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A TRULY TWO-DIMENSIONAL, ASYMPTOTIC-PRESERVING
SCHEME FOR A DISCRETE MODEL OF RADIATIVE TRANSFER

LAURENT GOSSE* AND NICOLAS VAUCHELET

Abstract. For a four-stream approximation of the kinetic model of radiative transfer wih
isotropic scattering, a numerical scheme endowed with both truly-2D well-balanced and diffusive
asymptotic-preserving properties is derived, in the same spirit as what was done in [I4] in the 1D
case. Building on former results of Birkhoff and Abu-Shumays, [4], it is possible to express 2D
kinetic steady-states by means of harmonic polynomials, and this allows to build a scattering S-
matrix yielding a time-marching scheme. Such a S-matrix can be decomposed, as in [15], so as to
deduce another scheme, well-suited for a diffusive approximation of the kinetic model, for which
rigorous convergence can be proved. Challenging benchmarks are also displayed on coarse grids.

Key words. Diffusive scaling; Four-stream approximation; Grey radiative transfer; S-matrix.

AMS subject classifications. 31A05, 656M06, 76R50, 82B40, 85A25.

1. Introduction and preliminaries.

1.1. Kinetic modeling in 2D. We are interested in a “truly two-dimensional”
numerical simulation of the simple kinetic model, where x = (x,y) and v = (§,7),

O f(t,x,v) +v-Vyf =0o(x) ( 8 f(t7x,v’)(;—:; — f) , |v| = 1.

in particular, of its “four-stream approximation”, evoked in e.g. [17, §5] or [9],
Of*T 0. F =@, y)(p/4—fF), Qg +0y9" =a(z,y)(p/4—g), (1.1)
where the “opacity” o(x,y) > 0 and the macroscopic density simplifies into,
Vt,x € RT x R?, p(t,x) = fHt,x)+ f(t,x) + g"(t,x) + g~ (t,x).

In order to take full advantage of a 9-points, so—called Moore, stencil, microscopic
velocities are rotated so as to be aligned with the diagonals of a Cartesian grid,

+1 +1
v = (\/Q(m), ﬂ(_1,1)> , (1.2)

like, for instance, in [5, §2.1]. This choice leads to the following 2D system,

O + T (0uf* +0,6%) = olwy) (£ %),

V2 (1.3)
g™ F % (0 f* = 0y9%) = o(z,y) (f - gi) ,

for which we propose a numerical scheme endowed with similar properties as the one
in [14], in a two-dimensional context, without domain decomposition, like [2, 16, 19].

*IAC-CNR “Mauro Picone”, Via dei Taurini 19, 00185 Rome (Italy) 1.gosse@ba.iac.cnr.it
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1.2. Diffusive approximation to (|@) To study diffusive limits of (@), one
rescales (t,x) — (£2t,ex) in order to produce,

o(x o(x
o f* 0,55 = TP gy g™ £ 0yg" = 7P gy,
e 4 e 4
and introduces macroscopic quantities, mass and flux,
- - Lifr—f )
_ ot + _ 2
= + +9 +g, J=- _ ) eRe.
p=f"+f"+9 +yg 5 ( Gt —g
By summing the four balance laws, the continuity equation emerges,
However, as noted in [[L7, page 504], the equation on J isn’t closed,
2 fr+rf
0J+V =— J 14
03+ (1T 1T) = ot (14)

so that, formally, the asymptotic behavior appears to be given by,
O (fF - 9, (g™ -
o(x) o(x)

However, by subtracting the first (second) and the third (fourth) balance laws,
0 (f* — g%) £ (0:SF ~ 0y97) = —

g

Yokt £
_(f7—9%),
we get that |fT — g¥| = O(e), so former calculations can be improved into,

+_ gt - _ g
20,0 +V(5) = 07 - %v (8} B ]€+§ : g, B ?;) — 0T 0e),

which leads to the expected diffusion equation (see also (@),

. Vv Ap . .
Op(t,x) = div (20(1)) , or Opp = 2—5 if o is a constant. (1.5)

These formal arguments were made fully rigorous in [17] when o is a constant.

1.3. Plan of the paper. This text follows a similar roadmap as the original
article [14], with the supplementary difficulty that every derivation must now be
made on two-dimensional kinetic models. To proceed, we recall in §f the pioneering
results of [4], thanks to which one can deduce, by means of Laplace transforms,
kinetic steady-states from harmonic functions. Following ideas of [12, 13], a S-matrix
is derived, in §B, from the data of such polynomial kinetic steady-states, yielding a
time-marching scheme (B.5), which is able to preserve non-trivial 2D equilibria (see
Theorem B.2). Moreover, the S-matrix being doubly-stochastic, it is straightforward
to show that (B.5) preserves positivity as well as L'/L> bounds, like its continuous
counterpart. Drawing on our paper [15], after a parabolic rescaling of variables, the
S-matrix decomposes nicely so as to yield an IMEX scheme (i.1f) which relaxes, as
e — 0, towards ({L§), which is a consistent discretization of (|L.5). Rigorous proofs
are produced in §ff, in particular in Theorem p.g, where we can see that the multi-
dimensional feature (@), raised in [17], has consequences at the numerical level.
These bounds are visualized in §ff where several challenging benchmarks for both
(@) and (@) are tested on a coarse 32 x 32 Cartesian grid. Finally, §B paves the
way for tackling more complex kinetic models, like ([7.1)), and some early results of
[14] are rephrased in the context of S-matrices in Appendix |A.
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2. Harmonic stationary distributions.

2.1. Harmonic functions and isotropic scattering. In [4], the authors present
a tricky procedure which allows to derive an infinity of (explicit) exact steady-states
of the following multi-dimensional kinetic model,

!/

d
th(t,x,v)+v~fo: i f(t,X,VI)%ff, X:(l',y), V:(gvn)

In virtue of the method of characteristics, long-time asymptotics ¢ — 400 satisfy,
e dv
f(xv V) = exp(—r) p(X— TV) dr, p(X) = f(xvv)Tv (21)
0 st s
which is the Laplace transform of the (oriented) one-dimensional trace of p, [1§],
Pxv RT3 7 p(x —1v), f(x,v) = L (px,v)[p = 1]. (2.2)

A Fredholm equation (of the second kind) follows by integrating again in v € S,

Vx € R?, p(x) = /000 exp(—r) (/Sl p(x —1Vv) ;ﬁ) dr. (2.3)

At this point, the authors of [4] claim that, as the long-time behavior of the kinetic
model is pure diffusion and p is a macroscopic_quantity, harmonic functions may
induce mesoscopic steady-states by means of (2.1). Hence, if p is a steady-state of
diffusion, Ap = 0, and its mean-value property [0, 10, 20] yields,

vr € RT, p(x):/ p(x—rv)d—v7
st 2

so that, by multiplying by exp(—r) and integrating in r € RT,

/000 p(x) exp(—r)dr = p(x) = /OOO exp(—r) (/Sl p(x — rv) (21;’) dr,

holds for any x € R?, so that (%s satisfied, and a class of stationary kinetic densities
f(x,v) can be deduced from (R.If). For instance, harmonic polynomials furnish an
infinity of 2D mesoscopic steady-states, which generalize the only two 1,2 — v (see
e.g. |11, Chap. 9]), which follow from p”(z) = 0 in one dimension.

2.2. Kinetic steady-states and harmonic polynomials. A major result in
M] is that kinetic stationary solutions f(x,v) can be deduced from macroscopic (i.e.
diffusive, or harmonic) ones p(x), by means of a Laplace transform of r — p(x—rv),

f(x,v) = /000 p(x —rv)exp(—r)dr, Ap =0, (2.4)

as soon as certain integrability conditions are met (see [4, Theorem A]). Accordingly,
in the special case where x = x € R (one space dimension), harmonic solutions of
d?p/dz? = 0 reduce to {1,z} and it comes that, for v € R,

f(z,v) = /0Oo exp(—r)dr =1, f(z,v) = /Ooo(x —rv)exp(—r)dr =z — v,
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which are well-known “separated variables Case’s solutions”, see [11, eqn (9.8)]. In
more space dimensions, harmonic functions are abundant (any holomorphic function
of z = x + iy € C furnishes two harmonic ones: its real and imaginary parts), so that
(R.4) yields an infinite set of polynomial solutions, being

f(x,v) = {1, x —v e R? (2.5)
2 _ .2

Y
2

T

ry — (zn + y§) + 280, — (z& —yn) + (& = 1?), ... etc }

see [4, eqn (2.6)]. The first ones correspond to “dimensional splitting”, whereas last
two ones are truly 2D and “conjugate” in a certain sense (as seen below). These
stationary distributions f(x,v) can be easily retrieved from (Q) by taking advantage
of the expression of harmonic functions in polar coordinates,

plx =rcosf,y =rsind) = ap + Z (an cosn + by, sinnb)r", (2.6)
neN,

in which the first basis components are
{1, z=rcosb, y=rsinb, 2 —y*> =r?cos20, xy = r’sin20, }
These “harmonic steady-states” f(x,v) follow from Euler’s Gamma function,
I(z) = /OOO exp(—t) t*~1dt, I'n)=(m-1liftneN,
because, according to (@), the polynomial solutions given in (@) rewrite,
Jx,v) = {T(1), T(1)x = T@)v, D(V)ay — T(2)(en + y&) + T3)én, ... }.

3. A “truly 2D” approximation of f(¢,x,v). Working on a uniform Carte-
sian grid for which Az = Ay, we mimic the notation already used in [3], see Fig. .

3.1. Derivation of the S-matrix. In order to simulate (@) on a 9-points
stencil, we only need the first four stationary solutions: the choice between the two
“truly 2D” quadratic ones depends on the velocity vectors. A simple case, where one
of the conjugate solutions is always null, consists in working in diagonal coordinates,

x = (FR,0) and (0, FR), v = (£1,0) and (0,+£1),

where R = Ax/\/§ is the radius of the disc centered in Ti 1,Yjpl. The S-matrix
acts on four incoming states and produces four outgoing ones, so

+
[ i1,
f* =S 1.1 fi,j+1
-3, = +
g:_ =gty Y55
9« Ji—1,j+1

By linearity, and following ideas from [11, Chap. 9], a C* stationary solution reads,

22 — 42

2

f(x,V)aJrﬂ(wEHv(yn)JrV( <xsyn>+<52n2>>, (3.1)
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FIGURE 3.1. The S-matriz S;_1 ., 1 and an incoming state, nl
5:.0+35 i—1,j

so that aforementioned “incoming” and “outgoing” states are, respectively,
{ f lj_f(x_( R30)7 ( ,0)) f,;j+1:f(X:(R,O),V:(—l,O)),
9i; = f(x=(0,-R),v=(0,1)), g;_y ;41 =f(x=(0,R),v=(0,-1)),
which is a linear system for («, 8,7, v), and
{ S =fx=(R0),v=(10), fI=/f(x=(-R0),v=(-10),
— F(fx=(0,R),v = (0,1)), " gi = f(x = (0,—R),v = (0,~1)),

involving again the “spectral coefficients” (a, 3,7v,v) € R* which values are fixed by
the four incoming states. Accordingly, the S-matrix decomposes again like,

V(i,4) €2 Sii1ji1 =501 501),  Sle)=MM™, (3.2)
where M has mutually orthogonal columns,
1 —(1+0oR) 0 1+ (1+0R)?
|1 (1+0R) 0 1+ (1+0oR)?
M=14 0 “(1+0R) —(1+(1+oR)) | (3.3)
1 0 (1+o0R) —(14+(1+0R)?)

along with its companion M,

1 —(1-0R) 0 1+ (1—0oR)?
i 1 1-0R 0 1+ (1—0oR)?
1 0 —(1-0R) —(1+(1—-0oR)?) |’
1 0 (1-oR) —(14(1-0R)?)

in which a rescaling of x was made in order to cope with variable opacity o(x). One
recognizes the matrices of 1D Goldstein-Taylor model, see §@ and [11, Remark 9.3],

(i e P Gl e

but now, 1D solutions ox — v are coupled by the constant and quadratic ones.
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3.2. Resulting 2D time-marching scheme. For ¢R > 0, the determinant
| M| is positive, so M is invertible and its inverse reads:

1 1 1 1
A A 00
— 2 2 -1 _ -
M| =8(1+0R)* (14 (14+0R)*), M '= 0 0 -4 A4 |
B B -B -B

so that « is always the average of the four incoming states, and where

1 1

=311 oR) B=ara+orpy

Accordingly, the S-matrix is given by the product,

S(o) =M M1 (3.4)
%+O+D %—C+D %fD %fD
_|7-C+D +C+D 1—D i—D
- %fD %fD %+C+D %70+D ’
b i-D l-c+D 1+C+D
which both lines and columns clearly add to unity, because
1-oR 1 oR (1-0oR)?*+1 1 oR

C—iz— D: = - —

" 2(140R) 2 1+40R’ 4(1+0R2+1) 4 1+(1+0R)?

The S-matrix rewrites as a O(oR)-perturbation of the identity of R*,

~1 1 0 0

1 1 -1 0 0
S@)_hm4+aR{1+0R 0 o0 1 1
o 0 1 -1

-1 -1 1 1

n 1 -1 -1 1 1
1+(1+eR)2 |1 1 =1 —=1]|(’
1 1 -1 -1

so that, similarly to e.g. [15, Prop. 3.2],

01 00
S(o) — Idga if 0 — 0, S(o) — 8% = é 8 8 (1) if 0 = +o0.
0 010

Having at hand the 4 x 4 matrix (@) allows to deduce a time-marching scheme for
the 2D system (@) on a uniform Cartesian grid (see Fig. @, Az = Ay),

+,n+1 “+.n —+,n
fi,j+_1~_1 4,741 i—1,5
o ( Av o At o
} =(1—-— vobd + — S(o’ 1 1) Z’_}]_—H . (35)
+n+1 +n —1+1 m
gi—?,j-&-l 2R gi771',j+1 2R R As gi,jn

— N+ —,n >
9i,j 9i,5 9i-1,j+1
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LEMMA 3.1. Under the CFL restriction At < 2R, the scheme @) is consistent
with ) and preserves positivity. Moreover, it is conservative and L -bounded.

Proof. Under the aforementioned CFL restriction, (B.H) is a convex combination
(as advocated in [12, eqn (2.2)]), hence it preserves positivity because all the entries
of S(o) are nonnegative. Besides, doubly-stochastic matrices are such that,

VieR!,  [S(0)tllo < [[Toc, 1S(@)7ll1 < (7],

which implies that (@) is bounded in L' and L*. Consistency is shown for 0 <
oR < 1 (fine grid); at first order, the expression of the S-matrix reduces to,

-3 1 1 1
1 1 oR 1 -3 1 1
~ S(o)=1d _—
1+ (1+0R)2~ 2(1+0R)’ (0) = Idga + 20+oR) |1 1 -3 1|’
1 1 1 -3

and inserting this_expression in (@) yields a consistent approximation of (@) |
The scheme (B.H) is able to preserve some non-trivial 2D equilibria, see e.g. [[].
THEOREM 3.2 (2D well-balanced). Let o(x) =& > 0 a constant, then any linear

combination ) induces a numerical steady-state for the scheme (@ , given by

(S5 = s o). o (TSI  flox 0.40)

Proof. Pick (a, B,7,v) € R* in (@) and consider a steady-state f(ox,v): since
|M| > 0, its restriction to v = {(£1,0), (0,£1)} on a uniform Cartesian grid satisfies,

+,n +,n +,n
(&% i—1,7 1—1,7 i,7+1
B . fon - o o
M it | o= s@) | i | = |
v 9i,j 9i,j 9i-1,j+1
v —,n —n —n
9i-1,j+1 9i-1,5+1 93,5

so they are invariant by the time-marching scheme (@) By a —7 rotation we pass

from diagonal coordinates with v = {(%1,0), (0,41)} to axial ones with ([L.2). O

4. Diffusive behavior of the S-matrix. In order to study asymptotic limits
so as to check a possible consistency with the estimates stated in [17, Theorem 5.1], we
rescale o(x) — o(x)/e, ¢ < 1. Accordingly, the S-matrix decomposes into S° +¢ Sb¢,
like in [[15, §1.2], where, as ¢ — 0, Following again [L5], an IMEX scheme may read

+,n+1 +,n+1 +,n+1
fij+ fijei fitng
—n+l1 At —n+1 —,n+1
fifl,j fifl,j _ SO fi,j+1 4.1
+nt1 +72 R +,n¥1 il (4.1)
i—1,j+1 € 9i-1,5+1 9i.j
—,n+1 —,n+1 —,n+1
9i,j 9i,j 9i-1,j+1
+,n +,n
©,J+1 i—1,j
Zn —n
_ fi—l,] 4 At Sl,e fi,‘+1
- “+,n ﬁ —)z,n 9
9i—1,5+1 95,5
—N —N
9ij 9i-1,j+1

and we expect the (implicit, but not costly) left-hand side to yield “Maxwellian es-
timates” of the type [17, eqn (5.15)], and the (explicit) right-hand side to produce
accurate and consistent diffusive numerical fluxes.
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4.1. Decomposition of the S-matrix. By deﬁning the positive coeflicients,

: ! 5 h (42)
al 1, =——: 1 , .
1—%,]4-5 €+Ui—%,j+%R i 7]-i-?‘ 52+(€+0—i—7j+lR)2
the aforementioned decomposition reads, at each location i — 7, j +
01 00 a—0 —(a+p) B ,6’
ge 10 0 0 Le —(a+08) a—p B8 154
00 0 1 B B a=p  —(a+p)]’
0010 B B —(a+B) a-8
hence, the IMEX scheme (@) rewrites as,
n+1 n+1 —,n+1 n
f1+j+<1i> + 7(fz+]+4l> - i,j—&-T ) = i,j+1+

At T + _ — + —
o [0y (R0 = ) + By s (50 — ot + 0l + 0|
At
—n+1 —n+1 1 -
fz_iﬂ;r + 7('](2_?; fz+ ,n+ ) _ fz n +

2%R 1,5 -1
At 1 e —n
oR |Yi—4.i+% fije = s 1) TBi1 41 - £y vy~ fh T e 9
At
+,n+1 +,n+1 —ntl \ _
91 a1t %R (gz i1 — 9l 7ll,]+1) =9;"1 1t
At T

e +n_ —m e +.n —n +mn _ —mn
oR %i-1.4+3 <gm‘ - gifl,j+1> + ﬁz’—%,j-&—%( i1yt i = 95 — gifl,jJrl)}
—,n+1 At —,n+1 +,n+1) _ —n
i T TER( i i ) =9t

At T

€ —,n +,n £ +,n +.,n —,n

oR | %i-1.+3 (91-71,]-“ ~ i ) + 51—%#%( g i et gifl,jJrl)] :
An index-shift yields:

“+,n+1 +.n
1+ At 2€t 0 0 f . i.j
t ,nJr —n
" 2R I+ QER 0 0 f — 2% + 4.3
At At Pnt1 +.n .
0 0 L+ AR 25& 9ij gi,j
7’rLJrl
0 0 ~5r 1tar 9ij gw
€ e +,n N +,n
11Ul 1,] = i) = B 1o ;( et f et =9t )
£ +,n +,n
At a2+%’j+%( z+1 P A ) H J+%( ,j + fz+1 G+l T Y15 — gm+1)
by e +,n +,n n
2R Qi1 %(914_1,3 1 g” ")+ 1 %( 1t fz+1j “Yit1,5-1 gm )
€ 5 +,n
o1 l(gz 1j+1 gi,j ")+ Bi,;ﬁ%( vy i =9 = 90T )

The implicit part relies on a block-diagonal matrix, for which,

1+6 =6\ ' 1 [a b At At
= ) b= y 4= 1+ ;
b 1+b a+b\b a 2eR 2¢eR
so that (@) rewrites as an explicit time-marching scheme. The matrix in the left
hand side of (4.3) may be written as

1 -1 0 0
At . -1 1 0 0

IdR4 + ﬁ[‘[@7 Wlth HO = 0 0 1 _1 (44)
0 0o -1 1
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Denoting f7'; = f+ "t fZ_Jn and g7'; = =g 3 "+g; i " their time evolution follows from
adding the ﬁrst two and the last two equations in (#.3):

et g +At<‘

+, - +,
J 2R %( i— ?] 1 fu )+O‘z+ J+% (fi+fj+1_ m‘n))

]
( -1 :’?,jq + 1t - 9;}711 - 91;) (4.5)
+ 5i+§,j+§ (Fi5" + fit g — 9515 — 95511))
0L = as o (0f O 0 ol - 0
+ A};( i+1 g——( erJnl +fil — giﬁ;l,jq - 9:7") (4.6)
+ 81 51 ARAPE S A gjjn - gi_i?,jﬂ))

4.2. Formal diffusive limit. When ¢ — 0, we deduce from (@) that,

1
f+ ,n+ 1 0
- 7n+1 1 0
g1 | € Ker(Hp) = Span ol |1 (4.7
i,
n+1
gm"‘*‘ 0 1
Then, in the limit ¢ — 0, we expect, at least formally, that
1 1
+,n+1 o +1 +,n41 — e+l 1
Fi" =R =R ey =t = ge
along with, from (@)7
B — L e—0
“’Wrz’ im3.dts oi1 g+ B 7

so that, former equations (@) and (@) become

A
fn-H fir; + o (UI ((9?—1,;’ — i)+ (g1 — f?]))

303
1 n " n n
- 7((gi+1d‘ = Tig) + (8841 — fi,j))
Tir L+l
gl;rl o+ 4R2 ((m <( i1 — 8ig) + (Fia, — 9?3))
i—5,J+3
+ 1 ((fn gn )+ (fn gn ))
Tit3.0-3 A b=l Y :

Accordingly, f and g satisfy similar diffusion equations, if the opacity ¢ is smooth.
Consequently, if initially they are close enough (so—called “well-prepared initial data”),
they can be expected to stay so because their difference f}'; — g7; satisfies a parabolic
equation. The decay of f — g will be rigorously proved when ¢ is a constant, see
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Theorem @ Adding, assuming f — g — 0, and denoting pj'; = fi'; + g7, it comes

At 1 1
n+1 n n n
Pij = Pi;+ ( + )(Pi+1,‘ - i) (4.8)
J 7 20R? ( 205 1541 20151 J J
1 1 " "
+ (20 + : ) (Pij+1 = i)

1 1
_ <20',2,‘ 1 + 2. ;)(pﬁj 7p?_1,j)

i—3.0+3 i—5.J
1 1
*( + )(p?*p’v‘v )]
J i,5—1
S e

which is a second-order, finite-differences, monotone (under the CFL restriction (@))
discretization of the macroscopic diffusion equation (Jl.5).

5. Rigorous uniform estimates for constant opacity. Let (u; ;) stand for
any real sequence, we introduce the following notations,

OUjy 1 j = Uit1,j — Uiy, §ui,j+l = Uijt1 = Uiy,

2
ully = ZAz wigl,  TV(u) =Y Aw(|du 1 ]+ [6u; 1), (5.1)
,J
[Aully = Z Wit1,j + Wi a1 + i1y + i1 — dug ).
,J

5.1. General properties of the scheme. The first stepping stone is the defi-
nition of a convenient CFL restriction:

LEMMA 5.1. Assume that there exists opyin > 0 such that the opacity is such that
0 < omin < Oi 14l for alli,j. Then, under the CFL condition

. 2 R(E + O'minR) 8e
At < ZominR:, ———— 7 (1 14— , 5.2
< min{ 20 S ARy | B

the IMEX scheme (@) preserves positivity.
Proof. Inverting the block-diagonal matrix in (@) brings the expressions,

1 At?
+ntl c +n
5™ = e (R4 A= Ta(aty oy + 8Ly )G
At . . .
+ (At - ﬁ(ZaR—F At)(ai_%,j L+ 51_% ]_7)) y
At o . .
+ (26R + At) 2R( HEDITEY: AR Ak (5.3)
At? .
+ ﬁ( o 7J‘+% — By ) it
+(25R+At) Bf_%]_i(gld L)
A#?

+, —,
Y i€+%,j+%(gi+?,j+gi7jil))7
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and
ft = ;((At S N Y I e
2¢R + 2At 2R itgaty T Pithard) e
At? —n
TR+ A= S0y oy By D)
Atg e e +,n
+ ﬁ(ai—%,j—% - Bi_%ﬂ-_%) i—1,j-1
At c —n
+ (2eR+ At)ﬁ(aH%JJr% - 6i+%7j+%)fi+l,j+l
At?
+ 2RB¢—§] (gz] l+gz 17j)

At i _
+ (2eR+ At) Z+ G+ (9141711,3' "‘gi,jil))»
along with similar ones for gjE ntl , too. From (@), it comes

e +e(e+ oi141R)

of € >0
i—3.0+3% ﬁz—*7]+2 (e+ oi_%)j_k%R)(s? + (e + ai_%,j+%R)2) >
Define a (decreasing) function ¢ : Rt — R*,
e 1
R ¥/(x) < 0 on (0, +00),

e+x 24 (e+x)?’
then, since

af—%,j+é +Bis—%,j+% =1(o 1—5,]+1R)
we get the following bound:

1 + O’minR
€+ ominR €2+ (e + ominR)?’

1>
Xi—1+1 +ﬂl*ﬂﬂ+2 <

+,n+1 0+l . C . . . .
Hence f; j’"+  9; ]"+ ) are nonnegative combinations of previous iterates if,

At 1 UminR

= <1 5.4
(5+ 2R) (€+0minR * 52+(5+0minR)2> - ( )
Atz 1 OminR
f— < 2R+ At. 5.5
2R <5 + UminR + 52 + (5 + UminR)2> = + ( )

Conditions (@) and (@) are met if and only if|

At R g2 +eominR+ (0minR)? At?
2R =T Rt 2(omm R’ R+ ommE)

< 2R+ At

and these hold as soon as (@) does. O
REMARK 1. A sufficient condition for (@) is the heat equation’s restriction:

2At < Tpin R? (5.6)
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LEMMA 5.2 (Conservation). Let us assume that the initial data are nonnegative
and that (p.2) holds. Then, the scheme (W.3) is bounded in L' and conservative :

“Ol A+ g™l g0

L5 M+ 1+ llg ™+ g™ =

Proof. 1t suffices to add the lines of (@) and to sum over ¢ and j. O
LEMMA 5.3 (L* bound). Let initial data satisfy

0<f<M,  0<g <M
Then, under the CFL (@),

VneN, 0<fi"<M,  0<g M <M

Proof. The proof of Lemma EI yields that, under (@), ffj’”ﬂ and gjE L are
convex combination of previous iterates, giving the announced L bound. D

REMARK 2. These bounds hold even if the opacity o isn’t a (positive) constant.

5.2. Uniform estimates in the case o constant. We study rigorously the
diffusive limit of (K.3) in order to prove that it is “asymptotic-preserving” (AP).
Recall from (1.9) the coefficients,

1 oR
Of:i; 52—7 for =0 €R+. 5.7
e+oR p €2+ (e+0oR)? 7= (5:7)
As o is constant, (@) simplifies into,
A A 0 A "
i ,n+1 —-n
—-=L 14 0 O fij :
2eR 2€R — ¥ 58
0 0 1+ %t 26& g-‘r n+1 gj’j,n ( )
t b
0 0 ~%r L1taor 9 J’n+ gi,jn
=+, ; +, -
a(fi01 0 — f,a ) = BE(FiTr i + fif” _gijﬁl 9:°1;)
s1 ,n n —,n
+ g aa(fz+}lj+l 7,] ) ﬁ ( + fz+1 ,J+1 gzj;l J gz]ﬁ%;%)
2R aE(gi-ﬁl,j—l jtg ")+ Be(f, zj "t fz+1] gl—illj 1~ 9 )
—n N —n
o (9; 7Yy — 95 )+ BE(fin 1 g T fiit g+l gm = 9-1,j+1)

LEMMA 5.4. Let o be a positive constant: under the parabolic CFL restriction,
2 At < 0 pinR?, (5.9)
the scheme (@) is TVD (total variation diminishing),

TV(fE Y TV (") £ TV (g + TV (g
<TV(fT™)+TV(f~")+TV(gt™")+TV(g~™).

Proof. By linearity, the expression of f+ i (@) in the proof of Lemma EI
is similar to the ones of § fi Vi Since (@) ensures that coefficients are nonnegative,
2
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a triangle inequality brings,

2

At
+n+1 - = € € +n
SIS grpang ((2eR+ A= S(at + 8911
At c c —n
At

b @eR+ A0 DL (0 - |

At? .
+ﬁ(a - B )|5f+ ]+1|
+(25R+At) BE(Iégz+ ol 1097 D)

At .
+ DB g |+ 109 D),
with similar expressions for |d f;_ l, |6g+ "‘H\ and [dg_ ’"+,1| Adding,

LS 10T 109,35 + 189, 1 <

i+3.] it+3,] it+3.
(1—%<a6+ﬁ6>)(|5ﬁ“ V18550 1+ 15153 1+ 1805 )
+%< o — B) (7Yl + 18 ;’g,ﬁluwyﬁ P ENT)
+ﬁ/38(|5 AR B L A B AR Y AR
o (50 1\+|6;”1]|+|6g1+3 1418073 1)

and summing over ¢ and j, we get, after shifting the indexes,

Z(|6f+n+1|+|5f—n+1|+|5g+n+1‘+|5g—n+l|)

itt.j
i,J
<Z(|af SIS+ 16 1+ 109,77 1)

By the same token with variations in j instead of ¢, we get the claimed result. O
Define fiw giw the piecewise constant functions such that,

FEx) =" gt tx) =g;3", (5.10)

for t € [nAL, (n+1)At), x € ((i= 1) Az, (i + 3)Az) x ((j — 3)Az, (j + 1) Az).
COROLLARY 5.5. Under (b.9), and for bounded integrable nonnegative data, the
approximate solutions ) are uniformly bounded in L* N L*° N BV ([0,T] x R?).

5.3. Rigorous diffusive limit. We are now in position to state the main result
of this section:

THEOREM 5.6 (Asymptotic-Preserving property). Assume (@) holds and that
initial data are independent of € and smooth enough such that

ICeRT,  AfTOULHIAFT + 1A + 1A < C,
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then the sequences (f‘f;tjn) and (gslijn) are of uniformly bounded total variation and

converge towards limits, denoted respectively (ffj") and (glijn) which satisfy:

1 1
+n _ p—n __ mn +,n —,n n
fiim =t =5l 9 =95 = 3%

where
n+1 mn At n n n n n
fij =Ti;+ o2 (01 T 01+ 0, T 00401 —475) (5.11)
n n At mn n n mn n
ot =ol + W(f@jq i il T — 48i5)- (5.12)

Moreover, the “Mazwellian gap” decreases in time according to,

2nAt
oR?

vneN., |f”—9”|1S||f°—9016Xp(— )+0R2. (5.13)

Adding both equations ()—()7 we deduce the following result:
COROLLARY 5.7. Under the same assumptions as Theorem 5.6, we have

n+1

7 t n n 7 7 7 T mn n
Pij = Pijt (pi,jfl T P51 T Pim1j T Pik1y — 4pi,j)7 pt=§"+g"

40 R?
along with f&" = p" /4 + O(R?), g=" = p" /4 + O(R?).

Proof. By the computations in the proof of Lemma @, the sequences ( fazijn),
and (gftjn) are Cauchy sequences with respect to ¢ in ¢!. Thus, when ¢ — 0, they

2
), we get that

converge to some limits denoted respectively (f5:™), and (gzij”) and we can pass to
the limit in (@) Hence as € — 0, by (1.4) and (|

.. 2 +,n+1 _ p—,n+1 +,n+1 _  —ntl
V(i,j,n) € Z° x N, fis =fij s 9 =9, -

5]

Denoting 7' ; = fsjjn + f5; ;" and ¢°7; = 95:]?" ¢;;"s we obtain their equations
by adding the first two and the last two lines in (p.§):

At
+1 T, - - +,
i = Fijt *(0‘6( AT A R G A T fsi,jn)>

R
N 2% (ﬁs(fgi’?,jfl i e ) (5.14)
FB 4 P — 0 — )
$I = T g (0T ) 0 )
N QAT; (ﬂa( R - ) (5.15)

+.n —n +.n —n
+B°(f i 9 — 981—1,j+1))~
From the expressions (@)7

1
af, 5 — B when ¢ — 0.
o
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Yet, passing into the limit we obtain both () and () If initially f and g are
identical, they stay so. More precisely, let D}, = fi'; — g;'; be the Maxwellian gap,

2At>+ At
oR? 40R2

Hypotheses on initial data in Theorem @ ensure that

Dn+1 Dn ( D?—l,j

(4D}, — DI

i1 =D}y — D). (5.16)

IAF 1 + 1Ag°]: < C.

Moreover, from ()f() and (@), we have

At At
n+1 < n o n
AP < AP (- 25+ 20 agr,
At At
n+1 n n
[Ag™ | < [[Ag™|1(1 - ﬁ) 07R2||Af fl1-

As a consequence, for all n € N, we have ||Af*||; + ||Ag"|1 < C, so that

Z |4D}; — Dy — Di"y ; — Dty ; — Dty | < C.

By inserting this latter inequality into (), taking modulus and summing,

N 2At
D"y ZM DY < D™ (1 - WHC;

holds for some constant C' > 0. Applying a discrete Gronwall inequality,

n—1
. oAt/ or?) AL 2N\
1Dy < D220 1 BN (1 20

< ||D0||16—2nAt/(aR2) + %RZ.
0

REMARK 3. The bound ) relates to ) and means that, for constant
opacity, ||f — gll1 is roughly of order Az when nonnegative initial data belong to
W2L(R?). Conwversely, both || fT — f~||1 and |g* — g~ ||1 are of order ¢, as in the 1D
case, see [11, Lemma 8.4] and |14]. Allin all, these will be similar when e ~ O(R?).

6. Numerical assessments. Hereafter, some benchmarks for both (@) and
(1.3) are presented, on a coarse 32 x 32 uniform Cartesian grid. The computational
domain is the unit square = (0,1)? with various boundary conditions.

6.1. Hyperbolic/kinetic scaling. Following [§, §5.1], the long-time stabiliza-
tion of ([L.3) can be considered in presence of a stiff, discontinuous opacity,

(%) = 5+ 995 (= 2l ly - o) < =
o(x) = X ( max(lz — gl ly — 5 1)

with x(A) the indicator function of a set A. A null initial data and an inflow boundary
condition is prescribed on the left side by means of,
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along with specular reflection on horizontal walls y = 0, y = 1, and outflow at z = 1.
The macroscopic velocity field ¥(¢,x) is defined as the following ratio,

f+ (tvx)ff_(t’x)
Vx € Q, (t, x) = g+(t’£)(tf;)_(t’x) , where p # 0.

p(t,x)

The scheme (@) was set with At = 0.975v/2 Az, and iterated up to 7' = 35: see Fig.
. Another benchmark consists in considering smooth, but quickly varying opacity,

Macroscopic density at time=34.972859

I

FEEFFF

NRLRLL
PSRN 552994

oo oA A XA A A A
039 waawway T TN

RN
SAVVNNHV\\\\

00 01 02 03 04 05 06 07 08 09 10 00 01 02 03 04 05 06 07 08 O

Flux divergence at time=34 972859 Residues decay up o time=34.972859

FIGURE 6.1. Steady-state of (@) in presence of a square opaque zone.

() =5+ 195exp (@ = 3+ (0= 3P+ (o= PP))
cep (2= P4 -3+ - ), 9= a0

with identical initial and boundary conditions. Results are displayed on Fig. @ In
particular, on both Figs. and .2, a (second-order) centered approximation of the
divergence of the macroscopic flux, div J(¢,x) was displayed, so as to shed light on
the ability of (B.5) to stabilize on a correct discretization of stationary regimes.

6.2. Diffusive/parabolic scaling. In order to validate the scheme (@), the
same array of opaque Gaussian bumps was set, along with the parameter ¢ = 1077,
outflow boundary conditions on each side, and Maxwellian (well-prepared) initial data,

p(t =0,x) = exp (—v((z — 0.375)* + (z — 0.625)%))
x exp (—v((y — 0.375)* + (y — 0.635)*)), v = 250.
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Macroscopic density at time=14.958523

12t

1388111

ReRE R R AR RN

1

131

00 01 02 03 00 01 02 03 04 05 08 07 08 09 10

Flux divergence at time=14.958523 Residues decay up to time=14.958523

03 04 05 08 07

Residus

FIGURE 6.2. Steady-state of (@) in a periodic array of obstacles.

The scheme was iterated until 7' = 15 with the CFL condition (@) see Fig. @
The macroscopic density is correctly confined inside the array of obstacles, showing
how tiny the artificial dissipation of the IMEX scheme really is. The Maxwellian
gap |f — g| is locally of 1073, a value compatible with () because Az? ~ 1073,
even in the vicinity of areas of strong variations of o(x); it smoothly decays with
time. Beside, Az? is also the order of accuracy for the centered discretization of the
diffusion equation (@) The macroscopic velocity field ¥ is now rescaled,

1 f*(t,x)(—f)’(t x)
= _ - p(t,x
Vx € Q, (t,x) = 5 g+(t7x)(_g),(t7x) ) p # 0.
p(t,x

A simpler benchmark consists in iterating (@) with a Gaussian opacity,

1 1
Vx € Q, o(x) =5+ 15exp (25(|x2|2+|y2|2)> ;
with identical initial and outflow boundary conditions, up to 7' = 0.1: see Fig. @
7. Conclusion and outlook. The present paper showed that a high-quality,
genuinely two-dimensional, numerical scheme (@)), (#.3) can be deduced from the

computations achieved in [4]. Such a strategy is by no means limited to isotropic
scattering. Following [[11, §10.3], an elementary model of chemotaxis dynamics is,

Of+v-Vf=x(v-VS)ptx)— f(x,v), a:= VS(x) € R? (7.1)
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¥ 3
00 01 02 03 04 05 08 07 08 09 10 00 01 02 03 04 05 08 07 08 09 10

Modulus of Delta=F-G at t=0.1493916. Residues. total mass and Maxwellian gap unil ime=0.1493916

FIGURE 6.3. Diffusive approzximation (@) at T =15, ¢ = 1072 in a periodic array of obstacles.

where VS is “frozen” locally at a point X and the biasing function x > 0 is normalized
so as to get the standard 2D continuity equation:

d
/ X(v)% =1, Op(t,x) +div J =0.
St

The analogue of the Laplace transform in (@) for steady-states f(x,v) reads,

f6,v) = x(v) /Ooo exp(—r)p(x —rv) dr = x(v)Lr(pxv)lp = 1], (7.2)

from which follows a new Fredholm equation, now involving the biasing function Y,

™

) = [ expn) ([ aw)ptx - 5Y ) an (73

To mimic some computations of [H], macroscopic steady-states should verify,

dv

wreRT ol = [ xelx— gt

which means that our “biasing function” x should also be the “Poisson kernel” of a
certain elliptic differential operator that p(x) solves. Indeed, p(x — rv) is “boundary
data” on S', so p(x) is the “solution value”. Accordingly, from [B, eqn (2.24)],

—wrcos(d —p)) df
To(wr) 2’

o) = [ oG ret) 22
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Macroscopic density at time=0.0892358 Velocity field at time=0.0959643

Modulus of Delta=F-G at t=0.0992358 Residues. total mass and Maxwellian gap uniil ime=0.0992358

Rosidus

FIGURE 6.4. Diffusive approzimation (@) at T = 15, ¢ = 102 with a Gaussian opacity.

so that, by changing § — 6 — 7, one gets (see also [B, @, @])

" 08 exp(wrcos(6 — p)) db

—T

Pick, as the biasing function, (Zy, the modified Bessel function of index zero)

exp(w rcos(f — p)) >0 /27r exp(wrcosf) df )
To(wr) - 0 To(wr) 27

X(v=e") =

the normalization being a consequence of the “integral representation of Bessel func-
tions”, see e.g. [H, eqn (3.1)], then such a kernel corresponds to drift-diffusion equation,

—Ap+a-Vp=0, in the disk of radius r > 0, (7.4)

where (see again [H, eqns (2.1-3) and (2.12))), for u € (0, 27),

a a
0<w:= @, §:w(cosu,sinu)€R2,
is the polar representation of the drift velocity a € R? in ([7.4). Accordingly, one can

relate mesoscopic to macroscopic steady-states thanks to ([7.9), and similar deriva-
tions as the ones performed in this article may lead to a “truly two-dimensional”,
asymptotic-preserving (in diffusive scaling) discretization of (B), like (@) and (@)

Appendix A. S-matrix for Goldstein-Taylor model in 1D.
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It might be interesting to recall some properties of “two-stream” one-dimensional
(position-dependent) radiative transfer, already studied in [14], [L1, §8.2] and [, 9],

WfF L0 fF=0()(p/2—fF), p=f"+f".

Macroscopic (diffusive) stationary regimes in 1D reduce to p”(z) = 0, i.e. constant
or linear functions, and yield Case’s polynomial solutions, 1 and x — v. Accordingly,
for R = Az/2 and f(z,v) = a+ f(z —v),

M_<1_@Mm>, M_(l—@wm>’

1 (1+0oR) 1 (1-0R)
so that,
1
M| =2(1+0R), M—1=< 11 } )
2 _1+0R 14+0cR

meaning that « is the average of incoming states, and

- 1 1 oR
_ 1 _
S(o) = MM~ = —— (UR h >

Such a S-matrix is “doubly-stochastic” because both its rows and columns add to
unity and all its entries are positive when o R > 0. Asymptotic limits are

S(a)%(é (1)>ifc7%0, S(O’)*)(? é>1f0%+oo.

The resulting well-balanced 1D time-marching scheme reads,

ff""n""l B At fji-,n At ffi;,n
() =g () st (7).

In parabolic scaling, the following decomposition holds,
0 1 € 1 -1
S“”‘(l 0>+5+0R(1 1)’
and brings back the well-known IMEX scheme originally written in [14],
+,n+1 +,n+1
A At 1 A
fjf n+1 + 5 0 fjf n+1
fj_71 2€R 1 O fj_’l
— f J+ " + L 1 - Jt?
fit)  2R(e+oR)\-1 1) \f7")"
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