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Validity of the catenary model for moving submarine cables with
negative buoyancy

Juliette Drupt1, Claire Dune1, Andrew I. Comport2, Vincent Hugel1

Abstract— In the field of underwater robotics, tethers are the
dominant method used to provide real time communication with
underwater vehicles. Estimating their shape is a key element in
preventing entanglements and limiting their mechanical effects
on the vehicles. In addition, the tether shape constrains the
pose of the vehicle at its attachment point, and could thus
be used for vehicle localization purposes given an accurate
tether model. This work focuses on a simple model of flexible
non-rigid hanging cables, namely the catenary model, and
presents an experimental evaluation of the validity of this model
to approximate the shape of dynamically moving underwater
tethers with negative buoyancy using motion tracking.

I. INTRODUCTION

Underwater communications suffer from the absorption
of electromagnetic waves within only a few centimeters of
water. The mainstream way to provide real time commu-
nication between an underwater robot and a surface vessel
is then to connect them through a physical link, or tether.
Such remotely operated vehicles (ROVs) allow to achieve
tasks that cannot be fully automated and require precision
and adaptability. The tether can also provide energy to the
ROV for better autonomy with a lighter embedded payload.

The design of the tether and of its buoyancy depends
on the intended application. Thus, a tether with positive or
neutral buoyancy will avoid lifting sediments or getting stuck
in reliefs by dragging along the seabed if the robot operates
close to it. On the other hand, cables with negative buoyancy
are required to transport a significant amount of energy to
working ROVs over distances of several hundred meters.

The tether affects the ROV’s mobility. First, the mechani-
cal action of the tether limits the ROV’s motion and involves
increased energy consumption. Second, the risk of tether
entanglement restricts operation in cluttered environments.
These effects can be limited by tether management strate-
gies [1] which can be passive [2], [3] or active [4], [5]. When
active, knowledge of the system’s state is necessary, hence
there is an interest in the estimation of the tether shape.
Furthermore, knowing the tether’s 3D shape can enable
locating the ROV at its attachment point.

Some underwater cables are designed as proprioceptive
sensors in order to measure their own shape. Optical-fiber
cables measure their deformations using reflectometry tech-
niques [6], [7]. Such cables can be used to locate connected
underwater vessels [8]. Another version of optical fiber cable
shape sensing consists in adding an external optical fiber
sensor coating on a cable [9]. Such cables are, however,
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Fig. 1: Catenary shape parameterization.

fragile and extremely expensive. The cable’s shape can also
be estimated from the measurements of inertial sensors
placed along it [10]. However, these methods need to use a
specifically built tether. Other strategies rely on physical or
geometrical cable models. A physical model can be derived
from the hydrodynamics of the cable and the forces that
apply to it [11], [12], [13], [14]. Such models are the most
complete and physically accurate, but they are computation-
ally expensive and require the knowledge of many parameters
which cannot be measured easily in real conditions, such as
water current or parameters of the thrusters. Simpler models
are then commonly preferred. The cable can be artificially
constrained to a simplified geometric shape, for example
by constraining the cable to be piecewise linear by adding
weights or sliding floaters [2], [3]. Other works use the
catenary model for underwater applications [5], [15], or
aerial applications [16], [17], [18]. The catenary model is
defined as the shape of an idealized homogeneous hanging
cable with fixed length and fixed ends, only subject to its
own weight in air. Underwater cables are also submitted
to a buoyancy force, opposed to the weight. The catenary
model then only applies to cables for which the resulting
vertical force is non-zero, i.e. only positively and negatively
buoyant cables. This model is particularly interesting because
of its simplicity, but extending it to an underwater cable with
moving ends assumes that the hydrodynamic forces exerced
on the cable are negligible compared to its weight, and that
the motion is such that the cable is always close to its state.

This paper presents an experimental study in order to
evaluate whether the catenary model may be use to model a
weighing underwater cable with moving ends, in the absence
of currents. This study is based on tracking the motion of
two negatively buoyant cables of different linear mass in a



pool. Their shape is then compard to the closest catenary
curve. This comparison is based on three properties of the
catenary model for static hanging cables:

• the cable should lie in a plane
• this plane should be vertical with respect to gravity
• the 2D shape of the cable in this plane should fit a

catenary 2D curve.
Section II defines the catenary model and gives its equations
in 2D and 3D. Section III presents the numerical shape
estimation method and the measurements used to validate the
model. The experimental results are presented and discussed
in Section IV. Finally, Section V concludes on this study.

II. CATENARY EQUATIONS FOR CABLE MODELING

A. Static hanging cable

Let us consider an homogeneous hanging cable with fixed
length and fixed ends, only subject to its own weight. It can
be shown that it conforms to a catenary shape defined in a
vertical plane [19].

Let F2D be an orthonormal 2D frame. The catenary curve
is defined in F2D by:

∀x ∈ R, y =
1

C
[cosh(Cx)− 1] (1)

where C ∈ R∗ and (x, y) denote the coordinates of a 2D
point in F2D.

Figure 1 shows the parameterization of a catenary shape
for a cable with fixed length L whose attachment points are
Pa1 and Pa2. Let us define a direct Cartesian frame F0 for
the catenary, such that its center is P0, the lowest point of the
catenary, z0 is vertical, and y0 is orthogonal to the vertical
plane that contains Pa1 and Pa2. The coordinates (X,Y, Z)
of the cable points expressed in frame F0 are:

∀X ∈ [−D,D +∆D],

{
Y = 0

Z = 1
C [cosh(CX)− 1]

(2)

C can be expressed geometrically as a fonction of param-
eters the cable’s sag H , the difference of elevation of the
attachment points ∆H and the cable length L. H and ∆H
are shown in Figure 1.

C =
2(2H +∆H + 2L

√
H H+∆H

L2−∆H2 )

L2 − (2H +∆H)2
(3)

C can also be defined from the laws of physics as:

C =
µg

T0
(4)

where µ is the cable’s linear mass, g is the value of gravity
on Earth and T0 is the tension at P0.

It can be shown that this model extends to an homoge-
neous hanging cable with fixed length and fixed ends in a
fluid, only subject to its own weight and to Archimedes’
buoyancy with a non zero resulting force, with:

C =
(µ− vlρ)g

T0
(5)

where vl and ρ denote respectively the cable’s linear volume
and the fluid’s density.

Fig. 2: Inclined catenary model

B. Inclined hanging cable in water

As soon as the cable is moved in the water, it may happen
that the current or the movement of the ends leads the cable
to a transitional position in an inclined plane. In this paper,
the cable shape in this plane will be studied to determine if
its deviation from the catenary model is significant. Let this
situation be called the inclined catenary.

Now let the inclined catenary curve model be defined as a
3-dimensional catenary included in a non-vertical plane P , as
represented in Figure 2. Fw is a world frame with origin Pw

and zw vertical and pointing upwards. Frame F0 is defined as
previously, such that its center is P0, the lowest point of the
catenary, z0 is vertical upwards, and y0 is orthogonal to the
vertical plane that contains Pa1 and Pa2. The transformation
from F0 to Fw is then:

wT0 =

[
Rz(ψ)

wP0

01×3 1

]
(6)

where Rz(ψ) denotes a yaw rotation of angle ψ and wP0 is
the coordinate vector of P0 in Fw.

Let define Fp be defined with origin P0, such that xp =
x0 and zp is the normalized projection of z0 in plane P . yp

is then normal to P . The transformation between frames Fp

and F0 is then a pure rotation of angle α around x0:

0Tp =

[
Rx(α) 03×1

01×3 1

]
(7)

The coordinates of the inclined catenary curve contained
in plane P are given in frame Fp by (pX,p Y,p Z) where:{

pY = 0
pZ = 1

C [cosh(C pX)− 1]
(8)

In frame Fw, the coordinate vector of a point P belonging
to the inclined catenary curve is finally wP =w T0

0Tp
pP.

Alternatively, an inclined catenary curve is fully defined by
the set of parameters (P, C,wX0,

w Z0) where wX0 and wZ0

denote the x and y coordinates of P0 in Fw. wY0 can be
computed from wX0 and wZ0 based on the constraint P0 ∈
P .



Fig. 3: Experimental setup scheme.

III. NUMERICAL ESTIMATION METHOD AND
EVALUATION METRICS

A. Catenary curve fitting

Let a set of N 3D points that belong to a cable be
defined as {Pi}i∈{1...N}. The plane P is defined as the plane
that best contains the points {Pi}i∈{1...N}. It is computed
by minimizing point-plane distance. We use fminsearch
Matlab function which implements the Nelder-Mead simplex
algorithm as described in [20]. An initial guess is computed
using three arbitrarily choosen tracked points.

In a second time, the points {Pi}i∈{1...N} are projected
on P . The inclined catenary curve that best fits the resulting
points in plane P is then estimated. An initial guess is
computed by calculating the vertical catenary curve between
the pair of visible tracked points that are the closest to the
cable’s ends. Again, the optimization uses fminsearch
Matlab function.

B. Catenary shape measurements

Three indicators have been selected to characterize the
catenary shape of the cable:

• the root mean square error (RMSE) eP of the distance
between the tracked points and plane P .

• inclination of the plane P with respect to the vertical,
i.e. the absolute value α of the angle between the normal
to the plane P and the normal to the vertical plane with
the same yaw orientation as plane P in Fw.

• the RMSE eC of the distance between the projection
of points {Pi}i∈{1...N} in plane P and the points with
same x-coordinate in frame Fp that belong to the fitted
inclined catenary curve.

IV. EXPERIMENTAL RESULTS

Figure 3 represents the experimental setup. A cable is
deployed in a pool, with one end tied to a fixed point and
the other end tied to a stick. The stick is then moved by
an operator. The cable is equipped with regularly spaced
reflective markers that are tracked by a motion capture sys-
tem (see Figure 3). This experiment is reproduced with two
cables of different linear mass µ, diameter Φ, and material:
a metal chain and a thin rope, denoted respectively Cable 1
and Cable 2. Table I gives their respective characteristics. L̂
is the approximate cable length.

The experiments are conducted in a pool, in plain water,
at shallow depth (<4m).

TABLE I: Characteristics of the cables. Since Cable 1 is a
chain, the given diameter d corresponds to the width of a
link.

Cable 1 Cable 2
µ when

wet (kg/m) 9.20× 10−2 2.26× 10−2

L̂ (mm) 3500 2000
Φ (mm) 10 5
Material Steel Fabric

Max number of
tracked points 12 9

Spacing between
markers (mm) 245 200

A 166.98s tracking sequence was recorded for Cable 1,
as well as a 252.68s long sequence for Cable 2. Figures 4
to 7 illustrate the typical behavior of the cables during
subsequences that include movements of the tether’s end
point in various directions with slow and rapid motion, and
correspond to time periods when the cable was well tracked
by the motion capture system.

Figures 4 and 6 show the computed values of α, eP , eC
and catenary parameter C for Cables 1 and 2 respectively.
Figures 5 and 7 show the number N of tracked points and
which tracked points are visible, as well as the velocity
and acceleration of the mobile end of the cable in Fw and
the distance d between the cable’s ends during the same
subsequence as Figures 4 and 6, for Cable 1 and Cable 2
respectively.

One can observe that the greater the distance d, the smaller
the parameter C. Indeed, an increased distance between the
end points implies more tension in the cable and thus a lower
C according to equations (4) and (5). The peaks in the curves
of α, eP and eC occur when only few points are visible or
when the set of visible tracked points changes. The set of
visible points changes when the tracking system stops to
detect some points or detects new ones. The more visible
tracked points the more reliable the catenary likelihood
indicators.

Table II gives the mean, minimum, maximum, median and
standard deviation σ of indicators α, eP and eC for Cable 1’s
full tracking sequence. The same results for Cable 2’s
full sequence are displayed in Table III. Only the values
computed when N > 6 are considered reliable and included
in these statistics.

TABLE II: Results for Cable 1

α
(◦)

eP
(mm)

eC
(mm)

mean 2.67 0.60 12.6
min 2.94× 10−5 0.08 0.19
max 29.1 4.55 286

median 1.70 0.45 4.38
σ 3.08 0.42 27.67

On the one hand, the results in Table II show that Cable 1’s
shape stays very close to the catenary shape along the entire



Fig. 4: Variations of α, eP , eC and catenary parameter C
during a part of the whole Cable 1 tracking sequence: 15s
from t = 0s from the full record.

Fig. 5: Variations of the number of tracked points N , tracked
points visibility, end point velocity and acceleration in Fw

and distance between the cable’s ends during a part of the
whole Cable 1 tracking sequence: 15s from t = 0s from the
full record. The tracked point on the mobile end has index 12.

Fig. 6: Variations of α, eP , eC and catenary parameter C
during a part of the whole Cable 2 tracking sequence: 15s
from t = 12s from the full record.

Fig. 7: Variations of the number of tracked points N , tracked
points visibility, end point velocity and acceleration in Fw

and distance between the cable’s ends during a part of the
whole Cable 2 tracking sequence: 15s from t = 12s from the
full record. The tracked point on the mobile end has index 8.



TABLE III: Results for Cable 2

α
(◦)

eP
(mm)

eC
(mm)

mean 16.52 1.14 52.2
min 6.81× 10−4 0.10 0.30
max 82.0 3.65 500

median 11.3 1.09 19.2
σ 15.1 0.46 69.1

sequence. The mean, median and standard deviation of eP
are very small with respect to the cable length, with an order
of magnitude of 5× 10−4 m (cable length of approximately
3.5m). This validates the assumption of a planar cable. The
mean, median and standard deviation of angle α are also
small, with an order of magnitude of 1◦, showing that this
plane can be well approximated as vertical. The maximum
value for α in the whole sequence is about 30◦, but the
small standard variation of about 3◦ indicates that such an
important angle is rare. This extremum corresponds to a
fast lateral movement of the cable. Finally, eC and their
variations are small on the scale of Cable 1’s length, with
less than 1% of its length, indicating that it can be well
approximated by a catenary shape in the cable plane. Even
the maximal value of eC represents only approximately 10%
of Cable 1’s length. Cable 1 can then be well approximated
by the catenary model introduced in Section II, even with
its endpoints moving. In addition, the small maximal values
and standard deviation of eP and eC show that even if
the cable’s plane may be inclined from the vertical, it can
then be well approximated by an inclined catenary curve as
introduced in Section II-B.

On the other hand, the results in Table III show that the
catenary model as defined in Section II is less accurate
for Cable 2. eP and its variations have the same order of
magnitude than those of Cable 1. This indicates that the
cable can be considered planar most of the time, but the
mean value and variations of α show that this plane cannot
be considered vertical in the general case. The maximum
value of α shows that the cable’s plane even came close
to the horizontal plane at some point in the sequence. The
mean, median and standard deviation of eC are about four
times higher than those of Cable 2, showing that even
in the cable’s plane, Cable 2 is much further from the
catenary model than Cable 1. Qualitatively, the changes in
direction of Cable 2’s end point movements create inflection
points on the cable, making its shape more different from a
catenary at these moments. This does not occur with Cable 1
during the tracking sequence. One can notice that the mean,
median and standard deviation of eC are however still small
with respect to the cable length. This shows that even a
light cable like Cable 2 can be modelled by an inclined
catenary curve as a first estimate. Such an approximation
is nevertheless less accurate than modeling Cable 1 as a
catenary.

Finally, these results show that the catenary curve is a
good approximation of an underwater cable with moving
endpoints if it has a ”heavy enough” linear mass. Cables
with lower linear mass may be better approximated by an
inclined catenary by assuming that the cable’s plane may
be inclined an angle α from the vertical, but with lower
accuracy. It is then a question of design to guarantee that
the cable conforms to a catenary curve in a vertical plane.
It must also be a compromise with keeping the cable light
enough not to impede the robot’s motion. In addition, it is
necessary to take into account the water flow generated by
the thrusters which can move the part of the cable located
in their vicinity. The cable should thus be placed out of the
thruster’s flow as much as possible. Avoiding movements
with abrupt changes of direction will also help to keep the
model valid.

V. CONCLUSION AND FUTURE WORK

In this work, two underwater cables with different linear
mass were tracked using a motion capture system while
moving one of their endpoints. The tracking data was then
used to estimate the plane that best contained the cable, and
the catenary shape that was the closest to the projection
of the cable in this plane. Different metrics were used
to characterize the catenary likelihood of the two cables.
The results showed that the catenary equation still gives a
good shape approximation for underwater cables having a
large enough linear mass, even with their endpoints moving
dynamically. Thus, the selection of such a cable when
designing an underwater tethered system can simplify the
cable’s shape estimation by modelling it by a catenary curve,
while maintaining a good accuracy.

The choice of the cable has to be a compromise between
a cable heavy enough to conform into a catenary and light
enough not to impede the robot’s motion. Avoiding abrubt
changes of direction in the ROV’s motion will also contribute
in keeping the catenary model valid. The length of the cable
may also impact the validity of the model.

Finally, since the catenary model describes well a moving
submarine cable with negative bouyancy under these design
assumptions, this model may be used for a model-based cable
shape estimation, which is planned for future works.
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