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In this paper we devise a new Hybrid High-Order (HHO) method for a linear elliptic transmission problem in a bounded domain. In HHO the solution of the problem at hand is approximated by attaching polynomials of degree k to the mesh cells and to their boundaries. Specific element-local operators are then employed to obtain a high-order reconstruction of the solution. Following this construction, a well-posed nonconforming discrete formulation is obtained. A significant advantage of HHO is that cell-based unknowns can be eliminated locally via a Schur complement, obtaining a global problem posed on the mesh skeleton. This in turn allows to obtain a compact global linear system with a significantly reduced number of unknowns.

In our scheme an auxiliary unknown, which plays the role of a Lagrange multiplier, is introduced to deal with the nonhomogeneous transmission conditions. We prove that the proposed method is optimally convergent in the energy norm, as well as in the L 2 -norm for the potential and a weighted L 2 -norm for the Lagrange multiplier, for smooth enough solutions. Finally, we include some numerical experiments that validate our theoretical results, even in situations not covered by the current analysis.

Introduction

Transmission problems appear in many areas of engineering and science, and they can be divided into exterior and interior transmission problems, depending on if the domain is unbounded or not [START_REF] Gatica | A dual-dual mixed formulation for nonlinear exterior transmission problems[END_REF][START_REF] Barrenechea | Weak solvability of interior transmission problems via mixed finite elements and Dirichlet-to-Neumann mappings[END_REF].

In this work we consider a particular interior type problem, going under the name of interface problem. Interface problems appear naturally, for example, in solid mechanics [START_REF] Burman | An unfitted Nitsche method for incompressible fluidstructure interaction using overlapping meshes[END_REF] and fluid dynamics problems [START_REF] Esser | An extended finite element method applied to levitated droplet problems[END_REF]. Numerically there are multiple possibilities for the treatment of the interface, depending on the specific problem at hand. In particular, the interface can be conforming to the mesh (fitted) or nonconforming (unfitted). In the unfitted setting the interface is allowed to cut some mesh elements, whereas in the fitted setting the interface sits on the mesh skeleton.

Several examples of fitted and unfitted discretizations can be found in literature. In the context of the Hybridizable Discontinuous Galerkin (HDG) method, we cite [START_REF] Guyomarc'h | A discontinuous Galerkin method for elliptic interface problems with application to electroporation[END_REF] for the fitted case and [START_REF] Dong | An unfitted hybridizable discontinuous Galerkin method for the Poisson interface problem and its error analysis[END_REF] for the unfitted one. For simplicity, the interface is usually assumed to be polygonal/polyhedral. But there exist works considering a smooth curve as interface. See, for example [START_REF] Barrett | Fitted and unfitted finite-element methods for elliptic equations with smooth interfaces[END_REF], while in [START_REF] Wang | Hybridizable discontinuous Galerkin method (HDG) for Stokes interface flow[END_REF] a Stokes interface problem is treated using HDG method.

Fitted and unfitted interface methods differ in several aspects, which must be taken into account when one method has to be chosen over the other. In a fitted context for example, the jump conditions across the interface can be easily incorporated into the weak formulation (cf. [START_REF] Bramble | A finite element method for interface problems in domains with smooth boundaries and interfaces[END_REF][START_REF] Chen | Finite element methods and their convergence for elliptic and parabolic interface problems[END_REF]). On the other hand, an unfitted method could be more flexible in time dependent problems, where the interface moves with time or during an iteration (free boundary), and when the boundary or the internal interface is curved.

Clearly, in an unfitted context, non-trivial infrastructure is needed to capture the geometry of the interface and to enforce jump conditions across the interface accurately. The resulting linear system may not be always symmetric and its conditioning has a strong dependence on how the interface cuts the mesh cells. For this reason, agglomeration strategies can be used to alleviate the problem [START_REF] Burman | An Unfitted Hybrid High-Order Method with Cell Agglomeration for Elliptic Interface Problems[END_REF] In this work, we will devise a fitted HHO method for the linear transmission problem. HHO provides several advantages, like natural support for general polyhedral meshes and arbitrary polynomial order. In addition, thanks to a local Schur complement, the global problem is posed in terms of face unknowns only [START_REF] Cicuttin | Hybrid High-Order Methods[END_REF]. For simplicity, we will only consider a polygonal interface that separates an internal domain and an external (annular) domain. In the existing bibliography, only Dirichlet and mixed boundary conditions on the external boundary are addressed. In this paper we consider pure non homogeneous Neumann condition on the exterior boundary. This work does not explicitly address the presence of hanging nodes in the transmission boundary, although it is possible to extend our study, following the analysis in [START_REF] Hansbo | A Lagrange multiplier method for the finite element solution of elliptic interface problems using non-matching meshes[END_REF].

We point out that a transmission problem with curved interface, has been studied in [START_REF] Burman | An Unfitted Hybrid High-Order Method for Elliptic Interface Problems[END_REF][START_REF] Burman | An Unfitted Hybrid High-Order Method with Cell Agglomeration for Elliptic Interface Problems[END_REF], applying an unfitted finite element method (introduced in [START_REF] Hansbo | An unfitted finite element method based on Nitsche's method for elliptic interface problems[END_REF]), with the philosophy of HHO method. However, we emphasize that its analysis is quite different to the presented here, since we introduce an auxiliary unknown living on the transmission interface, that acts as a Lagrange multiplier. As a result, we derive a discrete mixed HHO formulation.

The rest of this paper is organized as follows. In Section 2, we introduce the model problem and discuss its well-posedness, at continuous level. In Section 3, we describe the main analysis tools, the Degrees of Freedom (DOFs) in the context of HHO method, and the potential reconstruction operator, with its key properties. In Section 4, we introduce the discrete problem and study its unique solvability and stability. In Section 5, we perform an a priori error analysis, first in the energy-norm, and then in the L 2 -norm under additional elliptic regularity assumptions. Finally, in Section 6, we present some numerical experiments, to confirm our theoretical results as well as to show the robustness of our approach in situations not fully covered by our current analysis.

Continuous settings

Let Ω 1 be a bounded and simply connected domain in R d , d ∈ {2, 3}, with Lipschitz continuous boundary Γ 1 := ∂Ω 1 . Let Ω 2 be the annular region bounded by Γ 1 and a second Lipschitz continuous curve Γ 2 , that is strictly contained in R 2 \Ω 1 (see Figure 1). For any connected subset X ⊂ Ω with nonzero Lebesgue measure, the inner product and norm of the Lebesgue space L 2 (X) are denoted by (•, •) X and || • || 0,X , respectively. We consider the following interior transmission model problem: Find potentials

u 1 : Ω 1 → R and u 2 : Ω 2 → R such that -∆ u 1 = f 1 in Ω 1 , (1a) -∆ u 2 = f 2 in Ω 2 , (1b) u 1 -u 2 = g on Γ 1 , (1c) ∇u 1 • n 1 + ∇u 2 • n 2 = g 1 on Γ 1 , (1d) ∇u 2 • n 2 = g 2 on Γ 2 , (1e) 
Ω 1 u 1 + Ω 2 u 2 = 0 , (1f) 
where

f 1 ∈ L 2 (Ω 1 ) and f 2 ∈ L 2 (Ω 2
) are the forcing terms, g ∈ H 1/2 (Γ 1 ) represents the jump of traces of the potentials on Γ 1 , g 1 ∈ H -1/2 (Γ 1 ) and g 2 ∈ H -1/2 (Γ 2 ) are the jump of normal component of the fluxes on Γ 1 , and the normal component of ∇u 2 on Γ 2 , respectively. Here, n 1 represents the unit outward normal to the boundary of Ω 1 , while n 2 denotes the unit outward normal to the boundary of Ω 2 given by ∂Ω 2 := Γ 1 ∪ Γ 2 . Also, we impose the following compatibility condition

Ω 1 f 1 + Ω 2 f 2 + g 1 , 1 Γ 1 + g 2 , 1 Γ 2 = 0 , (2) 
for the well-posedness of problem [START_REF] Barrenechea | Weak solvability of interior transmission problems via mixed finite elements and Dirichlet-to-Neumann mappings[END_REF].

Ω 1 Ω 2 Γ 1 Γ 2 Figure 1: Geometry of the problem
The starting point of the HHO method relies on finding a primal-mixed variational formulation of (1). We introduce the auxiliary unknown ξ := ∇u 1 • n 1 ∈ H -1/2 (Γ 1 ), the Hilbert space

U := (v 1 , v 2 ) ∈ H 1 (Ω 1 ) × H 1 (Ω 2 ) : (v 1 , 1) Ω 1 + (v 2 , 1) Ω 2 = 0 , (3) 
provided with the norm

||(v 1 , v 2 )|| 2 U := ||v 1 || 2 1,Ω 1 + ||v 2 || 2 1
,Ω 2 and Q := H -1/2 (Γ 1 ) with its usual norm || • || -1/2,Γ 1 . Then, the variational formulation reads as: Find

((u 1 , u 2 ), ξ) ∈ U × Q such that a((u 1 , u 2 ), (v 1 , v 2 )) + b((v 1 , v 2 ), ξ) = F (v 1 , v 2 ) ∀(v 1 , v 2 ) ∈ U, (4a) -b((u 1 , u 2 ), λ) = G(λ) ∀λ ∈ Q. ( 4b 
)
where a :

U × U → R and b : U × Q → R are bilinear forms defined as a((w 1 , w 2 ), (v 1 , v 2 )) := (∇w 1 , ∇v 1 ) Ω 1 + (∇w 2 , ∇v 2 ) Ω 2 ∀ (w 1 , w 2 ) , (v 1 , v 2 ) ∈ U × U , b((v 1 , v 2 ), λ) := λ, γ + 0 (v 2 ) -γ - 0 (v 1 ) Γ 1 ∀ ((v 1 , v 2 ), λ) ∈ U × Q , while the linear functionals F : U → R and G : Q → R, are given by F (v 1 , v 2 ) := (f 1 , v 1 ) Ω 1 + (f 2 , v 2 ) Ω 2 + g 1 , γ + 0 (v 2 ) Γ 1 + g 2 , γ + 0 (v 2 ) Γ 2 ∀ , , (v 1 , v 2 ) ∈ U , G(λ) := λ, g Γ 1 ∀ λ ∈ Q ,
where •, • Γ 1 denotes the duality pairing of H -1/2 (Γ 1 ) and H 1/2 (Γ 1 ) with respect to the L 2 (Γ 1 )-inner product, and analogously for •, • Γ 2 . In addition, γ - 0 : H 1 (Ω 1 ) → H 1/2 (∂Ω 1 ) and γ + 0 : H 1 (Ω 2 ) → H 1/2 (∂Ω 2 ) correspond to the trace operators defined on each subdomain. Proof. First, we fix ((v 1 , v 2 ), λ) ∈ U × Q. Then, after applying known trace inequality, with positive constant C tr , we have

b((v 1 , v 2 ), λ) ≤ ||λ|| -1/2,Γ 1 (||γ + 0 (v 2 )|| 1/2,Γ 1 + ||γ - 0 (v 1 )|| 1/2,Γ 1 ) ≤ C tr ||λ|| -1/2,Γ 1 ||(v 1 , v 2 )|| U ,
and we conclude the proof.

Remark 2.1 Thanks to the boundedness of bilinear form b, we can define a bounded linear operator B : U → Q , induced by the bilinear form b, such that

[B(v 1 , v 2 ), λ] := b((v 1 , v 2 ), λ) ∀ (v 1 , v 2 ) ∈ U , ∀ λ ∈ Q ,
where [•, •] stands for the duality pairing induced by the operator and functional used in this case. It is not difficult to deduce that B((

v 1 , v 2 )) := R * (γ + 0 (v 2 ) -γ - 0 (v 1 )) ∀ (v 1 , v 2 ) ∈ U, where R : H -1/2 (Γ 1 ) → H 1/2 (Γ 1 ) represents the canonical Riesz operator between H -1/2 (Γ 1 ) and H 1/2 (Γ 1 ), while R * : H 1/2 (Γ 1 ) → H -1/2 (Γ 1 ) corresponds to the adjoint (Hilbert) Riesz operator of R. Here- after, •, • r,Γ 1 denotes the inner product on H r (Γ 1 ), r ∈ {-1/2, 1/2}. Finally, Ker(B) is characterized by V := Ker(B) := {(v 1 , v 2 ) ∈ U : γ - 0 (v 1 ) = γ + 0 (v 2 ) on Γ 1 } . ( 5 
)
Lemma 2.2 a is bounded in U × U, and V-elliptic.

Proof. The continuity of bilinear form a follows from the Cauchy-Schwarz inequality. To prove the coerciveness of a on V, we first set

Ω := Ω 1 ∪Γ 1 ∪Ω 2 . Next, given (v 1 , v 2 ) ∈ V, we define the following measurable function v := v 1 a.e. Ω 1 v 2 a.e. Ω 2 . Since v 1 ∈ H 1 (Ω 1 ), v 2 ∈ H 1 (Ω 2 ), and γ - 0 (v 1 ) = γ + 0 (v 2 )
on Γ 1 , we infer that v ∈ H 1 (Ω), with Ω v = 0. Thanks to the Poincaré-Wintinger inequality, the seminorm

| • | 1,Ω is equivalent to || • || 1,Ω in H 1 (Ω) ∩ L 2 0 (Ω). Then, we deduce a((u 1 , u 2 ), (v 1 , v 2 )) = ∇v 2 0,Ω ≥ (1 + C 2 p ) -1 v 2 1,Ω = (1 + C 2 p ) -1 (v 1 , v 2 ) 2 U ,
where C p > 0 is the constant of Poincaré.

Lemma 2.3 B is surjective.

Proof. Given λ ∈ H -1/2 (Γ 1 ), there exists z := -γ-

0 -1 R * -1 (λ) ∈ [H 1 0 (Ω 1 )] ⊥ ⊂ H 1 (Ω 1 ), such that λ = R * (γ - 0 (-z))
, where γ-

0 := γ - 0 | [H 1 0 (Ω 1 )] ⊥ .
For more details, we refer to [START_REF] Gatica | Introducción al Análisis Funcional. Teoría y Aplicaciones[END_REF], p.196-198. Now, by setting c := -

1 |Ω 1 | + |Ω 2 | Ω 1 z, we introduce (v 1 , v 2 ) ∈ H 1 (Ω 1 ) × H 1 (Ω 2 ) such that v 1 := z + c and v 2 := c. It is not difficult to verify that (v 1 , 1) Ω 1 + (v 2 , 1) Ω 2 = 0, letting us to conclude that (v 1 , v 2 ) ∈ U. Then, since γ + 0 (v 2 ) -γ - 0 (v 1 ) = γ - 0 (-z) on Γ 1 , we infer that B(v 1 , v 2 ) = R * (γ + 0 (v 2 ) -γ - 0 (v 1 )) = R * (γ - 0 (-z)) = λ .
We now establish the unique solvability of the variational problem. 

((v 1 , v 2 ), λ) = λ , γ + 0 (v 2 ) -γ - 0 (v 1 ) Γ 1 = λ , γ - 0 (-z) Γ 1 = λ , R * -1 (λ) Γ 1 = ||λ|| 2 -1/2,Γ 1 .
In addition, there exists

C * = C * (|Ω 1 |, |Ω 2 |) > 0 such that ||(v 1 , v 2 )|| 2 U ≤ C * ||z|| 2 1,Ω 1 .
As a result, we can establish the so called inf-sup condition for b:

sup (w 1 ,w 2 )∈U\{(0,0)} b((w 1 , w 2 ), λ) ||(w 1 , w 2 )|| U ≥ b((v 1 , v 2 ), λ) ||(v 1 , v 2 )|| U ≥ C -1/2 * ||λ|| 2 -1/2,Γ 1 ||z|| 1,Ω 1 = C -1/2 * ||λ|| -1/2,Γ 1 . ( 6 
)
3 Discrete settings

From here on, we follow the notations from [START_REF] Bustinza | A hybrid high-order formulation for a Neumann problem on polytopal meshes[END_REF] and consider

g 1 ∈ L 2 (Γ 1 ), g 2 ∈ L 2 (Γ 2 ), Ω := Ω 1 ∪ Γ 1 ∪ Ω 2 ,
T h be a mesh of Ω, satisfying that (for simplicity) for each T ∈ T h , either T ⊂ Ω 1 or T ⊂ Ω 2 , and that there are no hanging nodes on the transmission boundary Γ 1 . Next, we introduce the meshes induced by T h , of each subdomain Ω i , i ∈ {1, 2}, that is

T i,h : = {T ∈ T h : T ⊂ Ω i } ,
with F i,h being the list of faces on skeleton, induced by T i,h , i ∈ {1, 2}. Moreover, by Γ 1,h and Γ 2,h , we denote the partitions of Γ 1 and Γ 2 , respectively, induced by T 2,h . At this point we require also that the partition of transmission boundary Γ 1 inherited by T h , Γ 1,h , is quasi-uniform in the sense: setting

h Γ 1 := max F ∈F 1,h
h F , there exists C qu > 0, independent of the meshsize, such that

C qu h Γ 1 ≤ h F ∀ F ∈ Γ 1,h . (7) 
These notations allow us to introduce the discrete spaces

U k T i,h :=   T ∈T i,h P k d (T )   ×   F ∈F i,h P k d-1 (F )   , i ∈ {1, 2} . Then, each element v i,h ∈ U k T i,h is characterized by v i,h := (v i,T ) T ∈T i,h , (v i,F ) F ∈F i,h and its re- striction to each element T ∈ T i,h as v i,T := v i,T , (v i,F ) F ∈F T ∈ U k
T for i ∈ {1, 2}. Next, we introduce the usual seminorm on U k T i,h , i ∈ {1, 2} (see Lemma 4 in [START_REF] Di | An Arbitrary-Order and Compact-Stencil Discretization of Diffusion on General Meshes Based on Local Reconstruction Operators[END_REF])

v i,h 2 
1,T i,h := T ∈T i,h v i,T 2 1,T , v i,T 2 
1,T := ∇v i,T 2 0,T + |v i,T | 2 1,∂T , (8) 
for all v i,h ∈ U k T i,h , where |v i,T | 2 1,∂T := F ∈F T h -1 F v i,F -v i,T 2 
0,F . Now, we define the global interpo-

lation operator I k T i,h : H 1 (Ω i ) → U k T i,h as 
I k T i,h v := ((π k T v) T ∈T i,h , (π k F v) F ∈F i,h ) ∀ v ∈ H 1 (Ω i ) . (9) 
where π k T and π k F are the L 2 -orthogonal projectors onto P k d (T ) and P k d-1 (F ), respectively. Also, for all T ∈ T h , we define the local interpolation operator I k T : H 1 (T ) → U k T such that, for any v ∈ H 1 (T ),

I k T v := (π k T v, (π k F v) F ∈F T ), (10) 
and, we define the local potential reconstruction operator p k+1 T :

U k T → P k+1 d (T ) such that, for all v T := (v T , (v F ) F ∈F T ) ∈ U k
T and all w ∈ P k+1 d (T ),

(∇p k+1 T v T , ∇w) T = (∇v T , ∇w) T + F ∈F T (v F -v T , ∇w • n T F ) F , (11) 
T p k+1 T v T = T v T . (12) 
where n T F is the unit normal to face F pointing out of element T .

Lemma 3.1 (Approximation properties for p k+1 T I k T ) Let k ≥ 0 be a polynomial degree, q ∈ {0, • • • , k} an integer, and δ ∈ (1/2, 1] be given. There exists a real number C > 0, depending on the mesh regularity parameter, possibly on d, k, q and δ, but independent of h T , such that, for all h ∈ H, for all T ∈ T h , and for all v ∈ H q+1+δ (T ), there holds:

v -p k+1 T I k T v 0,T + h 1/2 T v -p k+1 T I k T v 0,∂T + h T ∇(v -p k+1 T I k T v) 0,T + h 3/2 T ∇(v -p k+1 T I k T v) 0,∂T ≤ Ch q+1+δ T v q+1+δ,T . (13) 
Proof. We adapt the proof of Lemma 3 in [START_REF] Di | An Arbitrary-Order and Compact-Stencil Discretization of Diffusion on General Meshes Based on Local Reconstruction Operators[END_REF] together with the Lemma 2.1 in [START_REF] Bustinza | A hybrid high-order formulation for a Neumann problem on polytopal meshes[END_REF]. The details can be found in the proof of Lemma 3.3 in [START_REF] Bustinza | A mixed Hybrid High-Order formulation for linear interior transmission elliptic problems[END_REF].

HHO formulation

Now, we set our discrete approximation space, as U k,0

T h × Q k h , where U k,0 T h :=    v h := (v 1,h , v 2,h ) ∈ U k T 1,h × U k T 2,h : 2 i=1 T ∈T i,h (v i,T , 1) T = 0    , and 
Q k h := P k d-1 (Γ 1,h ) := F ∈F 1,h P k d-1 (F ).
Hereafter, we adopt the following notation. Given

λ h ∈ Q k h , we set λ F := λ h | F , for all F ∈ Γ 1,h . Then, we introduce the characterization λ h := (λ F ) F ∈Γ 1,h . The space Q k h is provided with the weighted L 2 -norm λ h 2 Γ 1,h := F ∈Γ 1,h h F λ F 2 0,F , ∀ λ h := (λ F ) F ∈Γ 1,h ∈ Q k h . (14) 
We introduce the seminorm

||| • ||| h : U k T 1,h × U k T 2,h → R, which is defined, for each (v 1,h , v 2,h ) ∈ U k T 1,h × U k T 2,h , by |||(v 1,h , v 2,h )||| 2 h := v 1,h 2 1,T 1,h + v 2,h 2 
1,T 2,h + F ∈Γ 1,h h -1 F v 1,F -v 2,F 2 0,F . ( 15 
) Proposition 4.1 The map ||| • ||| h defines a norm on U k,0 T h . Proof. It is enough to check that, for all (v 1,h , v 2,h ) ∈ U k,0 T h : |||(v 1,h , v 2,h )||| h = 0 ⇒ (v 1,h , v 2,h ) = (0, 0). Let (v 1,h , v 2,h ) ∈ U k,0 T h be such that |||(v 1,h , v 2,h )||| h = 0. By the definition of ||| • ||| h , this implies ∀ T ∈ T 1,h : ∇v 1,T = 0 , ∀ F ∈ F T : v 1,T | F = v 1,F (16a) ∀ S ∈ T 2,h : ∇v 2,S = 0 , ∀ F ∈ F S : v 2,S | F = v 2,F (16b) ∀ F ∈ Γ 1,h : v 1,F = v 2,F . (16c) 
We have from (16a), that v 1,T is constant on each T ∈ T 1,h , and that on each interior face

F ∈ F 1,h , there exist T 1 , T 2 ∈ T 1,h with F ⊂ ∂T 1 ∩ ∂T 2 , such that v 1,T 1 | F = v 1,F = v 1,T 2 | F . Then, we infer that there exists a constant C 1 > 0 such that v 1,F = C 1 ∀ F ∈ F 1,h .
In a similar way, we can deduce from (16b), that there exists

C 2 > 0 such that v 2,F = C 2 ∀ F ∈ F 2,h
. Now by (16c), we have that on each transmission face F ∈ Γ 1,h , there exist T ∈ T 1,h and S ∈ T 2,h with F ⊂ ∂T ∩ ∂S such that,

C 1 = v 1,T | F = v 1,F = v 2,F = v 2,S | F = C 2 , which allows us to state that v 1,T = v 2,S = C 1 ∀ (T, S) ∈ T 1,h × T 2,h
. Finally, due to the condition

T ∈T 1,h (v 1,T , 1) T + S∈T 2,h (v 2,S , 1) 
S = 0, we deduce that C 1 = C 2 = 0, and we conclude the proof. Now, for each T ∈ T h , we introduce a T :

U k T × U k T → R given, for any (u T , v T ) ∈ U k T × U k T , by a T (u T , v T ) := ∇p k+1 T u T , ∇p k+1 T v T T + j T (u T , v T ) , (17) 
where

j T (u T , v T ) := F ∈F T h -1 F (π k F (u F -R k+1 T u T ), π k F (v F -R k+1 T v T )) F , with R k+1 T v T := v T + (p k+1 T v T -π k T p k+1 T v T ) . Then, we set the bilinear form a h : U k,0 T h × U k,0 T h → R, as U k,0 T h × U k,0 T h (u 1,h , u 2,h ), (v 1,h , v 2,h ) → a h ((u 1,h , u 2,h ), (v 1,h , v 2,h )) := 2 i=1 T ∈T i,h a T (u i,T , v i,T ), (18) 
which can also be written as

a h ((u 1,h , u 2,h ), (v 1,h , v 2,h )) = A h ((u 1,h , u 2,h ), (v 1,h , v 2,h )) + j h ((u 1,h , u 2,h ), (v 1,h , v 2,h )) , ( 19 
)
where the consistency contribution

A h : U k,0 T h × U k,0 T h → R and the stability contribution j h : U k,0 T h × U k,0
T h → R are, respectively, defined by

A h ((u 1,h , u 2,h ), (v 1,h , v 2,h )) := T ∈T h ∇p k+1 T u T , ∇p k+1 T v T T (20) 
and

j h ((u 1,h , u 2,h ), (v 1,h , v 2,h )) := T ∈T h j T (u T , v T ) . (21) 
We also introduce the bilinear form b h :

U k,0 T h × Q k h → R, which is defined as b h ((v 1,h , v 2,h ), λ h ) := F ∈Γ 1,h (λ F , v 2,F -v 1,F ) F ∀ (v 1,h , v 2,h ) ∈ U k,0 T h , λ h := (λ F ) F ∈Γ 1,h ∈ Q k h . (22) 
Then, the discrete mixed HHO scheme associated to (4) reads as follows: Find

((u 1,h , u 2,h ), ξ h ) ∈ U k,0 T h × Q k h such that a h ((u 1,h , u 2,h ), (v 1,h , v 2,h )) + b h ((v 1,h , v 2,h ), ξ h ) = F h ((v 1,h , v 2,h )) ∀ (v 1,h , v 2,h ) ∈ U k,0 T h , (23a) -b h ((u 1,h , u 2,h ), λ h ) = G h (λ h ) ∀ λ h ∈ Q k h , (23b) 
where, for each

(v 1,h , v 2,h ) ∈ U k T h and λ h ∈ Q k h
, we define the discrete linear functionals as:

F h (v 1,h , v 2,h ) := 2 i=1 T ∈T i,h (f i , v i,T ) T + F ∈Γ i,h (g i , v 2,F ) F and G h (λ h ) := (λ h , g) Γ 1,h . (24) 
In what follows, we recall the well known relationships between

|| • || 0,Γ 1 and || • || -1/2,Γ 1 .
Lemma 4.1 There holds

||g|| -1/2,Γ 1 ||g|| 0,Γ 1 ∀ g ∈ L 2 (Γ 1 ) , (25) 
||λ h || 0,Γ 1 h -1/2 Γ 1 ||λ h || -1/2,Γ 1 ∀ λ h ∈ Q k h . (26) 
Proof. A proof of ( 25) is available in [START_REF] Sayas | Variational techniques for elliptic partial differential equations[END_REF], p. 115, while (26) can be proven in the same spirit of the proof of Lemma 4.6 in [START_REF] Gatica | A simple introduction to the mixed finite element method[END_REF].

At this point, we recall that given

v h ∈ U k T h , we denote by v h the L 2 (Ω) function such that v h | T = v T ,
for all T ∈ T h . Next result, which can be seen as the corresponding to Lemma 8.3 in [START_REF] Di | The Hybrid High-Order Method for Polytopal Meshes: Design, Analysis, and Applications[END_REF] for Neumann boundary condition, will be useful for proving the continuity of linear functional F h . Lemma 4.2 There holds

||v h || 0,Ω |||v h ||| h ∀ v h ∈ U k,0 T h . ( 27 
) Proof. Given v h := v T 1,h , v T 2,h ∈ U k,0
T h , where we recall

T h := T 1,h ∪ T 2,h , we introduce w h ∈ P k d (T h ), such that w h T := w T := v 1,T , T ∈ T 1,h v 2,T , T ∈ T 2,h . In addition, we set w F := v F,1 , F ∈ F 1,h \Γ 1,h v F,2 , F ∈ F 2,h .
We notice that (w h , 1)

Ω = (v 1,h , 1) Ω 1 + (v 2,h , 1) Ω 2 = 0, since v h ∈ U k,0 h . Then, we define w h := (w T ) T ∈T h , (w F ) F ∈F h ∈ W k,0 h := z h ∈ W k h | (z h , 1
) Ω = 0 , where W k h collects the DOF's on Ω. Then, applying Theorem 6.5 in [START_REF] Di | The Hybrid High-Order Method for Polytopal Meshes: Design, Analysis, and Applications[END_REF], we infer that

||v 1,h || 2 0,Ω 1 + ||v 2,h || 2 0,Ω 2 = ||w h || 2 0,Ω ||w h || 2 1,h . (28) 
Using the definition of • 1,h , and that

T ∈T h ∇w T 2 0,T = T ∈T 1,h ∇v 1,T 2 0,T + T ∈T 2,h ∇v 2,T 2 0,T , we obtain w h 2 1,h = T ∈T 1,h ∇v 1,T 2 0,T + T ∈T 2,h ∇v 2,T 2 0,T + T ∈T h F ∈F T h -1 F w F -w T 2 0,F , (29) 
We know that, given F ∈ Γ 1,h (transmission face), there exist T ∈ T 1,h and S ∈ T 2,h , such that F ⊂ ∂T ∩ ∂S. Then, using the definition of w h , we obtain

w F -w T 2 0,F + w F -w S 2 0,F = v 2,F -v 1,T 2 0,F + v 2,F -v 2,S 2 
0,F . (30) 
By triangle inequality on the first term on the right hand side, we have

w F -w T 2 0,F + w F -w S 2 0,F v 2,F -v 1,F 2 0,F + v 1,F -v 1,T 2 0,F + v 2,F -v 2,S 2 
0,F . (31) 
Thus, we can write the third term on the right hand of (29), as

T ∈T h F ∈F T h -1 F w F -w T 2 0,F T ∈T 1,h F ∈F T h -1 F v 1,F -v 1,T 2 0,F + + S∈T 2,h F ∈F S h -1 F v 2,F -v 2,S 2 
0,F + F ∈Γ 1,h h -1 F v 2,F -v 1,F 2 0,F . (32) 
Replacing (32) in (29), we have that

w h 2 1,h v 1,h 2 1,h + v 2,h 2 1,h + F ∈Γ 1,h h -1 F v 2,F -v 1,F 2 0,F . (33) 
Finally, from (28) and (33), we conclude the proof.

Lemma 4.3 Bilinear forms a h and b h , as well as linear functionals F h and G h , are continuous.

Proof. Let us establish the continuity of the discrete bilinear forms a h and b h . Thanks to the continuity of a T (see [START_REF] Di | An Arbitrary-Order and Compact-Stencil Discretization of Diffusion on General Meshes Based on Local Reconstruction Operators[END_REF]), and applying Cauchy-Schwarz inequality, we have for any

(u 1,h , u 2,h ), (v 1,h , v 2,h ) ∈ U k,0 T h : |a h ((u 1,h , u 2,h ), (v 1,h , v 2,h ))| u 1,h 1,T 1,h • v 1,h 1,T 1,h + u 2,h 1,T 2,h • v 2,h 1,T 2,h ≤ u 1,h 2 1,T 1,h + u 2,h 2 1,T 2,h 1/2 v 1,h 2 1,T 1,h + v 2,h 2 1,T 1,h 1/2 ≤ |||(u 1,h , u 2,h )||| h |||(v 1,h , v 2,h )||| h .
Now, we establish the boundedness of b h . After invoking Cauchy-Schwarz inequality and Lemma 4.1, we obtain for any

((v 1,h , v 2,h ), λ h ) ∈ U k,0 T h × Q k h : |b h ((v 1,h , v 2,h ), λ h )| ≤   F ∈Γ 1,h h -1 F v 1,F -v 2,F 2 0,F   1/2   F ∈Γ 1,h h F λ F 2 0,F   1/2 ≤ |||(v 1,h , v 2,h )||| h λ h Γ 1,h .
Next, we prove the continuity of the discrete linear functional F h . We let

(v 1,h , v 2,h ) ∈ U k,0
T h be fixed and notice that, for each i = 1, 2

F ∈F i,h (g i , v 2,F ) F = F ∈F i,h (g i , v 2,F -c 2 ) F + c 2 g i , 1 Γ i , (34) 
where

c 2 := 1 |Ω 2 | Ω 2 v 2,h
. Applying Cauchy-Schwarz inequality appropriately, we have

|F h (v 1,h , v 2,h )| ≤ 2 i=1 f i 0,Ω i   T ∈T i,h v i,T 2 0,T   1/2 + ||g i || 0,Γ i   F ∈Γ i,h v 2,F -c 2 2 0,F   1/2 + |c 2 | |Ω 2 | 1/2 ||g i || -1/2,Γ i .
Thanks to a discrete version of Cauchy-Schwarz inequality, (34), and the fact that prescribed c 2 verifies

|c 2 | ≤ |Ω 2 | -1/2 ||v 2,h || 0,Ω 2 , we obtain |F h (v 1,h , v 2,h )| ≤ C ||v 1,h || 2 0,Ω 1 + ||v 2,h || 2 0,Ω 2 + F ∈Γ 1,h ∪Γ 2,h v 2,F -c 2 2 0,F 1/2 , ( 35 
)
where

C := 2 i=1 f i 2 0,Ω i + ||g i || 2 -1/2,Γ i + ||g i || 2 0,Γ i 1/2
. Now, we bound the right hand side of (35). First, since v h ∈ U k,0 T h , we apply Lemma 4.2, and get

||v 1,h || 2 0,Ω 1 + ||v 2,h || 2 0,Ω 2 = ||v h || 2 0,Ω |||v h ||| 2 h . (36) 
On the other hand, considering

z h := (v 2,T -c 2 ) T ∈T 2,h , (v 2,F -c 2 ) F ∈F 2,h ∈ U k,0 T 2,h
, and denoting by γ h (z h ) the discrete trace of z h , such that γ h (z h )| F = v 2,F -c 2 , on each F ∈ F 2,h , we invoke Theorem 6.7 in [START_REF] Di | The Hybrid High-Order Method for Polytopal Meshes: Design, Analysis, and Applications[END_REF], and deduce

F ∈Γ 1,h ∪Γ 2,h ||v 2,F -c 2 || 2 0,F = ||γ h (z h )|| 2 0,∂Ω 2 ||z h || 2 1,T 2,h = ||v 2,h || 2 1,T 2,h . (37) 
Finally, taking into account (36) and (37), we conclude from (35)

|F h (v 1,h , v 2,h )| |||(v 1,h , v 2,h )||| h , (38) 
which ensures the continuity of F h . Now, for the continuity of the discrete linear functional G h , we recall that g ∈ H 1/2 (Γ 1 ) ⊂ L 2 (Γ 1 ). Then, we have, for any

λ h ∈ Q k h : |G h (λ h )| = F ∈Γ 1,h (h 1/2 F λ T , h -1/2 F g) F ≤ ||α 1/2 g|| 0,Γ 1 ||λ h || Γ 1,h , (39) 
where α is a parameter defined on Γ 1,h such that α|

F := h -1 F for each F ∈ Γ 1,h . Remark 4.1 The linear operator B h : U k,0 T h → Q k h , induced by b h , is characterized by B h (v 1,h , v 2,h ) := (v 2,F -v 1,F ) F ∈Γ 1,h ∀ (v 1,h , v 2,h ) ∈ U k,0 T h . (40) 
It is important to notice that bilinear form a h induces another seminorm on

U k T 1,h × U k T 2,h , that is given by (v 1,h , v 2,h ) 2 a,h := a h ((v 1,h , v 2,h ), (v 1,h , v 2,h )) , ∀ (v 1,h , v 2,h ) ∈ U k T 1,h × U k T 2,h . (41) 
Introducing V h := Ker(B h ), we establish the following result.

Lemma 4.4 (Ellipticity) a h is V h -elliptic.
Proof. From ( 22), we characterize the kernel of B h , as

V h := {(v 1,h , v 2,h ) ∈ U k,0 T h : v 1,F = v 2,F ∀ F ∈ Γ 1,h } . Now, taking (v 1,h , v 2,h ) ∈ V h and considering the fact that || • || 1,T i,h is equivalent to || • || a,T i,h (cf.
Lemma 4 in [START_REF] Di | An Arbitrary-Order and Compact-Stencil Discretization of Diffusion on General Meshes Based on Local Reconstruction Operators[END_REF]), we have

a h ((v 1,h , v 2,h ), (v 1,h , v 2,h )) = v 1,h 2 a,T 1,h + v 2,h 2 a,T 2,h v 1,h 2 1,T 1,h + v 2,h 2 
1,T 2,h = |||(v 1,h , v 2,h )||| 2 h . ( 42 
) Lemma 4.5 B h is a surjective operator. Proof. Given λ h ∈ Q k h , we can define (v 1,h , v 2,h ) ∈ U k,0 T h , such that v 1,T ≡ 0, ∀ T ∈ T 1,h , v 1,F = -λ F , F ∈ Γ 1,h 0 , F ∈ F 1,h \Γ 1,h
, and v 2,h = 0 2,h . Then, the operator B h is surjective.

As in the continuous case, here we can establish also the so called discrete inf-sup condition, which will help us later to obtain an a priori error estimate corresponding to λ h . Lemma 4.6 There exists C > 0, independent of the meshsize, such that

sup v h ∈U k,0 T h \{0} b h (v h , λ h ) |||v h ||| h ≥ C ||λ h || Γ 1,h ∀ λ h ∈ Q k h . ( 43 
) Proof. Let λ h := (λ F ) F ∈Γ 1,h ∈ Q k h \{0}.
Then, we construct w h := (w 1,h , w 2,h ) ∈ U k,0 T h \{0} as in the proof of Lemma 4.5, and we notice that

|||w h ||| 2 h = 2 F ∈Γ 1,h h -1 F ||λ F || 2 0,F h -1 Γ 1 ||λ h || 2 0,Γ 1 . (44) 
Then, taking into account (44) and the fact that h Γ 1 h F , for all F ∈ Γ 1,h , we have

sup v h ∈U k,0 T h \{0} b h (v h , λ h ) |||v h ||| h ≥ b h (w h , λ h ) |||w h ||| h h 1/2 Γ 1 ||λ h || 2 0,Γ 1 ||λ h || 0,Γ 1 ||λ h || Γ 1,h . (45) 
This allows us to conclude the result. Corollary 4.1 There exists η > 1, independent of the meshsize, such that

η -1 |||(v 1,h , v 2,h )||| h ≤ (v 1,h , v 2,h ) a,h ∀ (v 1,h , v 2,h ) ∈ V h , (46) 
(v 1,h , v 2,h ) a,h ≤ η|||(v 1,h , v 2,h )||| h ∀ (v 1,h , v 2,h ) ∈ U k,0 T h . (47) 
Proof. (46) follows straightforwardly from the V h -ellipticity of a h (42), while (47) has been established in the proof of Lemma 4.3. We omit further details.

A priori error analysis

From here on, we assume that the exact solution u i ∈ H 1+δ i (Ω i ), for some δ i ∈ (1/2, 1], and ∆u i ∈ L 2 (Ω) for i ∈ {1, 2}. These assumptions allow us to see ξ belonging to L 2 (Γ 1 ), and consider g 1 and g 2 as elements in L 2 (Γ 1 ) and L 2 (Γ 2 ), respectively. In addition, we set u i,h :=

I k T i,h u i ∈ U k T i,h , where I k T i,h , for i ∈ {1, 2}
, denotes the global interpolation operator that is defined in the same spirit as in [START_REF] Bustinza | An a priori error analysis for a class of nonlinear elliptic problems with the hybrid high-order method[END_REF]. We also introduce

ξ h ∈ Q k h , such that ξ h | F := π k F (ξ), for each F ∈ Γ 1,h . It is not difficult to check that ( u 1,h , u 2,h ) ∈ U k,0 T h . We recall again that, given i ∈ {1, 2}, v i,h := (v i,T ) T ∈T i,h , (v i,F ) F ∈F i,h ∈ U k T i,h , and we set v i,h ∈ P k d (T i,h ) such that v i,h | T = v i,T ∀ T ∈ T i,h . Now, we introduce the product space X h := U k,0 T h × Q k h , provided with the norm ||((v 1,h , v 2,h ), λ h )|| X h := |||(v 1,h , v 2,h )||| 2 h + ||λ h || 2 Γ 1,h 1/2 ∀ ((v 1,h , v 2,h ), λ h ) ∈ X h ,
and the consistency error as the linear functional E h (((u 1 , u 2 ), ξ); •) : X h → R such that, for each

((v 1,h , v 2,h ), λ h ) ∈ X h : E h (((u 1 , u 2 ), ξ); ((v 1,h , v 2,h ), λ h )) := a h (( u 1,h , u 2,h ), (v 1,h , v 2,h )) + b h ((v 1,h , v 2,h )), ξ h ) -b h (( u 1,h , u 2,h ), λ h ) + G h (λ h ) -F h (v 1,h , v 2,h ) .
In our case, we notice that

b h (( u 1,h , u 2,h ), λ h ) = F ∈Γ 1,h (π k F u 2 -π k F u 1 , λ F ) F = F ∈Γ 1,h (λ F , γ + 0 (u 2 ) -γ - 0 (u 1 )) F = (λ h , g) Γ 1 = G h (λ h ) ∀ λ h ∈ Q k h ,
and thus, the consistency error reduces to

E h (((u 1 , u 2 ), ξ); ((v 1,h , v 2,h ), λ h )) = a h (( u 1,h , u 2,h ), (v 1,h , v 2,h )) + b h ((v 1,h , v 2,h )), ξ h ) -F h (v 1,h , v 2,h ) =: E h (((u 1 , u 2 ), ξ); (v 1,h , v 2,h )) . ( 48 
)
The latter implies that

||E h (((u 1 , u 2 ), ξ); •)|| X * h = || E h (((u 1 , u 2 ), ξ); •)|| U k,0, * T h , (49) 
with X * h and U k,0, * T h denoting the dual space of X h and U k,0 T h , respectively. The following result will help us to bound (49).

Lemma 5.1 There holds, for each

(v 1,h , v 2,h ) ∈ U k,0 T h : F h (v 1,h , v 2,h )-b h ((v 1,h , v 2,h ), ξ h ) = 2 i=1 T ∈T i,h (∇v i,T , ∇u i ) T + T ∈T i,h F ∈F T (∇u i • n T F , v i,F -v i,T ) F . (50) 
Proof. Since f i = -∆u i in Ω i (in the weak sense), and after performing an element-wise integration by parts in (f i , v i,h ) Ω i , with i ∈ {1, 2}, we obtain that the two first addends of functional F h (cf. ( 24)) can be written as

(f i , v i,h ) Ω i = T ∈T i,h (∇u i , ∇v iT ) T - T ∈T i,h F ∈F T (∇u i • n T F , v i,T ) F . (51) 
Now, using the fact that ∇u 1 • n 1 + ∇u 2 • n 2 = g 1 a.e. on Γ 1 , and ∇u 2 • n 2 = g 2 a.e. on Γ 2 , and that there exist T ∈ T 1,h and S ∈ T 2,h , such that n 1 = n T F on ∂Ω 1 and n 2 = n SF on ∂Ω 2 , we can write the last two addends of F h as

F ∈Γ 1,h (g 1 , v 2,F ) F = F ∈Γ 1,h (∇u 1 • n T F , v 2,F ) F + F ∈Γ 1,h (∇u 2 • n SF , v 2,F ) F , (52) 
F ∈Γ 2,h (g 2 , v 2,F ) F = F ∈Γ 2,h (∇u 2 • n SF , v 2,F ) F . ( 53 
)
From the definition of ξ h , the fact that ξ = ∇u 1 • n 1 a.e. on Γ 1 , and that there exist T ∈ T 1,h and S ∈ T 2,h , such that

n 1 = n T F = -n SF on Γ 1 , we derive b h ((v 1,h , v 2,h ), ξ h ) = F ∈Γ 1,h (∇u 1 • n T F , v 2,F ) F - F ∈Γ 1,h (∇u 1 • n T F , v 1,F ) F . (54) 
Finally, from equations ( 51)-(54), knowing that v i,F is single-valued, and the normal component of ∇u i is continuous on skeletal induced by T i,h , i ∈ {1, 2}, we conclude the proof.

Lemma 5.2 Assuming that u i ∈ H q+1+δ i (T i,h ), i ∈ {1, 2}, and q ∈ {0, ..., k}, there exists C > 0, independent of the meshsize, such that

||E h (((u 1 , u 2 ), ξ); •)|| X * h ≤ C h 2(q+δ 1 ) 1 u 1 2 q+1+δ 1 ,T 1,h + h 2(q+δ 2 ) 2 u 2 2 q+1+δ 2 ,T 2,h 1/2 , ( 55 
)
where h i := max

T ∈T i,h h T , i = 1, 2.
Proof. First, we take

(v 1,h , v 2,h ) ∈ U k,0 T h . Introducing u 1,T := p k+1 T I k T (u 1 | T ), for each T ∈ T 1,h and u 2,S := p k+1 S I k S (u 2 | S )
, for all S ∈ T 2,h , we have

a h (( u 1,h , u 2,h ), (v 1,h , v 2,h )) = 2 i=1 T ∈T i,h (∇p k+1 T u i,T , ∇p k+1 T v i,T ) T + T ∈T i,h j T ( u i,T , v i,T ) = 2 i=1 T ∈T i,h (∇v i,T , ∇u i,T ) T + T ∈T i,h F ∈F T (v i,F -v i,T , ∇u i,T • n T F ) F + T ∈T i,h j T ( u i,T , v i,T ) . ( 56 
)
At this point, from (56) and Lemma 5.1 , we can write the consistency error as

E h (((u 1 , u 2 ), ξ); (v 1,h , v 2,h )) = 2 i=1 T ∈T i,h (∇v i,T , ∇(u i,T -u i )) T T i T ∈T i,h F ∈F T (v i,F -v i,T , ∇(u i,T -u i ) • n T F ) F T i+2 + T ∈T i,h j T ( u i,T , v i,T ) T i+4 . (57) 
Applying Cauchy-Schwarz inequality, followed by the approximation properties of p k+1 T I k T (cf. ( 13)), with T ∈ T i,h , and the definition of the norm || • || 1,T i,h , we can estimate T i , and T i+2 for i = 1, 2, as

|T i | + |T i+2 | ||v i,h || 1,T i,h • h q+δ i i |u i | q+1+δ i ,T i,h . (58) 
Invoking now Theorem 8 in [START_REF] Di | An Arbitrary-Order and Compact-Stencil Discretization of Diffusion on General Meshes Based on Local Reconstruction Operators[END_REF], we deduce h

-1/2 F ||π k F ( u i,F -R k+1 T u i,T )|| 0,F h q+δ i i |u i | q+1+δ i ,T , ∀ F ∈ F T , where T ∈ T i,h , i ∈ {1, 2}. This allows us to estimate T i+4 |T i+4 | ||v i,h || 1,T i,h • h q+δ i i |u i | q+1+δ i ,T i,h . (59) 
Then, from ( 58)-( 59), we deduce that for each

(v 1,h , v 2,h ) ∈ U k,0 T h : E h (((u 1 , u 2 ), ξ); (v 1,h , v 2,h )) |||(v 1,h , v 2,h )||| h h 2(q+δ 1 ) 1 |u 1 | 2 q+1+δ 1 ,T 1,h + h 2(q+δ 2 ) 2 |u 2 | 2 q+1+δ 2 ,T 2,h 1/2 . ( 60 
)
Finally, (60) yields to an upper bound for

|| E h (((u 1 , u 2 ), ξ); •)|| U k,0, * T h
, and thanks to (49), we conclude (55).

Theorem 5.1 (Energy error estimate) Assuming that (u 1 , u 2 ) ∈ H q+1+δ 1 (T 1,h )×H q+1+δ 2 (T 2,h ), with q ∈ {0, ..., k}, there exists C > 0, independent of the meshsize, such that:

(( u 1,h , u 2,h ) -(u 1,h , u 2,h )), ξ h -ξ h ) X h ≤ C h 2(q+δ 1 ) 1 u 1 2 q+1+δ 1 ,T 1,h + h 2(q+δ 2 ) 2 u 2 2 q+1+δ 2 ,T 2,h 1/2 , ( 61 
)
where h i := max

T ∈T i,h
h T , i = 1, 2. Moreover, applying Lemma 3.1, there also holds

2 i=1 T ∈T i,h ||∇u i -∇p k+1 T u i,T || 2 0,T ≤ C h 2(q+δ 1 ) 1 u 1 2 H q+1+δ 1 (T 1,h ) + h 2(q+δ 2 ) 2 u 2 2 H q+1+δ 2 (T 2,h ) . ( 62 
)
Proof. Since bilinear form a h is coercive on V h and b h satisfies a discrete inf-sup condition, with corresponding constants that are independent of the meshsize, we can apply a variant of Lemma A.11 in the appendix in [START_REF] Di | The Hybrid High-Order Method for Polytopal Meshes: Design, Analysis, and Applications[END_REF], which is valid according to Remark A.12 in this same appendix. As a result, we can establish a global discrete inf-sup condition: For any

((w 1,h , w 2,h ), ζ h ) ∈ X h : ||((w 1,h , w 2,h ), ζ h )|| X h sup ((v 1,h ,v 2,h ),λ h )∈X h \{0} A h (((w 1,h , w 2,h ), ζ h ), ((v 1,h , v 2,h ), λ h )) ||((v 1,h , v 2,h ), λ h )|| X h , (63) 
where the bilinear form

A h : X h × X h → R is given by A h (((w 1,h , w 2,h ), ζ h ), ((v 1,h , v 2,h ), λ h )) := a h ((w 1,h , w 2,h ), (v 1,h , v 2,h )) + b h ((v 1,h , v 2,h ), ζ h ) -b h ((w 1,h , w 2,h ), λ h ) . (64) 
This allows us to apply Corollary A.13 in the appendix in [START_REF] Di | The Hybrid High-Order Method for Polytopal Meshes: Design, Analysis, and Applications[END_REF], with l h := F h and m h := G h , which yields us to

||(( u 1,h , u 2,h ) -(u 1,h , u 2,h )), ξ h -ξ h )|| X h ||E h (((u 1 , u 2 ), ξ); •)|| X * h .
Then, (61) follows straightforwardly from Lemma 5.2.

Finally, in order to derive (62), we realize, after applying triangle inequality, that

||∇u i -∇p k+1 T u i,T || 0,T ≤ ||∇u i -∇p k+1 T I k T (u i | T )|| 0,T + ||∇p k+1 T I k T (u i | T ) -∇p k+1 T u i,T || 0,T , (65) 
for each T ∈ T i,h , i ∈ {1, 2}. Thus, (62) is deduced from (65), after invoking (61) and Lemma 3.1. We omit further details.

Remark 5.1 (L 2 -error estimate of the projection of the trace error) Concerning the L 2 -norm of ξ hξ h , Theorem 5.1 establishes that, for q ∈ {0, ..., k} :

|| ξ h -ξ h || Γ 1,h h q+δ 1 1 ||u 1 || q+1+δ 1 ,T 1,h + h q+δ 2 2 ||u 1 || q+1+δ 2 ,T 2,h . ( 66 
)
On the other hand, we know that

h 1/2 Γ 1 || ξ h -ξ h || 0,Γ 1 || ξ h -ξ h || Γ 1,h , (67) 
since we are assuming that the partition on Γ 1 is quasi-uniform (cf. [START_REF] Bustinza | A hybrid high-order formulation for a Neumann problem on polytopal meshes[END_REF]). Then, from (66) and (67), we deduce that

|| ξ h -ξ h || 0,Γ 1 h -1/2 Γ 1 h q+δ 1 1 ||u 1 || q+1+δ 1 ,T 1,h + h q+δ 2 2 ||u 1 || q+1+δ 2 ,T 2,h . (68) 
Our next aim, is to provide an error estimate in the L 2 -norm of the projection of the errors e i,h :=

π k T i,h u i -u i,h for each i ∈ {1, 2}
, where given u i,h := (u i,T ) T ∈T i,h , (u i,F ) F ∈F i,h , we define u i,h as an element of L 2 (Ω i ), such that

u i,h | T := u i,T and π k T i,h u i T := π k T u i ∀ T ∈ T i,h , ∀i ∈ {1, 2} . (69) 
To this end, we introduce the following auxiliary problem: Given (w 1 , w 2 ) ∈ L 2 (Ω 1 ) × L 2 (Ω 2 ) with (w 1 , 1) 0,Ω 1 + (w 2 , 1) 0,Ω 2 = 0, we look for (z 1 , z 2 ) ∈ U, such that, in a weak sense, verifies

-∆ z i = w i in Ω i for i = 1, 2, (70a) z 1 -z 2 = 0 on Γ 1 , (70b) ∇z 1 • n 1 + ∇z 2 • n 2 = 0 on Γ 1 , (70c) ∇z 2 • n 2 = 0 on Γ 2 . ( 70d 
)
Since the transmission conditions in (70) are homogeneous, it is known that (70) is equivalent to:

Find z ∈ H 1 (Ω) ∩ L 2 0
(Ω) such that:

-∆z = w in Ω := Ω 1 ∪ Γ 1 ∪ Ω 2 and ∂z ∂n 2 = 0 on Γ 2 := ∂Ω , (71) 
with w ∈ L 2 0 (Ω) such that w| Ω 1 = w 1 and w| Ω 2 = w 2 . In this case, z| Ω 1 = z 1 and z| Ω 2 = z 2 . Then, we assume further regularity on z, the weak solution of (71), so that z ∈ H 2 (Ω) ∩ L 2 0 (Ω), and there exists C > 0, independent of the meshsize, such that

||z|| 2 2,Ω ≤ C ||w|| 2 0,Ω , or, equivalently z 1 2 2,Ω 1 + z 2 2 2,Ω 2 ≤ C w 1 2 0,Ω 1 + w 2 2 0,Ω 2 . ( 72 
)
We remark that this assumption holds when, for example, the domain

Ω := Ω 1 ∪ Γ 1 ∪ Ω 2 is convex.
From here on, we introduce h := max{h 1 , h 2 }.

Theorem 5.2 (convergence estimate of the projection of the potential error) Assuming that the exact solution (u 1 , u 2 ) ∈ H q+1+δ 1 (T 1,h ) × H q+1+δ 2 (T 2,h ), with q ∈ {0, ..., k}, and there holds the elliptic regularity property (72), we have, for k ≥ 1:

π k T 1,h u 1 -u 1,h 0,Ω 1 + π k T 2,h u 2 -u 2,h 0,Ω 2 h h 2(q+δ 1 ) 1 ||u 1 || 2 q+1+δ 1 ,T 1,h + h 2(q+δ 2 ) 2 ||u 2 || 2 q+1+δ 2 ,T 2,h 1/2 . ( 73 
)
For k = 0, assuming in addition that

f i ∈ H δ i (T i,h ), for i ∈ {1, 2}, g 1 ∈ P 0 (Γ 1,h ) and g 2 ∈ P 0 (Γ 2,h ),
there holds

π 0 T 1,h u 1 -u 1,h 0,Ω 1 + π 0 T 2,h u 2 -u 2,h 0,Ω 2 h h 2δ 1 1 ||u 1 || 2 1+δ 1 ,T 1,h + h 2δ 2 2 ||u 2 || 2 1+δ 2 ,T 2,h 1/2 + h 2(1+δ 1 ) 1 ||f 1 || 2 δ 1 ,T 1,h + h 2(1+δ 2 ) 2 ||f 2 || 2 δ 2 ,T 2,h 1/2 . ( 74 
) Proof. Let ((z 1 , z 2 ), η) ∈ X := U × H -1/2 (Γ 1
) be the solution of the corresponding mixed variational formulation associated to (70), where η := ∇z 1 • n 1 on Γ 1 is introduced as an auxiliary unknown. This formulation can be seen as ( 4), with

F (v 1 , v 2 ) := (w 1 , v 1 ) Ω 1 + (w 2 , v 2 ) Ω 2
, and G(λ) := 0. Next, we denote by ((z 1,h , z 2,h ), η h ) ∈ X h the unique solution of the mixed HHO scheme corresponding to (70), that is

A h (((z 1,h , z 2,h ), η h ), ((v 1,h , v 2,h ), λ h )) = (w 1 , v 1,h ) Ω 1 + (w 2 , v 2,h ) Ω 2 ∀((v 1,h , v 2,h ), λ h ) ∈ X h . (75) 
We notice that there holds

∀((v 1,h , v 2,h ), λ h ) , ((w 1,h , w 2,h ), ζ h ) ∈ X h : A h (((w 1,h , w 2,h ), ζ h ), ((v 1,h , v 2,h ), λ h )) = A h (((v 1,h , v 2,h ), -λ h ), ((w 1,h , w 2,h ), -ζ h )) . (76) 
As a result, we notice that (75) can also be written as

A h (((v 1,h , v 2,h ), λ h ), ((z 1,h , z 2,h ), -η h )) = (w 1 , v 1,h ) Ω 1 + (w 2 , v 2,h ) Ω 2 ∀((v 1,h , v 2,h ), λ h ) ∈ X h . (77) 
This lets us to state that the dual consistency error is given by

E d h (((z 1 , z 2 ), η), ((v 1,h , v 2,h ), λ h )) := A h (((v 1,h , v 2,h ), λ h ), (( z 1,h , z 2,h ), -η h ))) -(w 1 , v 1,h ) Ω 1 -(w 2 , v 2,h ) Ω 2 ,
where z i,h :=

I k T i,h (z i ) ∈ U k T i,h , i ∈ {1, 2}, and η h = π k F (η| F ) F ∈Γ 1,h ∈ Q k h . Thanks to (76), it is not difficult to check that ∀((v 1,h , v 2,h ), λ h ) ∈ X h there holds E d h (((z 1 , z 2 ), η), ((v 1,h , v 2,h ), -λ h )) = A h ((( z 1,h , z 2,h ), η h ), ((v 1,h , v 2,h ), λ h )) -(w 1 , v 1,h ) Ω 1 -(w 2 , v 2,h ) Ω 2 =: E h (((z 1 , z 2 ), η), ((v 1,h , v 2,h ), λ h )) . (78) 
Now, invoking Lemma A.14 in the appendix in [START_REF] Di | The Hybrid High-Order Method for Polytopal Meshes: Design, Analysis, and Applications[END_REF] with

U := U, P := H -1/2 (Γ 1 ), U h := U k,0 T h , provided with the ||| • ||| h -norm and interpolator I h := I k T h (cf. (9)), P h := Q k h , equipped with || • || Γ 1,h -norm and interpolator J h := π k Γ 1,h := π k F F ∈Γ 1,h
, a h := a h , and b h := b h . In addition, we introduce L := L 2 0 (Ω), with the reconstruction operator r h : U h → L such that r h (v h ) := v h . Then, the error estimate (A.30) in [START_REF] Di | The Hybrid High-Order Method for Polytopal Meshes: Design, Analysis, and Applications[END_REF] reads as

||π k T 1,h u 1 -u 1,h || 0,Ω 1 + ||π k T 2,h u 2 -u 2,h || 0,Ω 2 ≤ ||((u 1,h , u 2,h ), ξ h ) -(( u 1,h , u 2,h ), ξ h )|| X h sup (w 1 ,w 2 )∈L 2 0 (Ω) , ||w|| Ω =1 ||E d h (((z 1 , z 2 ), η), •)|| X * h T 1 + sup (w 1 ,w 2 )∈L 2 0 (Ω) , ||w|| Ω =1 E h (((u 1 , u 2 ), ξ), (( z 1,h , z 2,h ), η h )) T 2 (79) 
Then ( 73) and (74) are obtained after bounding the terms on the right hand side of (79).

i) Bounding T 1 . From (61) in Theorem 5.1, we have

||((u 1,h , u 2,h ), ξ h ) -(( u 1,h , u 2,h ), ξ h )|| X h h q+δ 1 1 ||u 1 || q+1+δ 1 ,T 1,h + h q+δ 2 2 ||u 2 || q+1+δ 2 ,T 2,h . (80) 
From (78), we notice that

||E d h (((z 1 , z 2 ), η), •)|| X * h = ||E h (((z 1 , z 2 ), η), •)|| X * h ,
which is estimated by applying Lemma 5.2 with q = 0 and δ 1 = δ 2 = 1. This yields to

||E h (((z 1 , z 2 ), η), •)|| X * h (h 1 ||z 1 || 2,Ω 1 + h 2 ||z 2 || 2,Ω 2 ) h (||w 1 || 0,Ω 1 + ||w 2 || 0,Ω 2 ) , (81) 
where the last inequality has been obtained after applying the ellipticity property (72). Then, from (80) and (81), we deduce

|T 1 | h h q+δ 1 1 ||u 1 || q+1+δ 1 ,T 1,h + h q+δ 2 2 ||u 2 || q+1+δ 2 ,T 2,h . (82) 
ii) Bounding T 2 . At this point, we need to consider two cases: k ≥ 1 and k = 0.

ii.A) The case k ≥ 1. Taking into account (48) and the orthogonality property of p k+1 T (See Lemma 2.2 in [START_REF] Bustinza | A hybrid high-order formulation for a Neumann problem on polytopal meshes[END_REF]), we proceed as in the derivation of (57), and obtain

E h (((u 1 , u 2 ), ξ), (( z 1,h , z 2,h ))) 2 i=1 T ∈T i,h F ∈F T (π k F z i -π k T z i , ∇(u i,T -u i ) • n T F ) F E i + T ∈T i,h j T ( u i,T , z i,T ) E i+2 . (83) 
Now, taking into account ( 13) and Lemma 2.1 in [START_REF] Bustinza | A hybrid high-order formulation for a Neumann problem on polytopal meshes[END_REF] (with = q ≥ 1 and t = 2), we deduce for each i = 1, 2

|E i | T ∈T i,h h q+1+δ i T ||u i || q+1+δ i ,T ||z i || 2,T . (84) 
On the other hand, we notice that

j T ( u i,T , z i,T ) ≤ j T ( u i,T , u i,T ) 1/2 j T ( z i,T , z i,T ) 1/2 h q+1+δ i T |u i | q+1+δ i |z i | 2,T , (85) 
and then we derive

|E i+2 | T ∈T i,h h q+1+δ i T ||u i || q+1+δ i ,T ||z i || 2,T . (86) 
Now, thanks to (84), (86), and the elliptic regularity property (72), we are able to bound E h (((u 1 , u 2 ), ξ), (( z 1,h , z 2,h ))) (cf. (83)), deducing that

|T 2 |   T ∈T 1,h h 2(q+1+δ 1 ) T ||u 1 || 2 q+1+δ 1 ,T + T ∈T 2,h h 2(q+1+δ 2 ) T ||u 2 || 2 q+1+δ 2 ,T   1/2 . ( 87 
)
ii.B) The case k = 0. It is not difficult to establish, for each i = 1, 2

(f i , π 0 T z i ) T = (π 0 T f i , z i ) T = (π 0 T f i -f i , z i -π 0 T z i ) T + (f i , z i ) T ∀ T ∈ T i,h , (88) 
(g i , π 0 F z 2 ) F = (g i , z 2 ) F ∀ F ∈ Γ i,h . (89) 
Now, taking (v 1 , v 2 ) := (z 1 , z 2 ) ∈ U in (4a), we have

(f 1 , z 1 ) Ω 1 + (f 2 , z 2 ) Ω 2 + g 1 , γ + 0 (z 2 ) Γ 1 + g 2 , γ + 0 (z 2 ) Γ 2 = (∇u 1 , ∇z 1 ) Ω 1 + (∇u 2 , ∇z 2 ) Ω 2 + ξ, γ + 0 (z 2 ) -γ - 0 (z 1 ) =0 Γ 1 ,
and from ( 88)-( 89), we deduce that

2 i=1   T ∈T i,h (f i , π 0 T z i ) T + F ∈Γ i,h (g i , π 0 F z 2 ) F   = 2 i=1   T ∈T i,h (π 0 T f i -f i , z i -π 0 T z i ) T + (∇u i , ∇z i ) Ω i   . (90) 
Then, taking into account (48) and (90), we derive

E h (((u 1 , u 2 ), ξ), (( z 1,h , z 2,h ), η h )) = 2 i=1 T ∈T i,h (∇p 1 T I 0 T u i , ∇p 1 T I 0 T z i ) T -(∇u i , ∇z i ) T E i + T ∈T i,h j T ( u i,T , z i,T ) E i+2 - T ∈T i,h (π 0 T f i -f i , z i -π 0 T z i ) T E i+4 . (91) 
In order to bound E i with i = 1, 2, we first notice that

(∇u i , ∇z i ) T -(∇p 1 T I 0 T u i , ∇p 1 T I 0 T z i ) T = (∇u i -∇p 1 T I 0 T u i , ∇z i -∇p 1 T I 0 T z i ) T ,
and, after take into consideration (13), we deduce

|E i |   T ∈T i,h h 2(1+δ i ) T ||u i || 2 1+δ i ,T   1/2 |z i | 2,Ω i . (92) 
Next, applying (85) with k = 0 for E i+2 , i = 1, 2, we obtain

|E i+2 |   T ∈T i,h h 2(1+δ i ) T ||u i || 2 1+δ i ,T   1/2 |z i | 2,Ω i . ( 93 
)
For E i+4 , we apply Cauchy-Schwarz inequality, and approximation theory, to have

|E i+4 | ≤ T ∈T i,h ||π 0 T f i -f i || 0,T ||z i -π 0 T z i || 0,T   T ∈T i,h h 2(1+δ i ) T ||f i || 2 δ i ,T   1/2 |z i | 1,Ω i . (94)
Then, T 2 is bounded from (92)-(94). Finally, the conclusion is also achieved in this case, thanks to (82) (which also holds for k = 0). We omit further details.

Following the ideas given in the proof of Theorem 2.32 in [START_REF] Di | The Hybrid High-Order Method for Polytopal Meshes: Design, Analysis, and Applications[END_REF] (see also the proof of Theorem 6.3 in [START_REF] Bustinza | An a priori error analysis for a class of nonlinear elliptic problems with the hybrid high-order method[END_REF]), and with the help of Theorem 5.2, we can establish a superconvergent estimate of the reconstructive potential error in the L 2 norm. To this end, we introduce p k+1 h u j,h ∈ L 2 (Ω j ) such that p k+1 h u j,h | T := p k+1 T u j,T , for all T ∈ T j,h , for all j ∈ {1, 2} (cf. ( 12)).

Theorem 5.3 (L 2 -error estimate) Assuming that (u 1 , u 2 ) ∈ H q+1+δ 1 (T 1,h ) × H q+1+δ 2 (T 2,h ), with q ∈ {0, ..., k}, and the elliptic regularity property (72), we have, for k ≥ 1:

p k+1 h u 1,h -u 1 0,Ω 1 + p k+1 h u 2,h -u 2 0,Ω 2 h h 2(q+δ 1 ) 1 ||u 1 || 2 q+1+δ 1 ,T 1,h + h 2(q+δ 2 ) 2 ||u 2 || 2 q+1+δ 2 ,T 2,h 1/2 . ( 95 
)
For k = 0, assuming in addition that f i ∈ H δ i (T i,h ), for i ∈ {1, 2}, g 1 ∈ P 0 (Γ 1,h ) and g 2 ∈ P 0 (Γ 2,h ), there holds

p 1 h u 1,h -u 1 0,Ω 1 + p 1 h u 2,h -u 2 0,Ω 2 h h 2δ 1 1 ||u 1 || 2 1+δ 1 ,T 1,h + h 2δ 2 2 ||u 2 || 2 1+δ 2 ,T 2,h 1/2 + h 2(1+δ 1 ) 1 ||f 1 || 2 δ 1 ,T 1,h + h 2(1+δ 2 ) 2 ||f 2 || 2 δ 2 ,T 2,h 1/2 . ( 96 
)
6 Numerical results

The proposed method has been implemented in the open-source HHO library DiSk++ [START_REF] Cicuttin | Implementation of Discontinuous Skeletal methods on arbitrary-dimensional, polytopal meshes using generic programming[END_REF], available at https://github.com/wareHHOuse/diskpp. Numerical experiments supporting our theoretical results are presented in this section. We provide the data for various test cases, which have been solved with polynomial orders k ∈ {0, 1, 2, 3, 4}. The corresponding meshes have been either generated with GMSH [START_REF] Geuzaine | Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities[END_REF] in the simplicial cases or taken from the FVCA5 benchmark in the polygonal cases.

From here on, given (u 1 , u 2 , ξ) and (u 1,h , u 2,h , ξ h ) the unique solutions of ( 4) and ( 23), respectively, we introduce the following notations

• p := ||u 1 -p k+1 h u 1,h || 2 0,Ω 1 + ||u 2 -p k+1 h u 2,h || 2 0,Ω 2 1/2 , • f := ||∇u 1 -∇ h p k+1 h u 1,h || 2 0,Ω 1 + ||∇u 2 -∇ h p k+1 h u 2,h || 2 0,Ω 2 1/2 , • t := || ξ h -ξ h || Γ 1,h ,
which are the potential reconstruction error, the flux error and the discrete normal trace error, respectively. We recall that according to Theorems 5.1, 5.3, and Remark 5.1, in the cases with a regular solution, a convergence rate O(h k+2 ) is expected for p , while a rate of O(h k+1 ) for f and also for t . As usual, for a sequence of successively refined meshes with element size h i , i ∈ N, the convergence rate r i+1 of some error i+1 is computed as r i+1 := log( i / i+1 )/log(h i /h i+1 ).

Test cases with a regular solution

In this section we present 2D and 3D test cases with a regular solution. In 2D we will consider simplicial and a polygonal meshes (see Figure 7), whereas in 3D we will consider simplicial meshes only (cf. Figure 8). For the regular 2D test case, let Ω 1 := (1, 2) 2 and Ω 2 := (0, 3) 2 \ Ω 1 . The sources, boundary and interface conditions are set in order to obtain the solution u 1 (x, y) = cos(πx) cos(πy), u 2 (x, y) = sin(πx) sin(πy).

We remark that, on the transmission boundary, the trace of the potentials and the normal trace of the fluxes are nonhomogeneous. The convergence rates on simplicial meshes are reported in Figure 2, whereas the convergence rates on hexagonal meshes are shown in Figure 3. For the regular 3D test case, let Ω 1 := (1, 2) 3 and Ω 2 := (0, 3) 3 \ Ω 1 . The sources, boundary and interface conditions are given so that the exact solution is given by u 1 (x, y, z) = cos(πx) cos(πy) cos(πz), u 2 (x, y, z) = sin(πx) sin(πy) z -

Also, in this case we notice that, on the transmission boundary, the trace of the potentials and the normal trace of the fluxes are nonhomogeneous. In Figure 4, we display the behavior of the convergence of the method. The method, in the test cases considered in this section, shows the expected convergence rates from the theoretical analysis. In addition, we remark that all these results are in agreement with Theorems 5.1 and 5.3, considering δ 1 = δ 2 = 1. In addition, we notice that the rate of convergence of the normal trace behaves as O(h k+3/2 ), giving numerical evidence that the statement in Remark 5.1 could be improved. On the other hand, concerning the 2D case on polygonal meshes, we observe that the numerical roundoff causes a slight loss of convergence in the potential reconstruction for k = 4. 

Nonsmooth solution in a nonconvex 2D domain

Let

Ω 1 := (-2, 2) 2 \ [-1, 2]×[-2, 1] and Ω 2 := (-3, 3) 2 \(Ω 1 ∪[0, 3]×[-3, 0]
). The sources, boundary and interface conditions are set in order to obtain the solution

u 1 (x, y) = xy x 2 + y 2 -c 1 , u 2 (r, θ) = r 2/3 sin(2θ/3) -c 2 ,
where u 2 is given in polar coordinates, and c 1 , c 2 are real constants such that u 1 has zero mean value in Ω 1 and u 2 has zero mean value in Ω 2 . We point out that u 2 ∈ H 1+2/3-(Ω 2 ), for some small number > 0, since its gradient has a singularity at origin. The numerical results, obtained by the HHO method, are shown in Figure 5. We notice here that the nonsmoothness of u 2 affects the rates of convergence of the method. In particular, the L 2 -norm rates of the reconstructed potential and reconstructed flux decay to zero as O(h 2/3 ) for k ∈ {0, 1, 2, 3, 4}. In addition, the discrete norm of trace error decays to zero as O(h 2/3+1/2 ) for all the considered polynomial degree k. This situation is not covered by our current analysis, and motivates us to obtain an a posteriori error estimator that could help us to improve the quality of the approximation. This could be the subject of future work.

A numerical singularity in a 3D domain

Let Ω 1 := (0, 1) 3 \[0.5, 1] 3 and Ω 2 := (-0.5, 1.5) 3 \Ω 1 . The sources, boundary and interface conditions are given so that the exact solution is given by u 1 (x, y, z) = 1 -x 2 -y 2 -z 2 (x -0.55) 2 + (y -0.55) 2 + (z -0.55) 2 -c 1 , u 2 (x, y, z) = sin(2πx)sin(2πy)sin(2πz), where c 1 is a real constant such that u 1 has zero mean value in Ω 1 . We point out that in this case, u 1 presents a singularity at (0.55, 0.55, 0.55), which is close to Γ 1 . This induces a numerical singularity, which affects the convergence error rates of the method, as they can be seen in Figure 6. 

Conclusions

In this paper we have proposed a new mixed HHO formulation to approximate the solution of an interior transmission elliptic problem with nonhomogeneous transmission boundary conditions. We first derived the variational formulation at the continuous level, by introducing as an auxiliary unknown the normal trace of the flux of the solution in the inner subdomain, on the transmission boundary. This unknown acts, in practice, as a Lagrange multiplier. Then, we propose a discrete variational scheme, based on the HHO approach.

We have proved that our discrete mixed HHO scheme is well-posed and optimally convergent in the energy-norm, as well as in the usual L 2 -norm. Our a priori error estimates establish that when we approximate the solution with piecewise polynomial of degree at most k ≥ 0, the flux and energy norm of the potential error go to zero with optimal order of convergence k + δ, while for the L 2 -norm of the potential and reconstructive potential error, their orders behave as O(h k+1+δ ), for some δ ∈ (1/2, 1] (cf. Theorems 5.1, 5.2 and 5.3). The L 2 -projection of the error of Lagrange multiplier is measured in a suitable weighted L 2 -norm (cf. ( 14)), and converges, at least, with order k + δ (in agreement with Theorem 5.1).

We have included several examples, in 2D and 3D, whose results are in agreement with our theoretical statements. First, we introduce a 2D problem with smooth exact solution in each subdomain. Then, we obtain numerical approximation of it, by using a family of simplicial meshes and a family of hexagonal meshes. We also deal with a 3D problem having a regular solution in each subdomain, and considering for simplicity a family of simplicial meshes. These regular cases confirm the theoretical results with a convergence rate of O(h k+2 ) for p , a rate of O(h k+1 ) for f and a rate of O(h k+1+ 1

2 ) for t . The latter behavior suggests that our statement given in Remark 5.1 could be improved.

We have also applied our approach to other test problems in 2D y 3D, where the exact solution is nonsmooth (at least in one subdomain). For this reason, we do not expect optimal rates of convergence, which is the case. This gives a motivation to improve the quality of our approximation, by finding a suitable reliable and local efficient a posteriori error estimator. This will be addressed in a future work.

Finally, we point out that the analysis described in this paper, can be applied and/or extended to deal with linear transmission problems with variable diffusion, and / or with other type of boundary conditions on the external boundary of Ω 2 . Moreover, taking into account [START_REF] Di | A Hybrid High-Order method for Leray-Lions elliptic equations on general meshes[END_REF] and [START_REF] Bustinza | An a priori error analysis for a class of nonlinear elliptic problems with the hybrid high-order method[END_REF], we are motivated to extend this approach to deal with certain class of nonlinear transmission problems.

Lemma 2 . 1 b

 21 is bounded.

Proposition 4 . 2

 42 The discrete problem[START_REF] Hansbo | An unfitted finite element method based on Nitsche's method for elliptic interface problems[END_REF] is well-posed.Proof. It is a straightforward consequence of Lemmas 4.3, 4.4 and 4.5. We omit further details.Next result could be useful in the rest of this work.
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 23 Figure 2: Regular case 2D, GMSH triangles. Both axes are in logarithmic scale, y-axis scale is the same for all the three panels.

Figure 4 :

 4 Figure4: Regular case 3D. Both axes are in logarithmic scale, y-axis scale is the same for all the three panels.

Figure 5 :

 5 Figure 5: Nonsmooth case 2D, GMSH. Both axes are in logarithmic scale, y-axis scale is the same for all the three panels. Convergence rate is limited due to the non-smoothness of the solution.

Figure 6 :

 6 Figure 6: Singular case 3D. Both axes are in logarithmic scale, y-axis scale is different between the leftmost and the other two panels.

  For λ ∈ H -1/2 (Γ 1 ) given, and setting z ∈ H 1 0 (Ω) ⊥ and (v 1 , v 2 ) ∈ U as in the proof of Lemma 2.3, there holds b

	Remark 2.2
	Theorem 2.1 The continuous problem (4) is well-posed.
	Proof. Taking into account Lemmas 2.1, 2.2 and 2.3, we invoke well-known Babuška-Brezzi's theory, to
	conclude that the variational problem (4) is well-posed.
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(a) Initial mesh for regular solution (b) Initial mesh for nonsmooth solution Figure 7: Initial meshes in 2D