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Inertial-measurement-based catenary shape estimation of underwater
cables for tethered robots

Juliette Drupt1, Claire Dune1, Andrew I. Comport2, Sabine Seillier1, Vincent Hugel1

Abstract— This paper deals with the estimation of the shape
of a catenary for a negatively buoyant cable, connecting a pair
of underwater robots in a robot chain. The new estimation
method proposed here is based on the calculation of local
tangents thanks to the data acquired from inertial measurement
units (IMUs), which are attached to the cable near its ends. This
method is compared with a vision-based estimation method that
was developed previously. Experiments are conducted, in the air
and in a pool, using a motion capture system for ground truth.
The results obtained show that the new method significantly
improves the estimation of the catenary height. Furthermore,
the identification of the cable shape is not affected by the limits
of the camera’s field of view and by the image projection,
resulting in increased accuracy and range, without singularities.

I. INTRODUCTION

Underwater real-time communications are limited by the
absorption of electromagnetic waves within a few meters.
Thus, underwater robots must either be fully autonomous
during their missions with no need to communicate in real
time (autonomous underwater robots, or AUVs), or be con-
nected to the surface by a physical link allowing control and
feedback (remotely operated vehicles, or ROVs). AUVs are
mainly used to cover wide areas for missions such as seabed
mapping or wreck searching. However, they can only carry
out limited tasks, with reduced precision, and cannot properly
cope with unexpected situations. ROVs can be teleoperated
in order to accomplish tasks that require precision and
adaptability. The tether can also provide energy to the ROV
for greater autonomy and reduce the ROV’s payload thanks
to the absence of onboard batteries. Still, the tether limits
the mobility of the ROV by involving an energy-intensive
drag force, mechanical actions and risks of entanglements.
Tether management strategies are therefore crucial to limit
these effects and allow exploration in cluttered environments
such as caves, flooded mines or shipwrecks.

Such environments require the cable to be shaped to fit
into a constrained free space. This can only be achieved by
controlling the global shape of the cable itself, which gives
rise to a new type of active tether management strategy: the
chain of ROVs concept. The idea is to place intermediary
robots between the lead ROV and the surface vessel, in
order to fully control the 3D shape of the tether between
two consecutive robots (Fig. 1). However, it is necessary to
estimate the shape of the cable portions along the chain.

This work deals with the 3D shape estimation of a cable
portion connecting a pair of underwater robots, which must
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Fig. 1: Chain of ROVs concept

be robust and precise enough to implement control laws for
navigation with obstacle avoidance.

A subsystem of the chain composed of a portion of cable
and its robot follower is considered. The solution proposed
here is based on the estimation of the tangents at one point
or two points of the cable. It only needs the use of two IMUs
on the cable near its attachment points.

The contributions of the paper include a new IMU-based
catenary shape estimation method, with its implementation
on the cable, and a comparison of this method with a pre-
vious vision-based estimation method using an underwater
motion capture system for ground truth.

Section II introduces the state of the art in matters of
tethered robotics and cable shape estimation. Section III
describes the system under study, and the two tether shape
estimation methods, namely IMU-based and vision-based.
Section IV presents the experimental evaluation, and the
comparison of both methods on a real system in the air
and in a pool. Results are analyzed and discussed before
the conclusion in Section V.

II. RELATED WORK

Tethered robots can be found in both marine, terrestrial
and aerial robotics. In the field of marine robotics, tethers
connect underwater robots to the surface or to intermediate
vehicles [1], [2] in order to provide real-time communication
and, sometimes, energy. The cable can also help to find the
robot in case of trouble, especially when exploring confined
environments [3]. A stretched tether can allow a terrestrial
robot to explore a steep, rugged, and dangerous terrain
by clinging it to a fixed support [4]. Robots transporting
deformable linear objects can also be assimilated to tethered
robots [5], [6]. In addition, a tether can connect parts of a
robotic hybrid system, providing communication, power, and
the insurance to keep the parts of the system together [7].

Depending on the application and the available computa-
tion time, there are different degrees of complexity in the
parameterization of cable models. Very simple geometrical



models such as straight 3D lines, if tethers are taut [4], [8],
[9], or catenaries if they are slack and heavy enough [10],
[11], [6], can be used to describe their shape for real time
applications. The catenary model can be derived to take into
account the velocity of the cable’s end point [12]. In order
to consider the dynamics of the cable or the environment,
more complex models can be derived with a higher compu-
tational cost, such as finite element-based methods [13], [14]
or lumped-mass-spring methods [15], [16]. In addition to
requiring a prohibitive calculation cost, these models require
more information about the environment, such as measures
of the water current or parameters of the thrusters, which
make them even harder to implement on a real system.

Tethers can be designed as proprioceptive sensors, e.g.
include an optical fiber [17], [1], [18] or IMUs [19] to
estimate their own shape. These solutions allow tracking the
shape of a neutrally buoyant tether, however optical fiber
shape estimation systems are extremely expensive, and IMU-
coated cables cannot be handled properly by winches because
of the protrusions the IMUs make on the cable. Furthermore,
in both solutions, the longer the cable, the greater the shape
estimation error. If the cable is taut, its orientation angles can
be measured with an accelerometer placed on the cable [20].
Other solutions do not instrument the tether itself, and use
camera feedback. The projection of the cable in the image
is often segmented based on a color filter [11], [21], [22].
The cable must be a distinctive color from everything else
around it, which is difficult to ensure in an uncontrolled
environment. Sim-to-real cable detection learning strategies
are proposed to track 2D Bézier curves or splines [23], [24].
Some terrestrial tethered robots are equipped with tension
and angle sensors at the cable’s end [4]. These measurements
are used to detect entanglements and estimate the global 2D
shape of the cable, assuming a taut cable, in a framework
called T-SLAM [4]. If the cable is managed with a winch,
the length of the unfolded cable can be measured and used
for estimating and locating the robot [25].

The work described in this paper deals with weighed
cables, assuming they can be modeled as catenaries as
long as the system is subject to quasi-static movements
underwater. The cable itself is not modified, since IMU
sensors are simply attached at one end or at both ends of
a cable portion that connects two consecutive robots inside
the chain. If the cable is to be coiled, then only one of the
two ends needs to be equipped with an IMU sensor.

III. METHOD

A. Notation and coordinate frames

Consider now a subsystem of an underwater robot chain,
composed of a robot and the section of cable in front of it.
The robot is equipped with a forward camera, an IMU and
a water pressure sensor. The cable ends are equipped with
two IMUs (Fig. 2).

Let Fr, be the robot frame in SNAME convention. Let
Pa1, Pa2 and be the cable attachment points and P0 the
lowest point. By definition, frame Fa1 is with origin Pa1

and axis aligned with Fr, and F0 is the catenary frame.

(a) Side view

(b) Top view

Fig. 2: Subsystem composed of a ROV and its front catenary
cable with notation, frame definitions, and 3D parameters.

The rotation from Fa1 to F0 is considered to be a pure
yaw rotation of magnitude α about the vertical axis. Fir,
Fi1 and Fi2 are robot and cable IMUs’ frames, with P1

and P2 being the IMUs’ fixation points on the cable. Fc is
the camera frame and Fd the pressure sensor frame. Two
additional frames Fb1 and Fb2 are defined, with respective
origins P1 and P2, and x-axes tangent to the catenary. IMUs
are attached to the cable along this axis, around which the
sensor can rotate when the friction of the water on the IMU
is strong enough to induce a twist in the cable.

B. Cable modeling

The tether is modeled by a catenary expressed in the
F0 frame, as a function of its length L, the difference in
elevation of its attachment points ∆H , and its deflection H:

0Z =
1

C
[cosh(C 0X)− 1] (1)

with 0X and 0X being respectively the coordinates along axis
x and z of F0 and where:

C =
2(2H +∆H + 2L

√
H H+∆H

L2−∆H2 )

L2 − (2H +∆H)2
(2)

Given a constant length L, the catenary can be fully de-
scribed in its frame F0 by H and ∆H . The catenary belongs
to a plane perpendicular to y0 where y0 is the y axis of F0.
The addition of the angle α (Fig. 2) between the robot’s front
axis x and the plane of the cable completely constrains the
subsystem in 3D. The set of parameters to be estimated is
then {H,∆H,α}.



C. Parameter estimation

1) ∆H Difference in elevation of attachment points: The
depth of Pa1 is estimated via the water pressure measurement
at Pd. The depth measure at Pd is transferred to Pa1 thanks
to the measurement of the robot orientation given by its IMU.

2) Vision-based estimation: In the vision-based catenary
shape estimation [11], assuming zero pitch and roll angles
the projection of the catenary is given as:

y(a, b, x) =
1
cZ

[−cosh(Cζ − CD)− 1

C
+ aHmax +c Ya]

(3)
with a = H

Hmax
and b = sin(α)

ζ =
cXa − xcZa

b+ x
√
1− b2

(4)

and
cZ =

cXa

√
1− b2 + bcZa

b+ x
√
1− b2

(5)

where [x, y]T are the coordinates of a point of the cable’s
projection in the image plane and [cXa,

c Ya,
c Za]

T the
coordinates of Pa in frame Fc. Hmax is defined arbitrarily as
a maximum value allowed for H . Parameter D is represented
in Fig. 2.

The cable is segmented in the images by color threshold-
ing. The resulting points are used to estimate the catenary pa-
rameters through a Gauss-Newton algorithm that minimizes
the function

Γ(a, b) =
∑
i

ri(a, b)
2 (6)

where ri(a, b) = yi − y(a, b, xi).
An initial guess (a0, b0) is given as input to the opti-

mization algorithm, and corresponds to the catenary whose
lowest point P0 projects in the image plane at the position
of the lowest point detected in the image. Due to perspective
projection, these points do not match exactly, but they are
close enough to make the initial guess consistent. However,
if the bottom of the rope moves out of the field of view, the
lowest point depth is underestimated.

3) IMU based estimation: In order to improve robustness
to vision outliers and numerical optimization singularities,
IMU based estimation of the catenary parameters is pro-
posed. It uses three IMUs. One is embedded onboard the
robot, and two are fixed on the tether (Fig. 2).

In this case, the yaw angle α is determined from the
rotation matrix rRb1 or rRb2 with:

rRbk = (wRir
irRr)

T wRik
ikRbk, k ∈ {1, 2} (7)

where ikRbk and irRr are constant calibrated matrices, and
wRr and wRik are measured by the robot and the catenary
IMUs, respectively.

Figure 3 shows the two cable tangent angles β, at points
P1 and P2 that are placed at distances L1 and L2 from
extremities. R1 is the curvilinear distance along the cable
from P1 to P0:

R1 = (L− (L1 + L2))
g(β1, β2)

1 + g(β1, β2)
(8)

Fig. 3: Introducing catenary tangent angles β1 and β2.

with

g(β1, β2) =
|tan(β1)|
|tan(β2)|

(9)

The catenary parameter C can be obtained with:

C =
1

R1
|tan(β1)| (10)

Equation 2 is used to recover H as the only positive root of
the 2nd degree polynomial a2 H2 + a1 H + a0 = 0 where:

a2 = 4C2(∆H2 − L2) < 0

a1 = 4C(∆H2 − L2)(C∆H + 2) < 0

a0 = [C(L2 −∆H2)− 2∆H]2 > 0

The catenary parameters can also be estimated with a
single tangent, e.g. at P1 by approximating R1 with:

R1 =
(L−∆H)

2
− L1 (11)

Symmetrically, R2 is approximated using the tangent at P2.

IV. EXPERIMENTS

A. Robotic system and evaluation metrics

The system is composed of a BlueROV2 tethered to
a fixed point by a 1.50 m long 70 g/m red negatively
buoyant cable made out of colored ballasted cord (Fig. 7).
The robot embeds a camera, an IMU and a water pressure
sensor. The cable is equipped with a pair of PhidgetSpatial
Precision 3/3/3 High Resolution IMUs, ensuring they
did not affect much the visibility of the cable from the
embedded camera. The robot and the cable are tracked with
a motion capture (mocap) system used in the air and in water.

The following catenary estimation methods are com-
pared and evaluated: i) optimized vision-based (vision-based
optim.) [11] ii) only vision-based initial guess (initial-
guess) [11] iii) the proposed IMU-based method (IMU-
based). Regarding the IMU-based method, the estimation of
H is compared with one or both IMUs and the estimation of
α using each one of the two cable IMUs separately. IMU-
based-1 refers to using only IMU 1, IMU-based-2 refers
to using only IMU 2, and IMU-based refers to using both.
Since α estimation implies only one cable IMU, there is no
IMU-based estimation for this parameter. The mean, median
and standard deviation (σ) of the errors on H and α are
compared for each method. These errors are denoted eH and
eα respectively.



Fig. 4: Trajectory of the robot projected on a horizontal
plane. Blue and violet dots represent respectively Pa1 and
Pa2. The red arrow is the x axis of Fr. The robot’s movement
is a composition of a lateral movement and a movement
towards Pa2.

B. Air configuration

A first series of experiments is set up out of water to
test the estimations in a controlled environment where the
robot has no pitch or roll, and the system is not disturbed
by the hydrodynamics. The statistical analysis is computed
on a 117s sequence.

The vision-based optim. method fails to converge for
11.5 % of the sequence’s duration, i.e. the optimization does
not reach a catenary shape having a sufficiently low cost
within the number of allowed iterations. In the following,
the results are only evaluated when converged. Figure 4
shows the robot’s movements in a representative 15s sub-
sequence of the full air sequence. Figure 5 shows H and α
parameters estimated by the three methods during the sub-
sequence. While the estimation of α overlaps the ground
truth with all methods, the estimation of H by the vision-
based optim. method shows important errors from t = 29s
to 40s. This coincides with small angles α ∈ [−10, 10]
degrees, i.e. one of the singularities where the tether plane
is aligned with the optical axis and projects as a line. The
error peak of the initial-guess method at t = 37.4s is due
to an outlier below the tether that shifts the lowest point
detection. Figure 6 illustrates vision-based optim. and initial-
guess methods. IMU-based methods using only one IMU or
both show similar results in the estimation of H in this setup.

TABLE I: Airborne results.

method vision
optim.

initial
guess IMU 1 IMU 2 both

IMUs

eH
(m)

mean
median

σ

0.0425
0.0264
0.0402

0.0165
0.0312
0.0180

0.0039
0.0022
0.0131

0.0038
0.0031
0.0032

0.0033
0.0026
0.0030

eα
(°)

mean
median

σ

2.0331
1.9092
1.1038

3.1022
2.8962
1.5256

2.7004
2.6741
1.4499

2.0313
1.7106
1.5098

x

When considering the whole sequence, all IMU-based
methods greatly improve the accuracy of H: the error is 5 to
10 times less than the vision-based optim. and initial-guess
estimations (Tab. I).
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Fig. 5: Estimation of H and α in the air, with fixed ∆H .

(a) t=25.6s (b) t=27.2s

(c) t=31.6s (d) t=34.3s

(e) t=37.4s (f) t=39.6s

Fig. 6: Detected cable points (white), with lowest point (blue)
and estimated catenary projections for vision-based optim.
(green) and initial-guess (red) methods. Figure 6a shows that
both methods give overlapping results. In Fig. 6b, one can
observe that the optimization algorithm refines the initial-
guess result in terms of the reprojection error. Figures 6c, 6d
and 6f show examples of bad estimations for vision-based
optim. when α is close to zero. Figure 6e shows how an
outlier below the cable disturbs the initial-guess method.

C. Underwater set-up

A similar set-up is deployed in an underwater environ-
ment, with an underwater mocap system and the cable’s
IMUs sealed in waterproof housings (Fig. 7). The following
results are based on a 92s sequence where the robot pitches
and rolls. The hydrodynamic effects and the thrusters’ flow
distort the catenary model.

The tether moves out of the camera’s field of view during
2% of the sequence’s duration. In the following, the vision-
based methods (vision-based optim. and initial-guess) are an-
alyzed only when the cable is inside the field of view. 45.3%
failure is observed with the vision-based optim. method and
0.3% failure with the initial-guess method. Figures 8 and 9
respectively show the trajectories applied, and the estimations



Fig. 7: The system underwater. Optical passive markers are
fixed on the robot and on the cable.

Fig. 8: Trajectory of the robot projected on vertical and
horizontal planes. Blue and violet dots represent respectively
Pa1 and Pa2. The red arrow is the x axis of Fr. For
t ∈ [24, 29]s, the robot moves towards and backwards with
yaw variations and minor y, z, roll and pitch variations. For
t ∈ [19, 40]s, the robot dives with minor x, y, roll and yaw
variations. The robot’s pitch changes when diving.

of H and α during a representative sub-sequence. The gaps in
the curves correspond to estimation failures. Table II presents
a statistical analysis of the full sequence.

TABLE II: Waterborne results.

method vision
optim.

initial
guess IMU 1 IMU 2 both

IMUs

eH
(m)

mean
median

σ

0.1514
0.1261
0.1188

0.1787
0.1612
0.1108

0.0835
0.0621
0.0978

0.0333
0.0299
0.0234

0.0438
0.0406
{0.0266

eα
(°)

mean
median

σ

16.545
11.030
19.655

16.042
11.825
14.890

11.342
7.7013
10.608

13.270
11.013
10.692

x

First, the very important failure rate of the vision-based
optim. method can be noticed. In the underwater sequence,
the color based detection fails at detecting the farthest
cable points due to water absorbance, as shown in Fig. 10.
Furthermore, the cable projection in the image is deformed
with regard to vision based expectations due to roll, pitch,
and hydrodynamics, including the currents created by the
thrusters. The error in the model makes the vision based
optimization fail to fit the cable shape projection properly.
The initial-guess method gives more robust results with
regard to the deformations since it only considers the lowest
point. Figure 10 illustrates the behaviour of the vision-based

Fig. 9: Estimation of H and α in the pool.

optim. and initial-guess methods.
Considering the estimation of H , IMU-based methods

perform 3 times better than vision-based methods, and show
a smaller dispersion. The estimation from the IMU1 is less
accurate due to the thrusters’ flow that deforms the rope. For
instance, in Fig. 9, one can see an important error for the
IMU-based-1 method at t ∈ [27, 29]s, which coincides with
a backwards movement of the robot that propels water onto
the IMU1 (Fig. 8).

Looking at α, all methods show similar estimation perfor-
mances, but with different sources of errors. The initial-guess
method is impacted by the quality of the tether detection,
since it needs the cable’s lowest projection point in the image
to be properly detected, but this error does not propagate over
time. Vision-based optim. method suffers from the detection
and the deformation of the cable’s projection, and eventually
shows poor performances compared to the others due to its
important failure rate. IMU-based methods’ errors are partly
due to the hydrodynamics of the system, with IMU1 being
disturbed by the robot’s thrust, and IMU2’s movement being
impacted by the propagation of the deformations along the
cable. There may also be yaw integration issues of IMUs in
the absence of a magnetometer, in an indoor environment.
During the sequence, the yaw angle was corrected with shift
and drift calibration assuming constant drift, which needs to
be updated over time. A too sharp motion could also lead
to bad yaw integration. In outdoor environments, the method
will be more robust thanks to the use of magnetometers.

As a conclusion, it results from this analysis that combin-
ing visual and inertial measurements in estimating α could
lead to a much more robust estimation of this parameter.

V. CONCLUSION AND FUTURE WORK

A new catenary shape estimation approach was introduced
for a negatively buoyant underwater cable based on inertial
measurements of one or two tangents near the attachment
points. This estimation was compared to vision-based esti-
mation from previous work in experiments carried out in the



(a) t=23.96s (b) t=25.53s

(c) t=27.56s (d) t=28.02s

(e) t=28.65s (f) t=33.40s

Fig. 10: Detected tether points (white), with lowest point
(blue) and estimated catenary projections for vision-based
optim. (green) and initial-guess (red) methods in the image
plane. In Fig. 10a both methods fit the points quite well,
whereas in Fig. 10f, the vision-based optim. method clearly
refines the initial-guess in terms of reprojection error. In Figs.
10b, 10d and 10f, the vision-based optim. method suffers
from the farthest part of the cable not being detected correctly
because of color absorption. Figure 10c clearly shows that
the deformations of the cable projection in the image make
the projection model unsuitable for the vision-based optim.
and initial-guess estimations.

air and in a pool, using a motion tracking system for ground
truth. It was shown that the new method is more accurate and
robust in estimating the catenary sag. Furthermore, the tested
methods can be complementary in estimating the relative
cable-robot orientation when the thrusters’ flow impacts the
IMU orientation. In future works, a fusion between the visual
and inertial methods could lead to a much more robust
estimation of the cable’s orientation.

In addition, the robustness, stability and accuracy of the
tether sag estimation make it suitable as a control input to
manage the shape of the cable portions inside a chain of
robots. Moreover, the estimation gives cable 3D localization
information, which can be used to localize the robots relative
to each other.

VI. ACKNOWLEDGMENT

This work is funded by the French Research Ministry, the
CARTT of the IUT of Toulon. We would like to thank the
CEPHISMER of the French Navy for their logistical support.

REFERENCES

[1] S.-C. Yu, J. Yuh, and J. Kim, “Armless underwater manipulation using
a small deployable agent vehicle connected by a smart cable,” Ocean
Engineering, vol. 70, no. 23, pp. 149–159, 2013.

[2] O. Tortorici, C. Anthierens, V. Hugel, and H. Barthelemy, “Towards
active self-management of umbilical linking rov and usv for safer
submarine missions,” in IFAC-PapersOnline, vol. 52, no. 21. Daejeon,
Republic of Korea: Elsevier, 2019, pp. 265–270.

[3] A. Lasbouygues, S. Louis, B. Ropars, L. Rossi, H. Jourde, H. Délas,
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