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 ABSTRACT 

   

 

The paper describes methods and fast computational algorithm for building effective Hamiltonians 

in molecular physics using perturbative approach. Various techniques of separation of fast and slow 

variables are considered in the general mathematical framework of contact transformations. The 

particular focus is on a systematic derivation of effective models for vibration-rotation spectroscopy 

from ab initio based potential energy surfaces with an exhaustive review of the previous studies in 

this field. We consider applications to various types of polyads coupled by Fermi, Coriolis, Darling-

Dennison and other types of resonance interactions with the examples for asymmetric top, 

symmetric top and spherical top molecules. A flexible choce of the modelling operator accounts for 

strong coupling of various types of nuclear motion in molecules among closely lying levels 

including vibrational resonance schemes (2:1:2) , (2:1:2:1), (4:2:6:3), (3:2:1:2:1:1) etc that occur for 

C2v, C3v, and Td molecules and their isotopic species. The method is implemented in the MOL_CT 

program suite that offers a complementary tool to variational methods in terms of convergence and 

computational time. This permits an inclusion of a priori information to obtain physically 

meaningful values for the the resonance coupling terms in order to developing mixed “ab 

initio/effective” models with smaller number of adjustable parameters for analyses of molecular 

spectra. 
 

 



 

1. INTRODUCTION 

 

Effective Hamiltonians (EH) are widely used in many domains of molecular physics, 

chemistry and spectroscopy. Numerous examples are reported in textbooks and in a large panel of 

publications (see for example [1-25] and references therein). EHs are often introduced from 

phenomenological and symmetry considerations and serve as rather simple mathematical models 

containing adjustable parameters fitted to experimental data. On the other hand, they can be derived 

by appropriate mathematical transformations [26-40]. The major advantage of the EH is that this 

approach allows one to reduce an extent of calculations by focusing on a certain group of quantum 

states (polyads) “localized” within a limited energy interval. The latter is supposed to be of interest 

for an interpretation of a concrete experimental spectrum within a considered frequency range.  

Historically, most of analyses of high-resolution molecular spectra used empirically fitted effective 

Hamiltonians for vibrational polyads [11,17, 41-48]  

An important contribution to the theory of effective Hamiltonians in molecular spectroscopy 

is due to series of works by Jean-Marie Flaud and co-workers, who successfully applied the 

corresponding vibration-rotation models for analyses of many high-resolution spectra of triatomic 

[41, 49-51] and polyatomic molecules [52-56] in the infra-red, including the first Atlas of ozone 

spectral transitions [57].  Camy-Peyret and Flaud [8] have contributed to development of effective 

dipole transition moments for vibration-rotation transitions. These works were at the origin of many 

studies for spectroscopic data reductions and for creation of line lists for several generations of 

spectroscopic databases like HITRAN, GEISA [58-59].   

In many cases these effective models and analyses have allowed for identifying resonance 

interactions resulting in various perturbations in observed spectra, including line intensity transfer 

due to wave functions mixing (see for instance [11,15, 41-52,60-63] and references therein).  

Another very important application of effective Hamiltonians including interactions of 

strongly coupled states, concerned the studies of the dynamics of nuclear motion in molecules. The 

impact of vibrational and ro-vibrational resonance interactions on qualitative changes in excited 

states using classical or quantum effective models has been evidenced in many works [64-88].  

These changes induced by resonance couplings of quantum states appear as counterparts of 

bifurcations in classical phase space [72,77,81].  Well-known examples are normal-to-local mode 

transitions [64,65,68], as well as fingerprints of saddle-node bifurcations in vibrational spectra [84].  

Effective Hamiltonians provide a local description of the dynamics by incorporating those 

resonances among the degrees of freedom active at a certain energy range.  This approach retains the 

most essential features for a qualitative description and makes the understanding of related 

phenomena much easier than corresponding bifurcation analyses of periodic orbits and 

wavefunctions on the full potential energy surfaces (PES) [ 90-96 and refs therein].  EH models also 

proved to be very useful for predicting re-organization of vibration-rotation patterns and of “level 

clustering” at high rotational quantum numbers [66-68,71,15]. 

          A derivation of many EH models can be achieved by the method of Contact Transformations 

(CT), which since the original work by Van Vleck [1] has been developed in works of many groups 

for various applications [2,3,6-13, 16, 29, 32-39, 98-141]. CTs can be considered as a quantum 

counterpart of canonical transformations [85,142-144] related to degenerate or quasi-degenerate 

perturbation theory.  In practical terms, the CT method provides links between PES and effective 

constants involved in empirical EH models. CTs also apply to other molecular properties relating for 

example dipole moment surfaces (DMS) with effective transition moment band parameters [7,8, 

145-155]. Though basic framework of CT is well-established and widely used in molecular physics, 

a further development will be beneficial in order to achieve a spectroscopic accuracy and to consider 

vibrational polyads in higher energy range. In this paper, a rather general and flexible formulation 

for high-order CT is described, which can combine different techniques in order to study 



convergence properties of EH expansions and to extend calculations to arbitrary number of states 

involved. 

  ( !!! up to here the reference numbering does not change !!! ) 

 

A large number of methods has been developed for quantum nuclear motion calculations in 

molecules. Among them there are a various alternative versions of the perturbation theory [155, 

157], vibrational self-consistent field (VSCF) and vibrational configuration interaction (VCI) 

approaches [158-165], vibrational coupled-cluster (VCC) theory [167], descrete variable 

representation (DVR) [168-171] and collocation [172] methods. Several computerational codes of 

variational calculations using exact kinetic energy operator (KEO),  like VTET [173] and 6A [174] 

(with redundant coordinates), were reported. Some other program tools like TROVE [175] , 

TENSOR [176]  or MIRS [14] use well converged expansion of KEO for calculations of rotationally 

resolved spectra.  In view of a large number of related publications, this citation list is by no means 

exhaustive, some more detailed complementary references are give in Sections ***.  

 

The CT method allows for computing enegies and wavefunctions as well. Recent examples 

of CT applications have shown that it can be competitive with above mention approaches in terms of 

the accuracy, at least for a certain range of nuclear or electronic motion. Note, however, that the 

main purpose of the CT method is different. The aim of CT is  to build accurate mathematical 

models of strongly interacting states for interpretation / analyses  of experiments for molecular 

spectroscopy and dynamics. In other words , this … provide efficient tools for experimental data 

reduction.  

 

In this paper we review the general CT method and fast computational algorithm for building 

effective Hamiltonians in molecular physics using perturbative approach (or mixed 

perturbative/variational one in case of overlapping polyads).  

The introduction of the modelling operator and of related conditions for the CT Lie algebra 

can be easily adapted for a separation of various types of variables. The final aim is to develop an 

efficient tool for building accurate models of strongly interacting states for molecular spectroscopy 

and dynamics.  The most important challenge is a precise derivation of resonance coupling 

parameters from a molecular PES which are responsible for irregular features in observed spectra 

such as line intensity borrowing [11,15, 41-52,60-63]. An example of a practical application of this 

approach was recent prediction of high-order coupling parameters for a vibrational polyads of the 

ozone and methane molecules [15, 47, 156] that allowed determining much more robust EH model 

for the high-resolution data reduction.   

Convergence issues are considered, particularly for application related to the derivation of effective 

vibration-rotation models for vibrational polyads with examples for diatomic, asymmetric, 

symmetric and spherical top molecules. 

 

 

 

 

 

 

 

 



2. CONTACT TRANSFORMATIONS 

 

The method of Effective Hamiltonians aims at building up some simple models for the sets of 

strongly coupled nearby states has been widely used in various domains of physics. The main idea of 

the method is in transforming the complete Hamiltonian H to a simpler operator H eff  defined in a 

sub-space E spanned by known functions  i  which are easy to handle. Most often, this is realized 

by making use of a similarity transformation followed by the projection PE  onto the corresponding 

sub-space  eff P H P E EH .  In many applications for molecular physics and quantum chemistry, one 

can reduce the problem to a finite dimensional sub-space E  spanned by eigen functions  i of an 

exactly solvable equation, that results in an obvious simplification.   

Technically, it is convenient to apply a unitary transformation in an exponential form T=exp(-iS)  

with hermitian S-generators using the Baker-Hausdorff expansion in terms of multiple commutators   

 

   [ , ] ... (1/ !)[ ,[ ,...[ , ]...]] ...iS iS

n

H T HT e He H iS H n i S iS iS H           (1) 

After having chosen a zero-order approximation H0  and a small parameter 1 , one can use 

this expansion to build up an operator form of the perturbation theory with subsequent 

diagonalisation of blocks corresponding to degenerate or near-degenerate zero-order states.    

In molecular physics and spectroscopy, a Hamiltonian H is often developed in increasing 

powers of a small parameter   

H= H0+H1+…Hn+…,    where    Hn ~ O(n H0) ,      (2) 

where the conventional notaion O(…) means “of the order of”,  and T is chosen in a form of 

successive unitary  Contact Transformations (CT)  

 1 2

1 2... ... ... ...niSiS iS

nT TT T e e e
   ,    where    Sn ~ O( n)     (3) 

It is supposed that the CT can be chosen in a way that they keep the rate of convergence of the 

Hamiltonian expansion. Generators Sn of CT are usually chosen to be  hermitian ( Sn
+=Sn), 

totally symmetric on the molecular point group, and invariant under the time reversal  in order to 

keep the corresponding properties of the transformed Hamiltonian H  . The latter one is also 

expanded in successive orders of    

  
0 1 2 ... ...nH H H H H      ,    where    

0~ ( )n

nH O H    (4) 

The zero-order term remains unaltered and the corrections are obtained by gathering the terms of 

the same order in expansions (1)-(3):  

1

1 1 1 0 0[ , ] ~ ( )H H iS H O H       (5) 

2

2 2 1 1 1 1 0 2 0 0[ , ] (1/ 2)[ ,[ , ]] [ , ] ~ ( )H H iS H iS iS H iS H O H         (6) 

… 

CTs are usually used for a systematic simplification of the Hamiltonian. Suppose for 

example, that a first order perturbation contains two types of terms  ( ) ( )

1 1 1

a bH H H  where (a)-

terms are important for the considered spectral range corresponding to a sub-space  E  and 

should be explicitly included in the effective Hamiltonian.   Let (b)-type contributions be some 

non-essential terms which are difficult to handle or prevent from isolating a considered set of 



states. They can be removed by a first-order transformation if one finds a small generator   
( ) 1

1 1 ~bS S    satisfying the equation ( ) ( )

1 0 1[ , ]b biS H H  .  If this is the case, one simplifies the 

first order term  ( ) ( )

1 1 1 0 1( [ , ])b aH H iS H H     , but ( )

1

bS induces new second-order contributions 

according to eq.(6). A second order CT generator S2 ~2  should then be used in a similar way to 

remove (b)-type terms from 
2H and so on. 

Most often CTs are used to make H  diagonal or block-diagonal in the basis of zero-order wave 

functions. A transformation  effH H  often results in an effective separation of a part of 

variables, their contribution being not neglected but accounted for parametrically.  

After the pioneering work of Van Vleck [1], the CT method has been extensively developed 

in many works on molecular spectroscopy in particular for vibration-rotation Hamiltonian in 

rectilinear normal coordinates.  Series of works by Nielsen and Amat [2,3], Legay [145], 

Rothman and Clough [16], Chedin and Cihla [ 32, 101], Aliev and Watson [7, 104, 106], Camy-

Peyet and Flaud [8,148] were among first important contributions in this subject.  Bunker and 

Moss [12] and Schwenke [13] have applies CT method to the separation of electronic and 

nuclear variables in molecules. Mathematical aspects of CT equations have been studied by 

Primas [29,98], Tyuterev, Tashkun, Perevalov and co-workers [15, 33, 36, 39, 127], whereas 

application to non-rigid molecules were considered by Jensen and Bunker [ 38], Papousek et al 

[157,158] and Starikov and Tyuterev [107, 111, 127]. Siebert, McCoy, Wang and co-workers [9, 

117-125, 128-132] and Zuniga et al [130,133] have applied Van Vleck transformations both for 

rectilinear and curvilinear normal coordinates.  

Recent applications of CT for vibrational polyads and further developments have been 

reported by Krasnoshchekov et al [135-141]. Joyeux and Sugny [85, 142-144] have worked out a 

classical counterpart of CT based on Birkhoff- Gustavson [159,160] canonical transformations.  

Relevant time-dependent formulations were discussed in [ 109, 114, 161-163]. 

This reference list is not exhaustive, various aspects of the CT method have been reviewed in 

[6,7,15,123, 127].  Non-perturbative numerical transformations to effective ro-vibrational 

Hamiltonians have been recently proposed by Rey [165] that can offer complementary tools for 

spectra analyses. 

 

2.1 Recurrent scheme of CT 

It is convenient to introduce a once transformed Hamiltonian H(1) , twice transformed 

Hamiltonian H(2) , …k-times transformed Hamiltonian H(k) and so on 

(0)H H              (7a) 

(1) (0)

1 1( ) ( )H exp iS H exp iS           (7b) 

… 

( ) ( 1)( ) ( )k k

k kH exp iS H exp iS           (7c) 

… 

( ) ( )lim k

k
H H H


            (7d) 

Similarly to (2), (4) each k-times transformed Hamiltonian H(k) can be also expanded in 

successive orders of   : 



( ) ( )

0

k k

n

n

H H




 , where ( )

0( )k n

nH O H  ,      (8) 

upper (k) index in ( )k

nH  being the number of CT and lower index n being the order of magnitude  

of the term.  This ordering suggests that a transformation exp(-iSk)  brings the Hamiltonian to a 

required form up to the order  k. This means that the terms in eq.(8) are no more altered as soon 

as the upper index becomes equal to or superior of the lower one: 

 

( ) ( )k i k

k k kH H H       for   i > 0        (9) 

      

A recurrent scheme of CT is given in Table 1.  It can be seen as a sequence of “layer-by-layer” 

transformations which are symbolized by vertical arrows in Table 1, the k-number of CT being 

shown at the left hand panel. The “zero’s-layer” with k=0 (first row in Table 1) corresponds to 

the expansion of the initial untransformed Hamiltonian in power series of   n. The next layer 

with k=1 (second row in Table 1) corresponds to the expansion of once transformed Hamiltonian 

H(1) and on. Columns at the right-hand side panel of Table 1 correspond to the terms of a given 

order of magnitude.  

 

Table 1:  Recurrent scheme of Contact Transformations  

 

0 1 2 3 4

1 2 3 4

(1) (1) (1) (1) (1)

2 3 4

(2) (2) (2) (2)

3 4

(3) (3) (3)

4

(4)

\

0 : ...

1: ...

2 : ...

3 : ...

4 :

n

n

n

n

n

CT order

k H H H H H H

k H H H H H

k H H H H

k H H H

k H

     

       

       

       

       

   

0

(1)

0 1

(1) (2)

0 1 2

(1) (2) (3)

0 1 2 3

(1)

0 1

H

H H

H H H

H H H H

H H (4)

( )

... ...

:

n

k

H

k n H

   

       

(2) (3) (4)

2 3 4

(1) (2) (3) (4) (k)

0 1 2 3 4 k

H H H ...

... ...

H H H H H ... H

H

0 1 2 3 4

1 2 3 4

(1) (1) (1) (1) (1)

2 3 4

(2) (2) (2) (2)

3 4

(3) (3) (3)

4

(4)

\

0 : ...

1: ...

2 : ...

3 : ...

4 :

n

n

n

n

n

CT order

k H H H H H H

k H H H H H

k H H H H

k H H H

k H

     

       

       

       

       

   

0

(1)

0 1

(1) (2)

0 1 2

(1) (2) (3)

0 1 2 3

(1)

0 1

H

H H

H H H

H H H H

H H (4)

( )

... ...

:

n

k

H

k n H

   

       

(2) (3) (4)

2 3 4

(1) (2) (3) (4) (k)

0 1 2 3 4 k

H H H ...

... ...

H H H H H ... H

H

 

The lower “triangle” at the right-hand panel of Table 1 collects all terms which have been 

already simplified by CT : 

( ) ( ) ( ) 1

0 1 2 1{ ... } ... ... ( )k k k k

k k k lH H H H H H H H O  

               (10) 

As it follows from Eq.(9), these terms in braces {…} are ready to use up to the order  k . The 

upper “triangle” contains contributions which are removed at the following layers with 



increasing k. The encircled terms in Table 1 give successive corrections to the final transformed 

operator: 

( )

0 0

m

m m

m m

H H H H H               (11) 

The terms involved in the k-times transformed Hamiltonian H(k) can be computed from 

previously calculated  H(k-1) operators using the recurrence relation [6,99]  

[[ / ]]
( ) ( 1) ( 1)

1

(1/ !)[ ,...[ , ]...]
n k

k k k

n n k k n km

m m

H H m iS iS H 





    ,     (12) 

which is obtained by applying the Backer-Hausdorff relations (1) and by identifying expansion 

terms of a given order  n  in both sides of Eq.(7c). Here the notation [[ / ]]n k  stands for the 

integer part of n/k.  If k > n then [[ / ]]n k =0 and in this case all terms in the second part 

summation of Eq.(12) vanish ( ) ( 1) ( )...k k n

n n nH H H    , that justifies Eq.(9) as well as the lower 

triangle representation in Table 1.  

Suppose that Sn-generators of CT are chosen in some arbitrary way satisfying standard 

hermicity, symmetry and order of magnitude requirements (3) only.  Then Eqs. (9), (12) provide 

simple algorithmic relations that allow filling up successive layers of Table 1 and computing 

successive corrections in the finally transformed Hamiltonian (11) up to any needed order. 

The only condition was that a formal convergence of expansions in terms of  n ordering should 

be conserved at every layer of Table 1.  Note that in the general recurrent scheme of this Section 

we did not yet specified concretely the meaning of a simplification H H provided by CT. The 

above general scheme is equally valid for any other operator representing a physical property 

like dipole moment operator and so on. Using an appropriate definition of a Hamiltonian 

“simplification” which one expects to obtain with CT, it is possible to further optimize the above 

recurrent algorithm and considerably economise a computational effort as it will be discussed in 

the following sections. 

  

2.2 Commutator equations, modelling operator and L algebra of CT 

 

An important question is how to formalize mathematically an idea of a Hamiltonian 

simplification which could be provided by CT in a sufficiently general case?  For this purpose it 

is instructive to consider the Lie algebra of CT generated by all multiple commutators involving 

operators {H0 , …, Hn ,…, S1 ,…, Sm …}. Let us denote this algebra L. It obviously includes all 
( )k

nH  terms belonging to successive layers of Table 1.  Would it be possible to choose within L  a 

certain simpler subset in such a way that all ( )n

nH  terms of the lower triangle of Table 1 and 

consequently H  belong to this subset ? 

One possibility is to use as such simple subset a sub-algebra L (0)
 containing all operators which 

commute with H0. This is equivalent to the condition 
0[ , ] 0H H   imposed on the transformed 

Hamiltonian which was used in many applications of CT in molecular physics and spectroscopy . 

In cases of quasi-degenerate zero-order approximation (accidental resonances) the latter 

condition is not compatible with the requirement (3) because of small denominators appearing in 

Sn. Consequently, the usual CT scheme based on a  n ordering is not applicable under this 

condition. 



In [36] it was proposed to extend the condition of CT to the following more general form: 

[ , ] 0H A where A called modelling operator determines the final model of an effective 

Hamiltonian. To meet the requirements of CT, the modelling operator has to commute with the 

zero-order approximation 
0[ , ] 0H A  so that the CT algebra L   is decomposed in two subsets as 

follows [127]: 

( ) ( ) AL L L , where    
( ) (0)AL L   (13a)  

Here  L(A)
 contains all operators commuting with A , and 

( )L is its orthogonal complement. 

In practical terms, this means that any operator X involved in CT calculations can be written in a 

unique way as a sum of two contributions  
( ) ( )X X X  A

 , where 
( )X A

belongs to the 

subset
( )AL  . With respect to the definition (13a) one can then define an operation  < … >   

< … >A   of the extraction of the 
( )AL -contribution from any operator of CT : 

      
( )X X  A

, where 
( ) ( )X A AL    (13b) 

Using these notations one can formalize a simplification provided by CT as follows. Consider an 

initial Hamiltonian (2), for which the expansion terms Hn belong to L . The transformations aim 

at converting H to a unitary equivalent operator H , which would belong to a limited and hence 

more simple subset 
( )AL . Using the operation (13b) this can be expressed in the following 

equivalent way:  

 H H     or 
( )H  AL     (14) 

that implies the same condition for all corrections 
n nH H      .  

     In the recurrence scheme of the previous Section 2.1 the Sn generators of CT were not yet 

explicitly defined. One can do this by imposing the condition (14).  At the first order CT one 

should consider k=n=1. Substituting this to Eqs. (9), (12) one obtains the following system of 

equations for the first-order CT iteration: 

    
0 1 1 1[ , ]H iS H H        (15a) 

1 1H H          (15b) 

  This system of two equations contains two unknown quantities S1 and 
1H . The formal 

particular solutions are written as follows 

    
1 1H H           (16a) 

1 1

1
( )iS H

D
       (16b) 

where H1 is known (2), the operation  < … > is defined by (13b) and the operation 
1

(...)
D

 makes 

an inversion of a commutator equation (see the mathematical Appendix I). With an appropriate 

convention of (13a) these operations  < … > , 
1

(...)
D

 are  well defined on the CT algebra L. They 

act on operators belonging to L, and for this reason are often called “super-operators” in a 



mathematical literature [156].  A way to explicitly calculate their action is discussed in the 

following sections and in Appendix I.  

 As soon as S1 is obtained, one can compute the once transformed Hamiltonian H(1) in a 

straightforward way and to fill the k=1 layer of Table 1 using the recurrent relation (12). By 

repeating the procedure of the Section 2.1 one can determine S2 that produces the twice 

transformed Hamiltonian H(2) and so on.  Suppose that S1 , S2 ,…Sn-1  generators were determined 

and successive layers k=2 , k=3, … k=n-1 of Table 1 were filled this way. This means that all 

terms up to  ( 1)n

nH   were already calculated. At the next step k=n the recurrence scheme (9), (12) 

gives the system of two equations 

    ( 1)

0[ , ] n

n n nH iS H H        (17a) 

n nH H            (17b) 

with a solution 

    ( 1)n

n nH H            (18a) 

( 1)1
( )n

n niS H 
D

       (18b) 

Note that Eqs.(16),(18) give a particular solution of CT equations ( Appendix I) fixed by a 

supplementary constraint 

                 <S1 > = < S2 > = …= <Sn > = 0      (19) 

A general solution in discussed in Sect 2.7.   

Unitary transformations conserve eigenvalues E of the Hamiltonian, but in many cases the 

decomposition (13)-(14) can simplify a solution of the new stationary Schrödinger equation 

| |H E    with respect to the initial one | |H E   .  As soon as Sn  generators of CT  

are calculated (18b), the true wave functions  |   are related to an effective ones  |   as 

follows 

      1 2| ... ... |niSiS iS
e e e  

                  (20) 

A rather flexible choice of the modelling operator A and of the decomposition (13a) permit 

adapting CT to a particular physical problem. This provides a systematic way to build various 

forms of effective Hamiltonians for a wide class of applications using exactly the same recurrent 

procedure (12) and the same formal solutions (18).   

In many cases  H  can take block-diagonal forms in the zero-order basis depending on quasi-

degeneracy of the energy spectrum and on the definitions of resonances (§§2.6,2.7,8,9). For this 

reason the operation < … >  < … >A  can be called block-diagonal part extraction operation.  If 

A depends on a part of coordinates only, the CTs result in a full or in a partial separation of 

molecular variables (§3.1). Using a particular definition of A one can apply this formulation of 

CT to time-depending problems (§3.2). 

  

2.3 Generalisation of Wigner theorem 

 

               In the standard Rayleigh-Schrödinger perturbation theory one often applies the Wigner 

theorem: if a wave function is known up to n-th order approximation ( ) 1( )n nO      then the 



diagonal matrix element of the Hamiltonian using ( )n  gives the  energy valid to (2n+1)-order 

approximation: ( ) ( ) 2 2| | ( )n n nE H O      .  Using remarkable mathematical properties of the 

operations  < … > , 
1

(...)
D

  [6],  the relations (9),(12) and formal solutions (18) one can extend this 

result to effective Hamiltonian transformations. For any decomposition (13a) satisfying the 

conditions of §2.2 the diagonal parts for many recurrent commutator contributions in (12) exactly 

vanish leading to: 

   
( ) ( 1) ( 1) [[ / 2]]...n n n n

n n n n nH H H H H             (21) 

 

This means that n-times transformed Hamiltonian is directly expressed via results of [[n/2]]  

transformations only. This result helps economising a lot of computations, and the solutions (18) of 

CT equations take the form [ 6 ] 

 
( 1)

2 2

k

k kH H             (22a) 
( 1)

2 1 2 1

k

k kH H 

             (22b) 

( 1)1
( )k

k kiS H 
D

        (22c) 

 The Wigner theorem in case of CT can thus be generalised as follows. Suppose that k generators of 

CT  S1 ,…, Sk   were calculated according to Eq.(18b). Then the block-diagonal part of the k-times 

transformed Hamiltonian H(k)  gives the effective Hamiltonian H   valid up to the order (2k+1): 

 

2 1 1 2 2 2... ... ( )k kiS iSiS iS iS iS kH e e e He e e O           (23) 

 

The recurrent scheme of CT accounting for the generalised Wigner theorem takes the form of Table 

2: 

 
 

For any Lie algebra decomposition satisfying the conditions of §2.2 one can conclude that only one 

transformation 
1( )exp iS  is required in order to calculate third-order H  , another transformations 

2( )exp iS  gives fifth-order H and so on, as indicated at the right-hand panel of Table 2. 

  

 

2.4 Eigen representation in L 

 

S

1 
S

2 

S

k 

0 1 2 3 4 5 2 1
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1 2 3 4 5 2 1
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:
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1 (( )) (( )) ( )
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m m

m m

m m

order effective HamiltonianCT
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k H H H H H H H H H O

k H
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









            

            

   

0

(1)

0 1

(1) (

0 1 2

H

H H

H H H
(2) (2) (2) (2) (2) (2) 6

3 4 5 2 1

( ) ( ) ( ) 2 2

2 1

(( )) (( )) (( )) ( )

... ...

(( )) ( )

m m

k m m m

m

H H H H H H H O

k m H H H H O











        

            

2)

(1) (2) (3) (4) (5) (m)

0 1 2 3 4 5 mH H H H H H H

The terms shown with boldface font are completely block-diagonalized by CT  and are thus equal to corresponding  terms of the effective 

Hamiltonian.  It is not yet the case of the terms shown in double parentheses ((…)) , but their block-diagonal parts <((…))> also produce 

direct contributions to         according to generalized Wigner theorem.        H

Table 2. General scheme of successive Contact Transformations in the « layer-by-layer » algorithm  



For practical computations of  Sk   and 
nH  (22a)-(22c),  it is convenient to choose a set of 

elementary operators {er} which form a basis in the L algebra of CT  in such a way that all 

operators involved in transformations could be expanded in this basis 

     k

k r r

r

iS b e   ( ) ,k n k

n r r

r

H C e      (24) 

Here k

rb  and ,n k

rC  are expansion coefficients.  A choice of a basis {er} defines a representation in the 

CT algebra L.  The latter can be called canonical representation [ 6 ] if  

(i) operations  < … > , 
1

(...)
D

 defined in Appendix I can be easily calculated in this basis  

(ii) expansions (24) are finite at a given order or well convergent  

 

The most convenient choice would be an eigen basis {er} for operations  < … > , 
1

(...)
D

  satisfying 

< er >= ρr er ,   
1

( )r r re e
D

   ,      (25) 

where ρr  and κr  are eigenvalues of these operations. Formally an eigenbasis {er} always exists. In 

case of degenerate or quasi-degenerate zero-order approximation of the stationary Schrödinger 

equation it is formed by  “ket-bra” operators 
0 0| , , |LM

ij

P L i M j     (Appendix I) 

    < PLM >= δL,M PLM ,  ,

(0) (0)

11
( )

L M

LM LM

L M

P P
E E




D
   ,     (26) 

For the latter equation in case of L=M the convention 0/0 = 0 is adopted.   With this choice of the 

basis {er} the technique of calculations is similar to that of a conventional perturbation theory 

involving intermediate summations in quantum numbers. But it is not always the best choice as far 

as computational effort is concerned. For example, in case of vibration Hamiltonian of semi-rigid 

molecules it is more convenient to choose the eigen basis formed by elementary operators 

... ...r i j l ta a a a e  where 
ia  and  

ia are creation and annihilation operators for harmonic oscillator 

normal modes (§ 5.3).  The latter choice allows avoiding intermediate summations in quantum 

numbers. Consequently, expansions (24) are finite ones. Similar properties apply for elementary 

operators ... ...r i j l tb b b b e  involved in CT of multi-fermion systems [6].  

 Suppose that for a considered problem there exist an eigen basis (25) in the CT algebra L 
satisfying the condition (ii). In this case a computation of Sk   generators of CT reduces to a trivial 

operation of a multiplication by ρr  numbers. Eqs (18,21,22) thus give 

 

, 1( )n n

n r r r

r

iS C  e ,  ,[[ / 2]]( )n n

n r r r

r

H C  e                                             (27) 

Coefficients ,[[ /2]]n n

rC , , 1n n

rC   are calculated through the recurrent relation  

1 1 1 1

1 1

[[ / ]]
, , 1 , 1 , 1

...

1 ...

( / !) ...
m m m

m

n k
n k r k k k k n km k

r i i i i i

m i i

C m C C C 
 



   



       ,     (28) 



following from Eq.(12).  Here 
1 2 1

...
mi i i   


  and 
1 1... m

r

i i


 are structural constants of the CT algebra L 
defined as 

...[ ,...[ , ]] r

i j t i jt r

r

e e e e       (29) 

Recurrent relations (28) contain numerical coefficients only and can be programmed in order to fill 

successive layers of Table 2. This provides a possible computer assisted calculation scheme [113, 

115] for a derivation of effective Hamiltonian as an analytical function of elementary operators er.     

With respect to the decomposition (13a), the basis set (25) can be divided in two subsets 

     
( ) ( ){ } { } { }r t s

 e e e
A

      (30) 

where 
( ) ( )

t e A AL  and 
( ) ( )

s

 e L .  Simplifications due to CT can be summarized as follows 

   
( )

r r t t

r R t

H C CT H H C


     e e A

   (31) 

An initial non-transformed Hamiltonian H does not obligatory contain all operators of the algebra L. 

That is why the first summation in Eq.(31) can be restricted by a certain subset of indices 

R={r1,r2,…}.  But H usually contains some “inconvenient” terms belonging to 
( )L   that we do not 

want to find in a simplified effective model. In the transformed Hamiltonian H  these terms are 

systematically removed in such a way that the eigen values E of the Hamiltonian remain unaltered. 

In case of the condition (19) all Sn  contain elementary operators 
( ){ }s

e   only.  For the sake of 

simplicity we did not impose here conditions of hermicity or time reversal invariance on elementary 

operators er but the above procedure can be easily extended for linear combinations of er preserving 

these properties (§ 5.3). 

    Note that if a canonical representation satisfying conditions (i),(ii) exists, the decomposition (13) 

and the form of effective Hamiltonians can be defined by choosing a list of elementary operators  
( ){ }te
A

which are expected to be involved in H  expansion (31).  In order to apply the formulation 

of §2.2 one should include in 
( ){ }te
A

 a subset of all operators commuting with H0.  

 

2.5 Degenerate zero-order approximation 

 

In case of a non-degenerate spectrum of  H0  the standard choice of  the modelling operator 

0HA  results in a transformed Hamiltonian which is fully diagonal in the zero-order wave 

functions:  0 0 ,| | i i ji H j E   .    True energies Ei of stationary states of the system are 

represented by diagonal elements of this matrix. Another natural choice would be 

0 0| |nP n n   A .  With this latter choice only one stationary state corresponding to  En  is isolated 

by transformations (7)-(23) and CTs  give power series expansions in n , which are very similar to 

the conventional Rayleigh-Schrödinger perturbation theory. 

 In case of a degenerate spectrum of  H0  the choice 
0HA  results in a transformed 

Hamiltonian which is block-diagonal in the zero-order wave functions: 



 0 0 1 1 ... ...n nH H P HP PHP P HP      ,  0[ , ] 0H H                (32) 

where 
0 0| , , |n

i

P n i n i    are projectors on eigen subspaces 
(0)

n  of zero-order stationary states 

0| ,n i   (see Appendix A1 for notations). All operators  
( )

s


e , which possess nonzero off-diagonal 

matrix elements  
( )

0 0, | | , 0sm j n i  e  for m n are removed by CTs. Every term in the 

expansion (32) corresponding to a block in the matrix    0 0, | | ,n j H n i   can be considered as 

an effective Hamiltonian 

 

eff

n n nP H PH        (33) 

defined on a corresponding subspace 
(0)

n  spanned by zero-order wave functions.   

Another choice 
nPA  results in H having only one isolated block (33) but  0m rP H P   for 

,m r n . The latter form of the transformed Hamiltonian is sometimes called even form [167]. 

 

 

2.6 Near degenerate case 

In case of quasi-degenerate zero-order energies  
1 2

(0) (0) (0)...
sn n nE E E    , one cannot apply 

the conditions 0[ , ] 0H H   or [ , ] 0nH P   of the previous Section because successive CTs 

would not converge due to small energy denominators in Eqs. (26).  The sub-algebra 
( )AL of 

CT has to be extended in this case. One can define the modelling operator as a projector EP  on 

a  E -polyad of near degenerate states  corresponding to a set of closely lying zero-order energies 

     
1 2

...
sn n nP P P    EA P      (34) 

CTs (7)-(22) isolate then an extended  E-block in the transformed Hamiltonian corresponding to 

this polyad  eff HE E EH P P .    The transformation results in an effective model that explicitly 

contains coupling elements | |EHeff     between   states of the same symmetry type 

belonging to this polyad , E  .  These intra-polyad couplings describe effects which are 

often called accidental resonance perturbations. They cannot be accounted for by small 

transformations and their contributions are usually calculated using a numerical diagonalisation 

of the matrix of EHeff  .  The advantage is that the matrix of EHeff  built in a simple zero-order 

basis has usually much lower dimension then the matrix of H built  in the same basis. In many 

cases this allows reducing infinite dimensional matrices of initial Hamiltonians to finite 

dimensional matrices of effective polyad Hamiltonians. 

If there are several quasi-degenerate polyads  EM  it is convenient to use CT in order to isolate 

all these polyads simultaneously: 

 EMM

M

A P    E EM M

M

H H H  P P   (35) 



Here eigen values M   of A  can be arbitrarily chosen. A convenient choice would be mean 

values of energies for corresponding quasi-degenerate clusters. If all M  are chosen distinct ( to 

be different) the polyads  EM  are treated separately, if two of them coincide M L   the 

transformation accounts for an overlapping of polyads EM  and EL . 

Alternative formulations of the perturbation theory in terms of projector operators were described 

in [26-28,30-31,34, 134,167-170]. 

 

2.7 Ambiguities, particular cases and relations with other formulations of degenerate 

perturbation theory 

 

A derivation of effective Hamiltonians is a fundamentally ambiguous procedure. This is because 

of a possibility of an additional unitary transformation within a subspace E , which can modify 

parameters and effective eigen functions but not eigen values of EHeff  . In the context of 

degenerate and quasi-degenerate perturbation theory for vibration-rotation polyad models the 

related ambiguities have been studied in [174-179].  In our formulation of CT the ambiguity of 

EHeff  originates from three sources. First, for a given definition of the zero-order approximation 

and the Hamiltonian development (2) it is possible to choose a modelling operator A in different 

ways in order to build an effective Hamiltonian EHeff on the same subspace E.  Second, the 

condition (19) selects a particular solution of CT equations. This condition simplifies 

calculations but is not obligatory.  For a chosen decomposition of the CT algebra (13) a general 

solution (Appendix I) of CT equations (17a )-(17b) takes the form  

( 1)

0[ , ]n

n n nH H H iz            (36a) 

( 1)1
( )n

n n niS H iz   
D

       (36b) 

where 
( )

nz  AL  are arbitrary hermitian operators of the order n . This is because CT 

equations impose a definite condition on the part of Sn which belongs to 
( )L  only whereas a 

choice of their  
( )AL  contributions remains free.   

It can be shown [6, 36] that with particular choices of  conditions for block-diagonal parts of 

generators of Contact Transformations n nS z    and of the modelling operator A one 

can easily obtain from  ( )

1( ,... ...; )CT

nH H z z A  the expansions of other formulations of 

degenerate and quasi-degenerate perturbation theory [26-28, 30, 167-169].  Finally, a reordering 

of the perturbation expansion terms Hn ( n > 1 ) in the initial Hamiltonian (2) also produces 

changes in the transformed Hamiltonian at third-order and higher order terms [6]. All these three 

sources of ambiguities result in different but unitary equivalent hermitian effective Hamiltonians. 

The relations among various formalisms of effective Hamiltonians have been described by Klein 

[31], Jorgensen [34] ,  Tyuterev [33] and Watson [171]. 

This has permitted explaining apparent contradictions in empirically fitted effective ro-

vibrational Hamiltonian belonging to the same vibrational polyads [172,173]. In order to avoid 

the ambiguity of EH in practical applications that leads to poorly determinable parameters, the so 

called procedure of EH reduction [ 174-177, 10 ] is commonly applied. Another possibility 



would be working with invariant combinations [178-179] of EH parameters , which are 

independent on the constrains applied on the EH form.  

 

3. Effective separation of variables 

 

The most interesting applications of CT correspond to effective (full or partial) separations of 

molecular variables.  Consider two physically different sets of independent coordinates  

1 2{ , ,...}x x x  and  1 2{ , ,...}y y y .  The space of wave functions is a direct product   

x y     where x  is spanned by ψ(x) functions and   y  is spanned by φ(y) functions. 

 Let us denote 1 2{ , ,...}X X X  and 1 2{ , ,...}Y Y Y  operators acting in these spaces on x 

and y coordinates correspondingly following the general scheme discussed in ref. [6].  A full 

Hamiltonian H(X,Y) acts on both types of coordinates. A corresponding stationary Schrödinger 

equation defined in the full space   

( , ) ( , ) ( , )m m mH X Y x y E x y         (37) 

usually does not allow for an exact solution. Very often, physical considerations permit defining   

 a set of {m} quantum numbers which are mainly determined by x type motion and { }  

quantum numbers which are mainly determined by y type motion. Suppose that in a zero-order 

approximation X and Y variables are decoupled 

0 0 0( ) ( )H H X H Y        (38) 

and the perturbation   1( , ) ( , ) ... i i

i

V X Y H X Y X Y    accounts  for their coupling.  

Let the zero-order equation for the X part of the problem be written as 

(0) (0) (0)

0( ) ( ) ( )
t tm m mH X x E x  ,  

(0) ( )

0 ( ) X

m m

m

H X E P    (39) 

The L  algebra of CT is a direct product X YL L L  where i XX L  and j YY L .  

For a partial effective separation of  X variables using contact transformations one can try a 

modelling operator of CT which depends on these variables only ( )XA A .  For example  

( )X

mPA    or  0 ( )H XA      (40) 

where 
( ) (0) (0)| |

t t

X

m m m

t

P     is a projector on an eigen subspace of 0 ( )H X .   The CT 

condition  [ , ] 0H A  results in a transformed Hamiltonian xH H     which has an 

isolated block in the x  space corresponding to the projector  
( )X

mP .  With the first choice of 

Eq.(40) this gives 
( ) ( ) ( ) ( )X X X X

m m m mH P HP Q HQ   where 
( ) ( )1X X

m mQ P   is the orthogonal 

complement to 
( )X

mP on x . With the second choice of Eq.(40) the transformed Hamiltonian 



(0)( , )H X Y contains only those 
(0)X  operators which commute with 0 ( )H X .  These 

(0)X  

operators are then block-diagonal in the zero-order basis (39) .  In both cases the X dependence 

of resulting effective Hamiltonians 
[ ] ( ) ( )Hm eff X X

m mP HP  is considerably simplified.  

In case of a non-degenerate 
(0)

mE  energy this procedure can provide a full separation of X 

variables. This allows for replacing the initial equation (37) by more simple equation  

[ ] [ ] [ ]{ ( )} ( ) ( )m eff m m

mY y E y    H      (41) 

defined on y  space only. Here the effective Hamiltonian  

[ ] (0) (0) (0)( ) ( ) | ( , ) | ( )m eff

m mY x H X Y x  H    (42) 

depends on Y operators only because the right hand side of (42) corresponds to the integration 

over x coordinates.   If CTs converge, then eigen values (41) of  
[ ] ( )m eff YH give successive 

approximations to the true energies with increasing orders of CT. True wave functions are related 

with effective ones by Eq. (20). This procedure of effective separation of variables applies for 

those energy ranges where there are no accidental resonances between x and y motions, which 

would result in small denominators in Eqs.(26).   

 

3.1 Fast and slow motions 

 

A separation of “fast” (X) and “slow” (Y) variables is a most common and straightforward 

application of CT as discussed in [6].  Suppose that characteristic frequencies corresponding to X 

variables are much larger that those for Y variable. This means that 

1 1m m m mE E E E        because changes in m quantum numbers correspond to an 

excitation of x motion and changes in  quantum numbers correspond to an excitation of y 

motion. One can thus assume that the zero-order approximation 
0H  is defined by the fast motion. 

For clarity let us consider a simple case: 

0( , ) ( ) ( , )H X Y H X V X Y        (43) 

It is convenient to formally extend this zero-order approximation on the entire space   of 

ψ(x,y) functions 

0 0{ ( )} 1YH H X         (44) 

Eq.(44) emphasize that the choice (43) results in a zero-order spectrum on the x y     

space which is degenerate in    quantum numbers corresponding to slow Y  variables. Even if 

the spectrum (39) corresponding to the fast x motion is non-degenerate,  the total degeneracy 

remains and is equal to the dimension of the y  space.  An effective separation of fast X 

variables is equivalent to a block-diagonalization of the Hamiltonian (43) in the eigen basis of 

the degenerate zero-order approximation (44).  Let a perturbation be written as 

( , ) i i

i

V X Y X Y        (45) 



 With the standard choice of the modelling operator 0 ( )H XA  according to eq.(40) one has 

  XY X Y    ,   
1 1

( ) ( )XY X Y 
D D

    (46) 

A straightforward application of CT according to eqs.(7),(12),(22) results in the transformed 

Hamiltonian expanded in successive orders 

1
40

1 1
{ [ ( ), ] [ , ] [ ( ), ] [ , ] } ...i i i j i j i j i j

i ij

H H X Y X X Y Y X X Y Y              
D D

 (47) 

which is block-diagonal in the 
(0) ( )

tm x  basis. Developing commutators […,…]- and anti-

commutators  […,…]+  in eq.(47) one readily obtains 

 

     
0 ...i i ij i j ijl i j l

i ij ijl

H H Y YY YY Y      B B B      (48) 

where 

i iX  B , 

1
ij i jX X   B

D
, 

1
2

1 1 1 1 1 1
{ ( )( ) 2 ( ) ( ) ( )( ) }ijl i j l i j l i j lX X X X X X X X X          B

D D D D D D
 (49) 

… 

The simplification is due to the fact that all terms (0)

... ...( )ijl ijl XB B in (48),(49) are block-

diagonal and thus contain those (0)X  operators only which commute with 0 ( )H X .  

In case of a non-degenerate spectrum (39) of the fast x motion the transformed Hamiltonian (48) 

is diagonal in 
(0) ( )m x basis and CT produce a set of effective Hamiltonians for the 

(0)

mE level set 

[ ] (0) (0) (0) [ ] [ ] [ ]( ) ( ) | | ( ) ...m eff m m m

m m m i i ij i j ijl i j l

i ij ijl

Y x H x E c Y c YY c YY Y        H

 

             (50) 

acting on y coordinates only. A full separation of X variables is thus achieved.  Parameters of 

these effective Hamiltonians calculated as 
[ ] (0) (0)

... ...( ) | | ( )m

ijl m ijl mc x x  B  , depend on 

m quantum numbers corresponding to the fast x motion . 

In case of a two-fold degenerate or near-degenerate level corresponding to the x motion the 

terms 
...ijlB involved in eq.(48) can be seen as 22 matrices in the 

(0) ( )
tm x basis. For three-fold 

(near)-degenerate 
(0)

mE levels 33 matrices 
...ijlB  appear in the expansion (48) etc. Off-diagonal 

terms describe an X-X or X-Y coupling. In general, the CT method results in a partial separation 

of fast variables that allows decreasing the dimension of the eigen values problem. 

A similar procedure for generalised form of Rayleigh-Schrödinger perturbation theory has been 

considered by Cassam-Chenai [170].  



 

3.2 Some examples 

-  Separation of vibration variables in the vibration-rotation Hamiltonian. 

Vibrations of a semirigid molecule described by nuclear displacement coordinates 1 2{ , ,...}x q q  

correspond to the fast motion compared to slower rotational motion described by Euler angles 

{ , , }y     which relate spaced-fixed and molecular-fixed axis systems.  Vibration-rotation 

Hamiltonian H(X,Y) = Hvib-rot involves vibration operators 
... ...{ ... ...}i jk rt j k r tX C q q p p  and 

rotational operators { , , ,...}iY 1 J J J   . Here 
... ...jk rtC  are molecular parameters,  pr , pl , …are 

vibration momenta corresponding to qr , ql , … and J , J …are angular momentum components 

acting on Euler angles [110 ]. Quantum numbers m involved in Eqs.(39)-(50) are quantum 

numbers m=v={v1,v2,…} of a zero-order vibration model. CT transform Hvib-rot  to effectives 

Hamiltonians for individual isolated vibration states or for sets (polyads) of coupled vibration 

states. In case of a non-degenerate vibration state the resulting effective Hamiltonian (50) is a 

pure rotational operator [v] ( , , )eff

rot x y zJ J JH . The eigen value problems is thus considerably 

simplified because a full separation of vibration variables is achieved in this case. For near 

degenerate vibrations, the off – diagonal matrix elements (0) (0)

...| |v ijl v   B  provide expressions 

for resonance coupling parameters within a polyad of vibration states.  This type of separation of 

vibration variables have been widely used in the literature on high-resolution molecular 

spectroscopy as reviewed by Amat, Nielsen et al. [2,3] , Makushkin and Tyuterev [6 ],  Aliev and 

Watson [ 7 ], Camy-Peyret and Flaud [ 8], Sarka and Demaison [10]. ( see also [15, 120, 126, 

129, 134 ] and references therein).   

The vibration polyad structure related to Darling-Dennison and Fermi resonances in triatomic 

molecules, as well as the mixing of zero-order wave functions induced by these resonance 

interactions are discussed in the following Sections.  Application of CT formulation described in 

Sections 2-4 allows for building accurate non-empirical rotational and ro-vibrational Heff  from 

potential energy functions [15,39,134 ]. A spectroscopic accuracy similar to variational 

calculations can be achieved in case of semi-rigid molecules thanks to an account of high-order 

contributions.  

 

-  Separation of electronic variables in the electronic-nuclear Hamiltonian. 

 In this case { }ix r r   are electronic and { }ny R R   are nuclear coordinates of a molecule, 

{ , }
jriX r 

  and { , }
kRnY R 

  being electronic and nuclear operators. The well-known 

difficulty [12] for the standard Rayleigh-Schrödinger perturbation theory is that zero-order Born-

Oppenheimer (BO) electronic energies 
(0)( )eE R  depend on vibrational coordinates { }nR . Matrix 

elements of the electronic-nuclear interaction terms over BO wave functions are nuclear 

operators Y and thus do not commute with energy denominators
(0) (0) 1( ( ) ( ))e eE R E R 

 . CT 

correctly account for the ordering of terms in the perturbation expansion. A natural choice of the 

modelling operator is a projector on an isolated BO electronic state
( )R

ePA  which depends 

parametrically on internuclear distances R. Though simple properties (43),(46) do not apply in 

this case,  the recurrent relations of CT (7)-(12) and the general solutions (18)-(22) remain valid 

with explicit expressions for the action of  < … > , 
1

(...)
D

 operations on electronic-nuclear terms 

given in [6].  Their straightforward application allows reproducing expressions for effective 



rotaton-vibration Hamiltonian [ ] ( , )
k

e eff
RnR 
H  for the ground electronic state | e   derived by 

Bunker and Moss [12] and by Schwenke [13] up to the second order.  First order corrections 

produce adiabatic contributions and second order terms account for non-adiabatic coupling of 

electronic states. These contributions prove to give significant contributions to ro-vibration 

energies [12-13, 180,181] much larger than experimental accuracy of high-resolution molecular 

spectroscopy. Using the recurrent scheme of table 2 one could derive higher order corrections in 

a systematic way, though the calculations rapidly become very involved with increasing orders.     

 

-  CT for time-dependent problems 

 The formulation of CT described above can be also applied to some time-dependent 

problems. An example is a simplification of evolution operator U(t) for the resonance interaction 

between quantum electromagnetic field and n-level atomic or molecular system [161].  

Assuming atomic units ( 1 ) the initial Schrödinger equation reads 0( ( ))
t

i U H W t U


    

where H0 is the Hamiltonian of the model system and the field whereas W(t) describes their 

interaction.  In the interaction representation it takes the form { ( )} 0
t

i V t U


   where 

0( )U exp iH U   and 
0 0( ) ( ) ( ) ( )V t exp iH t W t exp iH t  . One can apply the CT method to the 

operator ( , )
t

L i V t Y


   in quite a similar way, were Y stands for molecular variables. 

Replacing H by L in  eqs.(1)-(23) we write  
t

L T LT i 


   V . By choosing the modeling 

operator as t
i 


 A one applies the condition [ ] 0L, A of Section 2.2 equivalent to  0L
t

 


 

as suggested by Zakharov and Tyuterev [110,114,161].  Under certain assumptions [ 6, 

109,114,161] this permits obtaining the CT expansion for the time independent effective 

interaction ( )const tV .  

Relations of Sections 2.1, 2.3 and the scheme of Table 2 are valid in this case. Unlike the 

operator ( , )V t Y  the effective one ( )YV V  depends on molecular variables only. In this 

example { , }
t

X t 


  and the CT L L  aims at effective separation of time: ( , ) ( )V t Y YV .  

The transformed Schrödinger equation { } 0
t

i U


  V  has then an obvious solution 

0( ) ( ( ))U t exp i t t   V  . The evolution operator takes the form  U T U  . Secular terms 

corresponding to resonance effects are all gathered in the U operator whereas T can be 

represented by a convergent expansion without small denominators. This is equivalent to the 

summation of secular terms in Dyson [182] and Magnus [183] expansions and simplifies the 

study of multiphoton processes [161]. Alternative formulations for time-dependent equations 

have been considered by Jauslin et al. [162-164].   

 

 4. Optimized algorithm   

 

In general, a calculation of a commutator is more computationally expensive operation than a 

summation and gathering of similar terms.  A recurrent algorithm of CT can be further optimised 

by re-arranging and gathering terms at intermediate steps before commutator contributions are 

computed. In order to minimise an amount of computations the recurrence relation (12) can be 

re-written as 

 



( ) ( 1) ( 1) ( 1)

1 2

1

[ ,[ ,...[ , ...k k k k

n k k k L

L

H i S iS iS F F F  



      ,    (51) 

where n > k and operators ( 1) ( 1) ( 1)

1 2, ,...,k k k

LF F F   are known from previous steps of CT and will be 

defined below. The generator iSk of the k-th layer of CT is calculated according to Eqs.(22c).  

       

The number of the commutators in Eq.(51) is L-1. The value of L and the expressions for the 

operators ( 1)k

mF   are calculated according to the values of two parameters /l n k     and τ=n-kl. 

If τ ≠ 0 then L=l+1 and 

( 1) ( 1)

( 1)

1

( 1)!

k k

m k mF H
l m



 

 
 

,      (52) 

If τ = 0 then L=l and 

( 1) ( 1) ( 1)

1

1
[( 1) ]

!

k k k

k kF l H H
l

     ,  and ( 1) ( 1)1

( )!

k k

m kmF H
l m

 


, m > 1   (53) 

This algorithm allows faster calculations than those based on initial eqs.(11)-(12).   The general 

“layer-by-layer scheme” of Table 2 is still valid and allows systematic CT up to a given order 

nmax. This part of the algorithm is applicable to all types of quantum-mechanical problems for 

bond stationary non-degenerate, degenerate or near-degenerate state calculations provided that a 

perturbation is sufficiently small and the usual conditions of the validity of the perturbation 

theory are fulfilled. 

 

Trees of CT contributions 

Suppose that one wishes to derive effH up to the order nmax. By substituting n= nmax in eq.(21) 

and using the recurrent relations (22),(51) it is easy to see that not all terms in lower layers of 

Tables 1,2 are necessary for this calculation. In order to build a scheme involving the tree of 

required ( )l

mH  terms we have to start from the highest layer kmax =[[nmax/2]] and decrease the layer 

number progressively: k = kmax-1, kmax-2 … down to k=0.  

 

5. Molecular vibrations 

 

In the next sections we apply the above described algorithm of high-order CT to molecular 

vibrational and rotational calculations. In recent decades, much effort has been devoted to 

calculation of quantum vibrational energy levels of polyatomic molecules from ab initio or empirical 

potential energy functions.  A number of “non-perturbational” methods are available [184-215] (and 

references therein) that aim at an accurate numerical solving of the nuclear motion problem in 

molecules.  This includes variational methods using either exact kinetic energy operator (KEO) 

operator or its approximations [184-204], discrete variable representation (DVR) method [205-210], 

the filter diagonalization techniques [211,212] ,  Multi Configuration Time Dependent Hartree 

(MCTDH) calculations [212, 214] and some other computational techniques.  More extensive list of 

references can be found in [215]. The advantage of some of these methods is that they offer a large 

choices of coordinates and are applicable to non-rigid molecules.  But computational expenses of 

variational methods using exact KEO scale vary rapidly with the number of vibrational modes and 

they suffer from the basis set convergence issues. This concerns also DVR methods.      



There exist also various implementations of the perturbation theory for calculation of vibration 

levels [ 4,5, 134, 170, 216-221], which are computationally less expensive than variational and DVR 

methods.  Carter, Bowman and co-workers [222-224] have developed MULTIMODE code using 

self-consistent field method and an expansion of the potential energy function in normal coordinates. 

In this section we review the normal mode approach in the CT method which had been developed in 

many earlier works [2,3,6-10, 32, 36, 117-142] in the context of the general formalism of Sections 2-

6.  

In further Section 8-13 we compare our calculations with variational and DVR results as a 

benchmarks in order to study the convergence of CT. In the considered test-examples of semi-rigid 

molecules, a systematic account of high-order terms permits converging CT to very accurate results 

in a large domain of energies, whereas calculations prove to be very fast. Unlike most of variational 

and DVR methods the present approach is purely algebraic one and the major part of calculations 

which involves operators is done analytically. 

 

 

5.1. Normal modes 

 
The general expression for the vibration-rotation Eckart frame molecular Hamiltonian in normal 

coordinates has been derived by Watson [225, 226] based on previous work of Wilson and Howard 

[227] and Darling and Dennison [228].   It is convenient to divide Hamiltonian and the energy by hc 

and all momenta by  in order to convert all quantities in units traditionally used in molecular 

spectroscopy. The vibration (J=0) part of this Hamiltonian of a non-linear molecule expressed in 

wavenumber units [E/hc] takes the form 

 
3 6

2

vib

1 ,

1 1 1
( )

2 2 8

N

k k

k

H p U q




        
  

      ,     (54) 

 

where q = { q1, …qk, …} denotes the set of  normal coordinates,  k
k

p i
q

 


is the momentum 

conjugated to the qk coordinate, 
1/ 2

,

,

i
i k i k

k
i k

q p



 


 

  
 

  are the Eckart frame components of the 

vibrational angular momentum,  ,i k
  are the Coriolis zeta constants, ( )q    are the elements of 

the μ tensor, k are the harmonic vibration frequencies and U(q) is the molecular potential energy 

function. Here the operators  qk, pk,   and ,i k
  constants are dimensionless, Hvib, U,  and k are 

expressed in wavenumber units.  First three terms in (54) originate from the kinetic energy. 

Ab initio electronic structure calculations usually yield the values of the potential energy on a 

grid of cartesian or internal nuclear coordinates R={R1,R2 , …Rt ,… } resulting in the potential 

energy surface (PES)  U(Rt) in the configuration space. In order to use an an initio or empirical PES 

with the Hamiltonian (54), a transformation from internal R to normal q coordinates is necessary. 

Angular internal coordinates Rt are not in general rectilinear in the cartesian space. If a linear 

approximation R=Lq described in most of textbooks [110 ] is used, then the transformation U(R) => 

U(q) is computationally simple. But the resulting q would be non rectilinear as well, and a simple 

analytical form of Watson Hamiltonian would not be valid. This makes CT calculations more 

cumbersome.  Here we maintain the Heisenberg vibrational algebra for rectilinear normal 

coordinates q, though the CT method can also work with curvilinear ones. 

 



A non-linear transformation from internal to rectilinear normal coordinates has been considered by 

Hoy, Mills and Strey [229]. In the further applications we apply a more straightforward technique of 

Rey et al [202], which is valid at an arbitrary order 

 

, , ,

, , , ,

( )t t t n

t i i ij i j i j k i j k

i i j i j k

R L q L q q L q q q O q            (55) 

Note that an account of non-linear terms in Eq. (55) is crucially important in order to achieve a 

spectroscopic accuracy of calculations. 

 

5.2. Hamiltonian expansion for semirigid molecules    

 
For a semirigid molecule it is usually assumed that U(q) and ( )q can be expanded in a series 

which converge sufficiently rapidly for vibration states under study: 

2
0

1

2
i i ijk i j k ijkl i j k l

i ijk ijkl

U U q k q q q k q q q q              (56a) 

0 ij ijki
i i j i j k

i ij ijk

q q q q q q                       (56b) 

 

The first term in Eq.(56b) defines the equilibrium rotational constants 0 / 2B   . To apply the CT 

procedure, it is necessary to assess the relative orders of magnitude of the various terms. According 

to Nielsen and Amat [2,3 ] the small parameter of the expansions (2), (56) is introduced as follows: 
2/1

B
~ 










  and  1 2 2~ni i i n

k


 
   

   ,    
1 2

2~

ni i i

n 
 
  
 
 

   ,    (57) 

where B and   are average values of rotational constants and harmonic frequencies. It is usually 

assumed that the Nielsen’s    parameter has the same order of magnitude as the Born-Oppenheimer  

  parameter  
1/ 4

~ ~ / ~ 1/10 1/ 30e nm m   . The ordering of various terms has been discussed in 

more detail by Oka [4] and Aliev and Watson [7]. For a semirigid molecule the potential energy 

function has a relatively deep minimum and the zero order approximation is conveniently described 

by a sum of uncoupled harmonic oscillators corresponding to normal vibration modes  

2 2
0

1
( )

2

vib
k k k

k

H p q             (58) 

We shall use the standard ket notations for the zero order eigen vectors (0) (0) (0) (0)

1 2| | | ... | m   v v v v  

where v is the set of vibration quantum numbers 
1 2 k{ ,..., }v v ,v v . According to Amat-Nielsen 

ordering scheme the order of magnitude of operators is assessed via the orders of magnitude of their 

matrix elements in the zero order wave functions. For relatively small vibration quantum numbers 

this implies ~ ~ ~ 1q p v . The Coriolis ,i k
  constants are of order 1, and therefore ~ 1 . The n-th 

order term of the Hamiltonian expansion for n > 0 reads 

0 2 0 2

1 2 1 2 1 2 1 2

1 1
( ) ( )

2 8
n n

n n n n

i i i ivib

n i i i i i i i iH k q q q q q q 

   
             (59) 

The second and the third terms in (59) appear for 2n  . An alternative description of this procedure 

is to say that elementary operators {p…pq…q, q…qp…p} form a basis for H expansion in the L 
algebra introduced in Sections 2.2 -2.4 because    operators are expressed in terms of qp products.  

But this basis in not the most convenient one for high-order CT calculations. 

 



   5.3.  Vibrational operator eigen basis and vibrational algebra 

 
In order to simplify CT computations, it is convenient to rewrite the expansions (56, 59) in terms of 

the creation and annihilation operators (a+, a) of vibration normal mode quanta 

1
( )

2
i i ia q ip   , 

1
( )

2
i i ia q ip  , [ , ] 1i ia a      (60) 

The products of creation and annihilation operators form a “canonical representation” for CT of the 

vibration Hamiltonian in a sense discussed in Section 2.4.  From a computational point of view one 

can consider two forms of this representation. 

 

(i) Representation of “running” indices. 

The Hamiltonian terms are given by 

0 ( 1/ 2) ( 1/ 2)vib
k k k k k

k k

H a a N              (61) 

 3
1 (1/ 2) ( 3 ) 3 ...vib

ijl i j l i j l ijj i

ijl ijj

H k a a a a a a k a
     

  
    

  
        (62) 

… 

   *
... ... ... ... ...vib n

n i jl m i j l mH C a a a a
            (63) 

Here k k kN a a is the “number operator” for a vibration mode. It is diagonal in the zero order wave 

functions (0) (0)
,| |k k v vv N v v 

   .  The asterisk in the summation of Eq.(63) means that vib
nH  contains 

the products of (a+, a) operators of the total powers n+2, n, n-2, …down to 0 for n even or to 1 for n 

odd.  The superscript “+” stands for hermitian conjugation.  

 

The coefficients ... ...
n
i jl mC depend on anharmonic force constants krs…t. For n>1 they depend also on 

harmonic frequencies k , the Coriolis ,i k
  constants and the ...ij k

 parameters. An algorithm of their 

calculation in an arbitrary order is rather straightforward. Elementary operators ... ...i j l ma a a a   form 

another basis of expansions in the the L algebra of CT (Sections 2.2 , 2.4). The advantage is that 

this is an eigen basis for two fundamental operations <…> and 
1

(...)
D

 involved in the general 

solutions  of the CT equations.  With the standard choice A =H0 we have [36] 

{ ... ... } ( ){ ... ... }i j l m i j l ma a a a a a a a             (64a) 

1 1 ( )
{ ... ... } { ... ... }

( ... ) ( ... )
i j l m i j l m

i j l m

a a a a a a a a   


    



   D
    (64b) 

Here the symbol ( )   takes the value 1 or 0 depending on the coincidence of the combinations of 

harmonic frequencies:  

( ... ),( ... )( )
i j l m                 (65) 

 

As in Section 2.4 the convention 0/0 = 0 is adopted for Eq. (64b).  The calculation of Sk generators of 

CT (18b) is thus straightforward. For example, one immediately obtains the first generator (16b) of 

CT: 

 3 #
1 1

1
( ) (1/ 2) 3 3 ...

ijl i j l ijl i j l ijj ivib vib

i j l i j l iijl ijl ijj

k a a a k a a a k a
iS H
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     


  
     

     
  D

    (66) 

 



The symbol (#) in the summation means that the vanishing or resonance denominators are excluded 

(see Sections 5.4, 5.5 for more details). 

 
 

(ii) Representation of “fixed mode” indices 

 

For a computer implementation of CT, it is more convenient to fix indices of operators for each 

vibration mode. In this convention, the expansions (56a), (56b) take the form 

 
31 2

1 2 3... 1 2 3 ...
mm m

m m mU K q q q ,  31 2

1 2 3; ... 1 2 3 ...
mm m

m m m q q q        (67) 

 

An elementary vibration operator of the L algebra of CT in (a+, a) representation is written as 

follows 

, 1
{ ( 1) ( ) }

2
V W W    ub ub ub ,   where 3 31 2 1 2

1 2 3 1 2 3( ) ( ) ( ) ...( ) ( ) ( ) ...
u bu u b bW a a a a a a  ub

 (68) 

 

Here the super-index  distinguishes hermitian ( = 0) and anti-hermitian ( = 1) operators. Γ is a 

symmetry species (irreducible representation) of a symmetry group of the molecule. The components 

of formal vectors u={u1, u2, u3…} and b={b1, b2, b3…} are integer powers of creation and 

annihilation operators. For non-degenerte vibrations these vectors unambiguously determine . For 

example, in the case of a bent triatomic molecule of the C2V group one has: =A1 if u3+b3=even and 

=B1 if u3+b3=odd. For triatomics of the CS group all vibrational operators (68 ) belong to 'A  . 

 From Eqs (68) one has the following hermicity properties ( )W W 
ub bu

 and  , ,( 1)V V


  ub ub

   in  

case of scalar vibration operators. The action of the operations <…> and 
1

D
(…) on the elementary 

vibrational operator (68) reads  

, ,V V   ub ub ub

   and  , 1,11
( )

( )
V V  


 

ub
ub ub

u b

 

D 
   (69) 

Here 
1 2 3( , , ,...)     is a formal vector composed of harmonic frequencies. The constant ub  plays 

the role of an extended Kronecker symbol taking the values 0 or 1 only. In a non-degenerate or pure 

degenerate case 

  ub =1 if   u b  ,  ub =0 otherwise      (70) 

 

Here u , b , ( ) u b  denote usual scalar products: 
1 1 2 2 ....u u   u   .For a pure vibrational 

CT with scalar vibration operators one has 

 

10,( ) 1
{ }

2

Ak n,k n,k

nH t V t W W   ub ub ub ub bu

ub ub

,   11, 1
{ }

2

Ak k

kiS s V s W W   ub ub ub ub bu

ub ub

,  (71a) 

 

where the coefficients t and s are real. This follows from hermicity and time reversal properties of 

CT. The maximum power ( )i iu b  of vibrational operators in Eq.(71) is n+2 for the Hamiltonian 

term ( )k

nH  and k+2 for 
kS  generators of CT.  After having completed k-1 transformations according 

to the scheme of Sections 2.1, 2.3 one immediately obtains the parameters of the k-th transformation 

 

(1 ) /( ( ))k k,k-1s t   ub ub ub u b      (71b) 

 



For vibration-rotation CT, other types of operators (68) can be involved in the expansions (7)-(12) 

and we need to compute vibrational commutators and anti-commutators of a general form  

 
, , , ; ,[ , ]V V V

        

        ub u b ub,u b ;u b u b

               (72) 

 

From the mathematical point of view 
, ;   

   ub,u b ;u b

     are the structural constants of the L algebra of CT.  

 

This part of the algorithm is a general one for a semirigid polyatomic molecules. Expressions for 

commutators of the operators ,V 

ub

  are given in the Appendix I. 

 

 

 

5.3 Non-degenerate case 

 
   The simplest case corresponds to non-degenerate vibrations without resonance coupling.  

The conditions (65), (70) allow non-vanishing diagonal contributions ( ( ) 1  ) for those terms 

in the transformed Hamiltonian H which have the same powers of creation and annihilation 

operators. These contributions can be expressed in terms of the “number operator” k k kN a a  of 

normal modes  

 

ij i j ii i

ij ii

C a a C N             (73) 

( ) ( 1)ijkm i j k m ijij ijji i j iiii i i

ij i j i j

C a a a a C C N N C N N 

 

             (74) 

… 

In the representation of “fixed mode” indices on has 

 
1 2[ ] [ ]( )

1 2 ...
u un n,n n,n

n nH H t W t N N    uu uu uu

u

       (75) 

Only even order corrections are non-vanishing. Here the notation [ ]mN stands for the factorial 

polynomial 
[ ] ( 1)...( 1)mx x x x m     for m 1,  [0] 1x        (76) 

The transformed Hamiltonian ( )n

n nH H H    is then diagonal in the zero-order harmonic 

oscillator wave functions (0) (0)
,| |H E  

  v v vv v  and the vibration energies are directly obtained 

by replacing Ni with vibration quantum numbers vi 

 
1 2[ ] [ ]

1 2

,

...
u un n,n

n n

E E t   uu

u

v v v v          (77) 

For the n-th order correction (75) the maximum total power of Ni operators is n/2+1. 

This is rather trivial case, which is not of the major interest for molecular physics applications. 

The results are similar to a conventional perturbation theory, which can be found in standard 

textbooks on quantum mechanics. A technical difference is that CTs avoid intermediate 

summations in quantum numbers.  

 

5.4 Degenerate vibrations: irreducible tensor operators 

 



Consider first a twofold degenerate vibration described by the components (q, q) with  

 =  = .  Eqs. (64a, 69) allow for additional block-diagonal operators n n    and 

n n 
    where n a a  

  because ( ),( )( ) 1  
    . Due to the factor  1 ( ) 0    in Eqs.( 64b), 

(69) these operators do not appear in 
kS  generators of CT but contribute to the transformed 

Hamiltonian ( , ; , )H f N N n n   

 .  All the equations and the recurrent algorithm of CT remain 

unaltered. The corresponding effective Hamiltonians are diagonal in the principal quantum 

number v  but not in l quantum number of the zero-order wave functions (0)| , l v . 

 

For molecules of high symmetry, a formulation in terms of irreducible tensor operators (ITO) 

[11, 14, 116, 202-204, 230-232] is the most suitable one for the description of degenerate 

vibrations. For example, normal mode vibrations of XY4 type molecules are fully described by 

four irreducible tensor coordinates:  1
11 { }

A
qq , 2 2 2{ , }E

a bq qq , 2 { , , }
F
t tx ty tzq q qq  (t=3,4) 

corresponding to one non-degenerate mode (1 ), one twofold  degenerate mode (2 ) and two 

triply degenerate modes (3 and 4 ). The upper indices are the symmetry types of the Td point 

group. 

 In general, let us denote ( )sa  tensor annihilation operator with the components { , ,...}s sa a    

and ( ) 
sa  tensor creation operator with the components { , ,...}s sa a 

  . Their components are 

related to the coordinate and momentum operators by the standard definition (60), and  is the 

irreducible representation of the molecular point group.  A tensor product of two irreducible 

tensor operators 
A and 

B can be expressed as 

 

,

( ) ( , | )A B
   

 



      A B   

 

    ,     (78a) 

where ( , | )        are the Clebsch-Gordan point group coefficients. For a molecule with k 

vibration modes the definition of a general elementary vibration operator (68) is extended as 

 

1 1

1 1 1 1{(( ... ) ...( ... )) (( ... ) ...( ... ))}

k k

k k k k

u mu m

W             
um

a a a a a a a a     (78b) 

An unambiguous definition of the operator basis of the CT algebra L  requires a full description 

of the coupling scheme for all nontrivial intermediate products involved in (79). Here  

designate collectively the set of all intermediate coupling indices. Various coupling schemes for 

Td , C3v and Oh molecules have been described in detail by Champion et al [11], Zhilinskii et al 

[116], Nikitin et al [14, 231], Boudon et al [230] and Rey et al [202-204, 232]. 

  

All basic equations of CT remain unaltered in the tensorial formalisms. The actions of 

operations <…> and 
1

D
(…) on the elementary vibrational operators (79) are exactly the same as 

described in the previous sections 

 W W   um um um

      ,         and     
11

( )
( )

W W 


 

um
um um

u m

 

D 
    (79) 

independently of the coupling scheme   and independently of the ordering of ( )sa , ( )sa  

operators in (79). They are also independent of the components of degenerate vibrations. 

The procedure of calculation of 
kS  generators of CT and of ( )k

nH  terms is thus very similar to a 

non-degenerate case. A considerable difference concerns only the computation of commutators 

because this requires a re-coupling of intermediate products in (79) as discussed in [116]. 



The transformed vibrational Hamiltonian H  is much simpler and contains less number of terms 

than the initial one. In the absence of accidental resonances, it takes the form 

 
1 1( ) (( ) ( )) ...

A Avib

s sm

s sm

H C C C         s s s m s ma a a a a a+ +    (80) 

Vibration sub-levels of overtone and combination states are obtained by the diagonalisation of 

the corresponding finite dimensional blocks.  This simple example contains some common 

features for more interesting cases involving the separation of vibration and rotation variables 

and high-resolution spectra calculations. One of such features is the vibrational extrapolation 

scheme [11], which also applies for accidental resonances considered in the next sections and 

proves to be very useful in molecular spectroscopy 

 

 

 

5.5 Resonances 

 
For near-degenerate vibration states V VE E   the resonances can occur if the energy separation 

is not large compared to corresponding coupling matrix elements. Various types of resonances in 

polyatomic molecules including essential and accidental resonances have been extensively 

studied in the spectroscopic literature (see [2-11, 15, 41-63, 117-139,232] and references 

therein). In the zero order approximation the near degeneracy is due to a near coincidence of 

some combinations of harmonic frequencies
1 1

... ...
k mb b d d        . A corresponding 

coupling matrix element results from the vibrationally off-diagonal resonance term 

... ...res
b d k mh a a a a   appearing in the Hamiltonian expansion (62-(63). The conventional condition 

0[ , ] 0H H  applied on the transformed Hamiltonian H  would result to small denominators in 
kS  

generators of CT. In order to avoid a divergence of CT expansions a more general condition 

[ , ] 0H A  can be applied as discussed in Sections 2.2 and 2.6.  The modelling operator of CT is 

naturally introduced as follows: 

m m m

m

a a A , where   
1 1

... ...
k mb b d d       ,  (81a) 

      which in the case of degenerate vibrations takes the form:  

 

  1{( ) ( ) }
A

s

s

   A s sa a+       (81b) 

 

Here constants i are arbitrary chosen to strictly satisfy the requirement (81a). The relations 

among i  following from the molecular symmetry have to apply for i as well. All CT 

equations of the previous sections remain valid with the obvious substitution ( ) ( )    . Note 

that A is not considered here as a zero-order approximation. The operator (81) serves for the 

transformation condition [ , ] 0H A only. Consequently all CT denominators 
1[( ... ) ( ... )]i j l m          keep containing true vibration frequencies t . The resonance terms 

... ...res
b d k mh a a a a   corresponding to ( ... ),( ... )( ) 1

i j l m
           are then considered as block-

diagonal ones. In this way the small resonance denominators are automatically excluded from 
kS  

generators (18), (22) due to the factor  1 ( ) 0    in Eqs.(64),(69). 



In the representation of fix-mode indices (Section 5.2), this can be summarized as follows. A 

resonance condition reads 

( ) ( ) 0i i i

i

r r    r r      ( ) 0 r r      (82) 

where the vectors r ={r1, r2,…} and r={r1, r2,…}  have integer positive components ri , ri. The 

action of CT operations on elementary resonance terms is very easy to compute 

 11
1 1( ) ...( ) ... kk rrrrres res

k kh h a a a a
 

 rr ,  res resh h  ,  
1

( ) 0resh 
D

  (83) 

Several resonance conditions of the type (82) can occur simultaneously. The transformed 

Hamiltonian H  obtained via Eqs. (18), (22) contains hermitian combinations of the vibration 

number operators k k kN a a  , block-diagonal n  like terms for degenerate vibrations, and various 

resonances operators (1)resh , (2)resh ,… 
( ) (1) (2)( , , ,..., ( ) ( ) ,...) (...)res j res m res k

i i jH f N n h h h N N n f 

      (84) 

 

An extension of the relations (81)-(84) to molecules of high symmetry groups using the 

irreducible tensor formalism is straightforward. 

 

The simplest 1:1 resonance occurs due to the condition 
i j  . For example, this condition 

generally occurs in bent triatomic XY2 molecules between symmetric and anti-symmetric 

stretching vibrations  1 3  . This results in the first-order vibration-rotation Coriolis 

resonances between fundamental vibrational states v =(100) and v =(001). A pure vibrational 

coupling between these states 1 3h a a  is only allowed for non-symmetric isotopologues with 

different edge atoms (Cs point groups). For C2V point groups the same condition 1 32 2   

results in the vibrational 2:2 resonance between  (200) and (002) states of A1 symmetry type 

which is called Darling-Dennison (DD) resonance [228]. The simplest second-order resonance 

DD term is 1 3 1 3
DDh a a a a  .   It is not possible to eliminate resonance interaction terms from the 

Hamiltonian by a small contact transformation (3). This gives rise to subsequent polyads of 

coupled vibration state. The classical polyad scheme due to 1:1 and 2:2 resonances is described 

with the polyad number 1 3P = v v . The series of polyads for v2=0 contain the following 

vibration (v1 v2 v3) states: 
 

P=0:  {(000)}           

P=1:  {(100)/(001)}          

P=2:  {(200)/(101)/(002)} 

… 

P= v1 +v3: {(v1,0,0)/(v1-1,0,1)/(0,0,v3)}       (85) 

… 

 

According to Eq.(35) the transformed Hamiltonian takes a block-diagonal form in the zero order 

wave functions (Fig 1). Each block corresponds to an effective Hamiltonian “projected” onto the 

corresponding polyad sub-space 

 

   P P PHeff HP P       (86) 

 



Here  
(0) (0)

P

P

| |


  P
v

v v  is the projector onto the set of zero order wave functions 

belonging to the polyad P.   An application of CT for an accurate derivation of 
effH for the 

polyads (85) of the water and ozone molecules in comparison with DVR calculations is 

discussed in Sections 8 and10. Another well-known example is the Fermi resonance 1 22   

between bending and stretching vibrations  {(020)/(100)}, …{(0,v2,0)/(1,v2-2,0)/ (2,v2 -4,0)/…}, 

…The major coupling is due to the term   1 2 2
Fh a a a  . An application of CT for the simultaneous 

DD and Fermi resonances in SO2 molecule is discussed in Section 9. 

 

For a case of degenerate vibrations and/or accidental resonances this procedure provides a 

separation of regular interactions and of secular terms. Regular anharmonic interactions are 

systematically accounted for by small successive CT. The vibrational extrapolation scheme 

discussed in Section 5.6 is also valid in this case but is formulated in terms of successive 

polyads. It is also valid for effective models accounting for resonance interactions. For example, 

in the case of the polyad scheme (85) the quadratic terms in H  specific for the dyad 

{(100)/(001)} contribute also to the matrix elements of the triad {(200)/(101)/(002)}, tetrad, and 

all higher polyads. More complicated examples of global analyses of high-resolution spectra 

using effective models with vibrational extrapolations were considered in [11, 42, 45, 233,234]. 

The secular problem is solved at once at the very end by the diagonalisation of 
eff

PH  on the 

finite dimensional polyad sub-spaces.  

 

An alternative way of defining the polyad scheme is to give a list of all operators belonging 

to the requested subset 
( )AL  of the CT algebra as discussed in Section 2.2. This will 

unambiguously define the operation < … >  < … >A  and thus impose the condition (14) on the 

desired effective resonance model.  Strictly diagonal terms must be necessarily included in this 

list.  

For highly excited vibration states an overlapping of polyads can occur. The general formulation 

of CT is still applicable for overlapping polyads. The definition of the subset 
( )AL  of the CT 

algebra (14) has to be extended by the explicit inclusion of the inter-polyad resonance coupling 

terms. The general solutions of CT equations (18a,18b) and the techniques of calculations remain 

unaltered. The CT operations  < X >  < X >A  and
1 1

( ) ( )X X X   
A

D D
 are correctly 

defined in this case as well ( Appendix I ) 

 

 

6. Rotational operators 

 
6.1. Elementary operators (“operator basis set”) for the rotational algebra 

 

The angular momentum components Jx, Jy, Jz in the molecular embedded Eckart frame satisfy the 

following commutation relations  

[ , ]J J ie J      ,      (97) 



where eαβγ is the antisymmetric unitary tensor. Here they are defined as non-dimensional operators 

by the substitution / J J . The molecular fixed ladder components are defined as 

x yJ J iJ  . For an analytical function f(x) the shift-relations [6]  

( ) ( )n n

z zJ f J f J n J   and ( ) ( )n n

z zf J J J f J n     (88) 

play a key role to derive algebraic properties of Hrot terms. For the generality of the approach it is 

appropriate to classify rotational operators according to the irreps , , ,x y zA B B B  of the D2 point group 

{
2 2 2, , ,x y zE C C C } composed of three orthogonal axes of second orders.  The full symmetry properties of 

the molecule will be accounted for at the final step of the Heff transformations. 

An elementary homogeneous polynomials can be characterised using the following labelling: 

powers of rotational components J  , zJ  and of 2
J  (below n,m,l ); symmetry species ; hermicity 

index   distinguishing hermitian ( = +1) and anti-hermitian ( = -1) operators;  time reversal [15]  

index    with  = +1 for invariant and = -1for anti-invariant terms.  

 

R-operators basis set in the D2 point group. 

 

This type of operator basis set [39] has been often employed for a modelling of high-resolutions 

spectra of low symmetry molecules as well as on sub-groups of high-symmetry species [15]. The 

definition was adapted to above explained hermicity and symmetry labelling 

      

, 2

, ,2 ( ( ) )
2

l

m n l mn mnR Z Z 

    J 
 ,                                                (89) 

where   is a phase factor,  2 2 2 2

x y zJ J J  J  and “one-rotational-diagonal” operators are defined as 

( / 2)m n

mn zZ J J m        and       ( / 2)n m

mn zZ J m J   ,    (90) 

being hermitian conjugate one to the other: ( )mn mnZ Z

   and ( )mn mnZ Z

  . As mentioned above 

for the sake of generality one can consider the symmetry classification on the D2 point group 

independently of the molecular point group according to [15]. Elementary rotational operators (89) 

fall in two sub-sets corresponding to the symmetry species  , yA B   and  ,x zB B   for which 

the signs in Eq.(94) are defined as follows: 

( ) 1  ,  if          and       ( ) 1   ,    if             (91) 

By definition the hermicity index  verifies the relation   , ,

, ,2 , ,2( )m n l m n lR R


    and is 

unambiguously determined by the powers m, n of the  J  , zJ  components: 

( 1)   m n                (92) 

There are two convenient choices of the phase factor   in the definition of elementary rotation 

operators [15]. 

 () the simplest choice for which all ,

, ,2m n lR   have real matrix elements in the standard |J,k >  basis 

set: 

 1 ( )                                                                              (93) 

However in this case rotational operators of   symmetry type are anti-invariant under the time 

reversal and consequently corresponding Hamiltonian parameters would take imaginary values.  

  ()  the choice for which all 
,

, ,2m n lR 
 are invariant under the time reversal operation 

1,
1

,

for

i for

  
    

  
        (94) 



As the full Hamiltonian H is also invariant under the time reversal, all parameters involved in the 

Hamiltonian expansion remain real.  Though matrix elements of ,

, ,2m n lR
  in the standard |J,k >  basis 

set are imaginary with this choice, it is possible to convert the Hamiltonian matrix in a real form by 

an appropriate transformation of the basis set functions. 

The exact expressions for commutators and anti-commutators of the operators ,

, ,2m n lR   given 

in [39] for   symmetry species could be easily extended to a general case. 

 

 
R-basis 

 
This operator basis can be viewed as an extention of notations traditionally used in spectroscopic literature for 

A- reduction [  255  ] of effective rotational Hamiltonian. 
, 2

, ,2 {( ), }m m n l

m n l zd J J J 

   JR  , if 1 1( , )A B  for C2v or 'A   for Cs  

The hermicity and symmetry species are unambiguously defined by powers m,n. For the case defined by Eq. (16a) 

( ) ( )m n    ,  
1

m nB    for C2v, and 'A   for Cs    

The “normalisation constant” d is chosen to preserve a simplicity of relations with traditional A-reduction notations22: 

d=1/4 for hermitian terms ( =0, m+n=even) and d=1/2 for anti-hermitian terms ( =1, m+n=odd). 

 

J-basis 

 
This is a standard cartesian component basis introduced by Watson [  255  ]. We denote it as following 

,

, , ( )a b c c b a

a b c x y z z y xJ d J J J J J J    , where ( ) ( )a b c      and 
2 1 2 2

( )

a b c

v

a b

s

A B B for C

A for C


  


  

The hermicity is unambiguously defined by powers a,b c : an elementary operator is hermitian (=0) if a+b+c=even and 

anti-hermitian (=1)) if a+b+c=odd. The “normalisation constant” d is chosen to preserve the invariance of the operators 

under the time-reversal: d=1/2 for hermitian terms ( =0) and d=i/2 for anti-hermitian terms ( =1). Calculations (i), (iii) 

described in Sect. 2 are available in all three rotational R, R and J representations.  

 

 

6.2.  Perturbative approach for (partial) separation of vibrational and rotational motion in 

Watson-Eckart Hamiltonian 

 

The Watson-Eckart vibration-rotation Hamiltonian of a semi-rigid molecule in the normal-mode 

representation can be partitioned in the following form  

 

,vr vib vib rotH H H   

      

,

{ [ , ]}
2

vib rot

hc
H J J J      

 

     
  (95)

 

 

It is usually considered that (except for floppy molecules having low bending or torsional modes) the 

vibrational motion is significantly faster that the rotational one. In this case the perturbation theory 

applies, as reviewed and well documented in [2-7].  

Because the initial and transformed Hamiltonians have to be totally symmetric, all terms 
( )k

nH involved in CT are expressed as linear combination of totally symmetric rovibrational 

contributions. For this reason they contain products of vibrational V and rotational R factors of the 

same symmetry species 
V R      

( )k

nH h ubr , 
, ,h t V R  ubr ubr ub r ,    (96) 



where t is a numerical parameter corresponding to the rovibrational contribution. In order to apply 

the latter condition, one has to establish an isomorphism between the D2 group (see §3.3 above) and 

the molecular point group G or one of its sub-groups. If it is not the case one can work with a sub-

group of D2. For a very large panel of molecules one can use an isomorphism for subgroups 
sC G

 
and 

2sC D . With an appropriate choice of axes we have A    and A    in Eqs.(89-94) 

where Aand A  are symmetry species of the 
sC sub-group. Another approach would be working in 

the ITO representation accounting for the full molecular symmetry.  

The hermicity of rotational and vibrational factors must be the same 
V R    . As in Section 

3.2, the vector indices in Eq.(26) u={u1, u2, u3…} and b={b1, b2, b3…} 
 
represent powers of creation 

and annihilation operators for normal vibration modes and ( , ,2 )n m lr  represents powers of 

rotational components as in Section 3.3. In a framework of the conventional perturbation theory for a 

separation of molecular variables (vibrational zero-order approximation), the rotational factors 

behave like constant parameters with respect to operations of CT 

VR V R  and 
1 1

( ) ( )VR V R
D D

    (97) 

This means that Eq. (64,97) and commutator relations are in principle sufficient to carry out 

computation up to a needed order. Note that the exact formal polynomial algebra for rovibrational 

operator involved in the ro-vibrational Hamiltonian transformations up to arbitrary power M has 

been implemented [39] accounting for all contributions in commutators and anti-commutators. These 

calculations are rather involved and are included as a FORTRAN routine of MOL_CT program or in 

the form of tables for Lie algebra structure constants readable by an external code.  

 

In this context the approach outlined above (Section 3) for the effective separation of fast and 

slow motions applies, and the CT method is often used for approximate separation of vibrational 

motion in the Hvib-rot Hamiltonian. This separation is complete in the case of relatively isolated non-

degenerate vibrations leading to effective rotational Hamiltonian for this vibrational state. Otherwise 

(for degenerate vibrations or in cases of accidental resonances) the separation is only partial one 

leading to effective Hamiltonian composed of rotational blocks. However, the resulting effective 

Hamiltonian allows for building much simpler theoretical models. The advantage of such models is 

that corresponding matrices are finite-dimensional focused at a particular energy range. This makes 

easy to use effective models for the experimental data reduction by fitting parameters to observed 

transitions. The CT method allows for accurate computing initial physically meaningful values for 

these parameters from ab initio PESs. 

 

 

7. Computer implementation : MOL_CT code 
 

The method is implemented as a suite of MOL_CT computer programs at two different 

levels. The “external level” involves the recurrent scheme of CT based on “layer-by-layer 

calculations” (Sections 2.1-2.4) with the account of the generalised Wigner theorem (Sections 

2.3) and the optimized algorithm of Section 4.  Given the final order n of CT specified by the 

user, the program build the “tree of contributions” required for this order and produces a list of 

all necessary commutators. At this level the method is a general one applicable to the derivation 

of effective Hamiltonians for any quantum mechanical problem with a degenerate or quasi-

degenerate zero order approximation and to a separation of variables by small successive 

transformations according to Section 3. 

The “internal level” of MOL_CT specifies particular features of a concrete problem to solve.  

In order to build an Heff at this level one needs to pass by the following steps:  



(A) generate Hn in appropriate coordinates and axes and define the ordering scheme 

(B) define an appropriate decomposition of the CT algebra 
( ) ( ) AL L L  depending on 

resonance conditions and the desired model 

(C) specify the action of  CT operations <…> , 
1

(...)
D

 on elementary expansion operators 

(D) describe the commutator algebra in L 

(E)  program the terms reduction 

 

      In the current implementation the “internal level” of MOL_CT is designed for molecular 

vibration-rotation calculations of semirigid molecules. A scheme for the implementation 

corresponding to the steps (A)-(E) is shown in Figure 6.1 

 

 
 

Fig 6.1 => Figure 1. Genergic scheme of the application of MOL_CT program suite to vibration-rotation polyad 

analysis.  T stands for the kinetic energy operator, the PES for the potential energy surface , Pn for vibrational 

polyads and 
PP  for the corresponding projectors in the definition of effective Hamiltonian  eff

P P

P

HH P P . The 

matrix of effH is taken over vibrational basis state functions, each matrix element being a rotational operator. The 

diagonalization of the matrix produces rovibrational level parrerns with increasing J schematically shown at the 

right-hand side. 

 

 

Compared to previously available CT calculations, we take into account all these terms up to a given 

order in a numerically exact way. This has become possible since structural constants of 

rovibrational Lie algebra are programmed in MOL_CT without any omissions or approximations. In 

particular, we do not use a traditional approximation of “main (anti-)commutator contributions” [3,7]  

that limits the final accuracy.  Even though many of high order terms would be small, an 

accumulation of a large amount of contributions (1.5 million for the 8-th order in triatomics) requires 

a full account of them in order to reach a spectroscopic accuracy in line positions. Otherwise a 

convergence of CT is rapidly deteriorated. A fast CT algorithm implemented in MOL_CT allows 

generating a full set of non-empirical rovibrational effective Hamiltonians eff

PH  for a triatomic  

molecule up to 8-th order takes few minutes with a standard desktop computer. 
 

 

8. One-dimensional convergence test using exactly solvable potential 



     
A simple test of the validity of the general recurrent scheme, of the vibrational commutator algebra 

and of the convergence of CT is possible with 1D exactly solvable potentials. The well known model  

Kratzer potential 2 2( ) 2 ( / /(2 ))e eU r D r r r r    has a qualitatively correct asymptotes (U  for 0r   

and 0U  for r  ) and allows for an exact solution of the stationary Schrödinger equation. Exact 

vibration energies expressed in wave number units [cm-1] are [235, 6] 
6 4 2/ (1/ 2) {( 1/2) + 1/4 + }Kr

eE hc      v v+      (98) 

Here re is the equilibrium internuclear distance, e is the harmonic frequency, D is the dissociation 

limit corresponding to the depth of the potential well and / 2e D  . To fulfil the CT test, we 

proceed with the same steps as described in the previous sections: 

(i) The potential is expanded in Taylor series 2

3

( / 2) m
e m

m

U q K q


  in the dimensionless 

normal coordinate 1( ) /e eq r r r   . This gives simple expressions for the anharmonic coefficients 
2( 1) ( 1) / 2   m m

m eK m .  

(ii) The vibration Hamiltonian H=T+U is expanded in powers of the small parameter   and 

Hn terms are converted to the  a+,a representation.  

  (iii) According to the prescriptions of CT the initial Hamiltonian H is transformed to H  

which is diagonal in the zero order harmonic oscillator wave functions 

 1
,2

, ,

(( ) ( ) )n,0 i j j i

i j

n i j

H t a a a a              
[ ]

,

,

mn,n

m m

n m

H t N       ,

,

( -1)...( - m +1)n,n

m m

n m

E tv v v v  (99) 

Such a test has been applied to check analytical formulae for Dunham spectroscopic constants at 

lower orders [6, 113].   The results given in Fig 2 show a good convergence of energy calculations 

up to v =50.  Fig 7.1 shows an exponential convergence of CT for such a simple model system. 

Rather high orders are required to achieve a spectroscopic accuracy, but for the 24-th order the CT 

calculations take only tiny fraction of second of CPU time on a standard PC.  Similar convergence 

trends are obtained with Morse and Pöschl–Teller potentials. This test helps validating general 

recurrent relations of CT and the vibrational commutator algebra at high orders 
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Fig 8.1. => Figure 2. CT convergence test using the exactly solvable Kratzer 1D potential.  The parameter values =1000 cm-1 and =0.07 are 

used. The RMS deviations (Eq(98)-CT) versus increasing orders are calculated up to Vmax indicated in the frame. 

 

 

 

 

 



9. DD resonance: example of vibrational stretching polyads for H2O 
 

As a simple example for CT application we consider first the 1:1 vibrational resonance with 

closed harmonic frequencies (1  3). For a C2v molecule a purely vibrational coupling of 

wavefunctions is symmetry allowed for the overtone states like (200)/(002) and is known as Darling-

Dennison (DD) resonance. This type of resonance coupling is very common in molecular 

spectroscopy.  In this case, in additional to the diagonal terms (75), the Heff includes the resonance 

terms  like  
1 1 3 3 3 3 1 1

    res

DDh a a a a a a a a  at the order two (o2 in abbreviated notations), 

1 1 1 1 3 3 1 3 3 1 1 1

      res

DDh a a a a a a a a a a a a  and 
1 1 3 3 3 3 3 3 3 1 1 3

      res

DDh a a a a a a a a a a a a  at the order four (o4) and 

so on.  Let us apply CT calculations to water stretching vibrations as a benchmark, which is usually 

considered as a quite challenging test, because this molecule is a nonrigid one possessing a low 

linearity barrier. It is well-known [238] that a standard power series expansion in the bending 

coordinate q2 is not well convergent that represent a severe problem for a perturbation treatment, 

particular for an effective rotational Hamiltonian [239]. The calculation of rovibrational spectra of 

water is commonly considered as a touchstone for many theoretical models. Because of well-known 

non-rigidity effects, polynomial expansions for effective Hamiltonians have a very slow rate of 

convergence [239] even for medium values of quantum numbers. The strong bending-rotational 

coupling makes it extremely difficult to reach a high-resolution accuracy both in theoretical 

predictions and in empirical fits [240] to observed data. Numerically exact varitional [236] or DVR 

approaches [205-208, 241] are more appropriate to compute ro-vibrational spectra in this case being 

capable to produce accurate line lists for various databases [58, 241] . 

       Here we consider a possibility to decouple stretching modes from the bending mode using the 

above described CT technique.  This can help understanding applicability limits of the method in 

such unfavourable case for a perturbative treatment.  In high-resolution spectroscopy analyses it is 

well known [41]  that for rovibrational calculation one has to account also for Fermi ro-vibrational 

resonance (due to 122), but for pure vibrational problem the latter one is much less important as 

will be seen in further results.  

 For this test, we used Partridge-Schwenke (PS) PES [236], which accounts for DBOC 

corrections, with nuclear masses in comparison with precise DVR calculations by Li and Guo [208]. 

The convergence of the eigenvalues of Heff(CT) with orders o2, o4, o6, o8, o10 for vibrational levels 

of stretching DD polyads up to four vibrational quanta is given in Table 3. 

 

 

Table 9.1  => Table 3. Convergence of CT for stretching vibration levels of H2O: comparison 

with DVR calculations  
Glob assign Normal assign  E/hc (DVR)                    E/hc ( DVR – CT)  

 N Li[208]   CT     [208]        o2    o4   o6   o8  o10  

            

A  4 (100) (100)    3657.04      1.66   -0.29   0.03   0.04   -0.04  

B  1 (001) (001)    3755.95      2.02   -0.22   0.07  -0.02    0.01  

                            

A  9 (200) (200)    7201.55      7.61   -1.03   0.06   0.06   -0.10  

B  4 (101) (101)    7249.85      7.54   -0.77  -0.06   0.03   -0.05  

A 10 (002) (002)    7445.11      4.73   -0.52   0.10  -0.06    0.02  

                            

A 20 (300) (300)   10599.70     21.16   -2.10  -0.27   0.19   -0.08  

B  9 (201) (201)   10613.40     21.18   -2.04  -0.54   0.13   -0.08  

A 21 (102) (102)   10868.91     10.06   -1.92   0.24   0.02   -0.07  

B 10 (003) (003)   11032.45     11.44   -0.71  -0.12  -0.07    0.07  

                            

A 34 (400) (202)   13828.16     44.80   -4.27  -2.03   0.28    0.05  

B 18 (301) (301)   13830.85     45.12   -4.03  -1.90   0.50    0.31  



A 37 (202) (400)   14221.13     23.05   -4.87   0.95   0.26   -0.32  

B 21 (103) (103)   14318.77     22.21   -2.45  -0.62   0.18    0.06  

A 38 (004) (004)   14537.40     21.15   -0.87  -0.66  -0.06    0.16  

            

 rms       22.02    2.39   0.84   0.19    0.14  

---------------------------------------------------------------------------------------------------------------  

Notes :  all E/hc values are in cm-1,  - symmetry type ( A –symmetric and B anti-symmetric with respect to permutation 

of edge nucleas) , N –global ranking number in DVR calculations using PS PES[236 ], (v1v2v3)  - normal mod 

assignment 

 

It is seen that CT calculations for stretching vibrations converge well to numerically exact DVR 

values computed with the same PES [236] . A comparison with experimental values is shown in 

Table 8.2. The third column gives the local mode assignment, whereas last three columns give 

squares Mn(%) of the expansion coefficients in the normal mode basis set.  Both variational 

calculations by Child and Lawton [242], Li and Gou [208], Kellman effective model [70] and semi-

classical analysis of bifurcations of periodic orbits by Mauguiere et al [93] have shown that a 

transformation from normal to local mode vibrations in water molecule occurs at the bottom of the 

stretching polyads.  The local mode (“L”) and normal mode (“N”) behaviour of wavefunctions is 

indicated in Table 8.2 in with “L” and “N” symbols.  An algebraic equivalence local mode 

anharmonic-oscillator model and Darling-Dennison coupling was demonstrated by Lehmann [243], 

but for a simplified quartic model.  

 A typical characteristic of the local mode behaviour is a near degeneracy of the doublets of 

corresponding levels with symmetric (A) and asymmetric (B) wavefunctions at the bottom of the 

stretching polyads. This effect, which is characterised by rapidly decreasing splitting between quasi-

degenerate doublets E = (E[n,0]+) - (E[n,0]-)  for high values of  local mode quantum number n, is 

commonly considered as a difficulty for the normal mode approach, which was not appropriate to 

describe this progressive E quasi-degeneracy of local modes.  It is quite surprising that the CT 

method describes well this effect ( at least up to five quanta states) using the conventional normal 

mode representation in ab initio PES without any adjustable parameters, though sufficiently high 

orders are required to converge the results to experimental values as shown in Fig. 3.   



Table 9.2. => Table 4. Stretching vibrational energies of H2O calculated with successive orders of CT: 

              Comparison with DVR and with observations 
 
 

P nP Local mode 

assignement 

     Obs. 

      cm-1 

Obs.-CT 

    cm-1 

     CT 

     o10 

 N/L type 

ref [70] 

                 Normal mode contributions (PS PES + CT) 

M1 

(%)       
1 2 3( )v v v  M2(%)         

1 2 3( )v v v  M3(%) 
1 2 3( )v v v  

             
1 1     [1,0]+     3657.05    -0.03    3657.08 N 100 (100)     

1 2     [1,0]-     3755.93    -0.01    3755.94 N 100 (001)     
                        
2 1     [2,0]+     7201.54    -0.11    7201.65 L 88 (200) 12 (002)   

2 2     [2,0]-     7249.82    -0.08    7249.90 L 100 (101)     

2 3     [1,1]+     7445.07    -0.02    7445.09 N 88 (002) 12 (200)   
                        
3 1     [3,0]+    10599.69    -0.09   10599.78 L 55 (300) 45 (102)   

3 2     [3,0]-    10613.36    -0.12   10613.48 L 88 (201) 12 (003)   

3 3     [2,1]+    10868.88    -0.10   10868.98 N 55 (102) 45 (300)   

3 4     [2,1]-    11032.41     0.03   11032.38 N 88 (003) 12 (201)   
                        
4 1     [4,0]+    13828.28     0.17   13828.11 L 68   (202)# 26 (400) 6 (004) 

4 2     [4,0]-    13830.94     0.40   13830.54 L 67 (301) 33 (103)   

4 3     [3,1]+    14221.16    -0.29   14221.45 L 71   (400)# 18 (202) 11 (004) 

4 4     [3,1]-    14318.81     0.10   14318.71 N 67 (103) 33 (301)   

4 5     [2,2]+    14536.87    -0.37   14537.24 N 82 (004) 15 (202) 3 (400) 
             
 rms      0.18           

 

Obs: experimental values of vibrational levels (compiled from [41, 58, 208,244-245];  CT: Contact transformation at order 10, all values are in 

cm-1.  Mn(%) – squares of the expansion coefficients of the Heff(CT) in the normal mode basis (v1v2v3). N/L type column indicated the local or 

normal mode behaviour of the corresponding wavefunction according to [70].   

 
 

 

 



 
 

Fig 9.1. => Figure 3.  Example of the convergence of CT for near degenerate “locale mode” vibrational states of H2O. With the increasing 

orders the CT cnormal mode calculations tend to “exact” DVR calculations for the splitting E = (E[5,0]+) - (E[5,0]-) =0.43 cm-1 between the 

local mode states is given according to [208], which is closed to the observed value 0.42 cm-1.  



At the top of the stretching polyads the (v1=0,v2=0,v3) vibrational series keep the normal mode character as is clearly seen from the dominant 

contributions of the normal modes basis set terms to Heff(CT) in Table 8.3.  For (v1=1, v2=0,v3) series, the normal modes basis states are heavily 

mixed due to the DD coupling.  However, the CT results are still in a good agreement with DVR calculation using the same PES [236] as well as 

with calculations using more recent ab initio PES of ref [246].   

 

 
TABLE 9.4 => Table 5: Normal mode series at the top of stretching polyads of H2O 

 

Global ass    Str. polyads                         E/hc [cm-1]                     Normal mode contributions 

 N  P nP DVR DVR-CT   CT(o8) M1(%) 
1 2 3( )v v v  M2(%) 

1 2 3( )v v v  M3(%) 
1 2 3( )v v v  

B   39   5  6 17948.30  -0.03  17948.33  81 (005)  16 (203)  3 (401) 

A   96   6  7 21274.39   0.03  21274.36  77 (006)  17 (204)  5 (402) 

B   97   7  8 24510.33  -0.06  24510.39  75 (007)  18 (205)  5 (403) 

             

 N  P nP DVR DVR-CT   CT(o10) M1(%) 
1 2 3( )v v v  M2(%) 

1 2 3( )v v v  M3(%) 
1 2 3( )v v v  

A  62  5  5 17747.97 -0.06 17748.03  45 (104)  33 (302)  22 (500) 

B  62  6  6 21041.72  0.78 21040.94  50 (105)  35 (303)  15 (501) 

A 136  7  7 24291.59  0.45 24291.14  37 (106)  31 (304)  20 (502) 

 

 - symmetry type, N –global ranking number in DVR calculations using PS PES [236] , P – stretching polyad number in the DD model , nP – 

ranking number of the vibrational level with the polyad P. 

 

 



 

 

10. Fermi + DD resonance (2:1:2) for SO2: example of CT convergence to variational calculations 

 
Let us consider now an example a triple 2:1:2 resonance scheme (1  22  3) corresponding to the simultaneous account of DD and Fermi 

coupling with application to SO2 vibrational levels. This means that the modelling operator of CT is chosen as 
1 1 2 2 3 32 2a a a a a a    A , 

corresponding to the (2:1:2) ratio for 1 2 3( : : )    in equation (81). Various ab initio and empirical PESs [247,248,249]   are available for this 

molecule. For the CT benchmark calculations with use PES by Martin-Zuniga et al [247-248]. The initial ab initio surface had been computed by 

Martin et al [247] at the CCSD(T) level with the AVQZ+1 basis. Zuniga et al. [248] converted the PES to a 3D Morse-cosine expansion and 

optimized a few lower order parameters in order to correct the potential energy function with respect to the (as) normal mode. The final PES has a 

consistent behavior at sufficiently large nuclear displacements. Because of two simultaneous resonances , in addition to the resonance res

DDh  term 

of the previous example, there appear the Fermi coupling terms like 
1 1 2 2 1 1

   res

Fh a a a a a a  and similar type of higher order terms that makes the 

blocks of the Heff matrix larger. The scheme of CT in this case is shown in Fig 10.1. 

 

 

Fig 10.1.   Scheme of block-diagonalisation of the nuclear motion Hamiltonian accounting for DD and Fermi resonances for SO2 

( rev 2 : figure has been published ! where ?) 

 

 

The successive orders of the CT effective Hamiltonian in this case converge very rapidly to numerically exact results of variational method as 

shown in Table 9.2 and Figure 9.2. The calculations are very fast taking less than 1 sec on a standard 1 processor laptop computer.  

 

Table 10.1  => Table 6. Comparison of vibration energies for SO2 : variational and CT calculations in the (2:1:2) resonance scheme   
 

 

   Variational                                    CT - variational       CT             Normal mode contributions 

 Zuniga[248]     o0 o2 o4 o6 o8 o10      o10  P nP M1 (%) 1 2 3( )v v v  M2 (%) 1 2 3( )v v v  

               

  A 517.80   4.13  0.04  0.00  0.00  0.00  0.00 517.80  1  1 100.0 (010)    
               

  A 1034.97   8.90  0.17  0.00  0.00  0.00  0.00 1034.97  2  1  99.8 (020)  0.2 (100) 

  A 1150.58  15.24  0.01  0.00  0.00  0.00  0.00 1150.58  2  2  99.8 (100)  0.2 (020) 

  B 1357.28  19.15 -0.01  0.01  0.01  0.01  0.01 1357.29  2  3 100.0 (001)  0.0 (020) 

               

  A 1551.40  14.40  0.48  0.02  0.00  0.00  0.00 1551.40  3  1  99.4 (030)  0.6 (110) 



  A 1665.31  22.44  0.07  0.00  0.00  0.00  0.00 1665.31  3  2  99.4 (110)  0.6 (030) 

  B 1871.12  27.25 -0.04  0.00  0.00  0.00  0.00 1871.12  3  3 100.0 (011)  0.0 (030) 
               

  A 2067.00  20.73  1.06  0.04  0.00  0.00  0.00 2067.00  4  1  98.7 (040)  1.3 (120) 

  A 2179.42  30.27  0.23  0.00  0.01  0.01  0.01 2179.43  4  2  98.3 (120)  1.3 (040) 

  A 2293.95  37.69 -0.02  0.00  0.00  0.00  0.00 2293.95  4  3  99.6 (200)  0.4 (120) 

  B 2384.37  35.93 -0.03  0.01  0.00  0.00  0.00 2384.37  4  4  99.8 (021)  0.2 (101) 

  B 2494.59  47.66  0.06  0.00  0.00  0.00  0.00 2494.59  4  5  99.8 (101)  0.2 (021) 

  A 2704.20  48.67  0.00  0.00  0.00  0.00  0.00 2704.20  4  6 100.0 (002)  0.0 (200) 
               

  A 2581.65  28.02  1.99  0.08  0.01  0.01  0.00 2581.65  5  1  97.7 (050)  2.3 (130) 

  A 2692.84  38.78  0.56 -0.01  0.00  0.00  0.00 2692.84  5  2  96.5 (130)  2.3 (050) 

  A 2805.61  47.96  0.06 -0.01  0.00  0.00  0.00 2805.61  5  3  98.7 (210)  1.2 (130) 

  B 2896.95  45.28  0.08  0.02  0.00  0.00  0.00 2896.95  5  4  99.4 (031)  0.6 (111) 

  B 3005.33  58.86  0.10  0.00  0.00  0.00  0.00 3005.33  5  5  99.4 (111)  0.6 (031) 

  A 3214.07  60.73 -0.09  0.00  0.00  0.00  0.00 3214.07  5  6 100.0 (012)  0.0 (210) 
               

  A 3095.26  36.34  3.35  0.16  0.02  0.00  0.00 3095.26  6  1  96.4 (060)  3.6 (140) 

  A 3205.44  48.11  1.17  0.01  0.01  0.01  0.01 3205.45  6  2  93.8 (140)  3.6 (060) 

  A 3316.68  58.82  0.24 -0.02  0.00  0.00  0.00 3316.68  6  3  96.8 (220)  2.6 (140) 

  B 3408.75  55.42  0.38  0.05  0.01  0.00  0.00 3408.75  6  4  98.7 (041)  1.3 (121) 

  A 3430.10  67.36 -0.10  0.00  0.00  0.00  0.00 3430.10  6  5  99.3 (300)  0.6 (220) 

  B 3515.52  70.60  0.16  0.00  0.01  0.00  0.00 3515.52  6  6  98.3 (121)  1.3 (041) 

  B 3624.39  83.68  0.03 -0.01  0.00  0.00  0.00 3624.39  6  7  99.5 (201)  0.4 (121) 

  A 3723.42  73.31 -0.23  0.02  0.00  0.00  0.00 3723.42  6  8  99.8 (022)  0.2 (102) 

  A 3828.48  90.21  0.25  0.01  0.00  0.00  0.00 3828.48  6  9  99.7 (102)  0.2 (022) 

  B 4040.74  88.56  0.03  0.01  0.00  0.00  0.00 4040.74  6 10  99.9 (003)  0.1 (201) 
               

  A 3607.70  45.83  5.26  0.28  0.04  0.00  0.00 3607.70  7  1  94.7 (070)  5.2 (150) 

  A 3717.14  58.35  2.11  0.03  0.01  0.00  0.00 3717.14  7  2  90.3 (150)  5.2 (070) 

  A 3827.08  70.36  0.60 -0.04  0.00  0.00  0.00 3827.08  7  3  93.6 (230)  4.5 (150) 

  B 3919.67  66.43  0.96  0.10  0.00  0.00  0.00 3919.67  7  4  97.7 (051)  2.3 (131) 

  A 3938.70  80.69 -0.01 -0.03  0.00  0.00  0.00 3938.70  7  5  98.0 (310)  1.8 (230) 

  B 4025.07  82.98  0.33  0.01  0.00  0.00  0.00 4025.07  7  6  96.5 (131)  2.3 (051) 

  B 4132.06  97.95  0.11 -0.02 -0.01 -0.01 -0.01 4132.05  7  7  98.6 (211)  1.2 (131) 

  A 4232.15  86.52 -0.32  0.04  0.00  0.00  0.00 4232.15  7  8  99.4 (032)  0.6 (112) 

  B 4546.66 104.58 -0.14  0.02  0.00  0.00  0.00 4546.66  7 10  99.9 (013)  0.1 (211) 
               

  A 4118.85  56.62  7.81  0.49  0.09  0.02  0.01 4118.86  8  1  92.7 (080)  7.2 (160) 

  A 4227.82  69.60  3.51  0.07  0.03  0.01  0.00 4227.82  8  2  85.8 (160)  7.2 (080) 

  A 4336.71 103.91  1.22 -0.06  0.00  0.00  0.00 4336.71  8  3  89.1 (240)  6.9 (160) 

  B 4429.59  78.44  1.92  0.18  0.01  0.00  0.00 4429.59  8  4  96.4 (061)  3.6 (141) 

  A 4446.73  94.59  0.20 -0.05  0.01  0.00  0.00 4446.73  8  5  95.2 (320)  3.8 (240) 

  B 4533.87  96.12  0.69  0.02  0.01  0.00  0.00 4533.87  8  6  93.8 (141)  3.6 (061) 

  A 4559.04 104.24 -0.26 -0.02 -0.01 -0.01 -0.01 4559.03  8  7  98.9 (400)  0.8 (320) 

  B 4639.20 112.74  0.50 -0.03  0.00  0.00  0.00 4639.20  8  8  96.7 (221)  2.6 (141) 

  A 4740.17 100.43  2.64  0.06 -0.01 -0.01 -0.01 4740.16  8  9  98.7 (042)  1.3 (122) 

  B 4746.67 127.22 -0.13 -0.02 -0.01 -0.01 -0.01 4746.66  8 10  99.0 (301)  0.6 (221) 

  A 4841.51  99.79  0.23  0.03  0.00  0.00  0.00 4841.51  8 11  98.2 (122)  1.3 (042) 

  A 4945.00 118.26  0.36  0.01  0.00  0.00  0.00 4945.00  8 12  99.1 (202)  0.4 (122) 



  B 5052.11 121.06 -0.42  0.04  0.00  0.00  0.00 5052.11  8 13  99.7 (023)  0.2 (103) 

  B 5152.24 142.88  0.57  0.04  0.00  0.00  0.00 5152.24  8 14  99.4 (103)  0.4 (301) 

  A 5366.94 138.80  0.04  0.02  0.00  0.00  0.00 5366.94  8 15  99.7 (004)  0.2 (202) 
               

  A 4628.62  68.78 10.81  0.78  0.14  0.03  0.00 4628.62  9  1  90.2 (090)  9.5 (170) 

  A 4737.36  81.99  2.50  0.17  0.06  0.02  0.02 4737.38  9  2  80.4 (170)  9.9 (250) 

  A 4845.46 117.09  2.20 -0.08  0.01  0.00  0.00 4845.46  9  3  83.2 (250)  9.9 (170) 

  B 4938.40  91.57  3.34  0.32  0.02  0.00  0.00 4938.40  9  4  94.7 (071)  5.2 (151) 

  A 4954.13 130.38  0.58 -0.10  0.00  0.00  0.00 4954.13  9  5  90.7 (330)  6.6 (250) 

  B 5041.82 110.10  1.34  0.05  0.01  0.00  0.00 5041.82  9  6  90.3 (151)  5.3 (071) 

  A 5064.57 120.64 -0.14 -0.04  0.00  0.00  0.00 5064.57  9  7  97.2 (410)  2.4 (330) 

  B 5145.73 128.14  6.31 -0.05  0.00  0.00  0.00 5145.73  9  8  93.5 (231)  4.5 (151) 

  A 5247.38 115.15  3.90  0.09 -0.05 -0.04 -0.04 5247.34  9  9  97.7 (052)  2.3 (132) 

  B 5251.26 144.56  2.43 -0.04  0.00  0.00  0.00 5251.26  9 10  97.8 (311)  1.8 (231) 

  A 5347.19 116.05  0.24  0.05  0.00  0.01  0.01 5347.20  9 11  96.4 (132)  2.3 (052) 

  A 5448.68 136.51  2.62  0.00 -0.01  0.00  0.00 5448.68  9 12  98.2 (212)  1.2 (132) 
               

  A 5136.86  82.47  9.33  1.20  0.23  0.05  0.00 5136.86 10  1  87.4 (0D0) 12.1 (180) 

  A 5245.64  95.65  1.64  0.34  0.12  0.05  0.04 5245.68 10  2  74.1 (180) 13.3 (260) 

  A 5353.24 131.25  3.60 -0.09  0.01 -0.01 -0.01 5353.23 10  3  76.0 (260) 13.4 (180) 

  B 5445.98 105.92  3.15  0.53  0.05  0.01  0.00 5445.98 10  4  92.6 (081)  7.3 (161) 

  A 5460.78 145.66  1.23 -0.15  0.01  0.00  0.00 5460.78 10  5  84.4 (340) 10.0 (260) 

  A 6465.88 184.43  2.46  0.09  0.01  0.00  0.00 6465.88 10 20  99.0 (104)  0.8 (302) 

  A 6183.21 167.82 -0.34 -0.07  0.01  0.00  0.00 6183.21 11  9  96.4 (510)  3.0 (430) 

 

 - symmetry type, N –global ranking number in DVR calculations using PES[248] , P – stretching polyad number in the DD model , nP – 

ranking number of the vibrational level with the polyad P. 
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Fig 10.2.  => Figure 4. Convergence of CT vibration energies of SO2 to exact variational results   

 

It is instructive that the Fermi interaction between (v1=0, v2, v3=0), (v1=1, v2-2, v3=0), (v1=2, v2-4, v3=0), … normal mode basis set functions 

quite rapidly increases towards large values of the quantum numbers ( Figure 9.3) .   The dominant contributions of the harmonic oscillator (0, 

v2,0) functions to the bending progression of SO2 vibrational states gradually shut down to 75% at v2 = 12 and to 50% at v2=19. At higher 

energies basis set functions are heavily mixed that corroborate the classical analyses of periodic orbits [93].   
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Fig 10.3   => Figure 5. Increasing Fermi resonance coupling versus bending quantum numbers for SO2 

 



11. CT-CONVERGENCE FOR ROTATIONS: Asymmetric top 

triatomics 

 
One of major applications of CT in high-resolution molecular spectroscopy is a systematic derivation 

of effective rotational and vibration-rotational Hamiltonian for polyads of closely lying states. 

A use of ab initio or empirically optimised PESs permit to obtain physically meaningful values for 

EH parameters, which can be further adjusted via a fit to experimental line positions in observed 

spectra.  

 

11.1. Rotation levels for an isolated vibrational state 

 
If a vibrational state is well isolated from other vibrational states with a sufficiently large 

energy gap, then the CT method can be used for a full separation of vibrational variables from the 

nuclear motions Hamiltonian as outlined in Section 3.2. This is typically the case of the vibrational 

ground state (GS).  

For semi-rigid molecules, the CT usually rapidly converge and calculations are very fast. An 

example of the centrifugal distortion parameters of the ozone molecule computed from empirically 

optimised PES [268] of the ozone molecule is given in Table 7. The computed values match well the 

parameters determined by a simultaneous fit to experimental microwave (MW) and infrared (IR) 

spectra reported by Pickett et al. [270] and Colmonet et al. [271]. The only large discrepancy 

correspond to the HJK parameter, for which there appear a big difference in experimentally 

determined values.  Table 8 shows that CT calculations of rotational GS energy levels coverge quite 

rapidly. At eight order of CT that takes less than one second the CT calculations converge very close 

to numerically exact variational results [268]. 

 
Table 11.0  => Table 7 

Comparison of rotational and centrifugal distortion parameters for the GS of 16O3 molecule derived 

from the fit of (MW + IR) spectra with calculations using CT from the PES of [ 268]  

 

 CT calc.       Fit MW+IR obs. spectra  exp2/exp1  (exp-CT)/exp Power 

 of  J 

Par. Order 6 exp 1  exp 2 common    

 PES [268] Pickett [270] Colmont [271] factor    

        

A    3.55368   3.55367   3.55367  1.000  5.2E-06 2 

B    0.44529   0.44528   0.44528  1.000  3.5E-05 2 

C    0.39466   0.39475   0.39475  1.000  2.2E-04 2 

                                             

DJ    4.543    4.541     4.541   E-07 1.000  3.2E-04 4 

DJK  -1.862   -1.847    -1.847   E-06 1.000  7.7E-03 4 

DK    2.121    2.117     2.116   E-04 1.000  2.1E-03 4 

dJ    6.993    6.979     6.979   E-08 1.000  2.1E-03 4 

dK    3.235    3.231     3.233   E-06 1.000  5.7E-04 4 

                                           

HJ    3.48     3.46      3.29    E-13 0.951    0.058 6 

HJK  -3.14    -7.09     -4.96    E-12 0.700    0.367 6 

HKJ  -1.86    -1.85     -1.86    E-09 1.005    0.000 6 



HK    3.91     3.93      3.94    E-08 1.003    0.008 6 

hJ    1.81     1.76      1.77    E-13 1.006    0.023 6 

hKJ  -7.40    -7.59     -7.78    E-12 1.025    0.049 6 

hK    2.40     2.15      2.43    E-09 1.130    0.012 6 

        

Par.: Watson’s A-reduced parameters [255]  rotational EH for the (000) vibrational state of 16O3. 

 

 
Table 10.1  => Table 8. Example of the CT-convergence rotational GS levels computed from the ozone 

PES [268] for the orders o0,o2,o4, …o8. All values are given in cm-1 
-------------------------------------------------------------------------- 

     E_rot/hc          J  Ka Kc             exp-RR     exp-CT(o2)   exp-CT(o4)  exp-CT(o6)  exp-CT(o8) 
-------------------------------------------------------------------------- 

   

   50.643    10  1  9     -0.401   -0.008     0.002    0.002   0.002  

   74.431    10  3  7     -0.371   -0.010     0.004    0.003   0.003  

  245.911    10  8  2     -0.872   -0.064     0.007    0.002   0.002  

  298.672    10  9  1     -1.279   -0.086     0.009    0.002   0.002  

  357.503    10 10  0     -1.873   -0.110     0.011    0.002   0.002  

  ... 

  478.439    33  2 32     -4.610   -0.099    -0.006   -0.005  -0.005   

  499.790    33  3 31     -4.623   -0.066     0.030    0.032   0.031   

 1077.565    33 14 20    -11.049   -0.302     0.050    0.034   0.034   

 1166.010    33 15 19    -13.284   -0.315     0.052    0.034   0.034   

 1465.594    33 18 16    -23.288   -0.175     0.052    0.034   0.035   

 1576.648    33 19 15    -27.946   -0.025     0.045    0.036   0.036   

 1693.180    33 20 14    -33.381    0.205     0.031    0.040   0.039   

  ... 

-------------------------------------------------------------------------- 

Experimentally determined (“exp”) rotational levels are taken from S&MPO [251] database.  RR stands for 

the rigid rotor approximation. The RMS (CT-obs) deviation is of 0.06 cm-1  for all experimentally known 

rotation levels of ozone up to J=50. 

 

 

   For non-rigid molecules like H2O, the applications of CT is less straightforward. The large 

amplitude bending vibration has to be treated with a particular care, using for example Hougen-

Bunker-Johns approach [238] (considered further in Section 13).  However, even in such 

unfavourable case for the standard semi-rigid Watson-Eckart normal mode approach [225], the CT 

calculations provide good convergence for effective rotational and centrifugal distortion parameters. 

An example of comparison of experimental values for the A-reduced Watson’s centrifugal distortion 

EH and calculated ones from PS PES [236] using successive CT orders is illustrated in Table 10.2 . 

Higher order centrifugal distortion constants can be found in ref [39]. 
 

 

Table 11.2 . => Table 9. Reduced Effective Hamiltonian for vibrational GS of  H2O molecule computed 

by CT from the potential energy surface in comparison with experimental values.  

---------------------------------------------------------------------------------------------------------------- 
                                                  Computed from the PS PES                                        empirical values                                                                                                                       

CT Orders:            ord=0            ord=2           ord=4           ord=6                        ref. [252]         ref. [253]  Common factor 
 

Bv          14.579   14.548   14.555   14.513        14.519    14.522 

Av          27.391   27.672   27.739   27.864        27.877    27.881 

Cv           9.515    9.314    9.317    9.274         9.279     9.277 

 

DJ                     .117     .124     .122          .123      .125 e-2 



DJK                   -.501    -.572    -.545         -.563     -.577 e-2 

DK                     .257     .309     .315          .318      .325 e-1 

dJ                     .466     .500     .491          .494      .508 e-3 

dK                     .038    -.087     .095         -.124     -.130 e-2 (#) 

… 

-------------------------------------------------------------------------------------------------------------------------- --------------- 

PS PES: Partridge-Schwenke [236]; Resonance CT condition [1 ≈ 3]; A-reduction in Ir representation [236]. 

Two sets of empirical values [252,253] were obtained for the fit of experimental energy levels.  

Symbol (#) stands for empirically poorly determinable parameter.  

 
Convergence of CT for rotational and centrifugal distortion constants using the  1 ≈ 3  resonance 

condition to experimental values within their error margins is shown in Figure 10.1 
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Fig 11.1.  => Figure 6. Example of CT convergence (orders 0,2,4,6) for rotational and centrifugal disstortion constants 

of the GS of H2O using PS PES [236] and the resonance condition 1 ≈ 3 .  Squares and diamonds correspond to 

calculated values of A and B rotational constants, green horizon lines the experimental values [252,253] and vertical bars 

indicate the experimental uncertainty. 

 

 

 

11.1. Ro-vibration levels for in case of strong accidental resonance :  

Example of {(100),(001)} dyad of ozone 

 
More interesting cases represent nearby vibrational states with strong rovibrational resonance 

coupling.  A well-known example is the dyad {(100),(001)} of vibrational fundamentals of the ozone 
16O3 molecule strongly perturbed by Coriolis resonance [254, 255, 256, 48]. The rovibrational 

Heff(CT), in addition to the diagonal terms, includes successive  resonance terms 
,

1 3 3 1 , ,2( )    coriolis

m n lh a a a a R  where 
,

, ,2

 

m n lR  are symmetrised rotational operators (89). It is well 

known, that single-vibration state EHs do not to work in this case because the mixing coefficients for 

ro-vibrational wavefunctions reach 50% at relatively low rotational quantum number. The resonance 



perturbations due to the Coriolis coupling are extremely strong. They exceed by three orders of 

magnitude an experimental accuracy of line positions in high-resolution spectra. Figure 10.1 shows 

that CT calculations for ro-vibrational levels rapidly converge to the same accuracy than variational 

method [250] using exact kinetic energy operator. 
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Figure 11.1.=> Figure 7. Example of CT convergence for the dyad of ozone ro-vibrational states 

coupled by strong Coriolis resonances: direct calculations from the potential energy function of ref 

[250].  

 
In a purely empirical fit, the resonance coupling parameters of EH are poorly determined because of 

a correlation issues in the EH fitted parameters. The advantage of EH is that such parameters can be 

accurately predicted from ab initio or empirically optimised PESs.  This is particularly important if  

an analysis of experimental spectrum in some frequency ranges has to account for so called “dark” 

bands [48, 256], which are not directly observed but could significantly perturb observed lines. In 

this case, the CT method permit constructing a physically meaningful Heff(CT) model providing 

lacking information parameters for these dark states and for the corresponding interactions, as 

described for example in ref [257].  

 

12. SYMMETRIC TOP MOLECULES 

 
For symmetric top molecules there appear doubly degenerate vibrational states, consequently the 

corresponding terms appear in Heff(CT) as outlined in Section 5.4. We consider below examples of 

CT application for the four-atomic (phosphine) and five-atomic (deuterated methane) molecules. 

 

12.1 Four-atomic example (PH3) with the CT polyad scheme 2:1:2:1 

 
Phosphine (PH3) is a semi-rigid symmetric top molecule, which has various industrial 

applications and had been discovered in the atmospheres of Jupiter and Saturn [258].The main 



isotopologue possess four vibrational modes : two of them stretching non-degenerate ones (1(A1) 

=2321.14 cm-1), 3(A1) =2326.82 cm-1 ) and two doubly degenerate bending modes (2(E) = 992.14 

cm-1, 4(E) = 1118.31 cm-1 ). Four normal mode frequencies of PH3 exhibit an approximate relation 

among stretching and bending frequencies  1 2 3 42 2       resulting in vibrational levels being 

grouped into polyads with levels of similar energy, including GS (P=0), Dyad(P=1), Pentad(P=2), 

Octad (P=3) , etc [259-261]. Several ab initio and empirically refined PES have been published [262- 

265].  Investigation of vibration-rotation bands beyond the Octade range (3400 cm-1) appears to be 

much more complicated and requires theoretical predictions, as discussed in [58, 202] . Based on an 

ab initio potential energy surface [263], the full Hamiltonian of phosphine nuclear motion was 

reduced to an effective Hamiltonian using high-order Contact Transformations method adapted to 

polyads of symmetric top AB3-type molecules with a subsequent empirical optimization of 

parameters.  

 Figure 11.1. shows the convergence of the CT calculations to the results of the variational method 

[263] using exact KEO up to the polyad P=6, which had not yet been analyzed experimentally.  The 

remaining (CT-Variational) deviations are smaller than the uncertainty of published ab initio 

calculations. 

  

 
Fig 12.1. => Figure 8. Example of convergence of CT calculations of PH3 band centers in comparison with 

numerically exact variational method using exact kinetic energy operator (KEO) and the ab initio PES of 

Nikitin et al [264 ]  

 

 

 

 

 

12.2 Five-atomic example with the (3:2:1:2:1:1) CT polyad scheme. 

Triply deuterated methane CHD3 

 
Variational calculations of ro-vibrational states and transition of deuterated methane 

molecules CH3D (C3v point group) and CH2D2 ( C2v point group ) from ab initio PES and DMS were 

reported by Rey et al [265,266].  Wang and Carrington [267] published vibrational calculations of 

vibrational levels for all deuterated species of methane. To this end, they have empirically fitted their 

PES starting with ab initio parameters of Schwenke and Partridge [268].  Here we give an example 

of an application of the CT method for the triply deuterated methane isotopologue CHD3 (C3v point 

group) using ab initio PES initially scaled using funfamental vibrations of 12CH4 [269]. To assure a 



sufficiently complete account for various vibration-rotation couplings, the polyad scheme is more 

sophisticated than in the case of CH4 ( see below).  The resonance scheme (3:2:1:2:1:1) corresponds 

to the ratios  1 2 3 4 5 6( : : : : : )        in the modelling CT operator A in equation (81b). 

 

 

Table 12.2.  => Table 10. Comparison of vibrational levels of CHD3 computed by CT method from 

methane PES 269] with experimental values and variational calculations of Wang and Carrington 

(WC) [267]  

 

 N Obs. O-CT(o6)   CT (o8) O-CT(o8) O-WC assignment P.c. Wf 

 A1   2 1004.548  0.08 1004.44  0.11  0.55  v3(A1)        0.99 

 E    1 1035.920  0.13 1035.83  0.09  0.42  v6(E)         0.99 

 E    2 1292.500 -0.12 1292.49  0.01  0.08  v5(E)         0.99 

 A1   3 1991.084  0.27 1990.92  0.16  0.80  2v3(A1)       0.91 

 E    3 2041.441  0.11 2041.28  0.16  0.77  v3+v6(E)      0.99 

 A1   4 2058.900  0.25 2058.85  0.05  0.69  2v6(A1)       0.90 

 E    4 2066.300  0.16 2066.24  0.06  0.67  2v6(E)        0.97 

 A1   5 2142.583 -0.10 2142.53  0.05 -0.20  v2(A1)        0.84 

 E    5 2250.828 -0.12 2250.87 -0.04  0.17  v4(E)         0.88 

 E    6 2301.165 -0.16 2301.02  0.14  0.43  v3+v5(E)      0.93 

 A1   7 2564.676 -0.89 2564.68  0.00  0.07  2v5(A1)       0.96 

 E    8 2586.043 -0.56 2586.03  0.01  0.14  2v5(E)        0.99 

 A1   8 2966.055  0.55 2966.17 -0.11  0.96  3v3(A1)       0.82 

 A1   9 2992.786  0.09 2992.76  0.03 -0.09  v1(A1)        0.90 

 A1  12 3154.341 -0.26 3154.30  0.04 -0.01  v2+v3(A1)     0.82 

 E   12 3178.224 -0.35 3178.12  0.10 -0.02  v2+v6(E)      0.81 

 E   13 3239.943 -0.08 3239.90  0.04  0.60  v3+v4(E)      0.81 

 E   14 3279.044 -0.08 3279.01  0.03  0.44  v4+v6(E)      0.89 

 E   19 3430.959 -0.32 3430.90  0.06 -0.16  v2+v5(E)      0.83 

 A1  16 3523.509 -0.74 3523.52 -0.01  0.15  v4+v5(A1)     0.81 

 E   20 3533.031 -0.44 3533.09 -0.05  0.24  v4+v5(E)      0.86 

 A1  17 3578.927 -1.16 3578.79  0.14  0.24  v3+2v5(A1)    0.84 

 E   24 3838.040 -2.69 3837.94  0.10  0.03  3v5(E)        0.94 

 A1  21 3988.646  0.00 3988.63  0.02 -0.05  v1+v3(A1)     0.90 

 E   25 3997.988  0.18 3998.25 -0.26  0.90  3v3+v6(E)     0.78 

 E   26 4027.331 -0.61 4028.03 -0.70 -0.40  v1+v6(E)      0.90 

 A1  25 4139.233 -0.26 4139.56 -0.33 -0.02  v2+2v3(A1)    0.61 

 E   33 4212.332  0.81 4211.80  0.53  1.36  2v3+v4(E)     0.70 

 E   34 4261.662  0.05 4261.65  0.01 -0.02  v1+v5(E)      0.83 

 E   37 4294.337  0.41 4294.02  0.32  0.89  v4+2v6(E)     0.71 

 E   40 4356.524 -0.09 4356.36  0.16 -0.31  v2+v4(E)      0.67 

 A1  33 4457.781 -0.16 4457.70  0.08  0.10  2v4(A1)       0.70 

 A1  34 4462.987 -0.56 4463.32 -0.33 -0.28  v2+v5+v6(A1)  0.71 

 E   48 4486.308 -0.27 4486.36 -0.05  0.26  2v4(E)        0.73 

 E   49 4529.062 -0.57 4529.00  0.06  0.41  v3+v4+v5(E)   0.63 

 A1  41 4698.882 -1.38 4698.89 -0.01 -0.20  v2+2v5(A1)    0.81 

 E   62 4855.300 -3.19 4854.91  0.39  0.03  v3+3v5(E)     0.77 

 A1  46 4968.171 -0.02 4968.20 -0.02 -0.65  v1+2v3(A1)    0.84 

 A1  54 5135.054 -0.15 5135.33 -0.28 -0.49  v1+v2(A1)     0.75 



 E   82 5237.638 -0.17 5237.99 -0.35  0.18  v1+v4(E)      0.56 

 E   84 5273.275 -0.25 5273.33 -0.06 -0.27  v1+v3+v5(E)   0.67 

 A1  73 5515.600 -0.55 5515.92 -0.32 -0.30  v1+2v5(A1)    0.82 

 E  111 5535.920 -0.23 5536.09 -0.17 -0.26  v1+2v5(E)     0.87 

 A1  86 5759.770 -0.92 5759.88 -0.11  0.31  2v4+v5(A1)    0.70 

 A1  91 5865.000  1.25 5863.99  1.01  1.07  2v1(A1)       0.77 

 A1 180 6848.112  1.04 6847.35  0.76  0.56  2v1+v3(A1)    0.75 
 

Mean (obs-calc) -0.26  0.03 0.21   

RMS (obs-calc) 0.80  0.27 0.49   

  All values are in cm-1.  Obs: experimentally determined vibrational energy level as collected in Ref [267] using 

measurements of [270 ] ( and references therein). O-CT(o6) and O-CT(o8) discrepancies between observed levels and 

CT calculations using CH4 methane PES ( Nikitin et al [268])  . WC = variational calculations of Wang and Carrington 

[267] using their empirically fitted PES including CHD3 data. “P.C.wf” – principal contribution of the normal mode 

basis function. 

 
 

 

It is seen that direct CT calculations without adjustable parameters produces un RMS 

deviation of 0.27 cm-1 and mean deviation of 0.03 cm-1 from all experimentally known vibrational 

levels up to 6850 cm-1. This is significantly more accurate compared to published variational 

calculations [267] that gave RMS deviation of 0.49 cm-1 and 0.21 cm-1 for the mean deviation. Note 

that in both case the same three mis-assigned experimental levels (detected by Wang and Carrington 

[267]) were excluded.  A similar kind of agreement in comparison with experimental levels [264, 

270] is also obtained in CT calculations for another deuterated CH3D methane isotopologue.  

 

13. SPHERICAL TOP MOLECULES 

 
There is a variety of spherical top molecules important for atmospheric and astrophysical 

applications belonging to Td or Oh point groups. Due to their high symmetry, they possess doubly 

and triply degenerate vibrational modes.  Here we consider two examples with quite different 

structures of vibrational polyads.  

 

 

13.1. Five-atomic example with the (4:2:6:3) CT polyad scheme.  

Vibrational levels of CF4 
 

A growing interest to the study of the tetrafluoromethane (CF4 ) molecule is explained by its 

very big estimated global warming potentials and a particularly long lifetime in the atmosphere that 

make it a potential greenhouse gas [271]. It is a spherical top molecule belonging to tetrahedral (Td) 

point group at the equilibrium geometry with four fundamental vibrational modes: non-degenerate 

1(A1) =209.02 cm-1, doubly degenerate 2(E) = 435.41 cm-1 and two triply degenerate modes 3(F2) 

=1539.45 cm-1 and 4(F2) =631.08 cm-1.  Experimental measurements of CF4 spectra and empirical 

EH parameters have been reviewed in [272,273]. Van Vleck perturbation theory for CF4 vibrations 

with empirically fitted PES has been reported by Wang et al [129]. Ab initio PES and DMS surfaces 

with refined equilibrium C-F distance and quadratic force constants as well as variational 

calculations of spectra were recently published by Rey et al [274]. Concerning the symmetry 

properties, CF4 is similar to methane (CH4) but has quite different relations between the values of 

bending and stretching frequencies.  In order to account for the resonance coupling terms we use the 

resonance scheme (4:2:6:3) corresponding to the ratios  1 2 3 4( : : : )      in the modelling CT 



operator A defined in eq(81).  A comparison of direct CT calculations at order o6 (without adjustable 

parameters) with experimental vibrational levels and precise variational calculations using the same 

PES [274] is given in Table 12.1.   

 

 
Table 13.1.  =>Table 11. Comparison of vibrational levels of CF4 computed by CT method from the 

PES [274] with experimental values and variational calculations. 

===================================================== 
 CT_o6                 obs           CT-Obs           var        CT-var   assignment 

 
  435.4104   E     435.3990   -0.0114      435.4102   -0.0002    v2(E) 

  631.0851   F     631.0593   -0.0258      631.0857    0.0006    v4(F2) 

  868.0122  A1     867.9058   -0.1064      868.0117   -0.0005    2v2(A1) 

  909.0252  A1     909.0720    0.0468      909.0252    0.0000    v1(A1) 

 1066.2013   F    1066.1220   -0.0793     1066.2013    0.0000    v2 +v4(F2) 

 1066.7577   F    1066.6977   -0.0600     1066.7583    0.0006    v2 +v4(F1) 

 1260.5917   F    1260.4300   -0.1617     1260.5927    0.0010    2v4(F2) 

 1261.8583  A1    1261.8090   -0.0493     1261.8606    0.0023    2v4(A1) 

 1262.1876   E    1262.1120   -0.0756     1262.1892    0.0016    2v4(E) 

 1283.7693   F    1283.7201   -0.0492     1283.7704    0.0011    v3(F2) 

 1539.4572   F    1539.3000   -0.1572     1539.4575    0.0003    v1 +v4(F2) 

 2445.4555   F    2445.5964    0.1409     2445.4557    0.0002    2v1 +v4(F2) 

 2562.1725   F    2561.9120   -0.2605     2562.1749    0.0024    2v3(F2) 

 2570.2189   E    2570.0130   -0.2059     2570.2229    0.0040    2v3(E) 

All values are given in cm-1.   is the irreducible representation of the Td point group. 

Obs – experimental levels collected in [2712, 273, 275] . “Var” – variational calculations by Rey et al [274].  
 

 

Figure 13.1. shows a perfect agreement between CT and variational calculations using the same PES 

[274] up to five vibrational quanta.  The rovibrational Heff(CT) has been recently used [275]  for 

assignment and analyses of  five CF4 bands  in the range 1600-1800 cm-1.  
 



 
Fig.13.1. => Figure 9. Comparison of vibrational levels of CF4 molecule directly computed by CT method 

from the PES with experimental values (blue stars) and with variatioan calculations (red circles) using the 

same PES [274]. RMS deviation (CT-variational) = 0.003 cm-1 

 

13.3 CT resonance scheme (2:1:2:1) for a tetrahedral molecule. Ro-

vibrational level of methane polyads. 

 
Methane (CH4) is considered as one of the most important molecules for atmospheric, 

astrophysical and environmental applications [276, 277, 278]. Ab initio PESs of methane have been 

reported in by Lee et al [279], Marquardt and Quack [280,281], Schwenke [268, 282], Nikitin et al 

[269, 283], Yurchenko et al [284,285], Majumder et al [285], Owens et al [287] (and references 

therein).  Several authors have investigated the convergence of variational calculations: Wang and 

Carrington [288,289] using contracted basis Lanczos method, and Bowman et al [222] with 

MULTIMODE approach. Resent comparisons with experimental spectra [290-294] have shown that 

currently the most accurate first-principle variational calculations of methane spectra based on DMS 

and PES of [61, 269, 283] were performed by Rey et al [203,295] including spectra up to T=3000 K 

[291,296,297]. Despite spectacular success of variational methods, ab initio calculations cannot yet 

achieve experimental accuracy for high-energy states of methane [298,299].  

     

   Over the years, effective models for the methane polyads have been used in many studies 

for assignments and analyses of high-resolution spectra [11,43, 233,300-310] and for quasi-classical 

investigations of ro-vibration patterns [11, 15, 68, 311, 312]. Methane has been used as a benchmark 

molecule for testing and validation of theoretical methods, including Van-Vleck  transformations by 

Wang and Sibert [314] and generalised perturbation theory by Cassam-Chenai et al [134, 155, 170, 

218 ] .The polyad structure of the methane molecule is essentially governed by the quasi-coincidence 

of the stretching fundamental frequencies with the first overtones of the bending frequencies 1(A1)≈ 

3(F2) ≈22(E)≈ 24(F2).  In view of the approximate relation of the harmonic frequencies the 

commonly used (2:1:2:1) resonance scheme with corresponding relations 1 2 3 4( : : : )     in the 



modelling CT operator (81). Due to anharmonic interactions among vibrational modes, the vibration 

levels of methane are split in sub-levels whose number rapidly increases with energy.  Every 

vibration sub-level possesses rotational states that form complicated patterns strongly coupled by 

Coriolis and anharmonic resonances.  
 

 
 

 

 
Fig 13.1 => Figure 10. Comparison of vibrational-rotation levels of the methane molecule directly 

computed by CT method [15] from the PES of Nikitin et al [269] with experimental values for five 
12CH4 polyads. 

 

 

A mixed “ab initio => CT / effective” approach for building a robust polyad ro-vibrational 

model using a priori information from molecular PES has been suggested in our work [15]. At the 

initial step, a full set of ro-vibrational terms, including higher-order ones, in effective polyad 

Hamiltonian are accurately derived from PES using the MOL_CT program suit. Then the Heff(CT) 

was converted to the irreducible tensor representation using the auxiliary routines of the TENSOR 

program suite [176] as described in [15].  For polyatomic molecules the accuracy of ab initio PESs is 

usually not sufficient to directly reach the experimental precision of high-resolution spectra even 

though this could provide an excellent qualitative agreement. An example of deviations for ro-

vibrational level of CH4 between direct CT calculations and experimental data is shown in Figure 

12.1. This step provides a physically consistent initial set of parameters values for Heff. At the second 



step, some of diagonal parameters are "relaxed" through the empirical optimisation, but only those of 

them which are well determined in the least squares fit. Recent progress in experimental data 

reduction of methane high-resolution spectra was achieved due to the use of CT method [15] that 

enable to derive physically meaningful initial values for Heff with a successive fine tuning during the 

fit to experimental line positions [233, 309, 315, 316] including 12CH4 and 13CH4. The CT method 

was also used to compute high-temperature partition function of methane [317] by extrapolating ro-

vibrational polyads towards the dissociation threshold. Calculations of methane energy levels from 

the Heff(CT) were carried out with the last version of the MIRS code [14].  

 
 

14.  CT for the dipole moment: effective transition moment operators for  

intensities of ro-vibrational bands 
 

Another important subject concerns the line intensity calculations. Infrared line intensities Inm 

for the transition n m corresponding to the wavenumber νnm are defined by  
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in standard spectroscopic units cm-1/(molecule×cm-2). Here c2 =hc/k with k the Boltzmann constant, 

g(Cn) and En are the nuclear spin statistical weight and the energy of the lower state. Q(T) is the 

partition function [318], and I0 is the isotopic abundance of the considered molecular species. The 

line strength of a dipole-allowed ro-vibrational transition n  m is defined as 
2 2| | | | 3 | | | |

 

  nm Z
MM MM

n m n mR   in the absence of an external field, where the 

summation is over all magnetic sublevels of the initial and the final states.  Here the dipole moment 

components ( , , )
X Y Z

   of  µ are given in the laboratory-fixed frame (LEF) and |n> , |m> are 

eigenfunctions of the full nuclear motion Hamiltonian.  

For the consistency of the CT method, the transformations must be applied also for the dipole 

moment operator 
Z

 

 2112~ iSiS

Z

iSiS

Z eeee


      (100) 

In order to work in the same representation as the effective Hamiltonian, one has to use the eigen-

functions of Heff for line strength calculations 

 

   i Z f =     eff eff

i Z f .     (101) 

 

Ab initio DMSs depending on intra-molecular coordinates correspond to the three dipole moment 

components 
1

( ,... )
N

r r in the molecular fixed frame (MFF). They are related to the LFF 

components by the 3D space rotation  



  Z Z

   via the matrix of direction cosines 



Z

. In 

the normal mode representation, the MFF dipole moment components can be expanded in the power 

series for small amplitude vibrations 

1 1

    n ni i i iq q 1, { ( ) }/ 2    m V m W Wub ub ub ub ub   (102) 

 where 
1


ni i are computed via the derivatives of the MFF dipole moment functions with respect to 

the normal coordinate near the equilibrium geometrical configuration. The m
ub

 coefficients are 



simple liner combinations of 
1


ni i  computed by the straightforward transformation of normal 

coordinates to the ... ...i j l ma a a a   representation (67)-(68) in the same manner as for the Hamiltonian in 

Section 5.3.  

 

Similarly to the Hamiltonian (1, 4) the transformed dipole moment (100) is usually expanded 

[7,8,145-155]   in expanded in successive orders of small parameter  . In what follows, we shall 

omit the arbitrarily chosen space-fixed Z index to make notations more concise:     

0 1 2 ... ...       Z nM M M M M ,    where    
0~  n

nM M   (103) 

In case of non-polar molecular with 0 0M  the 
1M  is still considered as the first-order term and so 

on.  Note that using contact transformations Watson [145] has predicted “forbidden” rotational 

spectrum of methane, which does not have a permanent dipole moment in the equilibrium geometry, 

but weak transitions are induced by ro-vibrational interactions due to the following terms in (103).  

The successive layer-by-layer CT are formally applied to the dipole moment in the same manner to 

give  

1

1 1 1 0[ , ] ~   M M iS M                        (104a) 

2

2 2 1 1 1 1 0 2 0[ , ] (1/ 2)[ ,[ , ]] [ , ] ~     M M iS M iS iS M iS M  ,          (104b) 

… 

and so on according to the recursive algorithm described in the previous sections. 

       Approximate analytical expressions for several types of rn Jm  terms in M  have been derived by 

Legay [145], Aliev and Watson [7], Camy-Peyret and Flaud [8] , Makushkin and Tyuterev [100],  

Sulakshina et al [153] , Loete [152] and other research groups [11, 149, 151, 319-323], but main 

contributions only have been included in such formulae because of rapidly increasing  complexity of 

calculations.  Lamouroux et al [154,324] and Delahaye et al [325,326] have used Sn-generators and 

effective wavefunctions generated by the MOL_CT program [39,15] described in the previous 

sections for the dipole moment transformations. Technically, the calculations of commutator are 

more complicated than in the case of the Hamiltonian because of an extended rotational algebra. The 

CT –generators are the polynomials in ... ...i j l ma a a a   vibrational operators and in rotational operators 

that can be written in simplified notation as 
2( ... ... ; , , , J ) n n i j l m x y zS S a a a a J J J  = 1( )

A
s V R  ub;r ub r     (105) 

to avoid a full nomenclature of cumbersome symmetry indices. Here V
ub

 are vibrational terms (68) 

and Rr
 are symmetrized powers of rotational operators, where  r stands for the set of indices 

described in Section 6 and  is the irreducible symmetry representation.  

The algebra involving powers of the corresponding rotational operator 2{ , , ,(J ) }n k m l
x y zJ J J  is 

known in mathematics as Poincaré enveloping algebra of simple Lie algebra { , , }x y zJ J J  . The 

Casimir operator J2 of the algebra commute with all other elements.  The structural constants of the 

enveloping rotational algebra are exactly known [39] and are given in the Appendix III in the 

symmetrized form. In case of the dipole CT the cosine directors 
 

 
Z

are involved, which do not 

commute with rotational operators  

[ , ] [ , ]
    

    J J i   where (,,) = (x,y,z)  (106) 

 The rotational enveloping algebra 2
, , ,{ ; , , ,(J ) }   n k m l

x y z x y zJ J J of CT for the dipole moment is thus 

significantly larger. A supplementary complication is due to the fact that J2  does not play anymore 

the role of the Casimir operator because it does not commute with the direction cosines 



2[ , ] 0


 J . Because of their algebraic properties the direction cosines are involved as a “linear 

factor” in the transformed dipole moment 

 

 
1

{ , }
2

Z m V R  

  


        b;r bu u r     (107) 

where the rotational factors involve total angular moment components in the Eckart MFF frame 

  { , }R r
= 

1
( )

2
R R  r r                                                             (107b) 

The vibrational operators  
3 31 2 1 2

1 2 3 1 2 3{( ) ( ) ( ) ...( ) ( ) ( ) ...} {...}    
u bu u b bV a a a a a aub

   (108) 

keep exactly the same properties both for the commutators ( Appendix ) and for the matrix elements, 

whereas related calculations for the rotational operators { , }R r
 ( which are written here in a 

simplified concise form)  are more complicated. In the works of Lamouroux et al [154, 323], the 

structure constants of the rotational CT algebra 2
, , ,{ ; , , ,(J ) }   n k m l

x y z x y zJ J J for the dipole moment were 

computed in a specific symmetrized form up to 8-th total power of rotational operators.    

 

 14.1. Case of non-degenerate vibrations: asymmetric top molecules 

 

Let us consider a vibrational band associated to the transitions v =( v1 v2 v3 … )  v=( v1 v2 v3   ,..).  

The eigen-functions of ro-vibrational effective Hamiltonian can be obtained by a diagonalization of 

the finite-dimensional matrices at the polyad sub-space  

 

   
eff

 =  v1 v2 v3…   J Ka Kc 
eff

       (109) 

 

Here V

JKC   are expansion coefficients of rotational eigen functions in the Wang basis [110]. For the 

intensity data reduction during analyses of experimental spectra, an effective dipole transition 

moment ( EDTM) for particular vibration-rotation bands 
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V Z VM 
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 are often used.  In case of asymmetric top molecules, this approach has been introduced by Camy-

Peyret, Flaud and co-workers [8,57,148] who have given explicit forms of eight rotational operators 

{ , }R r
  up to the third power [148]  as well as their matrix elements in the symmetrised Wang 

basis set J K  .   Some higher-order rotational terms have been included by Toth [327]. 
Vibrational matrix elements in Eq. (108) allow for simple exact calculations because effective 

vibrational wavefunctions are expanded in the initial harmonic oscillator basis via the 

diagonalization procedure of Heff. The effective dipole transition moment parameters V V

rd


for the 

ro-vibrational band were often fitted to reproduce observed line intensities and to produce line lists 

for spectroscopic databases.  

 

On the other hand, the values of  V V

rd


parameters and thus of vibration-rotation line intensities can 

be accurately computed by the CT  method from ab initio PESs and DMSs. Figure 14.1 show an 

example of a comparison for ro-vibrational line intensities for the three fundamental bands of H2O 

with experimental data included in HITRAN-2008 database by the above described CT method 

without adjustable parameters.    

 



  
 
Fig 14.1.  => Figure 11. Example of rovibrational intensity stick diagrams [cm-2/atm] for fundamental bands 

of H2 16O up to J < 20. CT-calculations. Lower panel: observations included in HITRAN-2008 database.   

N=1088 lines, J20, (Iobs-ICT)/ICT ~ 3% according to Lamouroux et al [154]  

 

 

14.2. Case of degenerate vibrations : symmetric and spherical top molecules 

 

 

In case of high-symmetry molecules, the formalism of irreducible tensor operator (ITO) 

represents an efficient tool permitting compact and precise description of degenerate energy levels, 

and rovibrational transitions. Various coupling schemes for Td , C3v and Oh molecules within the ITO 

formalism have been described in detail by Champion et al [11], Zhilinskii et al [116], Nikitin et al 

[14, 231], Boudon et al [230,309] and Rey et al [222-224, 252].  In somewhat simplified notations 

the ITO effective rovibrational Hamiltonian  

 

1( , )( , ), , ( )
       u,b u,bR V

K n Aeff K ntH
  , (111)

 

 

and the transformed dipole moment operator in the MFF frame  

 
( , )( )

 

      u,b u,bR V VrK n
    (112) 

 

can be written as an expansions containing the products of the rotational R  and vibrational V  

tensors.  Here rotational tensors 
( , )rK n 

R  are characterised by the total power  of rotational 

angular moment components, the tensor rank K in the full rotation group, and irreducible 

representation r of the point group. Vibrational tensors 
 

u,bV V  are constructed by recursive 

couplings of elementary creation (a+) and annihilation (a) operators for each normal mode, where  

designates collectively the set of all intermediate coupling indices leading to the vibrational 



symmetry species V. This produces Hermitian or anti-hermitian combinations of vibrational tensors 

(79), where u={u1, u2, u3…}  and b={b1, b2, b3…}  are the vector strings of the corresponding 

powers of creation an annihilation operators of the normal modes as in eq (68), and  = 1 is the 

parity under the time reversal. In Eq.(100), the EH parameters are denotes as 
( , ), ,  

u,b

K nt , where = 

r= v .  In Eq. (101), the symbol  designs the string of all upper case indices involved in the 

tensor product. The transformation from the component-by-component representation in C2v or Cs 

subgroups to the ITO formulation can be done with the TENSOR program suite [202, 203]. Freely 

accessible computational program suites MIRS [14,328] and STDS [302] permit computating 

rovibrational energies and line intensities for ro-vibrational polyads of C3v and Td molecules using 

empirically fitted or theoretically derived values of effective Hamiltonian parameters 
( , ), ,  

u,b

K nt and 

dipole moment parameters 


u,b  . 

 

  Contact transformations for the dipole moment in the ITO formalisms for methane type molecules 

have been described by Loete [152], Perevalov et al [321], Sadovskii and Zhilinskii [329] and 

Delahaye et al [325,326]. In particular, Delahaye et al [325,326] have shown that using PES and ab 

initio DMS of refs [269, 61], the CT method together with MIRS computational code [14,328] has 

permitted excellent agreement for line intensities of CH4 . The RMS deviation of line intensities 

between CT and rigorous variational calculations [203] were only of 0.60 % for the Dyad bands and 

of 0.35% for the Pentad bands up to J=20 without adjusted parameters. 

  
14.2.2. Accurate determination of the resonance coupling parameters and the issue of 
“sensitive” line intensities : example of the Octad CH4 
 
 

Ab initio variational calculations can produce reliable overall description of rovibrational 

patterns in molecular spectra, many recent works reported a significant progress in this domain [ 

***] (and references therein ). However, available ab initio PESs cannot provide the experimental 

accuracy of line positions ~ 0.001 - 0.0001 cm-1 in high-resolution spectra except for tiny molecules 

with two or three electrons.  In cases of accidental resonances between nearby rovibrational states, 

the wavefunctions could be very sensitive to small errors in energy level calculations. Such small 

errors in energies could have a large impact on the basis sets mixing coefficients and thus produce 

large errors in line strengths.  

Enhenced accidental mixings in the wavefunctions  result in irregular intensity transferts 

among absorption lines which is known in the literature the “intensity borrowing” effect [15, 61].  

This effect is particularly pronounced for relatively weak bands which can “steal” the intensity from 

stronger bands via a resonance intensity transfer. The accuracy of intensity calculations for such 

“sensitive” lines is an issue both for purely empirical models and for ab initio variational methods 

[61]. Such lines are also called “unstable” ones [15], because they correspond to erratic intensity 

values [61] depending on the model or on the approximation used.  Note that by replacing calculated 

line positions by experimental frequencies, which is a common practice in a construction of line lists, 

one does not solve the issue of resonance perturbations in line intensities because this improves 

calculated energies but not wavefunctions involved in the line strengthes (101).  

As discussed in [15],  the CT method offers a possibility to develop a mixed approach 

combining advantages of ab initio methods and effective models. As an illustrative example, we 

consider here an extension of this approach to the first four polyads P of methane molecules. This 

includes the vibrational ground state (P=0) and the transitions to the Dyad (P=1), Pentade (P=2) and 

Octad (P=3). The latter one involves eight vibrational (v1v2v3v4) states  

{(0300)/(0110)/(1100)/(0201)/(0011)/(1001)/(0102)/(0003)} with 24 vibrational sublevels of A1,A2, 



E, F1, F2 symmetry types. In ealier works [Albert , Daumont ] the experimental data reduction for the 

line positions and intensities measured in rotationally resolved spectra has been carried out using 

purely empirical effective Hamiltonian (111) and effective transition dipole moment (112). A very 

large set of   
( , ), ,  

u,b

K nt paratmeter  in EH fitted to observed line positions was required to achieve 

an experimental accuracy. For example, in Ref. [Albert ] the set of 1494  EH parameters was 

simultaneously fitted to achieve de RMS (obs-calc) deviation of ~ 0.0013 , 0.006 and 0.0035 cm-1 for 

the Dyad, Pentade and Octad transitions correspondingly. The most part of the empirically fitted 

terms corresponded to the resonance coupling parameters between upper vibrational states. It is well-

known [ *** ] that such parameters cannot be unambiguously determined from experimental line 

positions because of the correlation issues during the least-square fit. For example, their relative 

signes could be wrong that is hardly possible to fix with the “closed eyes” fit for thousands of 

interaction terms. A poorly defined coupling term could then induce an error in rovibrational 

wavefunctions with an impact on “sensitive” line intensities.  

Following the approach outlined in [15], the two-steps method based on CT can be applied in 

order to stabilise a modelling of experimental spectra. At the first step, the full ro-vibrational EH was 

directly computed  from the PES of ref [**] up to the order o8 for vibrations and order o6 for 

rotations. This gives the RMS (obs-calc) error of about 0.1 cm-1 for the set of Dyad, Pentade and 

Octad band origins [15]. This represents less than 0.01% in the relative errors. Even if the coupling 

parameters would be ten or hundred times less accurate,  their predicted CT terms from the ab initio 

based PES can provide physically meaningful initial values for the further empirical EH 

optimisation. This was the second step of the procedure, which fully confirmed the above mentioned 

assumption. 

An illustration for this two-steps procedure is given in Table 12, which displays the coupling 

parameters corresponding to strong interaction among upper vibrational states of the methane 

molecule. The first column of the “V-off diagonal coupling parameters”  gives the CT values 

directly computed from the PES for orders o1, o2 and for some most important o3 terms.  

 

 

Table 12. Low order interaction parametes for rovibrational polyads of 12CH4  
 

            V-off diagonal coupling parameters (*) relative 

O Rotational  Vibrational Off-diagonal Direct CT Test 1 : 

9 fitted par.  

Test 2: 

23 fitted par 

variations 

 ITO ITO (**)  V V’ from PES [ ] to obs  to obs dP/P 

         

1 R 0( 0, 0A1)  V+( 23) 0010 0002 -88.06956 -88.3651 -87.95851  0.001 

2 R 0( 0, 0A1)  V+( 35) 0101 0002  4.343237  4.02212  4.241919  0.023 

1 R 0( 0, 0A1)  V+( 49) 0101 0010  77.30136  77.3324  77.10038  0.003 

2 R 0( 0, 0A1)  V+( 80) 0200 0002  4.027476  3.81974  3.853933  0.043 

2 R 0( 0, 0A1)  V+( 71) 0200 0002 -8.290924 -9.07810 -9.086398 -0.096 

1 R 0( 0, 0A1)  V+( 94) 1000 0002  80.37199  79.3977  79.1547  0.008 

1 R 0( 0, 0A1)  V+( 99) 1000 0200  1.652336  1.68502  1.682508 -0.018 

1 R 1( 1, 0F1)  V-(   6) 0100 0001 -9.512905 -9.51987 -9.535905 -0.002 

2 R 1( 1, 0F1)  V-( 25) 0010 0002 -0.196815    f -0.194823  0.010 

2 R 1( 1, 0F1)  V-( 28) 0010 0002  1.664667    f  1.660343  0.003 

3 R 1( 1, 0F1)  V-( 40) 0101 0002 -0.086659    f -0.777428  0.103 

3 R 1( 1, 0F1)  V-( 42) 0101 0002  0.172254    f  0.168382  0.022 

3 R 1( 1, 0F1)  V-( 38) 0101 0002  0.039201    f  0.041942 -0.070 

3 R 1( 1, 0F1)  V-( 44) 0101 0002  0.127221    f  0.131208 -0.031 

3 R 1( 1, 0F1)  V-( 46) 0101 0002 -0.062202    f -0.064296 -0.034 

2 R 1( 1, 0F1)  V-( 52) 0101 0010 -0.640969    f -0.638820  0.003 

2 R 1( 1, 0F1)  V-( 54) 0101 0010  1.251205    f  1.239689  0.009 

3 R 1( 1, 0F1)  V-( 77) 0200 0002  0.240556    f  0.249630 -0.038 

2 R 1( 1, 0F1)  V-( 83) 0200 0010 -0.483229    f -0.471709  0.024 

3 R 1( 1, 0F1)  V-( 87) 0200 0101  0.058273    f  0.065045 -0.116 



3 R 1( 1, 0F1)  V-( 86) 0200 0101 -0.080631    f -0.075643  0.062 

3 R 1( 1, 0F1)  V-( 74) 0200 0101  0.028480    f  0.036405 -0.278 

2 R 1( 1, 0F1)  V-( 97) 1000 0101 -0.114951    f -0.121388 -0.056 

 … … … … …    f(**)  f(**)  

         

N fitted v-off-diagonal parameters    9 23  

N fitted v-diagonal parameters    272 273  

         

Total Weighted fit St.Deviation  (Jmax=20)   0.99 0.79  

O : the order of the term in EH; 

(*) with this notations we consider only interaction parameters among different upper vibrational states, whereas the 

couplings between various sublevels are included in the set of “v-diagonal parameters”.   

(**) Numerotation of vibrational tensors ( 111) corresponding to the MIRS scheme of order 6.  

f: fixed to CT values ; f(#) : all higher order terms fixed to CT values.  dP/P for the for parameters = (CT-fitted)/CT. 

N fitted transitions =14652 (Jmax =20).  

 
 

The rovibrational levels directly computed by CT from the PES for the Octad dataset are 

depicted in Figure 12. Note that the main feature of the ITO model (111) is that the so called Dyad-

specific and Pentad-specific terms give a significant contribution also to the Octad and to higher 

polyads that essentially determines the resonance mixing of the corresponding wavefunctions shown 

by different colors in the right-hand side of the Figure. The (calc.-obs.) deviations for CT-predicted 

rovibrational energies can be seen in Figure 10.  In general, the quality is very similar to the 

variational calculations [ *** ]  using the same PES. This means that the (calc.-obs.) deviations in 

this energy range are essentially limited by the uncertainty of the underlying ab initio PESs and not 

by the CT method. Many works aimed at improving (calc.-obs.) deviations by a least-square 

empirical fit of the PES parameters (see for example [ WC ] and references therein). This is 

computationally quite demanding procedure that usually results in the (calc.-obs.) deviations, which 

remain by two or three orders of magnitude larger that the experimental high-resolution accuracy 10-

3 cm-1 for polyatomic molecules like methane, even for the band origins. 

Instead of doing this, one can empirically optimise just a small part of parameters in the EH 

computed by CT. This is much faster, as the polyads are decoupled, and gives much better accuracy 

for a large set of experimental vibration-rotation transitions.  

 The second and third columns of the “V-off diagonal coupling parameters”  part of Table 12 

correspond to the simultaneous fine tuning of a restricted samples of Heff(CT) parameters to presisely 

match experimental transitions in the Dyad, Pentade and Octad spectra up to Jmax=20. The total set 

of fitted parameters ( < 300) was about 5 times smaller than in the work [Albert] . In this test 

calculations we have optimized only 9 interaction parameters ( fit test 1) or 23 interaction parameters 

(fit test 2) whereas over 95% of the high-order off-diagonal coupling terms were held fixed to ab 

initio values predicted by CT. For 14652 observed transitions this gave calculations within the 

experimental accuracy for line positions with the weighted standard deviations of 0.99 and 0.79.  

 

In the “test 2” , this corresponded to the RMS (calc.-obs.) deviations of 0.0002, 0.0007 and 

0.0017 cm-1  for the Dyad, Pentade and Octad transitions correspondingly. We are not aware of an 

empirical optimized PES which could approach such an accuracy for five-atomic molecules.  

 The last colum of Table 12 shows that the fitted values of interaction parameters remain very close 

to the original values predicted by CT.  This is also valid for principal low order diagonal parameters 

as was shown in Tables 3 and 6 of [15].  

 



 
Figure 12. The scheme of CT for the Octad system (P=3) of CH4 and the rovibrational levels with the basis 

state mixing coefficients indicated by the corresponding colors. Er = Evib-rot – B0J(J+1) is the standard 

representation for the reduced energies in cm-1. 

 
Figure 13 :  Example of calculated intensities of the Octade system. The color codes of the bands correspond 

to the color code of the vibrational upper states . Horisontal arrows at the top of the figure sybolise the 

exchange of intensities due to the resonance coupling terms corresponding to the mixing of rovibrational 

wavefunctions depicted in Figure 12. 

 

 
 Another related issue is the modelling of line intensities. The rovibrational wavefunctions 

produced by the Heff (“Fit test 2”) of Table 12, were applied for a test fit of experimental line 

intensities using effective dipole transition moment (112).  Earlier work [ Daumont] using purely 



empirical Heff reported the RMS intensity deviation for the measured octade bands dRMS = 10.4% and 

dRMS = 11.3%. The wavefunctions of Heff (Fit test 2)  permitted to obtain dRMS = 7.5%  with a similar 

set of data.  

In Figure 13 the computed line intensities for the Octad system are shown with the color 

codes for the bands roughly corresponding to the color code of the upper ro-vibrational states  of 

Figure 12. The exchange of intensities between stronger and weaker lines is determined by the 

mixing of rovibrational basis functions shown in Figure 12. These latter ones are in turn determined 

by ab initio coupling terms evaluated with the help of CT. One can conclude that better 

wavefunctions produce better intensity fit. 

 

More elaborate EH models based on CT calculations have been used in the subsequent works 

[    ] devoted for analyses of experimental CH4 spectra of the Octad band system. It was shown that 

by fixing of high-order EH parameters to predicted CT values one obtains better extrapolations to 

weaker lines that permitted to increase assignments and improve the quality of line lists.  

 

15. CT for molecules with large amplitude vibrations: discussion and prospective 
 

The expansions of Section 5.2 are only appropriate if the amplitude of the vibrations is small 

compared to the internuclear distances. There is a large number of methods and models devoted to 

large amplitude vibrations [ 190, 191, 194, 211, 213, 215, 330-342] (and references therein). This list 

is of course not exhaustive, a more detailed references can be found in recent papers by Viglaska et 

al [215] and Egorov et al [341].  Here we briefly consider two versions for CT implementations 

based on the Hougen-Bunker-Johns (HBJ) approach [238] for the choice of the internal coordinates.  

 

 Let us designate   a large amplitude vibration coordinate as for example the inversion coordinate, 

similarly to notations of many  previous works [215, 238, 342-347]. The following partition is often 

employed:  :  
0 0 ( , / )H H       is the one-dimensional Hamiltonian of the large amplitude 

vibration and 0 ( 1/ 2)small
k k k

k

H a a    is the zero-order Hamiltonian of other small amplitude 

vibrations. The full molecular Hamiltonian can be developed in usual power series of small 

vibrations qk but not in a large amplitude coordinate  : 

 

   ... ...

1
( , / ; ) ... ... ... ( , / ; ) { }

2
n i jl m i j l mH C J a a a a F J W W    

          ub ub bu

ub

 (112) 

The first part of Eq.(87) is written in the representation of independently running indices and the 

second part in the representation of fixed mode indices. All the notations are similar to those of 

Section 5.3. Contrary to Sections 5.2-5.5 the expansion coefficients ... ...i jl mC and Fub are no more 

constants but operators acting on the large amplitude coordinate   and on Euler angles.  

In the literature two approaches for a partial separation of variables in the HBJ type 

Hamiltonian were applied leading to different formulation of effective models for non-rigid 

molecules. 

(i) In the first one, the large amplitude vibration ( , / )    is treated together with the 

rotation (J ), both of them being separated out from small vibrations (qk). This approach has been 

introduced by Hougen-Bunker-Johns [238] and Hoy, Bunker, Jensen et al [343-347] for their 

semirigid and nonrigid bending-rotational model. The works on structure and dynamics of quasi-

linear molecules has been reviewed by Winnewisser [348]. A similar idea has been also applied by 

Papousek et al [349] and Spirko et al [350,351] for the inversion-rotation Hamiltonian of NH3. A 4D 

bending-roational model of Coudert [352,353] applied for accurate data reduction for the lower 

vibration states of the water spectra was based on a similar concept but with different choice of the 



coordinates.  Schematically, if one neglects the resonances, this corresponds to the use of an 

effective large-amplitude-vibration-rotation Hamiltonian   ( , / ; )[V] eff [V] eff J   H H  in a non-

degenerate state (V) of small vibrations. Such a model can be systematically derived by the general 

algorithm of CT with an appropriate choice of the modelling operator A (Section 2.2).  The 

procedure of the separation of variables described in Section 3 is directly applicable in this case with 

the modelling operator analogous to (81):  
. .

m m m

s a v

a a A . Here “s.a.v” means a summation over 

small amplitude vibrations which correspond to {X} variables of Section 3.1.  A  acts as unity 

operator on the large amplitude coordinate   which is considered as {y} coordinate.  Rotational 

operators (J ) are also considered as {Y} variables.  Technically, the CT calculations are simplified 

if the 
0 0 ( , / )H H       term can be considered together with the perturbation. This is the case of 

a floppy large amplitude vibration with the characteristic frequencies << . . .s a v
k . The procedure of the 

separation of fast and slow variables of Section 3.1 can then be applied. The simplification is due to 

the properties (46) which in the concise notations for large-amplitude-vibration and rotation 

operators ( , / ; )F F J   ub  read 

F W F W    ub ub ,  
1 1

( ) ( )F W F Wub ub
D D

   (113) 

The action of CT operations on small vibration terms W ub , 
1

( )Wub
D

 is exactly the same as in 

Eqs. (64,69,82). The transformed Hamiltonian takes the form 

 
( )( , , ; , / ; ,...) (...)res j

iH f N n h J f           (114) 

 

For a pure vibrational problem a classical analogous of this procedure has been developed by Joyeux 

and Sugny [85,144 ] based on Birkhoff formulation [159] of the perturbation theory.  Commutators 

is the CT recurrent scheme of Section 5 were replaced with the Poisson brackets.  

 

(i) In the second approach suggested by Starikov and Tyuterev  [107, 112, 342], the large 

amplitude coordinate   is treated together with small vibrations qk . The aim is to separate all 

vibrations from the rotation as full as possible. The operator  
0 0 0

smallH H H  is considered as a 

zero-order approximation. In the notations of Section 3.1 here { , qk } are {x} coordinates and {J } 

are {Y} variables. Let us take as an example a NH3 type molecule [107,342] with the stationary 

Schrödinger equation for the 1D inversion cut 0 | |
t

H t t


  E . Here 
t
E are the zero order 

energies for symmetric and anti-symmetric inversion states. A suitable choice of the modelling 

operator is the following  

 

. .

(1/ 2) ( )+ - t m m mt t
t s a v

a a    PE EA      (115) 

Here | | | |t t t t t      P  are the projectors onto the zero order wave functions corresponding to 

inversion doublets. The action of CT operations on elementary Hamiltonian expansion terms takes 

the form 

 

F W W  ub ub ,   ( )t s

ts

F   P P     (116) 

1
( )F W T Wub ub

D
 ,  (1 )( ) /{( (t s t s

ts

T F    P P u) - b)}E E   (117) 



Here ( ) / 2t t t  E E E , and   is the extended Kronecker symbol 

,

0, ( (

1, ( (

t s
ts

t s

if

if





 
    

  
ub

u) - b) >

u) - b)

E E

E E

 

 
 

The parameter  is used as a resonance threshold for the denominator in Eq.(91b).  In the absence of 

resonances and of degenerate vibrations ts   u,b . According to Eq.(50) in this latter case a full 

separation of all vibrations is achieved and CTs result in effective rotational Hamiltonian for 

individual vibration state. This type of transformation modifies considerably the vibrational 

dependence of the rotation and centrifugal distortion constants [107,112, 342, 354-357]. The 

resulting expressions for effective Hamiltonians and dipole moments related to this approach were 

reported in  [342] . 

 Recently Viglaska et al [215] have shown that the HBJ approach, which had been originally 

introduced for triatomics, was validated for more general case of polyatomic molecules and could 

lead to new computational scheme for numerically exact transformations of the nuclear motion 

Hamiltonian. 

 

16. Conclusions 

 

Variational methods versus effective models 

Theoretical calculations of the positions and intensities of vibration-rotation lines are carried out 

using two complementary approaches: global variational methods for the nuclear motion 

calculations, or effective models localized at a particular spectral ranges covered by available 

experimental spectra.  A comparison of two scheme of calculations if illustrated in Figure 15.1. 

 
 

Fig 16.1.  => Figure 14. A scheme of two main theoretical approached for computing energy 

spectrum of a molecule from a potential energy surface. KEO is denoted by T.  Effective 



Hamiltonians serve as intermediate models for describing polyads of closely lying states. They can 

by efficiently used for experimental data reduction in a particular energy range for a fine tuning of 

parameters initially computed from ab initio PESs 

 

Variational methods for calculating molecular spectra are actively developed in many 

laboratories around the world (a large list of the relevent references was already given in the 

beginning of Section 5, Section 8, Section 12.1, and Section 14). Their major advantage is a 

completeness of calculation of the entire spectra including all hot bands. If the ab initio PES is 

sufficiently reliable, this can provide theoretical spectra up to the dissociation threshold [246, 358, 

359] and sometimes metastable states above it [360,361]. This is particularly important for high-

temperature or non-LTE conditions [362,363], in which very excited rovibrational states are 

pupolated. Several high-temperature databases like HITEMP [292, 364], ExoMol [365], NASA-

AMES [366] and TheoReTS [297,367] for astrophysical and combustion applications have been 

recently created as reviewed in [291, 292, 368].      

The accuracy of ab initio calculations based on line positions even for medium size 

molecules is still far from the experimental accuracy (0.001-0.0001 cm-1) of high-resolution spectra 

required for metrological applications, but they can provide extremely valuable information on low 

resolution spectra and band intensities.  The variational method could be also used to empirically 

optimize potential energy surfaces, the parameters of which were adjusted to experimental energy 

levels. In some cases, this made it possible to approach spectroscopic accuracy for low-energy levels 

localized near the bottom of the potential well for relatively small light molecules of up to three or 

five atoms. Recently, the medium resolution predictions of spectra have been extended for six-

atomic and seven-atomic molecules like C2H4 [369, 370] and SF6 [232, 371] permitting to elucidate 

complex patterns of hot bands.  However, for molecules with a large number of atoms, aiming at 

high-resolution accuracy in line positions, the “brute force” approach with exact KEO is extremely 

time-consuming because of the technical difficulties associated both with the accuracy of underlying 

ab initio PESs and DMSs and with large basis set dimension for the nuclear degrees of freedom.  The 

corresponding matrices of a full nuclear motion Hamiltonain are in principle infinite dimensional, 

consequently variational and DVR method face basis set convergence problems involving specific 

truncation, compression,” pruning” issues etc [204, 372].  

Methods of effective Hamiltonians and dipole moment operators accounting for strong 

coupling of various types of nuclear motion in molecules among closely lying levels offer a tool to 

study molecular problems, which is complementary to variational methods. The method of effective 

operators has historically been and still is the main tool for modeling spectra in a given spectral 

range with an experimental level of accuracy on line positions in certain energy ranges. The major 

advantage of the effective models is that this approach allows one to reduce an extent of calculations 

by focusing on a certain group of vibrational states “localized” within a limited energy interval. The 

latter is supposed to be of interest for an interpretation of a concrete experimental spectrum within a 

given wave number range. Thus, the dimension of matrices is dramatically reduced and 

computational realization becomes much simpler, that makes a metrological accuracy of calculations 

feasible provided that all resonance coupling interaction are correctly included in the model. For this 

reason, most of data included in spectroscopic databases for atmospheric applications like HITRAN 

[58], GEISA [59] , JPL [373],  CDMS [374],  S&MPO[251], STDS [302], MeCaSDa [375],  CDSD 

[376], NOCD[377], ASD [378],  and many other compilations -  particularly for line positions - are 

essentially based on empirical effective models.  Effective models and  related computational codes 

((RAM, ERAM, BELGI, XIAM, . . . )  for large amplitude/ Internal rotation were reported in [401-

406] ( and refrerences therein)  

Historically, the model parameters were adjusted using the least squares method to the 

experimental data. In a number of cases, the empirical model makes it possible to describe the 

vibration-rotation spectrum of this group with a high-resolution accuracy.  However, it is well-



known that an EH cannot be unambiguously determined from a fit to experimental energies, 

particularly for quasi-degenerate polyads of coupled states [172-179] . A rapidly increasing number 

of poorly determinable EH parameters in the fit, lacking information for “dark” states and strong 

correlations among fitted parameters ( “collinearity issue” [10] ) make it mathematically ill-defined 

problem. In many cases, unreliable values of arbitrarily fitted resonance coupling parameters could 

then result to false extrapolations for the intensity transfer between weak and strong bands.  

 

 

Mixed “ab initio/effective” approach  

 

 Using the CT or equivalent methods, it is possible, in principle, to obtain relationships 

between the full Hamiltonian of nuclear motion and effective spectroscopic models in a certain 

energy range. An inclusion of a priori information from ab initio calculations into the Heff(CT) 

permits introducing physically meaningful values for the vibrational dependence of rotational 

constants and for the resonance coupling parameters. This allows for better ro-vibrational 

assignments and understanding resonance perturbations in spectra.  

 In Ref [15] , we have developed a hybrid “ab initio => CT / effective” approach for 

building a robust polyad ro-vibrational model using information from ab initio PES of the methane 

molecule.  At the initial step, a full set of ro-vibrational terms, including higher-order ones in EH 

were derived from the PES using the MOL_CT program with the accuracy comparable to variational 

methods. At the second step, one can proceed by an empirical “fine tuning” for some of parameters 

[15,47, 233, 310, 316] . Only limited number of them well determined in the least squares fit where 

adjusted. This approach was recently systematically applied for analyses of spectra of 13CH4 

[315,379] , CF4 [275] , NF3[379] and ozone isotopologues [212,380,381].   

 The scheme of this mixed approach for an optimization of effective spectroscopic models 

using ab initio information is illustrated in Figure 15.1. 

 

 
 

Fig 16.2. => Figure 15. Scheme the mixed approach for an optimization of effective spectroscopic 

models using ab initio information 

 

 



Such approach significantly reduces the number of the fitted parameters when analysing and 

modeling experimental spectra. In addition, a better stability for the procedure of experimental data 

reduction is obtained with faster convergence of iterations [15].  In a certain sense, this permits a 

regularization of this “inverse spectroscopic problems” with improved extrapolation and 

convergence of the least squares fit method. A further prospective can be related to a development of 

EH using non-perturbative numerical method [165].  

Another motivation for the ab initio derived spectroscopic model Hamiltonians is a 

possibility to explore the relation between classic and quantum dynamics of nuclear motion in 

molecules in polyad subspaces with a particular focus of strongly coupled states and qualitative 

changes induced by resonance interactions and bifurcations of periodic orbits. 

 

 

Acknowledgements 

The support from ANR-RNF TEMMEX project (grants ANR-21-30CE-0053-01 and RNF 22-42-

090)  is acknowledged. The GSMA laboratory of Reims University, France, acknowledges a support 

from SAMIA collaborative program.  

 

 

 

APPENDIX I.  COMMUTATOR EQUATIONS 

 

A1. Basis definitions 

 

In the context of the CT method for the stationary Schrödinger equation we consider the Hilbert 

space E spanned by wave-functions and the L algebra of operators (defined in Section 2.2) , which 

act in E.  By choosing the modeling operator A of CT we divide the algebra 
( ) ( ) AL L L  as 

discussed in Section 2.2).  A manifold of operators acting in E has itself properties of space, where 

one can define certain basis set likes that defined in Sections 2.4, 5.3 as well as linear operation 

acting on operators, which are often called “transformators “ or “super-operators” in the 

mathematical literatures since earlier works of  Crawford [166], Finkelstein [384] and [383,385,386, 

29,98]. 

A simple super-operator involved in CT is the operation of  the extraction of the 
( )AL -contribution 

from any operator of CT : 

    
( )X X X    A

A   , where  
( ) ( )X A AL    

The most relevant for the CT method is the superoperator 
B BB B ad  D  of a commutator with a 

certain operator B ,  where notations B and B stand for trivial operations of a multiplications from the 

right-hand side and from the left hand side BX BX and BX XB , as defined for example in  [383] . 

In other words, the action of (...)BD  is a transformation within the algebra L converting an operator 

X  to its commutator with B  

( ) ( ) [ , ]B X B B X B X  D  ,  where both  BL  and X L   (A1) 

Definitions of elementary functions of 
BD in the L algebra are straightforward in a usual way both 

for the n-th power 

( ) (... ( )...) [ ,[ ,...[ , ]...]]n

S S S

n

X X S S S H D D D    (A2) 

and for the exponential, accounting for the obvious property [ , ] 0S S   : 



( ){ } { } { }S S S S S S Se X e X e e X e Xe    
D     (A3) 

The Taylor series expansion for the exponent combined with (A2-A3) immediately results in the 

Backer-Hausdorff expansion  

0

1 1
{ } [ , ] ... [ ,[ ,...[ , ]...]] ...

! !
S n

S

n
n

e X X X S X S S S H
n n





 
      
 


D D  , (A4) 

which plays the central role in the CT method.  Another way to define functions F(D) is using an 

integral transforms  ( ) ( ) ( , )

b

a

F x f t K x t dt   with a separable kernel 
1 2 1 2( , ) ( , ) ( , )K x x t K x t K x t    like 

those of Fourier, Laplace or Mellin. Then   

  ( ) ( ) ( ) ( , ) ( , )

b

B

a

F X F B B X f t K B t XK B t dt   D      (A5) 

if these integral is well defined.  

In view of Eq (A4),  the CT can be considered as super operator acting on the Hamiltonian to 

convert it to an effective one  CTH H .  The major point is how to define the generators of the 

transformations to achieve a desired simplification?   Various partitions of the transformations and 

different conditions on the generators result in different but equivalent versions of the degenerate 

perturbation theory as discussed in [6,33,36].  

 

A2. Solving commutator equations 

 

As follows from Sections 2.2, 2.3 one needs to solve commutator equations (15-17) of the type  

0[ , ]H X         that is    
0
( )H X D      (A6 ) 

where H0 and  are known operator both belonging to the algebra L, whereas X is an unknown 

solution. As in the context of CT we always need a commutator with H0, this low case index will 

thus be omitted in what follows. That is, by definition 
0HD D .  To solve the equation (A6) one 

needs an inverse  operation 
0

1 1 1

0 0) ( )H H H   D =(D  so that  

1 1 D D  with the formal solution 1X  =D ( )  

The point is that the operation  1D  is not well defined on the entire algebra L  if a decomposition 

0 0( ) ( )H 
    would possess a contribution 0( )H

 commuting with H0. 

Let us begin with a particular simple choice of the CT modeling operator A equal to the zero-

order Hamiltonian without quasi-degenerate levels (no accidental resonances !)  
(0)

0 L L

L

H E P A ,      where 
0 0| , , |L

ij

P L i L j             (A7) 

Here 
LP are the projectors on degenerate eigen-spaces spanned by the zero-order basis functions, 

consequently 0

0

( )

H L L

L

P P      
HL  commute with H0.   

There are three possible cases: 

()  If 0( )


HL , that is 
0

0H   ,  then the equation (A6) does not have a solution. 

This follows from 
00[ , ] 0HH X    that can be symbolically written as 0( )

( )


L LD  

()  If 0( )
L , that is 

0
0H   , then the equation (A6) has an unique solution at the sub-

space 0( )L : 

 0( ) 1 (0) (0) 1( ) ( )
L M L M

LM

X E E P P
     =D ,   where      0 0( ) ( )

X
 

L   ( A8) 



( )     If 0( )
L , that is 

0
0H   , then a general solution of eq.(A6 ) at the entire CT algebra 

L can be written as a sum of the particular solution (A8) plus an arbitrary term z  belonging to 

0( )L  : 

0

1( ) HX z    =D ,      (A9) 

In the standard version of CT, the constraint 
0

0HX   is commonly applied. By a appropriate 

choice of arbitrary terms z  , we can obtain most of other published versions of degenerate 

perturbation theory as a particular cases of the generalized CT method as discussed in detail in 

[6,33,36].  

 

A3. Quasi-degenerate case: account for the resonance couplings 

 

 To include quasi-degenerate states in the effective Hamiltonian we extend the definition of 

the CT modeling operator A as discussed in [ 6,36] and in Section 2.2 with a more flexible target 

requirement [ , ] 0H A  . One of the possible ways is to define A  by eqs (34-35) with the condition 

that the algebra of the CT transformed Hamiltonian would be enlarged  0( )( ) H
AL L  by including 

polyads of nearby states . This approach also works for the case of overlapping polyads.  Another 

possibility is to include in H 
A

 all coupling terms which are necessary to describe strong 

interactions in considered experimental spectra.  Other choices are possible in relation with the 

problem of separation of fast and slow variables.  

In order to obtain a general solution of the commutator equations in this sense, which are valid on 

the entire CT algebra L, the following definition is used through this work 

11
( )    

A
D  ( - < > )

D
        (A10) 

In general, the action of the inverse commutator operations can be written via integrals (A5) using 

Fourier transformation  

0 0
0

0

1
( ) lim exp( )exp( ){ }exp( )i t iH t iH t dt







        A

D
  (A11) 

or alternative transformations of Lapalce of Mellin [6]. In the particular case of A =H0, this coincides 

with the original definitions introduced by Primas [29,98] .  

For practical calculations for the bound states, it is always possible to find an eigen-representation in 

the CT algebra L where the actions of superoperators 
1

(...)
D

 and of <. . . >  reduce to simple 

multiplication by appropriate constant factors. An example is given by ket-bra operators 

0 0| , , |LM

ij

P L i M j   of the zero-order basis set . For the normal mode vibrational operators (60-

63, 68) the solution is particularly compact as follows from (64-66,69,79 ).  

 

 

 
APPENDIX II. VIBRATIONAL COMMUTATORS AND ANTICOMMUTATORS 

 

Consider (anti)-commutator of two operators V1 and V2 

1 1 2 2 1 1 1 2 2 2, ,

1 2 1 1 2 2

1 1
[ , ] [ ( ( 1) ( ) ), ( ( 1) ( ) )]

2 2
V V N N N N         

        

 1 2 1 2 1 2

1 2 1 2

1
{([ , ] ( 1) [ , ] )

4

cN N N N       

    2 1 2 1 2 1 2

1 2 1 2( 1) ([ ,( ) ] ( 1) [ ,( ) ] )}cN N N N         

      



where c=1 for a commutator and c=0 for an anticommutator. It is seen that in order to calculate this 

it is necessary to calculate two (anti)-commutators 1 2[ , ]N N   and 
1 2[ , ]N N 


. These commutators can 

be expressed as linear combinations of N-type operators with numerical coefficients A and B 
1 2

1 2[ , ] i i

i

N N A N  

   and 1 2

1 2[ ,( ) ] j j

j

N N B N   

  , 

where 1 2    .  This yields 

1 1 2 2 1 2 2 1 2, , , ,

1 2

1
[ , ] { ( 1) }

2 i i j j

c h c

i jp q r s
i j

V V AV B V            

      

Calculation of the product N1N2 is based on usage of the following expression for the one-

dimensional elementary vibrational commutator (Appendix IX of Ref. 6) 
min( , )

1

! !
[ ,( ) ] ( )

( )!( )! !

m n
m n n k m k

k

n m
a a a a

n k m k k

   






 

  

We have 

1 2 pq rs
N N N N 

3 31 1 2 2

1 2 3

min( , )min( , ) min( , )

1 1 2 2 3 3

0 0 01 1 1 1 1 2 2 2 2 2 3 3 3 3 3

! ! ! ! ! !

( )!( )! ! ( )!( )! ! ( )!( )! !

r qr q r q

x y
k k k

r q r q r q
N

r k q k k r k q k k r k q k k       
    

where x p r k    , y q s k   , 1 2 3( , , )k k k k . To get N2N1 from N1N2 it is necessary to swap 

indices p↔r and q↔s. Systematical use of the latter equation is sufficient to calculate coefficients Ai 

and Bj and then the commutator itself. 

 

APPENDIX III. ROTATIONAL COMMUTATORS AND ANTICOMMUTATORS 

 

By definition 
1 1 2 2 1 1 2 2 2 2 1 1

1 1 1 2 2 2 1 1 1 2 2 2 2 2 2 1 1 1

, , , , , ,

, ,2 , ,2 , ,2 , ,2 , ,2 , ,2,m n l m n l m n l m n l m n l m n lR R R R R R          


      

Substitution the shift and other algebraic properties of the angular momentums components [6] into 

this equation yields 

 

1 1 2 2 1 2 2 1 2

1 1 1 2 2 2 1 2 1 2

, , , ,

, ,2 , ,2 , ,2( ) , , ,2( )

,

1
, { ( 1) }

2 i i j j

c c

m n l m n l i m n l l j m n l l

i j

R R A R B R      

 


       

  


        , 

where c=1 for a commutator and c=0 for an anti-commutator. 
1 2    . Numerical coefficients Ai 

and Bj are defined according to equations 

1 1 2 2
,

i im n m n i m n

i

Z Z A Z  


     , 
1 1 2 2

2

,

,

,
j jm n m n j m n

j

Z Z B Z J 




  


     , 

Taking into account commutational relations of Jx, Jy, Jz, J
2 and definitions of Section 6, after tedious 

but straightforward algebraic manipulations we get [39] for the case m1 ≥ m2 

1 2

1 1 2 2 1 2 1 2

1 1 1 2 2 2 1 2 1 2 1 2

, , ,

, ,2 , ,2 ( ),( ),2( )

0 0

1
, {

2

n n
c

m n l m n l ij m m n n i j l l

i j

R R A R        

    


 

     

2 2 1 2

2 1 2 1 2

1 2 1 2 1 2

2
,

( ),( ),2( )

0 0 0 0 0

( 1) }
m m n n

h c

ijk m m n n i j k l l

i j k

B R


 

 
 

   

      

    

  , 

where 
   

1 2 1 2

1 2

! !
[( 1) ( 1) ]

! ! ! ! 2 2

j i

j i

ij

n n m m
A

i n i j n j

   
      

     
 

and 
     

2 1 2 1 2 1 2

1 2

! ! !
[( 1) ( 1) ]

! ! ! ! ! ! 2 2 2

j i k

m i j k

ijk

n n m m m m
B C

i n i j n j k k



 





      
        

        
 

Numerical coefficients mC  are connected with Loevdin polynomials ((a,b))[k] see e.g. Ref. 6. 



1 2
2 [ ] 2 2

0 0 0

(( , )) [ ( )( 1)]
k k k

k k

i

a b a b i b i C a b 



 



  

       ,  2 [0](( , )) 1a b   

For the case m1 < m2 it is necessary to swap (m1,n1) and (m2,n2) in the equation for Bαβijk. 
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