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, so as to deduce another scheme, well-suited for a diffusive approximation of the kinetic model, for which rigorous convergence can be proved. Challenging benchmarks are also displayed on coarse grids.

Introduction and preliminaries.

1.1. Kinetic modeling in 2D. We are interested in a "truly two-dimensional" numerical simulation of the simple kinetic model, where x = (x, y) and v = (ξ, η),

∂ t f (t, x, v) + v • ∇ x f = σ(x) (∫ S 1 f (t, x, v ′ ) dv ′ 2π -f ) , |v| = 1.
in particular, of its "four-stream approximation", evoked in e.g. [17, §5] or [START_REF] Despres | The structure of well-balanced schemes for Friedrichs systems with linear relaxation[END_REF],

∂ t f ± ± ∂ x f ± = σ(x, y)(ρ/4 -f ± ), ∂ t g ± ± ∂ y g ± = σ(x, y)(ρ/4 -g ± ), (1.1) 
where the "opacity" σ(x, y) ≥ 0 and the macroscopic density simplifies into, ∀t, x ∈ R + × R 2 , ρ(t, x) = f + (t, x) + f -(t, x) + g + (t, x) + g -(t, x).

In order to take full advantage of a 9-points, so-called Moore, stencil, microscopic velocities are rotated so as to be aligned with the diagonals of a Cartesian grid,

v = ( ±1 √ 2 (1, 1), ±1 √ 2 (-1, 1) ) , (1.2) 
like, for instance, in [5, §2.1]. This choice leads to the following 2D system,

     ∂ t f ± ± 1 √ 2 ( ∂ x f ± + ∂ y g ± ) = σ(x, y) ( ρ 4 -f ± ) , ∂ t g ± ∓ 1 √ 2 ( ∂ x f ± -∂ y g ± ) = σ(x, y) ( ρ 4 -g ±
) ,

(

for which we propose a numerical scheme endowed with similar properties as the one in [START_REF] Gosse | An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations[END_REF], in a two-dimensional context, without domain decomposition, like [START_REF] Bal | Coupling of transport and diffusion models in linear transport theory[END_REF][START_REF] Klar | Boundary layers and domain decomposition for radiative heat transfer and diffusion equations: applications to glass manufacturing process[END_REF][START_REF] Xu Yang | Numerical Study of a Domain Decomposition Method for a Two-Scale Linear Transport Equation[END_REF].

Diffusive approximation to (|1.1).

To study diffusive limits of (1.1), one rescales (t, x) → (ε 2 t, εx) in order to produce,

ε∂ t f ± ± ∂ x f ± = σ(x) ε ( ρ 4 -f ± ), ε∂ t g ± ± ∂ y g ± = σ(x) ε ( ρ 4 -g ± ),
and introduces macroscopic quantities, mass and flux,

ρ = f + + f -+ g + + g -, J = 1 ε ( f + -f - g + -g - ) ∈ R 2 .
By summing the four balance laws, the continuity equation emerges,

∂ t ρ + div J = 0.
However, as noted in [17, page 504], the equation on J isn't closed,

ε 2 ∂ t J + ∇ ( f + + f - g + + g - ) = -σ(x) J, (1.4) 
so that, formally, the asymptotic behavior appears to be given by,

∂ t ρ = ∂ x ( ∂ x (f + + f -) σ(x) ) + ∂ y ( ∂ y (g + + g -) σ(x)
) .

However, by subtracting the first (second) and the third (fourth) balance laws,

ε∂ t (f ± -g ± ) ± (∂ x f ± -∂ y g ± ) = - σ ε (f ± -g ± ),
we get that |f ± -g ± | = O(ε), so former calculations can be improved into,

ε 2 ∂ t J + ∇( ρ 2 ) = -σJ - 1 2 ∇ ( (f + -g + ) + (f --g -) (g + -f + ) + (g --f -) ) = -σJ -O(ε),
which leads to the expected diffusion equation (see also (4.8),

∂ t ρ(t, x) = div ( ∇ρ 2σ(x)
)

, or ∂ t ρ = ∆ρ 2σ if σ is a constant.

(1.5)

These formal arguments were made fully rigorous in [START_REF] Lions | Diffusive limit for finite velocity Boltzmann kinetic models[END_REF] when σ is a constant.

Plan of the paper.

This text follows a similar roadmap as the original article [START_REF] Gosse | An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations[END_REF], with the supplementary difficulty that every derivation must now be made on two-dimensional kinetic models. To proceed, we recall in §2 the pioneering results of [START_REF] Birkhoff | Harmonic solutions of transport equations[END_REF], thanks to which one can deduce, by means of Laplace transforms, kinetic steady-states from harmonic functions. Following ideas of [START_REF] Gosse | Redheffer products & numerical approximation of currents in one-dimensional semiconductor kinetic models[END_REF][START_REF] Gosse | A well-balanced and asymptotic-preserving scheme for the one-dimensional linear Dirac equation[END_REF], a S-matrix is derived, in §3, from the data of such polynomial kinetic steady-states, yielding a time-marching scheme (3.5), which is able to preserve non-trivial 2D equilibria (see Theorem 3.2). Moreover, the S-matrix being doubly-stochastic, it is straightforward to show that (3.5) preserves positivity as well as L 1 /L ∞ bounds, like its continuous counterpart. Drawing on our paper [START_REF] Gosse | Some examples of kinetic schemes whose diffusion limit is Il'in's exponential-fitting[END_REF], after a parabolic rescaling of variables, the S-matrix decomposes nicely so as to yield an IMEX scheme (4.1) which relaxes, as ε → 0, towards (4.8), which is a consistent discretization of (1.5). Rigorous proofs are produced in §5, in particular in Theorem 5.6, where we can see that the multidimensional feature (1.4), raised in [START_REF] Lions | Diffusive limit for finite velocity Boltzmann kinetic models[END_REF], has consequences at the numerical level. These bounds are visualized in §6 where several challenging benchmarks for both (3.5) and (4.3) are tested on a coarse 32 × 32 Cartesian grid. Finally, §7 paves the way for tackling more complex kinetic models, like (7.1), and some early results of [START_REF] Gosse | An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations[END_REF] are rephrased in the context of S-matrices in Appendix A.

Harmonic stationary distributions.

Harmonic functions and isotropic scattering.

In [START_REF] Birkhoff | Harmonic solutions of transport equations[END_REF], the authors present a tricky procedure which allows to derive an infinity of (explicit) exact steady-states of the following multi-dimensional kinetic model,

∂ t f (t, x, v) + v • ∇ x f = ∫ S 1 f (t, x, v ′ ) dv ′ 2π -f, x = (x, y), v = (ξ, η).
In virtue of the method of characteristics, long-time asymptotics t → +∞ satisfy,

f (x, v) = ∫ ∞ 0 exp(-r) ρ(x -rv) dr, ρ(x) = ∫ S 1 f (x, v) dv 2π , (2.1)
which is the Laplace transform of the (oriented) one-dimensional trace of ρ, [START_REF] Tretiak | The exponential Radon transform[END_REF],

ρx,v : R + ∋ r → ρ(x -rv), f (x, v) = L r (ρ x,v )[p = 1]. (2.2) 
A Fredholm equation (of the second kind) follows by integrating again in v ∈ S 1 ,

∀x ∈ R 2 , ρ(x) = ∫ ∞ 0 exp(-r) (∫ S 1 ρ(x -rv) dv 2π ) dr. (2.3)
At this point, the authors of [START_REF] Birkhoff | Harmonic solutions of transport equations[END_REF] claim that, as the long-time behavior of the kinetic model is pure diffusion and ρ is a macroscopic quantity, harmonic functions may induce mesoscopic steady-states by means of (2.1). Hence, if ρ is a steady-state of diffusion, ∆ρ = 0, and its mean-value property [START_REF] Bose | A mean value property of elliptic equations with constant coefficients[END_REF][START_REF] Flatto | Functions with a mean value property[END_REF][START_REF] Zalcman | Mean values and differential equations[END_REF] yields,

∀r ∈ R + , ρ(x) = ∫ S 1 ρ(x -rv) dv 2π ,
so that, by multiplying by exp(-r) and integrating in

r ∈ R + , ∫ ∞ 0 ρ(x) exp(-r) dr = ρ(x) = ∫ ∞ 0 exp(-r) (∫ S 1 ρ(x -rv) dv 2π
) dr, holds for any x ∈ R 2 , so that (2.3) is satisfied, and a class of stationary kinetic densities f (x, v) can be deduced from (2.1). For instance, harmonic polynomials furnish an infinity of 2D mesoscopic steady-states, which generalize the only two 1, x -v (see e.g. [START_REF] Gosse | Computing qualitatively correct approximations of balance laws: Exponential-fit, well-balanced and asymptotic-preserving[END_REF]Chap. 9]), which follow from ρ ′′ (x) = 0 in one dimension.

Kinetic steady-states and harmonic polynomials.

A major result in [START_REF] Birkhoff | Harmonic solutions of transport equations[END_REF] is that kinetic stationary solutions f (x, v) can be deduced from macroscopic (i.e. diffusive, or harmonic) ones ρ(x), by means of a Laplace transform of r → ρ(x -r v),

f (x, v) = ∫ ∞ 0 ρ(x -r v) exp(-r) dr, ∆ρ = 0, (2.4) 
as soon as certain integrability conditions are met (see [START_REF] Birkhoff | Harmonic solutions of transport equations[END_REF]Theorem A]). Accordingly, in the special case where x = x ∈ R (one space dimension), harmonic solutions of d 2 ρ/dx 2 = 0 reduce to {1, x} and it comes that, for v ∈ R,

f (x, v) = ∫ ∞ 0 exp(-r) dr = 1, f (x, v) = ∫ ∞ 0 (x -rv) exp(-r) dr = x -v,
which are well-known "separated variables Case's solutions", see [11, eqn (9.8)]. In more space dimensions, harmonic functions are abundant (any holomorphic function of z = x + iy ∈ C furnishes two harmonic ones: its real and imaginary parts), so that (2.4) yields an infinite set of polynomial solutions, being

f (x, v) = { 1, x -v ∈ R 2 , (2.5) xy -(xη + yξ) + 2ξη, x 2 -y 2 2 -(xξ -yη) + (ξ 2 -η 2 ), ... etc } ,
see [4, eqn (2.6)]. The first ones correspond to "dimensional splitting", whereas last two ones are truly 2D and "conjugate" in a certain sense (as seen below). These stationary distributions f (x, v) can be easily retrieved from (2.4) by taking advantage of the expression of harmonic functions in polar coordinates,

ρ(x = r cos θ, y = r sin θ) = a 0 + ∑ n∈N * (a n cos nθ + b n sin nθ)r n , (2.6)
in which the first basis components are { 1, x = r cos θ, y = r sin θ, x 2 -y 2 = r 2 cos 2θ, xy = r 2 sin 2θ, ...

} .

These "harmonic steady-states" f (x, v) follow from Euler's Gamma function,

Γ(x) = ∫ ∞ 0 exp(-t) t x-1 dt, Γ(n) = (n -1)! if n ∈ N,
because, according to (2.1), the polynomial solutions given in (2.6) rewrite, 

f (x, v) = { Γ(1), Γ(1)x -Γ(2)v, Γ ( 

3.

A "truly 2D" approximation of f (t, x, v). Working on a uniform Cartesian grid for which ∆x = ∆y, we mimic the notation already used in [START_REF] Bianchini | A truly two-dimensional discretization of drift-diffusion equations on Cartesian grids[END_REF], see Fig. 3.1.

Derivation of the S-matrix.

In order to simulate (1.3) on a 9-points stencil, we only need the first four stationary solutions: the choice between the two "truly 2D" quadratic ones depends on the velocity vectors. A simple case, where one of the conjugate solutions is always null, consists in working in diagonal coordinates, x = (∓R, 0) and (0, ∓R), v = (±1, 0) and (0, ±1),

where R = ∆x/ √ 2 is the radius of the disc centered in x i-1 2 , y j+ 1 2 . The S-matrix acts on four incoming states and produces four outgoing ones, so

    f + * f - * g + * g - *     = S i-1 2 ,j+ 1 2     f + i-1,j f - i,j+1 g + i,j g - i-1,j+1     .
By linearity, and following ideas from [11, Chap. 9], a C ∞ stationary solution reads,

f (x, v) = α + β(x -ξ) + γ(y -η) + ν ( x 2 -y 2 2 -(xξ -yη) + (ξ 2 -η 2 )
) , (3.1)

(x i , y j ) f + i-1,j S i-1 2 ,j+ 1 2 f - i-1,j g - i-1,j g + i-1,j Figure 3.1. The S-matrix S i-1 2 ,j+ 1 2
and an incoming state,

f + i-1,j .
so that aforementioned "incoming" and "outgoing" states are, respectively,

{ f + i-1,j = f (x = (-R, 0), v = (1, 0)), f - i,j+1 = f (x = (R, 0), v = (-1, 0)), g + i,j = f (x = (0, -R), v = (0, 1)), g - i-1,j+1 = f (x = (0, R), v = (0, -1)
), which is a linear system for (α, β, γ, ν), and

{ f + * = f (x = (R, 0), v = (1, 0)), f - * = f (x = (-R, 0), v = (-1, 0)), g + * = f (f x = (0, R), v = (0, 1)), g - * = f (x = (0, -R), v = (0, -1
)), involving again the "spectral coefficients" (α, β, γ, ν) ∈ R 4 which values are fixed by the four incoming states. Accordingly, the S-matrix decomposes again like,

∀(i, j) ∈ Z 2 , S i-1 2 ,j+ 1 2 = S(σ i-1 2 ,j+ 1 2 ), S(σ) = M M -1 , ( 3.2) 
where M has mutually orthogonal columns,

M =     1 -(1 + σR) 0 1 + (1 + σR) 2 1 (1 + σR) 0 1 + (1 + σR) 2 1 0 -(1 + σR) - ( 1 + (1 + σR) 2 ) 1 0 (1 + σR) - ( 1 + (1 + σR) 2 )     , ( 3.3) 
along with its companion M ,

M =     1 -(1 -σR) 0 1 + (1 -σR) 2 1 1 -σR 0 1 + (1 -σR) 2 1 0 -(1 -σR) - ( 1 + (1 -σR) 2 ) 1 0 (1 -σR) - ( 1 + (1 -σR) 2 )     ,
in which a rescaling of x was made in order to cope with variable opacity σ(x). One recognizes the matrices of 1D Goldstein-Taylor model, see §A and [START_REF] Gosse | Computing qualitatively correct approximations of balance laws: Exponential-fit, well-balanced and asymptotic-preserving[END_REF]Remark 9.3],

( 1 -(1 + σR) 1 (1 + σR) ) , ( 1 
-(1 -σR) 1 (1 -σR)
) , but now, 1D solutions σx -v are coupled by the constant and quadratic ones.

Resulting 2D time-marching scheme.

For σR ≥ 0, the determinant |M | is positive, so M is invertible and its inverse reads:

|M | = 8(1 + σR) 2 ( 1 + (1 + σR) 2 ) , M -1 =     1 4 1 4 1 4 1 4 -A A 0 0 0 0 -A A B B -B -B     ,
so that α is always the average of the four incoming states, and where

A = 1 2(1 + σR) , B = 1 4 (1 + (1 + σR) 2 )
.

Accordingly, the S-matrix is given by the product,

S(σ) = M M -1 (3.4) =     1 4 + C + D 1 4 -C + D 1 4 -D 1 4 -D 1 4 -C + D 1 4 + C + D 1 4 -D 1 4 -D 1 4 -D 1 4 -D 1 4 + C + D 1 4 -C + D 1 4 -D 1 4 -D 1 4 -C + D 1 4 + C + D     ,
which both lines and columns clearly add to unity, because

C = 1 -σR 2(1 + σR) = 1 2 - σR 1 + σR , D = (1 -σR) 2 + 1 4((1 + σR) 2 + 1) = 1 4 - σR 1 + (1 + σR) 2 .
The S-matrix rewrites as a O(σR)-perturbation of the identity of R 4 ,

S(σ) = Id R 4 + σR { 1 1 + σR     -1 1 0 0 1 -1 0 0 0 0 -1 1 0 0 1 -1     + 1 1 + (1 + σR) 2     -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 1 1 -1 -1     } , so that, similarly to e.g. [15, Prop. 3.2], S(σ) → Id R 4 if σ → 0, S(σ) → S 0 =     0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0     if σ → +∞.
Having at hand the 4 × 4 matrix (3.2) allows to deduce a time-marching scheme for the 2D system (1.3) on a uniform Cartesian grid (see Fig. 3.

1, ∆x = ∆y),      f +,n+1 i,j+1 f -,n+1 i-1,j g +,n+1 i-1,j+1 g -,n+1 i,j      = ( 1 - ∆t 2R )      f +,n i,j+1 f -,n i-1,j g +,n i-1,j+1 g -,n i,j      + ∆t 2R S(σ i-1 2 ,j+ 1 2 )      f +,n i-1,j f -,n i,j+1 g +,n i,j g -,n i-1,j+1      . (3.5) Lemma 3.1.
Under the CFL restriction ∆t ≤ 2R, the scheme (3.5) is consistent with (1.3) and preserves positivity. Moreover, it is conservative and L ∞ -bounded.

Proof. Under the aforementioned CFL restriction, (3.5) is a convex combination (as advocated in [12, eqn (2.2)]), hence it preserves positivity because all the entries of S(σ) are nonnegative. Besides, doubly-stochastic matrices are such that,

∀⃗ v ∈ R 4 , ∥S(σ)⃗ v∥ ∞ ≤ ∥⃗ v∥ ∞ , ∥S(σ)⃗ v∥ 1 ≤ ∥⃗ v∥ 1 ,
which implies that (3.5) is bounded in L 1 and L ∞ . Consistency is shown for 0 ≤ σR ≪ 1 (fine grid); at first order, the expression of the S-matrix reduces to,

1 1 + (1 + σR) 2 ≃ 1 2(1 + σR) , S(σ) = Id R 4 + σR 2(1 + σR)     -3 1 1 1 1 -3 1 1 1 1 -3 1 1 1 1 -3     ,
and inserting this expression in (3.5) yields a consistent approximation of (1.3). The scheme (3.5) is able to preserve some non-trivial 2D equilibria, see e.g. [START_REF] Ainsworth | Fundamental systems of numerical schemes for linear convectiondiffusion equations and their relationship to accuracy[END_REF]. Theorem 3.2 (2D well-balanced). Let σ(x) ≡ σ > 0 a constant, then any linear combination (3.1) induces a numerical steady-state for the scheme (3.5), given by

f ± ( x -y √ 2 , x + y √ 2 ) = f (σx; (±1, 0)), g ± ( x -y √ 2 , x + y √ 2 ) = f (σx; (0, ±1)). Proof. Pick (α, β, γ, ν) ∈ R 4 in (3.1) and consider a steady-state f (σx, v): since |M | > 0, its restriction to v = {(±1, 0), (0, ±1)} on a uniform Cartesian grid satisfies,     α β γ ν     = M -1      f +,n i-1,j f -,n i,j+1 g +,n i,j g -,n i-1,j+1      ⇒ S(σ)      f +,n i-1,j f -,n i,j+1 g +,n i,j g -,n i-1,j+1      =      f +,n i,j+1 f -,n i-1,j g +,n i-1,j+1 g -,n i,j      ,
so they are invariant by the time-marching scheme (3.5). By aπ 4 rotation we pass from diagonal coordinates with v = {(±1, 0), (0, ±1)} to axial ones with (1.2).

Diffusive behavior of the S-matrix.

In order to study asymptotic limits so as to check a possible consistency with the estimates stated in [START_REF] Lions | Diffusive limit for finite velocity Boltzmann kinetic models[END_REF]Theorem 5.1], we rescale σ(x) → σ(x)/ε, ε ≪ 1. Accordingly, the S-matrix decomposes into S 0 +ε S 1,ε , like in [15, §1.2], where, as ε → 0, Following again [START_REF] Gosse | Some examples of kinetic schemes whose diffusion limit is Il'in's exponential-fitting[END_REF], an IMEX scheme may read

     f +,n+1 i,j+1 f -,n+1 i-1,j g +,n+1 i-1,j+1 g -,n+1 i,j      + ∆t 2εR {      f +,n+1 i,j+1 f -,n+1 i-1,j g +,n+1 i-1,j+1 g -,n+1 i,j      -S 0      f +,n+1 i-1,j f -,n+1 i,j+1 g +,n+1 i,j g -,n+1 i-1,j+1      } (4.1) =      f +,n i,j+1 f -,n i-1,j g +,n i-1,j+1 g -,n i,j      + ∆t 2R S 1,ε      f +,n i-1,j f -,n i,j+1 g +,n i,j g -,n i-1,j+1      ,
and we expect the (implicit, but not costly) left-hand side to yield "Maxwellian estimates" of the type [17, eqn (5.15)], and the (explicit) right-hand side to produce accurate and consistent diffusive numerical fluxes.

Decomposition of the S-matrix.

By defining the positive coefficients,

α ε i-1 2 ,j+ 1 2 = 1 ε + σ i-1 2 ,j+ 1 2 R ; β ε i-1 2 ,j+ 1 2 = σ i-1 2 ,j+ 1 2 R ε 2 + (ε + σ i-1 2 ,j+ 1 2 R) 2 , (4.2)
the aforementioned decomposition reads, at each location i - 1 2 , j + 1 2 ,

S ε =     0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0     + ε     α -β -(α + β) β β -(α + β) α -β β β β β α -β -(α + β) β β -(α + β) α -β     ,
hence, the IMEX scheme (4.1) rewrites as,

f +,n+1 i,j+1 + ∆t 2εR ( f +,n+1 i,j+1 -f -,n+1 i,j+1 ) = f +,n i,j+1 + ∆t 2R [ α ε i-1 2 ,j+ 1 2 ( f +,n i-1,j -f -,n i,j+1
)

+ β ε i-1 2 ,j+ 1 2 ( -f +,n i-1,j -f -,n i,j+1 + g +,n i,j + g -,n i-1,j+1
)]

f -,n+1 i-1,j + ∆t 2εR ( f -,n+1 i-1,j -f +,n+1 i-1,j ) = f -,n i-1,j + ∆t 2R [ α ε i-1 2 ,j+ 1 2 ( f -,n i,j+1 -f +,n i-1,j ) + β ε i-1 2 ,j+ 1 2 ( -f +,n i-1,j -f -,n i,j+1 + g +,n i,j + g -,n i-1,j+1 )] g +,n+1 i-1,j+1 + ∆t 2εR ( g +,n+1 i-1,j+1 -g -,n+1
i-1,j+1

) = g +,n i-1,j+1 + ∆t 2R [ α ε i-1 2 ,j+ 1 2 ( g +,n i,j -g -,n i-1,j+1 ) + β ε i-1 2 ,j+ 1 2 ( f +,n i-1,j + f -,n i,j+1 -g +,n i,j -g -,n i-1,j+1 )] g -,n+1 i,j + ∆t 2εR ( g -,n+1 i,j -g +,n+1 i,j ) = g -,n i,j + ∆t 2R [ α ε i-1 2 ,j+ 1 2 ( g -,n i-1,j+1 -g +,n i,j ) + β ε i-1 2 ,j+ 1 2 ( f +,n i-1,j + f -,n i,j+1 -g +,n i,j -g -,n i-1,j+1
)

] .

An index-shift yields:

    1 + ∆t 2εR -∆t 2εR 0 0 -∆t 2εR 1 + ∆t 2εR 0 0 0 0 1 + ∆t 2εR -∆t 2εR 0 0 -∆t 2εR 1 + ∆t 2εR          f +,n+1 i,j f -,n+1 i,j g +,n+1 i,j g -,n+1 i,j      =      f +,n i,j f -,n i,j g +,n i,j g -,n i,j      + (4.3) ∆t 2R       α ε i-1 2 ,j-1 2 (f +,n i-1,j-1 -f -,n i,j ) -β ε i-1 2 ,j-1 2 (f +,n i-1,j-1 + f -,n i,j -g +,n i,j-1 -g -,n i-1,j ) α ε i+ 1 2 ,j+ 1 2 (f -,n i+1,j+1 -f +,n i,j ) -β ε i+ 1 2 ,j+ 1 2 (f +,n i,j + f -,n i+1,j+1 -g +,n i+1,j -g -,n i,j+1 ) α ε i+ 1 2 ,j-1 2 (g +,n i+1,j-1 -g -,n i,j ) + β ε i+ 1 2 ,j-1 2 (f +,n i,j-1 + f -,n i+1,j -g +,n i+1,j-1 -g -,n i,j ) α ε i-1 2 ,j+ 1 2 (g -,n i-1,j+1 -g +,n i,j ) + β ε i-1 2 ,j+ 1 2 (f +,n i-1,j + f -,n i,j+1 -g +,n i,j -g -,n i-1,j+1 )      
.

The implicit part relies on a block-diagonal matrix, for which,

( 1 + b -b -b 1 + b ) -1 = 1 a + b ( a b b a ) , b = ∆t 2εR , a = 1 + ∆t 2εR ,
so that (4.3) rewrites as an explicit time-marching scheme. The matrix in the left hand side of (4.3) may be written as

Id R 4 + ∆t 2εR H 0 , with H 0 =     1 -1 0 0 -1 1 0 0 0 0 1 -1 0 0 -1 1     . (4.4)
Denoting f n i,j = f +,n i,j + f -,n i,j and g n i,j = g +,n i,j + g -,n i,j , their time evolution follows from adding the first two and the last two equations in (4.3):

f n+1 i,j = f n i,j + ∆t 2R ( α ε i-1 2 ,j-1 2 (f +,n i-1,j-1 -f -,n i,j ) + α ε i+ 1 2 ,j+ 1 2 (f -,n i+1,j+1 -f +,n i,j ) ) - ∆t 2R ( β ε i-1 2 ,j-1 2 (f +,n i-1,j-1 + f -,n i,j -g +,n i,j-1 -g -,n i-1,j ) (4.5) 
+ β ε i+ 1 2 ,j+ 1 2 (f +,n i,j + f -,n i+1,j+1 -g +,n i+1,j -g -,n i,j+1
)

)

g n+1 i,j = g n i,j + ∆t 2R ( α ε i+ 1 2 ,j-1 2 (g +,n i+1,j-1 -g -,n i,j ) + α ε i-1 2 ,j+ 1 2 (g -,n i-1,j+1 -g +,n i,j ) ) + ∆t 2R ( β ε i+ 1 2 ,j-1 2 (f +,n i,j-1 + f -,n i+1,j -g +,n i+1,j-1 -g -,n i,j ) (4.6) 
+ β ε i-1 2 ,j+ 1 2 (f +,n i-1,j + f -,n i,j+1 -g +,n i,j -g -,n i-1,j+1 )
) .

Formal diffusive limit.

When ε → 0, we deduce from (4.3) that,

     f +,n+1 i,j f -,n+1 i,j g +,n+1 i,j g -,n+1 i,j      ∈ Ker(H 0 ) = Span            1 1 0 0     ,     0 0 1 1            . (4.7)
Then, in the limit ε → 0, we expect, at least formally, that

f +,n+1 i,j = f -,n+1 i,j = 1 2 f n+1 i,j , g +,n+1 i,j = g -,n+1 i,j = 1 2 g n+1 i,j ,
along with, from (4.2),

α ε i-1 2 ,j+ 1 2 , β ε i-1 2 ,j+ 1 2 → 1 σ i-1 2 ,j+ 1 2 R , ε → 0,
so that, former equations (4.5) and (4.6) become

f n+1 i,j = f n i,j + ∆t 4R 2 ( 1 σ i-1 2 ,j-1 2 ( (g n i-1,j -f n i,j ) + (g n i,j-1 -f n i,j ) ) + 1 σ i+ 1 2 ,j+ 1 2 ( (g n i+1,j -f n i,j ) + (g n i,j+1 -f n i,j )
) )

g n+1 i,j = g n i,j + ∆t 4R 2 ( 1 σ i-1 2 ,j+ 1 2 ( (f n i,j+1 -g n i,j ) + (f n i-1,j -g n i,j ) ) + 1 σ i+ 1 2 ,j-1 2 ( (f n i+1,j -g n i,j ) + (f n i,j-1 -g n i,j )
) )

.

Accordingly, f and g satisfy similar diffusion equations, if the opacity σ is smooth. Consequently, if initially they are close enough (so-called "well-prepared initial data"), they can be expected to stay so because their difference f n i,jg n i,j satisfies a parabolic equation. The decay of fg will be rigorously proved when σ is a constant, see Theorem 5.6. Adding, assuming fg → 0, and denoting ρ n i,j = f n i,j + g n i,j , it comes

ρ n+1 i,j = ρ n i,j + ∆t 2σR 2 ( ( 1 2σ i+ 1 2 ,j+ 1 2 + 1 2σ i+ 1 2 ,j-1 2 ) (ρ n i+1,j -ρ n i,j ) (4.8) 
+ ( 1 2σ i+ 1 2 ,j+ 1 2 + 1 2σ i-1 2 ,j+ 1 2 ) (ρ n i,j+1 -ρ n i,j ) - ( 1 2σ i-1 2 ,j+ 1 2 + 1 2σ i-1 2 ,j-1 2 ) (ρ n i,j -ρ n i-1,j ) - ( 1 2σ i+ 1 2 ,j-1 2 + 1 2σ i-1 2 ,j-1 2 ) (ρ n i,j -ρ n i,j-1 )
)

.

which is a second-order, finite-differences, monotone (under the CFL restriction (5.6)) discretization of the macroscopic diffusion equation (1.5).

Rigorous uniform estimates for constant opacity.

Let (u i,j ) stand for any real sequence, we introduce the following notations,

δu i+ 1 2 ,j = u i+1,j -u i,j , δu i,j+ 1 2 = u i,j+1 -u i,j , ∥u∥ 1 = ∑ i,j ∆x 2 |u i,j |, T V (u) = ∑ i,j ∆x ( |δu i+ 1 2 ,j | + |δu i,j+ 1 2 | ) , ( 5.1 
)

∥∆u∥ 1 = ∑ i,j |u i+1,j + u i,j+1 + u i-1,j + u i,j-1 -4u i,j |.

General properties of the scheme.

The first stepping stone is the definition of a convenient CFL restriction:

Lemma 5.1. Assume that there exists σ min > 0 such that the opacity is such that 0 < σ min ≤ σ i-1 2 ,j+ 1 2 for all i, j. Then, under the CFL condition

∆t ≤ min { 2 3 σ min R 2 , R(ε + σ min R) 2 ( 1 + √ 1 + 8ε ε + σ min R )} , (5.2)
the IMEX scheme (4.3) preserves positivity. Proof. Inverting the block-diagonal matrix in (4.3) brings the expressions,

f +,n+1 i,j = 1 2εR + 2∆t ( ( 2εR + ∆t - ∆t 2 2R (α ε i+ 1 2 ,j+ 1 2 + β ε i+ 1 2 ,j+ 1 2 ) ) f +,n i,j + ( ∆t - ∆t 2R (2εR + ∆t)(α ε i-1 2 ,j-1 2 + β ε i-1 2 ,j-1 2 
) ) f -,n i,j + (2εR + ∆t) ∆t 2R (α ε i-1 2 ,j-1 2 -β ε i-1 2 ,j-1 2 )f +,n i-1,j-1 (5.3) + ∆t 2 2R (α ε i+ 1 2 ,j+ 1 2 -β ε i+ 1 2 ,j+ 1 2 )f -,n i+1,j+1 + (2εR + ∆t) ∆t 2R β ε i-1 2 ,j-1 2 (g +,n i,j-1 + g -,n i-1,j ) + ∆t 2 2R β ε i+ 1 2 ,j+ 1 2 (g +,n i+1,j + g -,n i,j+1 )
) , and

f -,n+1 i,j = 1 2εR + 2∆t ( ( ∆t -(2εR + ∆t) ∆t 2R (α ε i+ 1 2 ,j+ 1 2 + β ε i+ 1 2 ,j+ 1 2 ) ) f +,n i,j + (2εR + ∆t - ∆t 2 2R (α ε i-1 2 ,j-1 2 + β ε i-1 2 ,j-1 2 ) ) f -,n i,j + ∆t 2 2R (α ε i-1 2 ,j-1 2 -β ε i-1 2 ,j-1 2 )f +,n i-1,j-1 + (2εR + ∆t) ∆t 2R (α ε i+ 1 2 ,j+ 1 2 -β ε i+ 1 2 ,j+ 1 2 )f -,n i+1,j+1 + ∆t 2 2R β i-1 2 ,j-1 2 (g +,n i,j-1 + g -,n i-1,j ) + (2εR + ∆t) ∆t 2R β ε i+ 1 2 ,j+ 1 2 (g +,n i+1,j + g -,n i,j+1 )
) ,

along with similar ones for g ±,n+1

i,j

, too. From (4.2), it comes

α ε i-1 2 ,j+ 1 2 -β ε i-1 2 ,j+ 1 2 = ε 2 + ε(ε + σ i-1 2 ,j+ 1 2 R) (ε + σ i-1 2 ,j+ 1 2 R)(ε 2 + (ε + σ i-1 2 ,j+ 1 2 R) 2 ) ≥ 0. Define a (decreasing) function ψ : R + → R + , ψ(x) def = 1 ε + x + x ε 2 + (ε + x) 2 , ψ ′ (x) ≤ 0 on (0, +∞),
then, since

α ε i-1 2 ,j+ 1 2 + β ε i-1 2 ,j+ 1 2 = ψ(σ i-1 2 ,j+ 1
2 R), we get the following bound:

α ε i-1 2 ,j+ 1 2 + β ε i-1 2 ,j+ 1 2 ≤ 1 ε + σ min R + σ min R ε 2 + (ε + σ min R) 2 . Hence f ±,n+1 i,j , g ±,n+1 i,j
) are nonnegative combinations of previous iterates if,

( ε + ∆t 2R ) ( 1 ε + σ min R + σ min R ε 2 + (ε + σ min R) 2 ) ≤ 1, (5.4 
)

∆t 2 2R ( 1 ε + σ min R + σ min R ε 2 + (ε + σ min R) 2 )
≤ 2εR + ∆t.

(5.5) Conditions (5.4) and (5.5) are met if and only if,

∆t 2R ≤ σ min R ε 2 + εσ min R + (σ min R) 2 2ε 2 + 3εσ min R + 2(σ min R) 2 , ∆t 2 R(ε + σ min R) ≤ 2εR + ∆t
and these hold as soon as (5.2) does. Remark 1. A sufficient condition for (5.2) is the heat equation's restriction:

2∆t ≤ σ min R 2 (5.6)
Lemma 5.2 (Conservation). Let us assume that the initial data are nonnegative and that (5.2) holds. Then, the scheme (4.3) is bounded in L 1 and conservative :

∥f +,n ∥ 1 + ∥f -,n ∥ 1 + ∥g +,n ∥ 1 + ∥g -,n ∥ 1 = ∥f +,0 ∥ 1 + ∥f -,0 ∥ 1 + ∥g +,0 ∥ 1 + ∥g -,0 ∥ 1 .
Proof. It suffices to add the lines of (4.3) and to sum over i and j. Lemma 5.3 (L ∞ bound). Let initial data satisfy

0 ≤ f ±,0 i,j ≤ M, 0 ≤ g ±,0 i,j ≤ M.
Then, under the CFL (5.2),

∀ n ∈ N, 0 ≤ f ±,n i,j ≤ M, 0 ≤ g ±,n i,j ≤ M.
Proof. The proof of Lemma 5.1 yields that, under (5.2), f ±,n+1 i,j and g ±,n+1

i,j are convex combination of previous iterates, giving the announced L ∞ bound.

Remark 2. These bounds hold even if the opacity σ isn't a (positive) constant.

5.2.

Uniform estimates in the case σ constant. We study rigorously the diffusive limit of (4.3) in order to prove that it is "asymptotic-preserving" (AP). Recall from (4.2) the coefficients,

α ε = 1 ε + σR ; β ε = σR ε 2 + (ε + σR) 2 , for σ ≡ σ ∈ R + . ( 5.7) 
As σ is constant, (4.3) simplifies into,

    1 + ∆t 2εR -∆t 2εR 0 0 -∆t 2εR 1 + ∆t 2εR 0 0 0 0 1 + ∆t 2εR -∆t 2εR 0 0 -∆t 2εR 1 + ∆t 2εR          f +,n+1 i,j f -,n+1 i,j g +,n+1 i,j g -,n+1 i,j      =      f +,n i,j f -,n i,j g +,n i,j g -,n i,j      (5.8) 
+ ∆t 2R      α ε (f +,n i-1,j-1 -f -,n i,j ) -β ε (f +,n i-1,j-1 + f -,n i,j -g +,n i,j-1 -g -,n i-1,j ) α ε (f -,n i+1,j+1 -f +,n i,j ) -β ε (f +,n i,j + f -,n i+1,j+1 -g +,n i+1,j -g -,n i,j+1 ) α ε (g +,n i+1,j-1 -g -,n i,j ) + β ε (f +,n i,j-1 + f -,n i+1,j -g +,n i+1,j-1 -g -,n i,j ) α ε (g -,n i-1,j+1 -g +,n i,j ) + β ε (f +,n i-1,j + f -,n i,j+1 -g +,n i,j -g -,n i-1,j+1 )      Lemma 5.4.
Let σ be a positive constant: under the parabolic CFL restriction,

2 ∆t < σ min R 2 , ( 5.9) 
the scheme (5.8) is TVD (total variation diminishing),

T V (f +,n+1 ) + T V (f -,n+1 ) + T V (g +,n+1 ) + T V (g -,n+1 ) ≤ T V (f +,n ) + T V (f -,n ) + T V (g +,n ) + T V (g -,n ).
Proof. By linearity, the expression of f +,n+1 i,j in (5.3) in the proof of Lemma 5.1 is similar to the ones of δf +,n i+ 1 2 ,j . Since (5.9) ensures that coefficients are nonnegative, a triangle inequality brings,

|δf +,n+1 i+ 1 2 ,j | ≤ 1 2εR + 2∆t ( ( 2εR + ∆t - ∆t 2 2R (α ε + β ε ) ) |δf +,n i+ 1 2 ,j | + ( ∆t - ∆t 2R (2εR + ∆t)(α ε + β ε ) ) |δf -,n i+ 1 2 ,j | + (2εR + ∆t) ∆t 2R (α ε -β ε )|δf +,n i-1 2 ,j-1 | + ∆t 2 2R (α ε -β ε )|δf -,n i+ 3 2 ,j+1 | + (2εR + ∆t) ∆t 2R β ε (|δg +,n i+ 1 2 ,j-1 | + |δg -,n i-1 2 ,j |) + ∆t 2 2R β ε (|δg +,n i+ 1 2 ,j | + |δg -,n i+ 1 2 ,j+1 |) ) ,
with similar expressions for |δf -,n

i+ 1 2 , |, |δg +,n+1 i 1 2 ,j | and |δg -,n+1 i+ 1 2 ,j |. Adding, |δf +,n+1 i+ 1 2 ,j | + |δf -,n+1 i+ 1 2 ,j | + |δg +,n+1 i+ 1 2 ,j | + |δg -,n+1 i+ 1 2 ,j | ≤ ( 1 - ∆t 2R (α ε + β ε ) )( |δf +,n i+ 1 2 ,j | + |δf -,n i+ 1 2 ,j | + |δg +,n i+ 1 2 ,j | + |δg -,n i+ 1 2 ,j | ) + ∆t 2R (α ε -β ε ) ( |δf +,n i-1 2 ,j-1 | + |δf -,n i+ 3 2 ,j+1 | + |δg +,n i+ 3 2 ,j-1 | + |δg -,n i-1 2 ,j+1 | ) + ∆t 2R β ε ( |δf +,n i+ 1 2 ,j-1 | + |δf -,n i+ 3 2 ,j | + |δf +,n i-1 2 ,j | + |δf -,n i+ 1 2 ,j+1 | ) + ∆t 2R β ε ( |δg +,n i+ 1 2 ,j-1 | + |δ -,n i-1 2 ,j | + |δg +,n i+ 3 2 ,j | + |δg -,n i+ 1 2 ,j+1 | ) ,
and summing over i and j, we get, after shifting the indexes,

∑ i,j ( |δf +,n+1 i+ 1 2 ,j | + |δf -,n+1 i+ 1 2 ,j | + |δg +,n+1 i+ 1 2 ,j | + |δg -,n+1 i+ 1 2 ,j | ) ≤ ∑ i,j ( |δf +,n i+ 1 2 ,j | + |δf -,n i+ 1 2 ,j | + |δg +,n i+ 1 2 ,j | + |δg -,n i+ 1 2 ,j |
) .

By the same token with variations in j instead of i, we get the claimed result. Define f ± ∆x , g ± ∆x the piecewise constant functions such that,

f ± (t, x) = f ±,n i,j , g ± (t, x) = g ±,n i,j , (5.10) 
for t ∈ [n∆t, (n + 1)∆t), x ∈ ((i -1 2 )∆x, (i + 1 2 )∆x) × ((j -1 2 )∆x, (j + 1 2 )∆x). Corollary 5.5. Under (5.9), and for bounded integrable nonnegative data, the approximate solutions (5.10) 

are uniformly bounded in L 1 ∩ L ∞ ∩ BV ([0, T ] × R 2 ).

Rigorous diffusive limit.

We are now in position to state the main result of this section:

Theorem 5.6 (Asymptotic-Preserving property). Assume (5.9) holds and that initial data are independent of ε and smooth enough such that

∃C ∈ R + , ∥∆f +,0 ∥ 1 + ∥∆f -,0 ∥ 1 + ∥∆g +,0 ∥ 1 + ∥∆g -,0 ∥ 1 ≤ C,
then the sequences (f ε ±,n i,j ) and (g ε ±,n i,j ) are of uniformly bounded total variation and converge towards limits, denoted respectively (f ±,n i,j ) and (g ±,n i,j ) which satisfy:

f +,n i,j = f -,n i,j = 1 2 f n i,j , g +,n i,j = g -,n i,j = 1 2 g n i,j ,
where

f n+1 i,j = f n i,j + ∆t 4σR 2 (g n i,j-1 + g n i-1,j + g n i+1,j + g n i,j+1 -4f n i,j ) (5.11) 
g n+1 i,j = g n i,j + ∆t 4σR 2 (f n i,j-1 + f n i+1,j + f n i-1,j + f n i,j+1 -4g n i,j ).
(5.12)

Moreover, the "Maxwellian gap" decreases in time according to,

∀n ∈ N * , ∥f n -g n ∥ 1 ≤ ∥f 0 -g 0 ∥ 1 exp ( - 2n∆t σR 2 ) + C R 2 .
(5.13)

Adding both equations (5.11)-(5.12), we deduce the following result: Corollary 5.7. Under the same assumptions as Theorem 5.6, we have

ρ n+1 i,j = ρ n i,j + ∆t 4σR 2 (ρ n i,j-1 + ρ n i,j+1 + ρ n i-1,j + ρ n i+1,j -4ρ n i,j ), ρ n = f n + g n . along with f ±,n = ρ n /4 + O(R 2 ), g ±,n = ρ n /4 + O(R 2 ).
Proof. By the computations in the proof of Lemma 5.4, the sequences (f ε ±,n i,j ), and (g ε ±,n i,j ) are Cauchy sequences with respect to ε in ℓ 1 . Thus, when ε → 0, they converge to some limits denoted respectively (f ±,n i,j ), and (g ±,n i,j ) and we can pass to the limit in (5.8). Hence as ε → 0, by (4.4) and (4.7), we get that

∀(i, j, n) ∈ Z 2 × N, f +,n+1 i,j = f -,n+1 i,j , g +,n+1 i,j = g -,n+1
i,j

.

Denoting f εn i,j = f ε +,n i,j + f ε -,n i,j and g εn i,j = g ε +,n i,j + g ε -,n i,j , we obtain their equations by adding the first two and the last two lines in (5.8):

f εn+1 i,j = f εn i,j + ∆t 2R ( α ε (f ε+,n i-1,j-1 -f ε-,n i,j ) + α ε (f ε-,n i+1,j+1 -f ε+,n i,j ) ) - ∆t 2R ( β ε (f ε+,n i-1,j-1 + f ε i,j -,n -g ε+,n i,j-1 -g ε-,n i-1,j ) (5.14) + β ε (f ε+,n i,j + f ε-,n i+1,j+1 -g ε+,n i+1,j -g ε-,n i,j+1 ) ) ; g εn+1 i,j = g εn i,j + ∆t 2R ( α ε (g ε+,n i+1,j-1 -g ε-,n i,j ) + α ε (g ε-,n i-1,j+1 -g ε+,n i,j ) ) + ∆t 2R ( β ε (f ε+,n i,j-1 + f ε-,n i+1,j -g ε+,n i+1,j-1 -g ε-,n i,j ) (5.15) + β ε (f ε+,n i-1,j + f ε-,n i,j+1 -g ε+,n i,j -g ε-,n i-1,j+1 )
) .

From the expressions (5.7),

α ε , β ε → 1 σR , when ε → 0.
Yet, passing into the limit we obtain both (5.11) and (5.12). If initially f and g are identical, they stay so. More precisely, let D n i,j = f n i,jg n i,j be the Maxwellian gap,

D n+1 i,j = D n i,j (1 - 2∆t σR 2 ) + ∆t 4σR 2 (4D n i,j -D n i,j-1 -D n i-1,j -D n i+1,j -D n i,j+1 ). (5.16)
Hypotheses on initial data in Theorem 5.6 ensure that

∥∆f 0 ∥ 1 + ∥∆g 0 ∥ 1 ≤ C.
Moreover, from (5.11)-(5.12) and (5.9), we have

∥∆f n+1 ∥ 1 ≤ ∥∆f n ∥ 1 (1 - ∆t σR 2 ) + ∆t σR 2 ∥∆g n ∥ 1 ∥∆g n+1 ∥ 1 ≤ ∥∆g n ∥ 1 (1 - ∆t σR 2 ) + ∆t σR 2 ∥∆f n ∥ 1 .
As a consequence, for all n ∈ N, we have

∥∆f n ∥ 1 + ∥∆g n ∥ 1 ≤ C, so that ∑ i,j |4D n i,j -D n i,j-1 -D n i-1,j -D n i+1,j -D n i,j+1 | ≤ C.
By inserting this latter inequality into (5.16), taking modulus and summing,

∥D n+1 ∥ 1 = ∑ i,j ∆x 2 |D n+1 i,j | ≤ ∥D n ∥ 1 (1 - 2∆t σR 2 ) + C ∆t σ ,
holds for some constant C ≥ 0. Applying a discrete Gronwall inequality,

∥D n ∥ 1 ≤ ∥D 0 ∥ 1 e -2n∆t/(σR 2 ) + C ∆t σ n-1 ∑ k=0 ( 1 - 2∆t σR 2 ) k ≤ ∥D 0 ∥ 1 e -2n∆t/(σR 2 ) + C 2 R 2 .
Remark 3. The bound (5.13) relates to (1.4) and means that, for constant opacity, ∥f -g∥ 1 is roughly of order ∆x 2 when nonnegative initial data belong to W 2,1 (R 2 ). Conversely, both ∥f + -f -∥ 1 and ∥g + -g -∥ 1 are of order ε, as in the 1D case, see [START_REF] Gosse | Computing qualitatively correct approximations of balance laws: Exponential-fit, well-balanced and asymptotic-preserving[END_REF]Lemma 8.4] and [START_REF] Gosse | An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations[END_REF]. All in all, these will be similar when ε ≃ O(R 2 ).

6. Numerical assessments. Hereafter, some benchmarks for both (3.5) and (4.3) are presented, on a coarse 32 × 32 uniform Cartesian grid. The computational domain is the unit square Ω = (0, 1) 2 with various boundary conditions. 6.1. Hyperbolic/kinetic scaling. Following [8, §5.1], the long-time stabilization of (1.3) can be considered in presence of a stiff, discontinuous opacity,

σ(x) = 5 + 995 • χ ( max(|x - 1 2 |, |y - 1 2 |) < 1 4 
) , with χ(A) the indicator function of a set A. A null initial data and an inflow boundary condition is prescribed on the left side by means of, scheme was iterated until T = 15 with the CFL condition (5.6): see Fig. 6.3. The macroscopic density is correctly confined inside the array of obstacles, showing how tiny the artificial dissipation of the IMEX scheme really is. The Maxwellian gap |f -g| is locally of 10 -3 , a value compatible with (5.13) because ∆x 2 ≃ 10 -3 , even in the vicinity of areas of strong variations of σ(x); it smoothly decays with time. Beside, ∆x 2 is also the order of accuracy for the centered discretization of the diffusion equation (4.8) ) , ρ ̸ = 0.

f + (x = 0, •) = g -(x = 0, •) = 1,
A simpler benchmark consists in iterating (4.3) with a Gaussian opacity, ∀x ∈ Ω, σ(x) = 5 + 15 exp

( -25(|x - 1 2 | 2 + |y - 1 2 | 2 )
) ,

with identical initial and outflow boundary conditions, up to T = 0.1: see Fig. 6.4.

Conclusion and outlook.

The present paper showed that a high-quality, genuinely two-dimensional, numerical scheme (3.5), (4.3) can be deduced from the computations achieved in [START_REF] Birkhoff | Harmonic solutions of transport equations[END_REF]. Such a strategy is by no means limited to isotropic scattering. Following [11, §10.3], an elementary model of chemotaxis dynamics is, where ∇S is "frozen" locally at a point x and the biasing function χ ≥ 0 is normalized so as to get the standard 2D continuity equation: ∫ To mimic some computations of [START_REF] Birkhoff | Harmonic solutions of transport equations[END_REF], macroscopic steady-states should verify,

∂ t f + v • ∇f = χ(v • ∇S)ρ(t, x) -f (x, v), a := ∇S(x) ∈ R 2 , ( 7.1) 
∀r ∈ R + , ρ(x) = ∫ S 1 χ(v)ρ(x -rv) dv 2π ,
which means that our "biasing function" χ should also be the "Poisson kernel" of a certain elliptic differential operator that ρ(x) solves. Indeed, ρ(x -rv) is "boundary data" on S 1 , so ρ(x) is the "solution value". Accordingly, from so that, by changing θ → θ -π, one gets (see also [START_REF] Bose | A mean value property of elliptic equations with constant coefficients[END_REF][START_REF] Flatto | Functions with a mean value property[END_REF][START_REF] Zalcman | Mean values and differential equations[END_REF]) where (see again [3, eqns (2.1-3) and (2.12)]), for µ ∈ (0, 2π),

ρ(x) =
0 ≤ ω := ∥a∥ 2 , a 2 = ω(cos µ, sin µ) ∈ R 2 ,
is the polar representation of the drift velocity a ∈ R 2 in (7.4). Accordingly, one can relate mesoscopic to macroscopic steady-states thanks to (7.2), and similar derivations as the ones performed in this article may lead to a "truly two-dimensional", asymptotic-preserving (in diffusive scaling) discretization of (7.1), like (3.5) and (4.3).

Appendix A. S-matrix for Goldstein-Taylor model in 1D.
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Figure 6 . 2 .

 62 Figure 6.2. of (3.5) in a periodic array of obstacles.

Figure 6 . 3 .

 63 Figure 6.3. Diffusive approximation (4.3) at T = ε = 10 -5 in a array of obstacles.

  ∂ t ρ(t, x) + div J = 0.The analogue of the Laplace transform in (2.1) for steady-states f (x, v) reads,f (x, v) = χ(v) ∫ ∞ 0 exp(-r)ρ(x -rv) dr = χ(v)L r (ρ x,v )[p = 1],(7.2)from which follows a new Fredholm equation, now involving the biasing function χ,

[ 3 ,Figure 6 . 4 .

 364 Figure 6.4. Diffusive approximation (4.3) at T = 15, ε = 10 with a Gaussian opacity.

  e iθ ) exp(ω r cos(θ -µ)) I 0 (ω r) dθ 2π , Pick, as the biasing function, (I 0 , the modified Bessel function of index zero)χ(v = e iθ ) = exp(ω r cos(θ -µ)) I 0 (ω r)the normalization being a consequence of the "integral representation of Bessel functions", see e.g.[3, eqn (3.1)], then such a kernel corresponds to drift-diffusion equation, -∆ρ + a • ∇ρ = 0, in the disk of radius r > 0,(7.4) 

  . The macroscopic velocity field ⃗ v is now rescaled,

	∀x ∈ Ω,	⃗ v(t, x) =	1 ε	( f + (t,x)-f -(t,x) ρ(t,x) g + (t,x)-g -(t,x) ρ(t,x)

along with specular reflection on horizontal walls y = 0, y = 1, and outflow at x = 1. The macroscopic velocity field ⃗ v(t, x) is defined as the following ratio,

)

where ρ ̸ = 0.

The scheme (3.5) was set with ∆t = 0.975 √ 2 ∆x, and iterated up to T = 35: see Fig. 6.1. Another benchmark consists in considering smooth, but quickly varying opacity, 

) , γ = 400, with identical initial and boundary conditions. Results are displayed on Fig. 6.2. In particular, on both Figs. 6.1 and 6.2, a (second-order) centered approximation of the divergence of the macroscopic flux, div J(t, x) was displayed, so as to shed light on the ability of (3.5) to stabilize on a correct discretization of stationary regimes.

Diffusive/parabolic scaling.

In order to validate the scheme (4.3), the same array of opaque Gaussian bumps was set, along with the parameter ε = 10 -5 , outflow boundary conditions on each side, and Maxwellian (well-prepared) initial data,

It might be interesting to recall some properties of "two-stream" one-dimensional (position-dependent) radiative transfer, already studied in [START_REF] Gosse | An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations[END_REF], [11, §8.2] and [START_REF] Ch | Uniform convergence for a cell-centered AP discretization of the hyperbolic heat equation on general meshes[END_REF][START_REF] Despres | The structure of well-balanced schemes for Friedrichs systems with linear relaxation[END_REF],

Macroscopic (diffusive) stationary regimes in 1D reduce to ρ ′′ (x) = 0, i.e. constant or linear functions, and yield Case's polynomial solutions, 1 and x -v. Accordingly, for R = ∆x/2 and f

) , so that,

) , meaning that α is the average of incoming states, and

) .

Such a S-matrix is "doubly-stochastic" because both its rows and columns add to unity and all its entries are positive when σR ≥ 0. Asymptotic limits are

The resulting well-balanced 1D time-marching scheme reads,

In parabolic scaling, the following decomposition holds,

) , and brings back the well-known IMEX scheme originally written in [START_REF] Gosse | An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations[END_REF], ( f +,n+1 j f -,n+1 j-1

)