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Unlike conventional two-dimensional (2D) semiconductor superlattices, moiré patterns in 2D ma-
terials are flexible and their electronic, magnetic, optical and mechanical properties depend on their
topography. Within a continuous+atomistic theory treating 2D materials as crystalline elastic mem-
branes, we abandon the flat-membrane scenario usually assumed for these materials and address
out-of-plane deformations. We confront our predictions to experimental analyses on model systems,
epitaxial graphene and MoS2 on metals, and reveal that compression/expansion and bending ener-
gies stored in the membrane can compete with adhesion energy, leading to a subtle moiré wavelength
selection and the formation of wrinkles.

Introduction. – Two-dimensional (2D) materi-
als host height fluctuations called nanoripples and are
therefore never perfectly flat, behaving as ultimately
thin membranes [1]. A substrate generally suppresses
the dynamics of these height fluctuations [2]. If cys-
talline, it stabilizes ordered arrays of static nanorip-
ples. Their origin lies in the lateral periodic variation
of the local atomic stacking (Fig. 1a), imposed by the
lattice mismatch/misorientation of the two materials,
and forming a so-called (quasi)coincidence superlat-
tice, i.e. a moiré pattern [3–6].

Moirés are ubiquitous in epitaxial 2D materials, in-
cluding graphene [7], h-BN [8], and MoS2 [9]. They
enrich their electronic properties [10, 11], and pro-
mote the self-organization of nanoclusters [12, 13],
molecules [13, 14], and isolated atoms [15–17], with
foreseeable unique magnetic and catalytic proper-
ties. The mechanical properties are modified too, by
phonon localization or phonon branch replicas [18–20],
which should manifest in the thermal properties [2].
Rationalizing these properties requires the knowledge
of the wavelength Λ and amplitude ∆ of the nanorip-
ple pattern (Fig. 1a). Λ is often simply evaluated ge-
ometrically, from the superposition of the individual
2D material and substrate lattices. ∆ is often consid-
ered to be set by the strength of the interaction with
the substrate [21–24] or a planar stress [25].

Here we investigate, numerically and experimen-
tally, how Λ and ∆ are interlinked through the elas-
ticity of the 2D membrane. Introducing a mixed
continuum mechanics / atomistic modeling we ad-
dress the usually disregarded effects of non-planar
deformations, i.e. bending, on nanorippling under
the influence of a crystalline surface. This allows to
study moiré systems with numbers of atoms beyond
what density functional theory (DFT) and molecu-
lar dynamics calculations can tackle, as shown pre-
viously for twisted bilayers [26, 27]. We apply our
model to two epitaxial 2D materials. Comparing
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FIG. 1. (a) Points on the membrane are displaced from
their position on a flat unrippled membrane by ~u(x, y).
The cross-section (top-right) shows the moiré pattern’s un-
dulation (period Λ, amplitude ∆) and the atomic lattices
(interatomic distances d and as in the membrane and sub-
strate, respectively). The 2D phase ~ϕ, i.e. the atomic
stacking, varies from a valley to a hill. There, a substrate
atom stands halfway between two membrane atoms (>
symbols). (b) STM topograph (8×8 nm2) of a graphene
membrane onto Ir(111), and apparent height profiles ex-
tracted between the arrows fitted using a cosine function.

graphene on Ir with and without an intercalated Co
monolayer, we investigate the influence of two sub-
strates with the same lattice parameter but different
binding strength. Futhermore, we demonstrate the
generality of our method with another 2D material,



MoS2/Au. Separating the contributions to the total
energy, we relate weak nanorippling to a form of the
membrane-substrate interaction varying moderately
across the moiré, which generates only small bend-
ing energy penalty provided that Λ is large enough
(graphene/Ir, MoS2/Au). A more subtle Λ selec-
tion is unveiled when the substrate promotes strong
nanorippling (graphene/Co/Ir): the membrane mit-
igates its bending energy by increasing its planar-
projected area. This is accommodated by local wrin-
kling, as confirmed by microscopy data.

Modeling – We apply elastic thin plate theory to a
membrane having a sinusoidal topography, while tak-
ing into account the atomic arrangement at the sub-
strate surface and within the membrane. Two vector
fields are considered: the displacement field ~u asso-
ciated with the membrane deformation and the geo-
metrical phase ~ϕ ∈ [0, 2π]2 describing the coincidence
between the membrane and substrate atoms (Fig. 1a).
The continuum mechanics and atomistic viewpoints
are entangled in ~u, which is at the same time a con-
tinuous ~u(x, y) and a discrete ~ui field (defined for each
atom i of the membrane). For simplicity, we assume
a uniform interatomic distance d over the membrane,
and an infinite rigidity of the substrate lattice.

The membrane surface has the form
∆/9

∑3
i=1 cos(~ki · ~r) + ∆/3 (graphene) and

∆/(3
√

3)
∑3
i=1 sin(~ki · ~r) + ∆/2 (MoS2) [28], with ~r

a 2D position vector and ~ki=1,2,3 three 2π/3-rotated
vectors of norm 4π/(Λ

√
3). The elastic energy

Eel = 1/2
∫

Tr(εσ)dxdy =
∫
eeldxdy is decomposed,

using the stress-strain (σ and ε tensors) relationship
and the Lamé coefficients (λ, µ), bending rigidity
(κ), and Poisson ratio (ν) [29], in in-plane (ip) and
out-of-plane (oop) components [30]:

Eel,ip =
1

2

∫ (
λ(εxx + εyy)2

+ 2µ(ε2xx + ε2yy + 2ε2xy)
)
dxdy

Eel,oop =
κ

2

∫ (
(∂x∂xuz + ∂y∂yuz)

2 + 2(1− ν)

× ((∂x∂yuz)
2 − ∂x∂xuz∂y∂yuz)

)
dxdy

(1)

with εαβ = 1/2(∂βuα + ∂αuβ +
∑
τ=x,y,z ∂αuτ∂βuτ ),

α, β = x, y, and ∂α,β = ∂/∂α,β .
The adhesion energy of the membrane on the sub-

strate writes as a sum over the atomic positions:

Ead =
∑
i

ead,i(~ϕi, uz,i) (2)

The elastic and adhesion energies are functions of Λ,
∆, the relative orientation θ of the membrane and sub-
strate lattices (Sec. S1.7 of the Supplemental Material
[39]), and d [40]. Calculating Ead requires knowledge
of the ead,i potential, which depends on the kind of
substrate and the local membrane-substrate atomic
coincidence. For epitaxial 2D materials, ead,i has at

least one minimum, for heights of the 2D material that
change within the moiré cell (with i). This promotes
nanorippling, hence an eel penalty (unless d is com-
pressed) that tends to mitigate it. We search for the
lowest-energy structure of the membrane, among the
set of Eel+Ead values calculated over a unit cell of the
nanoripple pattern, for an extended range of {d,Λ,∆}
triplets. We also assessed the influence of θ.

For each system, 6,000 triplets were used, vary-
ing d within ±1% around graphene’s or MoS2’s ref-
erence values (2.462 Å, 3.167 Å; Sec. S1.2 of the Sup-
plemental Material [39]), Λ across 20-30 Å or 28-
38 Å (graphene, MoS2), and ∆ across 0.05-2.4 Å –
by steps of 0.25%, 0.2 Å, and 0.1 Å , respectively.
Based on DFT calculations, including our own new
ones for MoS2/Au(111), accounting for van der Waals
interactions at the membrane/substrate interface, we
parametrized the adhesion potentials. The elastic con-
stants were taken from the relevant calculations and
experimental estimates (Secs. S1.1,S1.3,S1.4 of the
Supplemental Material [39]). The minimum-energy
configurations were then compared to our scanning
tunneling microscopy (STM) measurements (Sec. S2
of the Supplemental Material [39]), and other previ-
ously published experimental data.

Weak nanorippling. – High-resolution measure-
ment of Λ, ∆ and d is notoriously challenging exper-
imentally. Graphene on Ir(111) is one of the few sys-
tems for which this has been done [21, 25, 31–34],
and MoS2/Au(111) another one, albeit to a lesser ex-
tent [36–38]. The measured structural parameters are
reported in Table I – ∆ estimates vary with the tun-
neling imaging conditions for graphene/Ir [33], even
more so for MoS2/Au [37]. A typical STM topograph
of graphene/Ir(111) is shown in Fig. 1b. Apparent
height profiles through the moiré pattern, along high-
symmetry directions, are well described by the 2D co-
sine function introduced above (Fig. 1b).

A Morse potential faithfully describes the adhesion
energy, eIr−C,i, in particular the presence of a large-
distance energy minimum (>3 Å). This minimum only
slightly varies with the local atomic coincidence; it is
much related to a van der Waals interaction that pre-
vails at weak-interaction interfaces between graphene
and metals like Cu, Ag, Ir, Pt, Au [41, 42]. The poten-
tial has been parametrized to obtain an average bind-
ing energy per C atom close to the 50 meV value de-
rived from DFT calculations (Sec. S1.3 of the Supple-
mental Material [39]). Computing the elastic energy
requires knowledge on the elastic constants λ, µ, ν,
which have been estimated for graphene/Ir(111) [43],
whereas κ is only known for graphite [44] (Sec. S1.1
of the Supplemental Material [39]).

The calculated minimum-energy d and ∆ (Table I)
fit within the range of experimental values [21, 33, 34],
whereas Λ is slightly larger (we will come back to
that). Interestingly, the elastic energy marginally con-
tributes to the total energy. Considering the adhesion
energy alone leads to similar estimates of Λ and ∆
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TABLE I. Calculated elastic ēel and adhesion ēad contributions to the total energy ēt, normalized by the number of
atoms (meV/Å2), in a moiré unit cell, for optimal values of d variation (%), Λ (Å), and ∆ (Å). Λ=Λ′ and ∆=∆′ values
minimize ēad alone. Experimental structural parameters from the literature and our STM measurements (∗) are reported.

∆d Λ ∆ ēad ēel ēt Λ′ ∆′

Graphene/Ir -0.05 26.4 0.39 -11.94 0.04 -11.90 26.4 0.43
Experiments -0.01/-0.29 [31] 25.5, 25.6 [31, 32], 0.6/1.0, 0.42/0.56, 0.38

25.4∗ [21, 33, 34], 0.35∗

Graphene/Co/Ir +0.17 27.3 1.67 -12.56 0.85 -11.71 25.3 2.03
Experiments +0.1/1.4 [35] 26.5/28.5 [35] 1.2/1.8 [23], 1.8∗

MoS2/Au -0.25 35.2 0.44 -30.74 0.23 -30.50 32.8 0.46
Experiments -0.32, +0.13 [36, 37] 33.4, 33.3 [37, 38] 0.37 [37]

(noted Λ′ and ∆′ in Table I, Figs. S6b,c of the Sup-
plemental Material [39]). The topography is essen-
tially inherited from the C-Ir interaction (Λ and ∆
Table I), and graphene/Ir(111) is a weakly nanorip-
pled system storing few elastic energy. This holds too
for graphene slightly twisted (fractions of degrees are
often observed experimentally [33, 45]) with respect to
Ir(111) (Sec. S1.7 of the Supplemental Material [39]).

As the elastic energy reflects the membrane curva-
ture, it is inhomogeneous in space, with Eel,oop (Eq. 1)
as its main contribution. It is maximum at the top of
the nanoripples (dark regions in Fig. 2a), minimum
along their flanks (white regions), and takes interme-
diate values at the surface’s saddle points and valleys
(orange regions).

The spatial distribution of the adhesion energy is
simpler (Fig. 2a,c): it follows the surface topography,
with the weakest (resp. strongest) binding at the hills
(resp. valleys). This reflects the varying graphene-
on-Ir stacking configuration, with half the C atoms
located on top of the Ir ones (valleys), and the center
of C hexagons on top of Ir atoms (hills) [21].

For MoS2/Au, we calculate three times stronger ad-
hesion energy, and six times stronger elastic energy
than for graphene/Ir (Table I). Their spatial distribu-
tion is also well explained by the varying local stacking
and membrane bending (Fig. S5 of the Supplemental
Material [39]). Although it is more costly to bend
MoS2 than graphene, the energy penalty still appears
affordable, presumably owing to the large Λ value.

Strong bending effects. – To gain insight on the
influence of adhesion on nanorippling we now consider
graphene on Ir with Co intercalated (Sec. S2 of the
Supplemental Material [39]). The Co surface is pseu-
domorphic to Ir (same lattice constant) but has a dif-
ferent kind of adhesion. Compared to graphene/Ir, a
five-to-ten-fold increase of ∆ is found in STM, depend-
ing on the tunnel bias voltage (Figs. 2a,b) [23, 46].

In the discussion above, the adhesion energy eIr,i
had a single minimum, at a (large) distance vary-
ing only slightly with the atomic coincidence, which
promoted weak nanorippling. According to ab ini-
tio calculations [41, 42], surfaces having high affinity
with C, especially Co and Ni, lead to the occurence
of a second minimum at shorter distance (∼2.2 Å)
for coincidences with half C atoms atop a metal atom

(Figs. S1,S3, Sec. S1.3 of the Supplemental Material
[39]). Adhesion energy variations are in the same
range as for eIr,i, but the large distance between the
two minima promotes strong nanorippling. Our an-
alytical form of eCo,i adds a Gaussian component to
the Morse potential to account for the two minima.

The {d,Λ,∆} triplet minimizing the system energy
yields a four times larger ∆ value than for graphene/Ir
and agrees well with the experimental estimates (Ta-
ble I, Refs. 23, 46). Λ is also substantially larger in the
presence of the intercalated Co layer (which is pseudo-
morphic to Ir). Our calculations show (Fig. S7b of the
Supplemental Material [39]) that this results from the
six-times stronger out-of-plane (bending) energy den-
sity here. Note the larger (by about 0.2%) interatomic
distance d, now significantly off the reference value.
The corresponding in-plane (stretching) elastic energy
penalty, more than ten times that in graphene/Ir is
compensated by a gain in adhesion energy, allowed by
the larger d that yields favorable substrate-membrane
atomic coincidences (while the opposite effect is asso-
ciated with the increased rippling). These behaviours
are also found for small twist angles of the graphene
lattice (Sec. S1.7 of the Supplemental Material [39]).

As expected, the spatial distribution of the elas-
tic energy density is essentially the same as for
graphene/Ir (Figs. 2b,d), most of the energy being
stored at high curvature regions, i.e. the hills, the val-
leys and the saddle points. The spatial distribution of
the adhesion energy density is more complex here. In
particular, the valleys of the membrane are not any-
more the only regions with strong adhesion energy,
and the spatial variations are much faster (Figs. 2c,d).
Changing the metal substrate thus deeply modifies the
adhesion energy density within the membrane.

Mechanical instability. – Our calculations pre-
dict Λ values larger by ∼1 Å and ∼2 Å, respectively,
than experimental values for graphene/Ir [31, 32] and
MoS2/Au [37, 38] (Table I). Such discrepancies are ex-
pected as a result of the heteroepitaxial stress building
up as the samples are cooled down after growth, due
to the mismatch in thermal expansion coefficients of
the 2D material and the substrate. In graphene/Ir
this stress is only partially relieved to the expense of
a local bending and loss of adhesion, by linear de-
laminations called wrinkles [32]; no wrinkles form to
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FIG. 2. (a,b) Spatial distribution of the elastic (eel eval-
uated on a square grid with 0.2 Å steps) and adhesion
(eIr−C,i, eCo−C,i) energy densities for graphene on Ir and
Co/Ir, and corresponding STM topographs (9×6.5 nm2,
one unit cell sketched with a dotted frame). The z scale is
multiplied by 10. (c,d) Cross-sections, along x and y axes,
of the membrane’s height (dotted lines) and correspond-
ing elastic (solid lines) and adhesion (‘X’ and ‘Y’ symbols)
energies, for graphene/Ir (c) and graphene/Co/Ir (d).

relieve the (smaller) stress in MoS2/Au [36]. In other
words, experimentally graphene/Ir and MoS2/Au are
close but not exactly at the calculated equilibrium
state. For their lower Λ values, we calculate lower-
estimates of the excess total energy, compared to the
equilibrium state, of only 4 meV (graphene/Ir) and
2 meV (MoS2/Au) per unit cell. This is because the
total energy weakly depends on Λ when ∆ ' 0.4 Å
(Fig. S6c of the Supplemental Material [39]). If ther-
modynamic equilibrium is not precisely reached exper-
imentally (growth is an out-of-equilibrium process),
the total energy is only weakly affected.

This is not the case with graphene/Co/Ir, for which
this energy difference is, depending on the graphene
twist angle (0◦, 0.5◦, 1◦), 20 to 60 times larger due
to strong elastic energy variations at large ∆ values

(Fig. S6d of the Supplemental Material [39]). As dis-
cussed above this is the driving force for a complex
∆ and Λ selection, beyond what the adhesion energy
alone would impose. This large excess bending energy,
in graphene/Co/Ir with ∆ ' 25.5 Å, may be relieved
by an increase of Λ, hence an increase of the projected
membrane’s area. The latter must be accommodated
somewhere. This is what experiments reveal: a second
network of wrinkles forms upon Co intercalation. This
new network is easily recognized: wrinkles are lower,
shorter, and denser than those formed after graphene
growth (Fig. S8 of the Supplemental Material [39]).

One wrinkle in this new network, at an intermediate
stage of the intercalation process, is visible in Fig. 3a.
We analyzed the in-plane deformations εnrxx and εnryy in
the x and y directions of the nanoripple (nr) lattice at
the vicinity of the wrinkle using a geometrical phase
analysis (Sec. S3 of the Supplemental Material [39]).
A gradient of εnrxx is observed perpendicular to the
wrinkle (Fig. 3b): the nanoripple lattice is stretched
when approaching the wrinkle. In fact, the moiré lat-
tice expands by several tenths of percent, bringing Λ
to values close to, and even at, those we predict for the
lowest-energy configuration (Table I). Consistently, in
(apparent) height profiles, Λ increases as the distance
to the wrinkle shortens (Fig. 3a). On the contrary, in
the direction parallel to the wrinkle there is no obvi-
ous εnryy variation close to the wrinkle (Fig. 3c). Other
effects seem to play a more important role in this di-
rection, for instance the presence of a substrate step
edge or the edge of the intercalated Co island.

Altogether, our spatially-resolved analysis of the de-
formation field in the nanoripple pattern supports the
above proposal for a wrinkling mechanism induced by
an ‘unrippling’ (Λ increase) of the membrane. This
mechanism highlights the far-reaching consequences
of the mechanical (elastic) back-action of the mem-
brane under the influence of a substrate.

Prospects. – Our model predicts the ground-state
structure of graphene and MoS2 on substrates with
different adhesion properties. Experimental data are
close to these predictions, with only minor discrepan-
cies that vanish if bending energy penalties matter,
i.e. for strongly rippled systems. We identify where
and how the 2D membrane stores energy via elastic
deformations, bending in particular, and disentangle
the role of the substrate from that of the membrane’s
mechanical properties. Altogether these are of utmost
importance to understand and engineer nanorippling-
related properties, e.g. pseudo-electromagnetic fields,
excitonics, electronic correlations [47]. Our approach
is complementary to first-principles ones, permitting
fast calculations (< 1 s) on large systems and the ex-
ploration of a broad range of parameters (Λ, as, θ). It
is also applicable to twisted 2D bilayers in the presence
of strain fields [26, 27] – altogether, to help interpret
the rich moiré-related phenomena, including disorder
[31, 33, 48, 49] and temperature effects.
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Johnson, Toward moiré engineering in 2d materials
via dislocation theory, Appl. Mater. Today 9, 240
(2017).

[7] T. Land, T. Michely, R. Behm, J. Hemminger, and
G. Comsa, Stm investigation of single layer graphite
structures produced on Pt(111) by hydrocarbon de-
composition, Surf. Sci. 264, 261 (1992).

[8] M. Corso, W. Auwärter, M. Muntwiler, A. Tamai,
T. Greber, and J. Osterwalder, Boron nitride
nanomesh, Science 303, 217 (2004).

[9] S. G. Sørensen, H. G. Füchtbauer, A. K. Tuxen, A. S.
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moiré superstructure of MoS2 on Au(111), 2D Mater.
9, 025003 (2022).

[38] R. Sant, S. Lisi, V. D. Nguyen, E. Mazaleyrat, A. C.
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J. Harl, and G. Kresse, Graphene on Ni (111): Strong
interaction and weak adsorption, Phys. Rev. B 84,
201401 (2011).

[57] D. Newns, Self-consistent model of hydrogen
chemisorption, Phys. Rev. 178, 1123 (1969).

[58] P. Hohenberg and W. Kohn, Inhomogeneous electron
gas, Phys. Rev. 136, B864 (1964).
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[63] K. Lee, É. D. Murray, L. Kong, B. I. Lundqvist, and
D. C. Langreth, Higher-accuracy van der Waals den-
sity functional, Phys. Rev. B 82, 081101 (2010).

[64] A. Becke, On the large-gradient behavior of the den-
sity functional exchange energy, J. Chem. Phys. 85,
7184 (1986).

[65] J. P. Perdew, K. Burke, and M. Ernzerhof, General-
ized gradient approximation made simple, Phys. Rev.
Lett. 77, 3865 (1996).

[66] I. Hamada, van der Waals density functional made
accurate, Phys. Rev. B 89, 121103 (2014).
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