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In this work, we propose to use varentropy, an information measure defined from a generalization of thermodynamic entropy, for the calculation of informational entropy in order to avoid negative entropy in case of continuous probability distribution.

1) Introduction

Thermodynamic entropy and information are among the most fundamental concepts in thermodynamics, statistical mechanics and information theory [START_REF] Boltzmann | Further Studies on the Thermal Equilibrium of Gas Molecules. The Kinetic Theory of Gases[END_REF][2] [START_REF] Gibbs | Elementary Principles in Statistical Mechanics[END_REF][4] [START_REF] Jaynes | Information theory and statistical mechanics[END_REF][6] [START_REF] Khinchin | Mathematical Foundations of Information Theory[END_REF]. According to a common view, thermodynamic entropy and information (entropy for short in what follows) are two names of a same thing, they are a measure of disorder, or statistical uncertainty in the presence of probability . The relationship between entropy and probability has been subject to rigorous mathematical study since the work of Shannon [START_REF] Shannon | A Mathematical Theory of Communication[END_REF] and Khinchin [START_REF] Khinchin | Mathematical Foundations of Information Theory[END_REF]. Nevertheless, some confusion persists concerning the expression of entropy for continuous probability distribution [START_REF] Jaynes | Gibbs vs Boltzmann Entropies[END_REF] [START_REF] Jaynes | Information theory and statistical mechanics[END_REF][8].

The best known and most employed statistical expression of informational entropy is in a form of logarithmic functional of probability distribution, a form proposed for the first time by Boltzmann in the study of H-theorem [START_REF] Boltzmann | Further Studies on the Thermal Equilibrium of Gas Molecules. The Kinetic Theory of Gases[END_REF], subsequently by Gibbs in his work on statistical mechanics [START_REF] Gibbs | Elementary Principles in Statistical Mechanics[END_REF], and by Shannon in his information theory [START_REF] Shannon | A Mathematical Theory of Communication[END_REF]. For a system having W discrete microstates, each having the probability 𝑝 𝑖 (𝑖 = 1,2 … 𝑊), the Boltzmann-Gibbs (BG) entropy 𝑆 𝐵𝐺 is given by

𝑆 𝐵𝐺 = -∑ 𝑝 𝑖 𝑊 𝑖=1 ln𝑝 𝑖 (1) 
(Suppose Boltzmann constant 𝑘 𝐵 = 1). This information measure is always positive because

1 ≥ 𝑝 𝑖 ≥ 0.
When the states become continuous with a variable 𝑥 characterizing the states in the phase (state) space, entropy is sometime called differential or continuous entropy and given by [START_REF] Shannon | A Mathematical Theory of Communication[END_REF][3] [START_REF] Jaynes | Gibbs vs Boltzmann Entropies[END_REF][8] :

𝑆 𝐵𝐺 = -∫ 𝜌(𝑥)ln𝜌(𝑥)𝑑𝑥 (2) 
where 𝜌(𝑥) is the probability density distribution giving the probability 𝑑𝑝(𝑥) = 𝜌(𝑥)𝑑𝑥 of finding the system in the state interval 𝑥 → 𝑥 + 𝑑𝑥, the integral being carried out over the interval including all the possible states. The first use of this integral form dates back to

Boltzmann [START_REF] Boltzmann | Further Studies on the Thermal Equilibrium of Gas Molecules. The Kinetic Theory of Gases[END_REF], Gibbs [START_REF] Gibbs | Elementary Principles in Statistical Mechanics[END_REF], as well as Shannon [START_REF] Shannon | A Mathematical Theory of Communication[END_REF] who intuitively took Eq.( 2) for granted as a analogue of Eq.(1) without giving mathematical proof . As far as we know, the derivation of Eq.( 2) from first principles, just as has been done for Eq.( 1) by Shannon [START_REF] Shannon | A Mathematical Theory of Communication[END_REF] and Khinchin [START_REF] Khinchin | Mathematical Foundations of Information Theory[END_REF],

is still missing to date.

In this work, we focus on a specific mathematical problem of Eq.( 2) concerning the sign of the continuous entropy. As mentioned above, in the case of discrete probability with Eq.( 1), as 𝑝 𝑖 is positive and smaller than unity, so ln𝑝 𝑖 ≤ 0 to guarantee 𝑆 𝐵𝐺 ≥ 0 [START_REF] Shannon | A Mathematical Theory of Communication[END_REF]. However, in the case of continuous probability distribution with Eq.( 2), 𝜌(𝑥) can be larger than unity, leading to ln𝜌(𝑥) > 0, and to negative informational entropy. The reader can see a list of continuous entropies calculated from Eq.( 2) for many probability density distributions, in which most entropies can be negative, including those for some common and ordinary distributions such as uniform, normal and exponential distributions [8].

As well known, the thermodynamic entropy cannot be negative due to the third law of thermodynamics [START_REF] Müller | Fundamentals of thermodynamics and applications[END_REF]. In statistical mechanics and information theory, informational entropy is regarded as a measure of disorder or uncertainty, negative information or entropy is senseless.

As a matter of fact, Eq.( 1) cannot be simply replaced by Eq.( 2) because when 𝑝 𝑖 is replaced by the continuous counterpart 𝑑𝑝(𝑥) = 𝜌𝑑𝑥, a divergent term -ln𝑑𝑥 ∝ ln𝑊 takes place [4][5].

This term implies that the shift from 𝑝 𝑖 to 𝜌𝑑𝑥 in Eq.( 1) is questionable. Jaynes has tried to . According to Jaynes [START_REF] Jaynes | Gibbs vs Boltzmann Entropies[END_REF], it is possible to choose the invariant measure 𝑚(𝑥) in an appropriate (albeit ad hoc) way for 𝑆 𝐵𝐺 𝐶 to be positive.

In what follows, we present an alternative solution to this mathematical problem. The starting point is a definition of informational entropy as an extension of the fundamental equation of thermodynamics 𝛿𝑈 = 𝑇𝛿𝑆 + 𝛿𝑊, where 𝛿𝑈 is a variation of internal energy 𝑈 in a reversible process, 𝛿𝑆 a variation of thermodynamic entropy, 𝑇 the temperature, and 𝛿𝑊 the work done during the process [START_REF] Müller | Fundamentals of thermodynamics and applications[END_REF]. We show that varentropy allows avoiding negative informational entropy. This is the main objective of this work.

2) Definition of varentropy

Varentropy is defined by mimicking the variational form of the entropy of the second law of thermodynamics [9][10]. This is a definition from scratch without any prerequisite or postulate on the property of entropy. The motivations was to look for an uncertainty measure that is optimal or maximized for any probability distribution. Although 𝑆 𝐵𝐺 has been widely used as a universal uncertainty measure for any probability distribution, it is only maximized for exponential and uniform distribution. The question is whether it is possible to define a more general measure of probabilistic uncertainty that is optimal (maximized) for other distributions as well, and recovers 𝑆 𝐵𝐺 for exponential distribution.

The origin of the approach is the thermodynamic equation 𝛿𝑈 = 𝑇𝛿𝑆 𝐵𝐺 + 𝛿𝑊. In the above statistical expressions of thermodynamic entropy, the random variable is the energy 𝐸 of the microstates. In a previous work [START_REF] Wang | [END_REF], we have extended this expression of thermodynamic entropy in order to define a measure of statistical uncertainty for any single random variable, say, x. This measure has been called varentropy 𝑆 𝑉 since it is defined in a variational form:

𝛿𝑆 𝑉 = 𝐴(𝛿𝑥̅ -𝛿𝑥 ̅̅̅ ) = 𝐴 ∫ 𝑥 𝛿𝜌(𝑥)𝑑𝑥 (3) 
where 𝐴 ∈ ℝ is a constant to choose according to the nature of 𝑆 𝑉 . For example, in a reversible thermodynamic process where 𝑥 = 𝐸, 𝑆 𝑉 is the thermodynamic entropy with 𝐴 = Varentropy turns out to be equivalent to a generalized entropy defined in [START_REF] Abe | Generalized entropy optimized by a given arbitrary distribution[END_REF] by mathematical consideration from the principle of maximum entropy. From Eq.(3), we can write 𝛿(𝑆 𝑉 -𝐴𝑥̅ ) = -𝐴𝛿𝑥 ̅̅̅ . The maximization of 𝑆 𝑉 subject to the constraint of the constant 𝑥̅ , i.e., 𝛿(𝑆 𝑉 -𝐴𝑥̅ ) = 0, implies that 𝛿𝑥 ̅̅̅ = 0, which has been interpreted as a probabilistic extension of the principle of virtual work in the case where the random variable 𝑥 is the energy of the system under consideration [START_REF] Wang | From the principle of virtual work to the principle of maximum entropy[END_REF]. It is worth mentioning once again that varentropy was motivated by the search for an uncertainty measure that is maximized for any probability distribution [9][11], implying that 𝑆 𝑉 should be equal to 𝑆 𝐵𝐺 for exponential distribution and larger than 𝑆 𝐵𝐺 for other distributions. Although a general proof of this property of 𝑆 𝑉 is still missing, the reader can find some examples of this advantage of 𝑆 𝑉 compared with 𝑆 𝐵𝐺 in [START_REF] Jiang | Double power law degree distribution and informational entropy in urban road networks[END_REF] and [START_REF] Kaabouchi | Study of a measure of efficiency as a tool for applying the principle of least effort to the derivation of the Zipf and Pareto laws[END_REF].

3) Examples of varentropy a) Exponential distributions

The continuous entropy of exponential distribution 𝜌(𝑥) = 1 𝑍 𝑒 -𝛼𝑥 for positive 0 < 𝑥 < ∞ and 𝛼 > 0, 𝑍 being the normalization constant. Its entropy has been calculated and reads

𝑆 𝐵𝐺 = 1 -𝑙𝑛𝛼 [6]
, which is inevitably negative when 𝛼 is sufficiently large. Now with varentropy Eq.( 3), it is straightforward to get

𝛿𝑆 𝑉 = 𝐴 ∫ ln(Z 𝜌) -𝛼 𝛿𝜌𝑑𝑥 ∞ 0 = - 𝐴 𝛼 ∫ 𝛿[𝜌 ln(𝑍𝜌)] 𝑑𝑥 ∞ 0 = 𝛿 [- 𝐴 𝛼 ∫ 𝜌 ln(𝑍𝜌) 𝑑𝑥 ∞ 0
] which implies

𝑆 𝑉 = - 𝐴 𝛼 ∫ 𝜌 ln 𝑍𝜌 𝑑𝑥 ∞ 0 + 𝐶 ( 4 
)
where C is an arbitrary constant, we can choose C=0, leading to the expression of conventional 

𝑆 𝐵𝐺 = -∫ 1 𝑍 𝑒 -𝑥 𝛽 ln ( 1 𝑍 𝑒 -𝑥 𝛽 ) dx ∞ 0 = ln 𝑍 𝑍 ∫ 𝑒 -𝑥 𝛽 ∞ 0 𝑑𝑥 + 1 𝑍 ∫ 𝑥 𝛽 𝑒 -𝑥 𝛽 𝑑𝑥 ∞ 0
.

Considering the change of variable 𝑡 = 𝑥 𝛽 , and the definition of Gamma function, we obtain:

𝑆 𝐵𝐺 = ln 𝑍 𝑍𝛽 Γ ( 1 𝛽 ) + 1 𝑍𝛽 Γ ( 1 𝛽 + 1).
which becomes, with the equality Γ(𝑥 + 1) = 𝑥Γ(𝑥):

𝑆 𝐵𝐺 = 1 𝑍𝛽 (Γ ( 1 𝛽 ) [ln 𝑍 + 1 𝛽 ].
Considering the normalization constant 𝑍 =

), we have:

𝑆 𝐵𝐺 = 1 𝛽 -ln 𝛽 + ln(Γ ( 1 𝛽 ))
which inevitably becomes negative whenever ln 𝛽 > 

e) Power law distribution

We consider here the Pareto law 𝜌(𝑥) = 𝛽 𝑥 𝛽+1 , for 1 < 𝛽 < ∞, the continuous Boltzmann-Gibbs entropy 𝑆 𝐵𝐺 is calculated as follows [START_REF] Müller | Fundamentals of thermodynamics and applications[END_REF] :

𝑆 𝐵𝐺 = -∫ 𝜌(𝑥)ln𝜌(𝑥) ∞ 1 𝑑𝑥 = -ln𝛽 + 1 + 1 𝛽 (5) 
The trouble takes place for the interval ln𝛽 > 1 + which decreases from infinity to zero with increasing 𝛽 in the intervals 1 < 𝛽 < ∞.

4) Conclusion

We have proposed a solution of the problem of negative value of informational entropy for continuous probability distribution with the help of varentropy which has been previously defined as a general maximizable measure of probabilistic uncertainty. We have shown that varentropy can be used to avoid negative informational entropy of continuous probability distribution. Several examples of varentropy for some well-known continuous probability has been calculated.

  avoid negative entropy using a continuous version of Boltzmann-Shannon entropy 𝑆 𝐵𝐺 𝐶 where 𝑚(𝑥) is called invariant measure of the density of discrete values of x [7]. The term ln𝑊, divergent when 𝑊 → ∞, is simply removed, giving a continuous entropy 𝑆 𝐵𝐺 𝐶 = 𝑆 𝐵𝐺 + ∫ 𝜌(𝑥)ln𝑚(𝑥)𝑑𝑥 ∞ 1

1 𝑇

 1 As well known, in classical statistical mechanics, The internal energy is the average 𝐸 ̅ of the energy 𝐸 𝑖 of all microstates i, i.e., 𝑈 = 𝐸 ̅ = ∑ 𝑝 𝑖 𝑊 𝑖=1 𝐸 𝑖 , and the work in the infinitesimal reversible process is given by the average of the energy change 𝛿𝐸 𝑖 of each state: 𝛿𝑊 = 𝛿𝐸 ̅̅̅̅ = ∑ 𝑝 𝑖 𝑊 𝑖=1 𝛿𝐸 𝑖 . The statistical expression of the fundamental equation 𝛿𝑈 = 𝑇𝛿𝑆 𝐵𝐺 + 𝛿𝑊 becomes then 𝛿 ∑ 𝑝 𝑖 𝑊 𝑖=1 𝐸 𝑖 = 𝑇𝛿𝑆 𝐵𝐺 + ∑ 𝑝 𝑖 𝑊 𝑖=1 𝛿𝐸 𝑖 , giving a statistical expression of the variation of entropy 𝛿𝑆 𝐵𝐺 during the process with 𝛿𝑆 𝐵𝐺 = 𝑖 . For continuous distribution when 𝑝 𝑖 becomes 𝑑𝑝(𝑥) = 𝜌𝑑𝑥 , 𝐸 ̅ = ∫ 𝐸 𝜌(𝐸)𝑑𝐸 , 𝛿𝐸 ̅̅̅̅ = ∫ 𝛿𝐸 𝜌(𝐸)𝑑𝐸 , and we have 𝛿𝑆 𝐵𝐺 = ∫ 𝐸 𝛿𝜌(𝐸)𝑑𝐸.

  the exponential decay distribution, we can choose 𝐴 = 1 or 𝐴 = -1, depending on the domain of 𝑥 of the considered distribution (see below). It is worth stressing that an important role of 𝐴 is to guarantee 𝑆 𝑉 positive, as expected for entropy or any measure of statistical uncertainty, which is the main aim of this work.

Boltzmann-

  Gibbs entropy. The positivity of this expression can be seen by substituting 𝜌(𝑥) = 1 𝑍 𝑒 -𝛼𝑥 into Eq.(4), which yields 𝑆 𝑉 =show the role of the constant A to guarantee positive 𝑆 𝑉 , let us suppose an increasing exponential distribution 𝜌(𝑥) = 1 𝑍 𝑒 -𝛼𝑥 for -∞ < 𝑥 ≤ 0 with 𝛼 < 0 . After the same calculation as above, we reach 𝑆 𝑉 = 𝐴 𝛼 . As 𝛼 < 0, we can choose 𝐴 = -1 to have a positive entropy 𝑆 𝑉 = -exponential distribution We consider the continuous stretched exponential distribution 𝜌(𝑥) = 1 𝑍 𝑒 -𝑥 𝛽 for positive 0 < 𝑥 < ∞ and 𝛽 > 0 , 𝑍 being the normalization constant 𝑍 = ∫ 𝑒 -𝑥 𝛽 ∞ 0 𝑑𝑥 . Let us first calculate its BG entropy:

0 .] 1 𝑍𝜌]

 01 Now let us see the varentropy of the continuous stretched exponential distribution 𝛿𝑆 𝑉 = 𝐴 ∫ 𝑥𝛿𝜌(𝑥)𝑑𝑥 ∞ Introducing the change of variable 𝑥 = 𝑡 1 𝛽 , we have 𝛿𝜌(𝑥) = 𝛿 ( , where 𝐶 is a constant of integration and 𝛾 ( incomplete gamma function. As 𝑡 = 𝑥 𝛽 = lnLet us choose 𝐴 = -1 and 𝐶 = 0, the stretched exponential varentropy reads any 𝑥 ∈ 𝑅, where 𝑍 = 𝜎√2𝜋 is the normalization constant, 𝜇 is the mean. Its entropy has been calculated and reads 𝑆 𝐵𝐺 = 𝑙𝑛(𝜎√2𝜋𝑒)[START_REF] Müller | Fundamentals of thermodynamics and applications[END_REF] which is negative when 𝜎√2𝜋𝑒 < 1.Before calculating its varentropy, let us make a change of variable 𝑡 = ( . Its varentropy is 𝛿𝑆 𝑉 = 𝐴 ∫ 𝑥𝛿𝜌(𝑥)𝑑𝑥 ∞ 0 = 𝐴 ∫ (√2𝜎𝑡 1/2 + 𝑚)𝛿( 𝐶. Let 𝐴 = -1 and 𝐶 = 0, we get

1 𝛽or 1 𝑍 𝑥 - 1 𝑏𝐴 1 𝑏- 1 ,

 11111 𝛽 > 3.59 where 𝑆 𝐵𝐺 becomes negative. Now let us calculate the continuous varentropy for the power law distribution 𝜌(𝑥) = . From the definition of varentropy, we write 𝛿𝑆 𝑉 = 𝐴 ∫ (𝑍𝜌) -𝑏 𝛿𝜌𝑑𝑥 = ∫ (𝑍 -𝑏 𝜌 1-𝑏 -𝑚) 𝑑𝑥} }. Let 𝐴 = 1 , the continuous varentropy reads𝑆 𝑉 = ∫ 𝜌 (𝑍𝜌) -𝑏 -𝑚 1 -𝑏 𝑑𝑥(6)where the function m is such that ∫ 𝜌𝑚(𝑥) 𝑑𝑥 = 𝐶 is a constant of the variation, i.e., 𝛿𝐶 = 0.For Pareto PDF 𝜌(𝑥) = 𝛽 𝑥 𝛽+1 with β = 𝑥 𝑚𝑖𝑛 = 1 and 𝑥 𝑚𝑎𝑥 = ∞, Eq.(7) gives positive for 1 < 𝛽 < ∞ as plotted in Figure4as a function of 𝛽.
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 4 Figure 4. Evolution of 𝑆 𝑉 = 𝛽+1 𝛽 𝛽 -𝛽 2 +𝛽+1 𝛽+1 ⋅ 1 𝛽-1