix representation of

H̃(s̃) in a basis set {| γ; J,C〉Pk ≡| m〉Pk} restricted to a polyad Pk matches the corresponding

block in Eq. (5). So, a set of parameters s̃Pk is determined by solving

Pk〈m′ | H̃(s̃) | m〉Pk = (H
(J,C)
Pk

)m′m =⇒ {s̃Pk}. (6)

The present procedure amounts to (a) searching for the matrix representation of TCT in

Eq. (3) without knowing explicitly the generators Sn and (b) computing the block-diagonal

representation of an effective operator H̃(Γ0) before knowing its parameters. A non-empirical
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EM is thus deduced without performing a perturbative expansion of H and TCT. This clearly

obviates the need to compute thousands or even millions of multiple commutators of the

type [iS
(Γ0)
n , · · · [iS(Γ0)

n , H
(Γ0)
j ] · · · ], as both the order of expansion and the number of atoms

N increase. Moreover, our procedure allows a full account of the symmetry properties

through the use of irreducible tensor operators adapted to Abelian and non-Abelian point

groups. This generalizes the work by Sadovskii & Zhilinskii90 on the dyad of methane to

arbitrary point groups and polyads. Most importantly, we will also see that the construction

of effective operators other than Hamiltonians (e.g. dipole moment, polarizability, etc.) is

carried out for the very first time in a systematic and direct manner from the transformation

TP defined in Eq. (5). To our knowledge, no effective dipole moment operator obtained by

CT in a systematic manner has been published so far, except for some simple asymmetric

rotors91,92.

III. COMPUTATIONAL DETAILS

Let us now focus with more details on the three steps presented in Section II. We just

assume that the Hamiltonian H(Γ0) is written as a sum-of-product of irreducible tensor

operators to deal with arbitrary Dn, Cnv, Dnh, Dnd, Td or Oh point groups.

A. Variational calculation (step 1)

For calculating rovibrational energy levels and eigenstates, it is common to first solve

the J = 0 stationary Schrödinger equation H
(Γ0)
v Ψ

(Cv)
v = EvΨ

(Cv)
v for each symmetry block

Cv where H
(Γ0)
v = Tv + V refers to the vibrational Hamiltonian. To this end, we consider

a basis {Φ(Cv)
v,j } of a subspace Fr spanned by MCv primitive functions selected through the

pruning condition Fλ(p) =
∑Nm

i=1 λivi ≤ p with vi = 0, · · · , p and where λi are weight

coefficients. p and λi are chosen to properly converge the vibrational levels. So far the

largest molecule our computer code was able to treat using this direct-product basis set is

SF6
48. Undoubtedly, our procedure would strongly benefit from the use of reduced-dimension

Hamiltonians28 to construct contracted bending, stretching or torsional functions, as done

in many other theoretical developments and computer codes. An updated version of our

TENSOR computer code is currently in progress to tackle big molecules (N > 7) by using
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contracted functions in conjunction with irreducible tensor operators for a full account of

symmetry.

Once the J = 0 problem solved, the standard procedure consists in retaining NCv vi-

brational eigenvectors Ψ
(Cv)
v,i =

∑MCv
j=1 U

(Cv)
j,i φ

(Cv)
v,j , (i = 1, · · · , NCv), for making J > 0

calculations35. Hv is diagonal in the product contracted basis (Ψ
(Cv)
v,i ⊗ Ψ

(Cr)
r ) ≡| ir〉 where

Ψ
(Cr)
r are symmetry-adapted rotational functions. Computation of the rovibrational matrix

elements 〈i′r′ | Hvr | ir〉 is much more costly because it requires making sums over j and

j′ with the evaluation of the matrix elements 〈j′r′ | Hvr | jr〉 which cannot be stored in

memory when Mv is large. Several dedicated algorithms33–67 and optimized computer codes

(e.g. GENIUSH15 or TROVE12) have been developed to compute variational solutions for

J > 0.

In this work, we follow the strategy of Refs.26,93 which consists in considering a smaller

vibrational basis set Fλ′(p
′) ∈ Fp′ of dimension M ′

Cv
<< MCv such that the full vibrational

eigenvectors (i = 1, · · · ,MCv) can be decomposed as

Ψ
(Cv)
v,i =

∑
j∈Fp′

U
(Cv)
j,i φ

(Cv)
v,j +

∑
k/∈Fp′

U
(Cv)
k,i φ

(Cv)
v,k . (7)

A set of M ′
v eigenvectors is then selected from analysis of the Gram matrix [U (Cv)]tU (Cv)

before introducing approximate or reduced (p→ p′) eigenvectors

Ψ
(Cv)
app,v,i =

∑
j∈Fp′

U
(Cv)
app,j,iφ

(Cv)
v,j (8)

where U(C)
app ∈ R

M ′v×M ′v contains a set of vectors orthonormalized using the Gram-Schmidt

algorithm. In order to further reduce the dimension of the problem, N ′Cv eigenvectors can be

retained using the so-called “VSS parameter” (see e.g. Fig. 5 of Ref.94 as an illustration).

Recently, this procedure allowed computing rovibrational energy levels up to J = 120 for

a seven atomic molecule48. However, Ψapp,v are not eigenvectors of H
(Γ0)
v , strictly speaking

but we can show that U
(Cv)
app,j,i ≈ U

(Cv)
j,i (j = 1, · · · ,M ′

v) in the energy range of many molecules

where observation are available, making the second term in the right-hand side of Eq. (7)

very small. Obviously, if p′ = p then Ψapp,v = Ψv and the “usual” procedure is applied.

Finally, it can be shown that the rovibrational Hamiltonian matrix (4) reads

H(J,C) ≈
g
⊕
i=1
qi 6=0

(
E(Ci)
v ⊗ Iqi

)
+ T−1

v hrvTv, (9)
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where hrv is the matrix representation of H(Γ0) −H(Γ0)
v built in the rovibrational primitive

basis of dimension M , g the number of classes of G and Tv a unitary transformation given

by

Tv =
g
⊕
i=1
qi 6=0

(
U(Ci)

app ⊗ Iqi
)
. (10)

In Eqs. (9) and (10), qi is a multiplicity index, that is the number of allowed vibrational

basis functions Φ
(Ci)
v which appear in the rovibrational functions of symmetry C. E

(Ci)
v is

a diagonal matrix which contains the variationally-computed energy levels Ev. To improve

the “quality” of the eigensolutions of H(J,C), namely

{Evr,Ψ(J,C)
vr = [U(J,C)]−1Φvr}, (11)

the Ev values in Eq. (9) can be directly replaced by the observed levels, when available.

As an illustration, let us focus on the calculation of the energy levels of PH3 for the block

(J = 3, E) using either (a) Ψ
(Cv)
v or (b) Ψ

(Cv)
app,v. More details about the construction of the

model can be found in Section IV. The vibrational problem is solved using the basis F (14)

which leads to symmetry blocks of dimensions MA1 = 6945, MA2 = 5985 and ME = 12915.

(a) Without “reduction”, the number of rovibrational primitive functions using the

pruned basis F (p = 14) is of 90435 for the block (J = 3, E). In the variational calcula-

tion, we have retained only 5% of eigenvectors, that is Nv = 0.05Mv, leading to a final

symmetry block of dimension 4522. The corresponding eigenvalues, which are all converged

within 10−4 cm−1 up to 4800 cm−1 with respect to the calculation with Nv = Mv, are taken

as benchmark. The variational calculation took 80 min on a computer with 28 processors.

(b) The vibrational eigenvectors are now “reduced” using a pruned basis F (p′), with

p′ =8, 10 and 11, of dimensions (M ′
A1
,M ′

A2
,M ′

E)=(590,415,999), (1506,1170,2666) and

(2290,1842,4122) and N ′v = 0.65M ′
v, N

′
v = 0.25M ′

v and N ′v = 0.15M ′
v “approximate” eigen-

vectors are retained, respectively. The final dimensions of the block (J = 3, E) are of 4553,

4675 and 4330, respectively, and are similar to that in (a). Fig. 1 shows the rotational

errors between with respect to calculation (a). The variational calculation using the reduc-

tion 14→8 with the basis F (p′ = 8) took 20 seconds and leads to errors below 0.003 cm−1

up to 2300 cm−1 and of ∼0.06 cm−1 up to 4800 cm−1 using very few basis functions. The

calculation using F (p′ = 10) took 2 min and introduced errors of 0.003 cm−1 up to 3500

cm−1 and of 0.01 cm−1 up to 4800 cm−1. Finally, the calculation using F (p′ = 11) took 5

10



ZOOM

PH3

FIG. 1. Rotational errors for the block (J = 3, E) of PH3 introduced when using the reduced

vibrational eigenfunction (14 → p′) of Eq. (8) with p′ =8, 10 and 11. The variational calculation

using the basis F (14) is taken as reference (see text).

min with errors less than 0.0008 cm−1 up to 3500 cm−1 and less than 0.003 cm−1 up to 4800

cm−1. We can conclude that the reduction procedure proposed in Eqs. (7) and (8) gives

quite good results and requires computation of much less matrix elements than in the “full”

problem. This procedure is particularly suited when performing variational calculations

with very high J values.

B. Block-diagonalization of the Hamiltonian matrix (step 2)

Now, we search for a way to transform the H(J,C) matrix (9) into a new matrix H
(J,C,P )
block

given by Eq. (5) following a specific polyad scheme defined by (1) or (2). There exist

many published papers dedicated to this task (see e.g. Refs.95–100) and infinitely many

transformations bringing a given matrix into block diagonal form. The approach proposed
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by Cederbaum et al.101,102 to block-diagonalize Hermitian matrices turns out very relevant

for this work. They required that the transformation TP “changes the initial matrix as little

as possible” which amounts to imposing the condition || TP − I ||=min where || . || is the

Euclidean norm. This latter condition is sufficient to uniquely determine TP which is finally

given by101

TP = U(J,C)(U
(J,C)
BD )t

[
U

(J,C)
BD (U

(J,C)
BD )t

]−1/2

, (12)

where U(J,C) is the eigenvector matrix of Eq. (11) and U
(J,C)
BD its non-singular, block-diagonal

part related to the choice (1) or (2). The success of the method is mainly governed by the

good extraction of U
(J,C)
BD from U(J,C) which has to be made with care for polyads that are

not well isolated. In order to build (5) up to the polyad PNP , we proceed in two steps.

1. Extraction of a single block containing all vibrational states up to PNP

In a first step, we want to block-diagonalize the Hamiltonian matrix in two blocks: a

block including all vibrational states and coupling terms from the polyad P0 to the polyad

PNP and another one including all the “remaining” states beyond PNP . In order to properly

define the block-diagonal part U
(J,C)
BD leading to this structure, we have to organize U(J,C) in

a convenient manner. To this end, the M primitive rovibrational basis functions | γ; J,C〉P
which were used to build (9) are sorted in increasing values of P . The U(J,C) matrix is

thus rearranged via a permutation Prow of its rows as ProwU(J,C) = U
(J,C)
r . If M ′ denotes

the number of basis functions up to the polyad PNP , then we extract from Ur the first M ′

rows and form the new matrix Ur ∈ RM
′×M . The M ′ relevant vectors of Ur associated with

P0· · ·PNP are chosen such that the trace
∑M ′

i=1[U trUr]ii of the Gram matrix is maximal. This

property can be obtained by applying a permutation Pcol of the columns. A new sorted

matrix is written as

U(J,C)
r Pcol = U(J,C)

s . (13)

Finally, we can decompose the sorted matrix (13) as the sum of a block-diagonal and anti-

diagonal block part as

U
(J,C)
s =

U
P0−Np
s 0

0 UR
s

+

 0 U12
s

U21
s 0


= U

(J,C)
BD + U

(J,C)
ABD ,

(14)
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Complete nuclear-motion Hamiltonian (input)

Eigenpair, Eq. (11)

Effective Hamiltonian, Eq. (18)

parameters

Hamiltonian matrix, Eq. (9)

Eq. (13)

(16)

(17)

Eq. (19)

parameters

Effective Dipole, Eq. (21)

DMS       +  Eq. (20)

Eq. (8)

calculated spectrum (output)

FIG. 2. Schematic representation of the methodology presented in Section III for a systematic

construction of global, ab initio effective Hamiltonian and dipole moment operators.
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where U
P0−Np
s ∈ RM ′×M ′ contains the vectors of the polyads Pk as well as the inter-polyad

couplings Pk−Pl (k, l = 0, · · · , Np). The anti-diagonal block contribution is removed by sub-

stituting U
(J,C)
s and U

(J,C)
BD in the transformation (12). One can show that the transformed

eigenvector matrix reads

Ũ
(J,C)
s = T −1

P0−Np
U

(J,C)
s = UlV

t
r

=

Ũ
P0−Np
s 0

0 ŨR
s

 ,
(15)

where Ul and Vr are the left and right orthogonal matrices involved in the singular de-

composition UBD = UlDVt
r. Here, D is a diagonal matrix with positive singular values as

entries. ŨR
s ∈ RM−M

′×M−M ′ is the block which describes all the “remaining” polyads that

are not of great interest for our purposes. The corresponding block-diagonal Hamiltonian is

obtained from

H
(J,C,P )
Polyad = Ũ

(J,C)
s Ec

vr[Ũ
(J,C)
s ]−1

= H
(J,C,P )
P0−Np

⊕H
(J,C)
R ,

(16)

where Ec
vr is a diagonal matrix composed by the energy levels Evr (11) after applying the

permutation vector (13).

2. Extraction of each individual block Pk

At this stage, H
(J,C,P )
P0−Np

can be further decomposed as H(J,C,P0) ⊕H(J,C,P1) ⊕ · · · . To this

end, we first extract H(J,C,P0) from a transformation TP0 that block-diagonalizes Ũ
P0−Np
s as

ŨP0
s ⊕ Ũ

P1−Np
s , then Ũ

P1−Np
s will be block-diagonalized from TP1 , and so on. The process

(13)−(16) is repeated until getting the desired equation (5) which is finally obtained by

applying an unitary transformation formed by the Np successive matrix products

T (J,C)
P = TP0−Np

TP0TP1 · · · TPNP−1
. (17)

T (J,C)
P will completely block-diagonalize the Hamiltonian matrix (9) up to the polyad

PNP . The last block, namely H
(J,C)
R , is not considered in this work. By analogy with

perturbative CTs, Eq. (17) could be thus seen as the matrix representation of TCT =

exp(−iλS1)exp(−iλ2S2) · · · , without needing to perform a perturbative expansion in λ.

The other advantage of the proposed approach is the possibility of substituting Evr by

Eobs
vr , when available, directly in Eq. (16). Consequently, the eigenvalues of the final

block-diagonal matrix (5) can match observation without any fit.
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C. Derivation of a non-empirical polyad effective model (step 3)

1. Effective Hamiltonian

At this stage, we have obtained the block-diagonal representation (5) of the full nuclear

Hamiltonian matrix (4) using the transformation (17). Usually, we start from an Hamil-

tonian operator with known parameters and we compute the matrix elements to deduce

its energy spectrum after diagonalization. Conversely, we start in this work from a known

matrix H
(J,C)
Pk

for a polyad Pk and we search for the corresponding effective Hamiltonian.

Mathematically speaking, we have to deal with an inverse problem for determining a set of

unknown parameters {s̃} = {s̃P0 , s̃P1 , · · · , s̃PNp} of an effective operator H̃(s̃) by solving Eq.

(6) for each Pk.

In the effective Hamiltonian theory, it is common to use creation-annihilation operators

because the terms of the type a+mi
i anii must satisfy the resonance condition84

∑
ci(mi−ni) =

0 where the ci’s are defined in (1). Within this condition, it is possible to write a formal

Hamiltonian for each polyad by forming the Γ0-invariant polynomials as

H̃(Γ0) =

NP∑
i=0

hi∑
j=1

s̃j,Pi

(
εV

Ωv(Γ)
{α,Pi} ⊗R

Ωr(Kr,αrΓ)
)(Γ0)

j

=

NP∑
i=1

hi∑
j=1

s̃j,PiÕij,
(18)

where V and R are vibrational and rotational operators of degree Ωv and Ωr in ai, a
+
i and

in the total angular momentum components Jα, respectively. Kr is the rank of the tensor

in SO(3) and ε the parity in the conjugate momenta with ε = (−1)Ωr because of the time

reversal invariance. α is a set of vibrational labels associated with each vibrational mode.

More details about the construction of these tensor operators can be found elsewhere7,103.

Using the so-called vibrational extrapolation scheme7, the effective Hamiltonian (18) for a

given polyad contains the contributions of all lower polyads. In that case, the parameters

specific to the next polyad should be, in principle, only small corrections. The major limi-

tation of the vibrational extrapolation is that spectra analysis has to be carried out polyad

by polyad. For example, if we want to study the polyad P3 of a molecule, the polyads P0,

P1 and P2 need generally to be studied before. In our approach, all the s̃ parameters are

determined simultaneously.
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Finally, from Eqs. (6) and (18) the hk parameters s̃j,Pk specific to a polyad Pk can be

determined iteratively by solving the overdetermined system of equations using the dgelsy

routine of LAPACK

hk∑
j=1

s̃j,PkÕikm′m = H
(J,C,Pk)
m′m −

k−1∑
i=1

hi∑
j=1

s̃j,PiÕ
ij
m′m, (19)

where Õijm′m are the matrix elements of Õij computed using the Wigner-Eckart theorem

adapted to the point group. Only some low-J values will be sufficient to determine the

full set of parameters. As a rule, we have to compute the variational eigenpairs at least

up to J = Ωr/2 (resp. (Ωr + 1)/2) if Ωr even (resp. odd) such that number of equations≥

number of unknowns. In this work, the system (19) is first solved for the purely vibrational

part to deduce the corresponding parameters. The eigenvalues of the Hamiltonian (18) will

reproduce exactly the variationally-computed or observed levels if Ωv has been conveniently

chosen. For example, if a polyad contains the band 4νi, then we should consider Ωmax
v = 8.

As to the rovibrational part, the J > 0 levels of the Hamiltonian (18) whose parameters have

been obtained by solving (19) will not match exactly those in Eq. (11) because convergence

of the variational calculation is rarely fully achieved. This is in principle not an issue because

the major part of the resonance parameters will be fixed to their consistent ab initio values

while only few ones will be slightly refined to observation. This strategy was already applied

with success in the framework of CT (see e.g. Ref.104).

2. Effective dipole moment operator

Last but not least, our approach is not restricted to the construction of effective Hamil-

tonians but can be also applied to the derivation of the transformed dipole moment for

line intensity calculations. Let MΘ (Θ = X, Y , Z) be the matrices of the laboratory-fixed

frame dipole moment components (C(Γ′) ⊗M (Γ))(Γ̄) computed in the same primitive basis

as the Hamiltonian. Here, M
(Γ)
α =

∑
j µjV

Ωv(Γ)
α (α = x, y, z) are the molecular-fixed frame

dipole moment components where the µ parameters are determined from the ab initio dipole

moment surfaces and C(Γ′) is the tensor counterpart7 of the direction cosines λΘα. Using

the unitary transformation (17) that block-diagonalizes the Hamiltonian, the transformed

dipole moment matrices involved in line strength calculations for transitions of the type
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J ′, C ′, P ′ ← J,C, P are given by

M̃Θ = [T (J ′,C′)
P ′ ]−1MΘT (J,C)

P . (20)

Such a construction turns out very tedious in the framework of CTs because of the rotational

algebra which is larger. Indeed, the direction cosines λΘα do not commute with Jβ, making

calculation significantly more complicated. This mainly explains why only few studies were

published on triatomic molecules these past few decades91,92, and not in a systematic manner.

In this work, we adopt the same strategy as for the Hamiltonian for building an effective

dipole moment, namely we start by forming all the Γ-covariant tensors allowed by the

symmetry

M̃ (Γ)
α =

NP∑
i,k=0

hik∑
j=1

µ̃j,PiPk

(
εV

Ωv(Γv)
{α,PiPk} ⊗R

Ωr(Kr,αrΓr)
)(Γ)

j
, (21)

up to a given order Ω = Ωv +Ωr where Γ is not necessary the totally symmetric irrep. Then,

we determine the effective parameters µ̃ such that the matrix elements of (C(Γ′) ⊗ M̃ (Γ))(Γ̄)

match M̃Θ in Eq. (20). Again, only few transitions between Pi and Pk will be required to

determine the whole set of parameters. Typically, all the dipole moment parameters can be

obtained from transitions with J ≤ 2. Finally, the methodology presented in Section III is

schematically depicted in Fig. 2.

IV. CONVERGENCE STUDY AND SPECTRA CALCULATION:

VALIDATION AND DISCUSSION

In order to validate theory, we focus on five candidates whose analysis of high-resolution

spectra in the infrared is not complete: H2CO, PH3, 12CH4, 12C2H4 and 32SF6. We recall

that the aim of this work is to present a new methodology and give a general overview

of what our global ab initio EM can bring to improve the current models. Future spectra

analyses will be carried out with the help of specialists in the domain (i) who will use our

parameters as input data in dedicated programs for spectra analysis and (ii) who will publish

refined spectroscopic parameters in dedicated papers in due time. Note that global effective

model is often used in this paragraph instead of ab initio effective model in order to highlight

the difference with the empirical models which usually focus on small spectral regions. All

details concerning the construction of the ab initio and effective models, the various polyad
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HITRAN2020

(a)

(b) (c)

(ZOOM)

FIG. 3. (Panel a) Convergence of the energy levels of H2CO using the effective Hamiltonian (18)

expanded at order 6 (Ho6) and order 8 (Ho8) with respect to the variational energies (V) up to

J = 8. (Panels b & c) Comparison of reduced energy levels E − B0J(J + 1) for H2CO up to

the polyad P3 using empirical effective Hamiltonians fitted to observation and extracted from the

HITRAN database3 and using our global effective Hamiltonian (18). The different colours in (c)

represent all the eigenvector mixings.

schemes, convergence studies, spectra comparisons and vibrational extrapolation are now

given.

• H2CO: Starting from the PES of Ref.106, whose geometry has been slightly refined for

this work using the strategy of Ref.26, we have considered the reduced 18→9 normal-mode

model and the reduced 18→10 basis for a variational calculation in the C2v point group (see

e.g. Ref.26 for the various definitions). A brief inspection of the harmonic frequencies would
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(ZOOM)

(a)

(b) (c)

P=4 P=5

FIG. 4. (Panel a) Convergence of the P4 energy levels of PH3 using the effective Hamiltonian (18)

expanded at order 6 (Ho6), order 8 (Ho8) and order 10 (Ho10) with respect to the variational

energies (V) up to J = 8. (Panels b & c) Comparison of line positions and line intensities in the

polyad P4 and P5 between the effective model and variational calculations.

suggest a polyad scheme (1) with c = {2.7, 1.8, 1.5, 1.2, 2.7, 1.2}. Up to 2000 cm−1, such a

scheme works quite well but many “effective” polyads overlap beyond with for instance the

low-lying energies of the polyad P9 far below those of the polyad P7. In this work, we choose

c = {2, 1, 1, 1, 2, 1} which obviously leads to bigger polyads but in turn to a more consistent

treatment, at least up to 4000 cm−1. We have built two effective Hamiltonians (18) up to

the polyad P3 using the variational eigenpairs (11) up to J = 5 to solve (19). The first one

was expanded up to Ωv = 6 and Ωr = 6 and the second one up to Ωv = 8 and Ωr = 6. They

are composed respectively of 722 and 2740 irreducible tensor operators. Fig. 3a displays

the convergence error of the energy levels up to J = 8 for these two models with respect
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FIG. 5. Overview spectrum of PH3 up to the polyad P5 and comparison between first-principles

calculation (black circles) and global effective model (red dots). A comparison of the theoretical

absorption spectrum for the polyad P = 4 with experimental medium resolution PNNL records105

at T = 298 K is also given..

to the variational calculation, taken as the benchmark. We can see that the errors between

effective and variational calculation are below 10−3 cm−1 up to 3000 cm−1 and ∼10−3 up

to 5000 cm−1 when Ωmax
v = 8. The results are thus quite similar, except that energy level

calculation took less than 1 min up to J = 40 using the effective model against few hours

from the variational approach. A comparison between the reduced energy levels obtained

from our global model and from those used to build HITRAN3 is given in Fig. 3 (panels b &

c). Unlike traditional empirical EMs, we can see that our model can predict all bright and

dark states, here up to the polyad P3, and could predict other ones far beyond if necessary.

• PH3: Previous calculations were published for this molecule107. Here, we have consid-

ered the PES and DMS of Refs.108,109 where the quadratic force constants have been slightly

refined for this work and the geometry fixed to re = 1.4119002 Å, αe = 93.39082 degrees

using the optimization procedure described in Ref.26. A variational calculation was carried

out in the C3v point group using the normal mode model 18→10 and the basis 17→10 up to

J = 5. Unlike H2CO, the PH3 molecule exhibits a clear polyad structure with a resonance

scheme 2:1:2:1. Using this polyad model, the effective Hamiltonian (18) was expanded at

order 10 up to P5 with Ωv ≤ 10 and Ωr ≤ 8 and the resulting 10415 rovibrational parameters

have been determined by solving (19). Tab. I gives a comparison between some effective

20



TABLE I. Comparison between the effective parametersa s̃ (in cm−1) obtained from Eq. (19) and

from a fit for the ground state and dyad of PH3. All the coupling parameters between ν2 and ν4

were fixed to their “ab initio” values.

Operator s̃, Eq. (19) s̃, fita

Ground state (P = 0)

R2(2,0A1) -1.08859121×10−1 -1.08856(2)×10−1

R2(0,0A1) -1.85097033 -1.850969(1)

R4(4,0A1) -4.21792347×10−6 -4.224(3)×10−6

R4(4,3A1) 6.35064638×10−6 6.393(9)×10−6

R4(2,0A1) -4.54280135×10−6 -4.530(5)×10−6

R4(0,0A1) -1.91476610×10−5 -1.9143(3)×10−5

RMS=0.0018 RMS=0.00013b

Dyad(P = 1)

R0(0,0A1)(a+
2 ⊗ a2)(A1) 992.134856 992.1354(1)

R2(2,0A1)(a+
2 ⊗ a2)(A1) 6.11040167×10−3 5.877(5)×10−3

R2(0,0A1)(a+
2 ⊗ a2)(A1) -2.85659105×10−3 -2.863(6)×10−3

R0(0,0A1)(a+
4 ⊗ a4)(A1) 1581.52444 1581.5238(1)

R2(2,0A1)(a+
4 ⊗ a4)(A1) -1.05612963×10−2 -1.0614(5)×10−2

R2(0,0A1)(a+
4 ⊗ a4)(A1) -1.12134942×10−3 -1.119(6)×10−3

R2(2,1E)(a+
4 ⊗ a4)(E) 2.18084810×10−2 2.176(3)×10−2

R2(2,2E)(a+
4 ⊗ a4)(E) -5.13139342×10−5 -3.52(7)×10−5

RMS=0.019 RMS=0.00057b

a 6 parameters fitted among 24 at order 10 for the ground state. 8 parameters fitted among 150 at

order 10 for the dyad. The parameters that are not shown were fixed to their “ab initio” values.

b Fit of 171 levels up to J = 15 for the ground state and of 288 levels up to J = 11 for the dyad.

The observed energy levels were taken from HITRAN.

ground state and dyad parameters s̃ derived from Eq. (19) and obtained from a fit. We can

see that the initial parameters s̃ only need to be slightly refined to reproduce high-resolution

data.

Concerning the line intensity calculation, the effective dipole moment (21) was built at
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order 6 with Ωr ≤ 2 to account for all transitions Pi ← Pj (i, j=0,· · · ,5). The corresponding

8519 parameters were determined from the variationally-computed transitions up to J =

2. We thus obtain the first global effective model for PH3 up to P5 whereas the current

spectroscopic models derived from high-resolution analysis these past three decades are

available only up to P3
110–112. Due to its completeness, our model will be used for the analysis

of P4 and P5 as well as for the construction of hot line lists for astrophysical applications.

In order to validate this model, Fig. 4(a) shows the convergence of the rovibrational levels

up to J = 8 using the Hamiltonian (18) at order 6, 8 and 10, with respect to the variational

energies in the P4 region. The two other panels in Fig. 4 show a comparison of both line

positions and line intensities up to J = 15 in the P4 region between our effective model

and the variational calculation. We can see a very good agreement between these two

approaches, even for small transitions (say < 10−23 cm/molecule) with errors on the line

intensities below 0.1%. Fig. 5 gives an overview of the spectrum up to P5 computed from

our global model (18) and (21). In this figure, the consistency of our model is clearly seen

from a direct comparison of the theoretical absorption spectrum for the polyad P4 with

experimental PNNL records105.

• 12CH4: We started from the ab initio model described in Ref.114 using the PES and

DMS of Refs.115,116. As for PH3, the methane polyad scheme is quite clear and is also

given by the resonance scheme 2:1:2:1. In this work, a very first global effective model

beyond tetradecad (P4)117 was built using an effective Hamiltonian expanded at order 8,

up to Ωr = 4 (7912 parameters) and an effective dipole moment at order 5 with Ωr ≤ 2

(522 parameters), only for cold band transitions. A higher-order expansion in Ωr will be

easily carried out for practical studies. The first global predictions of 12CH4 (Td) spectra

in the icosad (P5) and triacontad (P6) regions using an effective model are given in Fig. 6.

Some observed energy levels for low-J values in the icosad (P5) determined from the partial

assignment29 of the Grenoble WKLMC experimental line list113 have been directly replaced

in Eq. (16). In the next polyad (P6), the big deviations on line positions are partly explained

by the “poor” accuracy (of ∼0.1−1 cm−1) of the PES115 in this region. Though most of the

line will deserve to be refined in position, the agreement with high-resolution experimental

spectra remains quite good, in particular if we remember that the complete modelling of

room-temperature methane spectra up to the tetradecad (P4) took more than forty years.

Undoubtedly, our model will allow to complete the current assignments in the regions above
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Empirical EMs in HITRAN

40 years of analysis

This work

P1

P2

P3
P4

P5
P6

Global EM, 
this work

Global EM, this work

HITRAN, 
Exp. 296 K

WKLMC, Exp. 80 K

P5

P6

FIG. 6. Overview spectrum of 12CH4 up to the polyad P6 using our model and that used to build

HITRAN these past forty decades (up to the lower edge of P5). Calculated spectra compared to

the Grenoble WKLMC line list113 at 80 K and to HITRAN at 296 K in the P5 and P6 region are

also given.

P5
118,119 in a shorter time.

• 12C2H4: Several studies were focused on ethylene36,120–122 and an accurate line list was

built44. Here, we start from the variational calculation performed in the D2h point group

which is based on the PES and DMS of Refs.123,124 and described in detail in Ref.125. This

molecule is the typical case where the choice (1) is unclear beyond 2000 cm−1, so the energy

criterion (2) was used to define the successive polyads up to 5000 cm−1. For example, the

polyad P1 falls in the region [800, 1050] cm−1 and contains 4 vibrational states, P8 belongs

to [2785, 3390] cm−1 and has 52 vibrational states while P13 ∈ [4100, 4850] cm−1 and has

251 vibrational states. Such a polyad scheme can be customized by the user who can add
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(a) (b)

(c)

(d) (e)

FIG. 7. (a) Overview spectrum of 12C2H4 up to the 5000 cm−1 and comparison between the

empirical effective (black dots) and global effective (red dots) models. A comparison of the the-

oretical absorption spectrum for the P8 (panel b) and P13 (panel c) polyad with experimental

medium resolution PNNL records105 at T = 298 K is given. In panels (d) and (e), detailed por-

tions of the ethylene spectra in the P2 and P5 regions, respectively, and comparison with the PNNL

experimental database105.

or remove vibrational states quite easily. The panel (a) in Fig. 7 gives an overview of the

ethylene spectrum up to 5000 cm−1 between our calculated EM and those used to generate

HITRAN2020. The panels (b−e) show the very good agreement between our calculated

spectra in the P2, P5, P8 and P13 regions and the PNNL databases105 and Fig. 8 illustrates

the so-called vibrational extrapolation. In this figure, the “global EM P13” corresponds
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C2H4

FIG. 8. Comparison between the PNNL experimental database105 and calculated spectra of ethy-

lene using the full P13 model and the P8 model extrapolated up to P13 (see text).

to the full effective model up to P13 whereas the “global EM P8” contains spectroscopic

parameters only up to P8 but was used to generate the P13 spectrum by extrapolation. As

expected, the agreement of the P13 model with experiment is better though the P8 model

gives reasonable results despite fewer parameters (16081 for P13 vs. 4157 for P8).

Once again, a first “global” effective model is presented for this molecule, both for line

positions and line intensities. For example, our model takes into account 52 interacting

vibrational bands in the 3 µm region, which is to be compared to the 4 bands included in

the current HITRAN database. In the present EM, the resonances between all bright and

dark states induce intensity transfers that cannot be properly described using the available

empirical effective Hamiltonians. We can note that the variational calculation presented in

Ref.125 up to 6400 cm−1 and J = 71 took five days using 96 processors while the computed

spectra up to J = 40 in Fig. 7 were built on a laptop in 1 hour only.

• 32SF6: We conclude this work by an illustration on the 32SF6 (Oh) molecule for which

completeness is crucial. Here, the PES and DMS of Ref.126 were employed and the Hamilto-

nian model as well as the choice of the basis functions were described in Ref.48. According to

the six harmonic frequencies, we have fixed the polyad vector (1) as c = {2.3, 1.8, 2.8, 1.5, 1}.

In order to take into account all the cold and hot band transitions falling in the strongest

absorption region around 10 µm, a polyad model up to P24 has been constructed. In order

to consider 5-quanta vibrational bands, we have developed the effective Hamiltonian (18)
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(a)

(b)

(c)

FIG. 9. (a) Comparison of line positions and line intensities in the ν3 region (P7) of 32SF6 between

the global effective (this work) and variational calculations48. (b) Overview spectrum of 32SF6 in

the ν3 region using our model and that used to build HITRAN. (c) Comparison with the PNNL

database105 (black curve) is given at 298K. Note that only 5 hours were necessary in our approach

to get a global EM and compute the red spectrum up to J = 120 against two decades to obtain

the blue spectrum.

at order 10 with Ωr ≤ 8. The resulting 9773 parameters have been determined from the

variational eigenpairs up to J = 10. The dipole moment has been expanded at order 5 and

contains all operators corresponding to the cold and hot bands having the strongest inte-

grated intensities, as tabulated in Supplementary Material of Ref.48. A set of 4311 effective

dipole moment parameters has been determined from variationally-computed transitions up
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to J = 2. Fig. 9a shows a comparison of both line positions and line intensities up to J = 80

in the P7 region between our effective model and the variational calculation of Ref.48.

The most extensive empirical “global” model to date contains only 13 vibrational

bands127,128 and has been used to generate the SF6 HITRAN database (see Fig. 9b,c).

In this work, hundreds of cold and hot bands have been generated in 5 hours up to J = 120.

The very good agreement with PNNL in Fig. 9c validates the construction of our effective

Hamiltonian (18) and dipole moment (21). We can conclude that all the missing hot bands

in HITRAN-like databases cannot provide good opacity calculations required for accurate

atmospheric applications.

V. CONCLUSION AND PROSPECTS

To summarize, our TENSOR computer code initially designed for variational calcula-

tions is now able to manage EMs for spectra analyses. More generally, the steps 2 & 3

in Section III, namely the block-diagonalization procedure and the construction of effective

Hamiltonians, could be also implemented in most of the variational computer codes. For

users who do not feel comfortable with the theory of irreducible tensor operators, the Hamil-

tonian (18) and dipole moment (21) could be easily replaced either by the standard Watson

formalism5 or by another one. Alternatively, the parameters involved in different formalisms

could be linked together, as shown in Appendix A. Unlike Van Vleck perturbation theory,

we have shown that the present numerical approach obviates the need to know explicitly

the rotation-vibration algebra, with sometimes very involved calculations.

We have demonstrated that the proposed effective model can provide crucial information

to spectroscopists (e.g. a good set of initial parameters) within a very short time and is a

clear alternative to more traditional spectroscopic models if, for a given molecule, the ab ini-

tio surfaces are available. So far, only variational calculations were able to provide complete

molecular line lists for different temperature and spectral ranges contrary to empirical EMs

which are able to make accurate but quite “localized” predictions. Finally, the contribution

of the proposed effective approach is threefold: (1) it is much less demanding than perform-

ing a full variational calculation, (2) it allows computing very rapidly and simultaneously

all the cold (Pi ← P0) and hot (Pi ← Pk) band transitions up to a given polyad and (3)

the parameters can be refined much more easily. Undoubtedly, this model brings a new
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insight into high-resolution spectra analysis and will be of great help, not only in current

or future infrared spectra analyses of polyatomic molecules but also in the modelling of hot

atmospheres for which completeness is crucial.

For future studies, the case of nonrigid molecules exhibiting one or several inversion or

internal rotation motions could be considered. Numerous papers dealing with the construc-

tion of empirical effective models for nonrigid molecules have been published these past four

decades (see e.g. Refs.129–133 and references therein). We could imagine that the nonrigid

counterpart of (18) can be also derived in the same fashion using a convenient polyad scheme

and parametrization134. We will show in a forthcoming study that the tensorial Hamilto-

nian (18) can be formulated in the Hougen-Bunker-Johns (HBJ) formalism135 by making

the substitution s̃→ s̃(ρ) where ρ is a large amplitude curvilinear coordinate. The effective

parameters for the rigid motions will be determined on a numerical grid ρi. Coordinate

transformations in the framework of HBJ as well as choice of the axis system where the

angular momentum due to the large amplitude motion vanishes or is of constant magnitude

have been recently discussed136,137. The first candidate will be the NH3 molecule for which

accurate PESs have been recently constructed138.

Another point concerns the construction of a “full” curvilinear EM. This could be done

for example by using the curvilinear creation-annihilation operators A and A+ introduced in

Ref.139. Other formalisms like those implemented in GENIUSH15 or TROVE12 could possibly

benefit from the present study while anharmonic basis functions (Morse, etc.) associated

with generalized ladder operators140,141 could replace the harmonic oscillator basis functions.
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Appendix A: Link between the tensorial formalism and other ones

Irreducible tensor operators are great tools to deal with symmetry for both Abelian and

non-Abelian point groups but in turn may appear as abstract mathematical objects for many

users. We can show that any rovibrational tensor operator T (Γ)
iσ =

(
εV

Ωv(Γv)
{α,Pi} ⊗R

Ωr(Kr,αrΓr)
)(Γ)

iσ

can be expressed in terms of “standard” vibrational (X, Y ) = (q, p), (a+, a) or (S,−id/dS)

and rotational (Jx, Jy, Jz) or (J+, J+, Jz) operators of degree Ωv and Ωr, respectively. It is

common to write these operators in a normally-ordered form. Typically, if we know the

structure constants ckij of a Lie algebra (e.g. Heinsenberg-Weyl, so(n), su(n), su(m,n), etc.),

defined by a set of generators G1, G2, etc. satisfying the commutation rules [Gi, Gj] = ckijGk,

any linear combination of arbitrary powers of Gi can be normally ordered as

(βGn
1G

m
2 · · ·+ γGr

1G
l
2 · · ·+ · · · )p =

∑
m1m2···mk

Tm1m2···mkG
m1
1 Gml

2 · · ·G
mk
k . (A1)

Such ordering is greatly simplified with the aid of symbolic calculation where non commu-

tative objects can be now easily manipulated. Eq. (A1) helped us to express the rotational

tensors RΩr(Kr,nrΓr) in terms of angular momentum components. For example, a rovibra-

tional coupling term for the ν4 band of a D3h molecule reads

−i
(
V

2(A′2)

{ν4ν4,2} ⊗R
3(3,0A′2)

)(A′1)

=
4√
5

(
Jz + 2J3

z − 3(J2
x + J2

y )Jz)(a
+(E′)
4b a

(E′)
4a − a

+(E′)
4a a

(E′)
4b )

)
.

Eq. (A1) could be also used for the derivation of the structure constants of the rotational

algebra supplemented by the direction cosines λθ,α, involved for example in dipole moment

contact transformations.

Finally, ifMi denotes an operator of the type (
∏

kX
mik
k Y nik

k )Jmiαα J
miβ
β J

miγ
γ , with (α, β, γ) =

(x, y, z) or (+,−, z), the TENSOR computer code is able to expand each rovibrational tensor

in elementary operators (see Eq. (21) of Ref.139) and find the transformation C such that

T = CM, (A2)

whatever the order Ωv + Ωr and the point group G. Here T and M are two vectors which

contains the elements T (Γ)
iσ and Mi, respectively. In order to properly invert Eq. (A2), we

must consider all the Γ-covariant tensors. For example, in the case of C3v species the vector

T is composed of T (A1)
i , T (A2)

i , T (E)
ia and T (E)

ib . We can thus write

M = C
−1T , (A3)
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so that any Hamiltonian H̃(Xi, Yi, Jα, Jβ, Jγ; t̃) can be transformed like (18) and hundreds

of rovibrational parameters t̃ and s̃ can be linked together in few seconds by solving linear

systems of equations. We write

t̃i =
∑
i

cij s̃i , s̃i =
∑
i

dij t̃i. (A4)

Note that a recent paper142 provides relations between some rotational parameters involved

in the tensorial and Watson formalisms for a limited number of point groups whereas illus-

trative examples were already given elsewhere for the vibration-rotation Hamiltonian (see

Eqs. (31)-(33) of Ref.143 and Tab. 1 and Eqs. (28)-(29) of Ref.144). The same holds for the

derivation of dipole moment parameters (see e.g. Eqs. (54)-(55) of Ref.145). Obviously, the

transformation (A2) or (A3) can be provided upon request.

Sometimes, calculations are not performed in the highest symmetry point group but in one

of its subgroups. If for example methane is treated in C2v instead of Td our procedure allows

converting any C2v operator to a better suited symmetry-adapted form. The components of

the total angular momentum in the C2v (x′, y′, z′) frame can be thus expressed as a linear

combination of rotational Td tensor operators as

C2v Td

Jz′ = − 1
2
√

2

(
R

1(1,F1)
x −R1(1,F1)

y

)
,

J2
z′ = −

√
6

24
R

2(2,E)
a −

√
2

8
R

2(2,F2)
z −

√
3

12
R2(0,A1),

Jx′Jz′ = − i
√

2
8

(
R

1(1,F1)
x +R

1(1,F1)
y

)
,

− 1
8

(
R

2(2,F2)
x −R2(2,F2)

y

)
,

Jy′Jz′ = i
4
R

1(1,F1)
x +

√
2

8
R

2(2,E)
b ,

J3
x′ = R

1(1,F1)
z +

√
27

40
R

3(1,F1)
z +

√
10

40
R

3(3,F1)
z ,

(A5)

and so on. The vibrational part could be also transformed in this way and other point

groups could be considered (see e.g. Ref.145 where the link between C3v and Td was clearly

established).
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