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ABSTRACT: Glycoscience assembles all the scientific disciplines 
involved in studying various molecules and macromolecules 
containing carbohydrates and complex glycans. Such an ensemble 
involves one of the most extensive sets of molecules in quantity and 
occurrence since they occur in all microorganisms and higher 
organisms. Once the compositions and sequences of these molecules 
are established, the determination of their three-dimensional 
structural and dynamical features is a step toward understanding the 
molecular basis underlying their properties and functions. The range 
of the relevant computational methods capable of addressing such 
issues is anchored by the specificity of stereoelectronic effects from 
quantum chemistry to mesoscale modeling throughout molecular 
dynamics and mechanics and coarse-grained and docking 
calculations. The Review leads the reader through the detailed 
presentations of the applications of computational modeling. The illustrations cover carbohydrate−carbohydrate 
interactions, glycolipids, and N- and O-linked glycans, emphasizing their role in SARS-CoV-2. The presentation 
continues with the structure of polysaccharides in solution and solid-state and lipopolysaccharides in 
membranes. The full range of protein-carbohydrate interactions is presented, as exemplified by carbohydrate-
active enzymes, transporters, lectins, antibodies, and glycosaminoglycan binding proteins. The final section 
features a list of 150 tools and databases to help address the many issues of structural glycobioinformatics. 
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1. INTRODUCTION 

 

Glycoscience is a rapidly emerging area of research that deals with carbohydrates' fundamental and applied 

investigations. Plants, algae, and photosynthetic bacteria produce glucose from sunlight, carbon dioxide, and 

water. As a result of photosynthesis, carbohydrates are the most abundant biological macromolecules and 

materials on Earth. This biomass helps reduce carbon footprints while offering a sustainable alternative to fossil 

resources for energy and raw materials. The simplest carbohydrates are transformed into complex elements such 

as polysaccharides, complex glycans, and glycoconjugates. Glycans are further complexed with proteins and 

lipids as cellular components of tissues and organs. However, unlike nucleic acids and proteins, these 

biosynthesis events do not follow a simple template. Their transformations are driven and influenced by many 

factors, including cellular metabolism, cell type, developmental stage, and environmental factors, such as 

nutrients. These factors and their resulting structures allow for considerable diversity and make studying glycans 

challenging. 

Glycoscience is an interdisciplinary field involving informatics, biochemistry, polymer chemistry, 

materials science engineering, physiology, developmental biology, microbiology, medicine, and ecology. These 

disciplines are confronted with the unique complexity of the glycans. The prefix "glyco" (sweet in Greek) is often 

used before the designation of the discipline to indicate the field's specificity. In such a broad field of discipline 

and the expected advances in fundamental knowledge and translational applications, the determination of the 

threedimensional (3D) structure of complex carbohydrates, carbohydrate polymers, and glycoconjugates are 

critical. It aims to understand the molecular basis underlying the structures, associations, and glycan interactions. 

Glycans, being expressed in all microorganisms and all higher organisms, have a profound impact on biology and 

medicine. The dramatic roles of spike protein glycans in mediating virus−receptor interactions and antibody 

production illustrate protein glycosylation's paramount importance. Several other facets, such as vaccines for 

antimicrobial resistance, the development of innate and adaptive immunity, the growth and spread of cancer, 

modulation of the gut microbiome and health, responses to bacterial and viral infections, and the development 

of diseases such as diabetes, and the development of rationally designed carbohydrate-derived drugs enlighten 

how understanding and exploiting structural glycoscience and glycomics have become necessary for modern 

molecular diagnostic precision medicine. With an interest in sustainable bioenergy, much effort is devoted to 

studying cellulose and other polysaccharides. The so-called biomass recalcitrance, i.e., the resistance of the 

biomass to degradation to individual fermentable glucose residues, generates fundamental and applied 

investigations about the 3D structure of cellulosic material and the enzymes and microorganisms capable of 

achieving such degradation. Developing bioinspired sustainable materials from carbohydrates defines a strategy 

to produce new materials with unique properties from waste resources. Polysaccharides such as cellulose, chitin, 

starch, and pectins have properties for various applications developed in the circular bioeconomy. 

 Once the compositions and sequences are established, the main goal of structural glycoscience is to 

determine the 3D structural and dynamical features of complex carbohydrates, carbohydrate polymers, and 

glycoconjugates, along with an understanding of the molecular basis of their associations and interactions. 

However, except for a few cases, these molecules have a high propensity for ample conformational flexibility, 

producing a multiplicity of conformations that coexist in equilibrium in solution. The use of several spectroscopic 

methods, such as NMR, with appropriate temporal or spatial resolution, provides invaluable experimental data 

that require the contribution of molecular modeling to be fully interpreted. In the case of polysaccharides and 

polysaccharide-based materials, the lack of sufficient diffraction data prevents a direct determination of their 3D 

structure. Ironically, their elucidation was part of the first steps of computer modeling in carbohydrate research, 

from which there was the realization that carbohydrates require particular needs on top of those usually 

recognized when modeling proteins or other organic molecules. These needs are embedded in major 

computational applications arising from several stereoelectronic effects. As such, they provide realistic 

simulations of complex carbohydrates in their natural environment, solvated in water or organic solvent, as well 

as in concentrated solutions or interactions with protein receptors. The large-scale structures incorporating 

glycan require multiscale computational levels, affording quantum chemical models, molecular mechanics and 

molecular dynamics models, coarse-grained models, and mesoscale models. Figure 1 shows a time scale versus 

length scale representation of various computational methods applied to investigate a wide range of glycans and 

glycan-containing biomacromolecules. 
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Figure 1. Spatial and temporal multiscale modeling in glycoscience. Applications range from molecular modeling 
at different resolutions: quantum; all atoms; coarse-grained, and supra-coarse-grained. The axes display 
approximate ranges of time scales and system sizes. 

 

This chapter is one of a series of contributions that have, over the recent years, reviewed and analyzed the role 

of simulation and theoretical methods applied to carbohydrates.1−8 Recent developments have broadened the 

nature and size of the substrates. In composing this Review, we considered the growing interest in glycans on 

the part of communities that had remained aloof from this often-considered complex discipline. The present 

Review is part of the thematic issue on glycobiology/glycochemistry. It describes how the particular features that 

characterize carbohydrates, in general, can be investigated through several computational applications and are 

becoming part of the major software and suites used in the general modeling of biomacromolecules and related 

systems. With a focus on glycochemistry and glycobiology, the Review covers glycans structures at all levels, from 

monosaccharides to polysaccharides at the mesoscale, including chemical reactivity. The full range of protein−

carbohydrate interactions is presented, as exemplified by carbohydrate-active enzymes, transporter, lectins, 

antibodies, and glycosaminoglycans. We conclude our review by presenting the new developments in glyco-

bioinformatics that guide, using a rich tool-box, any practitioner to display, navigate, and quest for correlations 

between structure and function in glycobiology.   

 

2. STRUCTURAL DIVERSITY AND CONFORMATIONAL CHALLENGES 
 

2.1. Nomenclature and Structural Representation  

 

The individual units from which carbohydrates are made are the monosaccharides. They are the monomeric 

constituents of an assembly of sugars, either free or attached to another molecule or macromolecule. 

Throughout this Review, the term "glycan" will designate the several constituting members: mono-, oligo-, 

polysaccharides, and glycoconjugates. The term oligosaccharide refers to molecules having between 2 and 10 

monosaccharides linked together either linearly or branched. Polysaccharide stands for glycan chains built up 

from more than ten monosaccharides. The glycoconjugate term implies the existence of a covalent linkage 

between the glycan chains and the proteins (glycoproteins), lipids (glycolipids), and naturally occurring aglycones 

(e.g., alkaloids, saponins, antibiotics). 
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  The glycans family is rich in several hundred monosaccharide components that characterize it as the 
most diverse biological family. Monosaccharides, having a suitable number of carbon atoms (>5), can exist as 
open and cyclic structures. Pentoses form five-membered furanose rings, whereas hexoses form mostly six-
membered pyranose rings. In an aqueous medium, monosaccharides with hydroxyl and carbonyl functional 
groups undergo an intramolecular cyclic hemiacetal formation. Under weak acidic or alkaline conditions, the 
equilibrium accelerates the formation and favors cyclic forms, and "open chain" forms occur only in trace 
amounts. The anomeric carbon atom, denoted as C1 carbon, becomes chiral upon cyclization, giving rise to either 

an α- or β-anomer. Interconversion between unbound monosaccharide α- and β- forms can occur via the 
acyclic forms. The hydroxyl groups of monosaccharides can undergo a series of chemical modifications: 
methylation, esterification (acyl esters, phosphate, sulfate esters, N-acetamido groups), and deoxygenation to 
form deoxysugars. The description and management of many constituting units require well-established, robust 
nomenclatures (IUPAC Nomenclature home page, http://www.chem.qmw.ac.uk/iupac; IUBMB Nomenclature 
home page, http:// www.chem.qmw.ac.uk/iubmb) used for representations. Among the several descriptions, a 
graphical representation called SNFG (Symbol Nomenclature for Glycans) is becoming widely used, resulting from 
a joint international agreement.9 Such an extension and utilization of the graphical depiction of glycans is a 
remarkable milestone that offers a way to unify a community in exchange for communicating with other 
communities and describing the diversity of glycan structures pictorially. 

The structural information encoded in the SNFG representation is insufficient to characterize, construct, 

and manipulate 3D structures. For a given (D) or (L) configuration, monosaccharides can occur as α-pyranose, 

β-pyranose, α-furanose, β- furanose, i.e., eight different 3D structures. A way to cope with such a requirement 

follows an extension initially presented in Glycopedia.10 It requires a limited set of rules (as illustrated in Figure 

2) that provide the required extension to construct 3D structures and allow the encoding of bioinformatics 

manipulations while maintaining IUPAC nomenclature.11,12    

 

 

 
Figure 2. From symbol representation to 3D structures and its extension to 3D structures. Extension of the SNFG 
cartoons includes the nature of the absolute (D or L) and anomeric (α or β) configurations and the O-esters and 
ethers, which are attached to the symbol with a number (e.g., 3S for 3-O sulfate groups). All pyranoses in the D 
configuration are assumed to have the 4C1 chair conformation, whereas those in the L configuration are assumed 
to have the 1C4 chair conformation. The descriptors of the ring conformations adopted by idopyranoses (1C4, 4C1, 
and 2S0) appear within the monosaccharide symbol. The addition of the ring conformation in the monosaccharide 
symbol is the only discrepancy with the version of the SNFGnomenclature (drawings made using ChemDraw13 
and Pymol14). 
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2.2. Stereoelectronic Effects: Nature and Origins 

 

Because of the differences in the anomeric configurations (α or β), stereochemistry (D or L), and variety of 

possible linkages (regiochemistry), the resulting number of different glycans and complex polysaccharides with 

the same sequence is staggering. Interestingly, not all possible sequences occur naturally, indicating that specific 

glycoforms may have distinct biological functions. 

 Although less frequently addressed by an average practitioner, critical difficulties are the different ring 

shapes that might take either five- or six-membered rings due to conformational flexibility. A set of two or three 

parameters (the so-called puckering parameters) describe five- and six-membered rings, respectively. In the case 

of five-membered rings, the pseudo-rotational wheel represents the 20 twists and envelope shapes. As for six-

membered rings, three parameters control the shape of the ring, which are most conveniently plotted on the 

Cremer−Pople sphere (Figure 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Puckering parameters. (A) Conformational free energy landscape of an isolated β-D-glucose 
monosaccharide in Stoddard representations. (B) Stoddard represents the puckering sphere for six-membered 
rings, depicting three low-energy conformations: 4C1, 1C4, and 2S0. ( Reproduced with permission from ref 16. 
Copyright 2017 International Union of Crystallography). 

 

Several challenges for modeling carbohydrate molecules lie in their highly polar functionalities and 

existing differences in electronic arrangements. The anomeric and exoanomeric effects and the gauche effects 

dictate conformational and configurational changes (Figure 4). The anomeric effect is the tendency of 

electronegative substituents at anomeric carbon atoms to be more populated at an axial position than 

anticipated from the analogy with cyclohexane derivatives. 

 The origin of the anomeric effect occurs through the hyperconjugation between the molecular np 

orbital of the O5 ring oxygen atom and the σ* of the C1−O1 covalent bond (see review by Perez and Tvaroska2 

for detailed analysis and calculation of the anomeric effect). The exoanomeric effect dictates the preference of 

the aglycon around the C1−O1 glycosidic bond. It results from the hyperconjugation between the np of O1 and 

the σ* of the O5−C1 bond. There exists a reverse anomeric effect 

. In contrast, in a molecular segment X−C−C−Y (where X and Y are electronegative atoms), the so-called 

gauche effect arises from the tendency of a molecule to adopt the structure with several synclinal interactions 

between adjacent electron pairs or polar bonds. This effect occurs in conjunction with solvation interactions in 

the case of the primary hydroxyl group in hexopyranoses.15 These orbital effects and electrostatic interactions 

are indispensable in the chemical synthesis of carbohydrates since they influence the reactivity of building blocks.  
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Figure 4. Schematic representation of stereoelectronic effects in carbohydrates. (a) Anomeric effect, (b) 
exoanomeric effect, and (c) gauche effect. (d) Impact on the conformations of a pyranose’s exocyclic primary 
hydroxyl group is bound to the C6 carbon atom (whereas the secondary hydroxyl groups are linked to the ring 
carbon atoms). Three staggered situations about the CH−CH2OH bond (the C5−C6 bond in aldohexoses) can be 
considered for such an exocyclic hydroxymethyl group. The CH−CH2OH bond is prochiral; the two hydrogen 
atoms must be differentiated based on the R/S system. The description of the three rotamers orientations of O6 
concerning O5 and C4 is GG (gauche−gauche), GT (gauche−trans), and (trans−gauche) depending on the choice 
of an atom of ref 17 (drawings made using ChemDraw13). 

 

 

2.3. Conformational Flexibility: Stereoelectronic Effects and Others 
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Both the gauche effect and the exoanomeric effect extend to disaccharides and higher oligo- and polysaccharides 

and impact their conformational preferences. Other effects contribute to van der Waals, hydrogen bonding, and 

electrostatic interactions, solvation effects, and CH−π interactions while interacting with proteins.  

The configurational feature of the glycosidic linkage between two monosaccharides is characterized by 

the axial and equatorial nature of the bonds (for the pyranose ring) that constitute the glycosidic linkage. The 

bonds' axial and equatorial orientations creating a glycosidic linkage determine a unique stereochemical 

structure. For example, two hexopyranoses in the 4C1 ring shape can be linked in a 1-1, 1-2, 1-3, 1-4, and 1-6 

linkage. Each bond involved in the linkage can occur in either an axial or equatorial configuration. Twenty 

different types exist for disaccharides made up of 4C1 monosaccharides. Within a disaccharide, the relative 

orientation of two contiguous monosaccharides linked by a glycosidic bond is characterized by two torsion angles 

and three in the case of α(1-6), α(2-8), and some other linkages. The energetically favorable conformations of 

a disaccharide resulting from such values are plotted on potential energy maps called (Φ, Ψ) maps. In contrast 

to the Ramachandran plot used to visualize the backbone dihedral angles of the constituent amino acids in 

proteins, (Φ, Ψ) maps have to be established for each disaccharide. They feature multiple minima, separated 

by 5− 10 kcal/mol energy barriers (Figure 5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. Molecular representation of the structural descriptors of a disaccharide exemplified on maltose. The 
bottom part of the figure displays two representations of the potential energy landscape as computed from 
molecular mechanics calculations and projected onto the Φ and Ψ potential energy surface. The iso-energy 
contours are calculated at 1 kcal/mol intervals regarding the lowest energy minimum. Experimentally observed 
conformations in the crystalline state are indicated as dots (drawn with ChemDraw,13 PyMol,14 CICADA,18 and 
CAT19). 

 

Besides the ring conformational flexibility, many hydroxyl groups are the source of several rotatable 

bonds. Their orientations relative to the sugar ring generate hydrophilic patches (formed by polar hydrogens) 

and hydrophobic patches (formed by nonpolar aliphatic hydrogens), resulting in an anisotropic solvent density 

around the molecules.  

The considerable conformational flexibility of carbohydrates results in various possible relaxation 

processes. The time scale of the processes is in the order of 100 ns for interconversion between the various ring 

puckering transition, 1 ns to 100 ps for the primary and secondary hydroxyl groups, respectively. In contrast, the 

time of interconversion of the rotation about the glycosidic linkages is about 10 ns.7   

 

3. COMPUTATIONAL CONCEPTS AND TOOLS 
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3.1. From Quantum Chemistry to Coarse-Grained Calculations 

 

The characterization of carbohydrate structural and dynamic features constitutes a challenge from both the 

theoretical and experimental points of view. The following theoretical models and their approximations 

delineate the scope of applications of computational methods to carbohydrate structures and dynamic features. 

These methods encompass different approaches, ranging from ab initio to coarse-grained methods and from 

deterministic to heuristic approaches.  

They are as follows: • 

• Ab initio simulations based on density functional theory (DFT) •  

• Hybrid quantum mechanics/molecular mechanics (QM/ MM) and QM/QM • 

• Semiempirical methods •  

• Molecular mechanics (MM) and molecular dynamics (MD) calculations • 

• Heuristic methods (Monte Carlo, genetic algorithm-based methods) •  

• Coarse-grained (CG) methods • 

• Docking calculations  

 

Computational methods are applied extensively to explore the conformational space of glycans and 

polysaccharides based on energy functions and parameter sets appropriate for carbohydrate specificity. Some 

of them can treat carbohydrates in interactions with proteins considering solvation, and others are more 

amenable to addressing polysaccharide-based materials.3 Over the last two decades, molecular dynamics 

became the choice method in their all-atom and coarse-grained representations. Theoretical and technological 

advances are often used with diffraction, high-resolution spectroscopy, and other spectroscopic methods. They 

provide a way to reconcile the experimentally available data and predict structural and dynamic features that 

might not be accessible yet. In such a context, molecular modeling should address those questions: • 

• What are the most appropriate force fields and concomitant parameters to use? •  

• What is the most satisfactory and efficient way to travel through conformational hyperspace? 

• 

• MD simulation: How long is long enough? • 

• What is the appropriate way to calculate, from a modeling study, the spectroscopic observables 
for which experimental data are available?  

•  
3.2. Quantum Chemical Methods 
 

It is beyond the scope of the present Review to provide a detailed description of several QM methods successfully 

applied to carbohydrates: molecular orbitals, DFT, and QM/MM.  

The molecular orbital theory describes the electronic structure of molecules using QM, where a wave 

function, Ψ, describes the behavior of an electron in a molecule. Electrons around atoms in molecules are limited 

to discrete energies. The molecular orbital is the region of space where a valence electron in a molecule is likely 

to be found. The first QM calculations on carbohydrates dealt with conformational studies of small model 

compounds. They focused on understanding the stereoelectronic effects. The results obtained yielded 

appropriate values for parametrization force-field methods for carbohydrates. The ab initio QM calculations 

depend on (i) the quality of the atomic orbitals used to build the molecular orbitals and (ii) the inclusion of 

electron correlation effects.  

The molecular orbital methods have been progressively replaced by the DFT method. The DFT method 

is a widely used method to investigate biomolecular systems. DFT uses electron density to describe many-

electron systems instead of the wave function used in molecular orbital methods. The accuracy of a DFT 

calculation relies on the quality of the exchange-correlation functional. Among the most popular functionals for 

calculating low molecular weight conformational properties is the B3LYP functional. The geometry optimization 

and conformational sampling are usually performed at the B3LYP/6-31+G* level. A single-point calculation at the 

B3LYP/6-311++G** level follows for the final conformers. 

 By considering the electronic structure of a system, QM methods offer a description of the chemical 

reactions, which is computationally demanding. Their use is restricted to relatively simple systems, such as the 
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active sites of enzymes. The combination of QM and MM approaches provides reliable electronic structure 

calculations with a realistic description of the enzyme environment. The critical points of such a QM/MM 

treatment are the boundaries between the QM and MM regions and the size of the QM region. As QM/MM 

methods provide, the energy value for a given structure can be combined with the existing techniques that map 

the configurational space available to (bio)molecular systems. They can be molecular dynamics, metadynamics, 

or heuristic methods such as Monte Carlo. Because of sampling and accuracy limitations, the obtained results 

need to be considered with caution.  

 
3.3. The All-Atom Representation in Molecular Mechanics and Molecular Dynamics Computations 
 

Within the approximation that molecular structure and dynamics can be accurately described by Newtonian 

mechanics principles, atoms are represented as hard, impenetrable spheres characterized by mass and size (van 

der Waals radius) and electrostatic point charge, different for each specific atom type. The conformational 

features specific to carbohydrates (stereoelectronic effects, ring puckering, glycosidic linkage flexibility, hydroxyl 

groups, hydrogen bonds, pH) must be considered to obtain a precise analysis, either in vacuo or in solution. 

 The force field parameter values determine the molecule's potential energy corresponding to each 

configuration. The choice of a carefully developed and thoroughly tested force field is at the very core of the 

validity of any Molecular Mechanics or Molecular Dynamics simulation. Once the choice of force field sets the 

system's potential energy, the conformational space accessible to the glycan is studied over time through MD 

simulations. Based on the Newtonian motion equation, simulations generate an ensemble of configurations of 

the molecule's atoms, calculating a molecular system's time displacement coordinates (trajectory) at a given 

temperature. The positions and velocities of the atoms are done by integrating Newton's equation of motion in 

time throughout numerical integration. To guarantee energy conservation, the integration time step is 1 fs, which 

in practical terms is 1 order of magnitude lower than the fastest bond vibration of the C−H bond stretching 

mode.20 Constraining the distance of all C−H bonds and water molecules with schemes such as SHAKE21 or 

LINCS22 allows a time step of 2 fs to be used, thereby increasing the sampling capability. There exist several 

numerical ways to conduct the integrations. The most common ensembles used to perform molecular 

simulations are the canonical (constant NVT) and the microcanonical (constant NVE). 

 After establishing the mechanistic framework for the propagation of the system's dynamics, the crucial 

issue about any simulation is "how long is long enough?" In many instances, the answer to this question is, 

unfortunately, dependent on the availability of computational resources. Glycans can occupy many 

conformational states because of their flexibility and dynamic behavior. An exhaustive sampling of the 

conformational space is needed to obtain a correct statistical distribution of the different 3D structures. 

Nevertheless, running different MD simulations of the same glycan from all potentially relevant conformations 

is highly advisable, especially if very flexible bonds are present. 

 Meanwhile, when studying the dynamics of glycans linked to glycoproteins or bound to 

lectins/enzymes, it is paramount to realize that the starting conformation may be biasing sampling due to strong 

protein-carbohydrate interactions that may prevent transition to other relevant conformations. 

 Coverage of the conformational energy hypersurface may require enhanced molecular dynamics 

sampling protocols. To enhance sampling relative to a standard molecular dynamics simulation, replica-exchange 

molecular dynamics (REMD)23 offers a practical solution to sample the whole conformational space of complex 

bio-macromolecular systems that can be trapped in local energy states while keeping reasonable simulation 

times. In REMD, a group of simulations or replicas where variables (e.g., potential energy or temperature) have 

different values run parallel. Combining the REMDmethod with MD simulation with the Monte Carlo algorithm 

provides overcoming high-energy barriers and sufficient sampling of the conformational space. Other enhanced 

sampling methods are available, among which are those with bias potentials, such as metadynamics (MTD, using 

a history-dependent bias potential) and replica state exchange (RSE-MTD), Hamiltonian replica exchange 

(HREX),24 multidimensional swarms enhanced sampling MD.25 The combination of replica-exchange umbrella 

sampling (REUS) with Gaussian accelerated molecular dynamics (GaMD),26 referred to as Gaussian accelerated 

replica-exchange umbrella sampling (GaREUS), applies to free-energy calculations.  

The progress in computational resources allows longer and longer simulations to be performed on 

several thousand explicit atoms for a total time of up to the microsecond scale. It is a prerequisite to exploring 

conformational space adequately. Nevertheless, limitations persist, and it is still difficult to compare with 
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experimental data that occur on a much longer time scale than those derived from NMR experiments (primarily 

NOE and residual dipolar coupling-based experiments). Most molecular dynamics simulations include water 

molecules. Ions or other surrounding molecules can also be part of the computations.  

 

 

3.4. Force Fields for Carbohydrates  

 

Through a pioneer contribution in the broad field of molecular mechanics applied to a wide range of organic 

molecules, the series of Allinger's molecular mechanics force fields and programs offered early access to 

carbohydrate conformational analysis. The universal force field MM327,28 remains appropriate for modeling, 

essentially low molecular carbohydrates. However, in the development of force fields for nucleic acids and 

proteins (AMBER, CHARMM, GROMACS, Tinker), particular adaptation to carbohydrate specificities gave glycan 

modeling a chance to address modern questions. (Figure 6). The commonly used force fields are CHARMM36, 

GLYCAM06, GROMOS, and OPLS-AA-SEI.1,29−35 

 

Figure 6. Principle of calculation of the potential energy of a molecule for a molecular mechanics (MM)/molecular 
dynamics (MD) investigation, along with some parametrization protocol comparison between the carbohydrate 
force fields. In the MM formalism, the molecule potential energy V(r) is a function of the positions of the N atoms 
that make up the system. It is represented by an empirical force field, which general functional form is given by  

 
The first three terms correspond to the potential energy contributions from bonded interactions: covalent bonds, 
bond angles, and torsion angles. These are all represented by Hooke-type potentials, where classical spring 
constants are ruled by bond vibrations, angle bending, and dihedral angle potentials (kb/ka). They modulate the 
stretch from an equilibrium distance (r0) and an equilibrium angle (q0). Fourier series generally represent torsion 
potentials. The last term is the contribution to the total potential energy from nonbonded (or noncovalent) 
interactions, dispersion, and electrostatic interactions, represented by Lennard-Jones (LJ) and Coulomb 
potentials, respectively. The LJ term ε is the energy well’s depth at the equilibrium distance σ, while in the 
Coulombterm q values indicate the partial charges on the atoms i and j, and e0 is the permittivity of the vacuum. 
The treatment of dispersion interactions with alternative formalisms to the LJ potential, such as the Buckingham 
potential. It occurs in some software packages and can be used, providing that adhoc parameters are available. 
For most biomolecular structure and dynamics applications, the LJ potential is sufficiently accurate and generally 
preferred to the Buckingham more rigorous dispersion treatment for computational speed. Long-range 
electrostatic forces are treated within periodic boundary conditions within the particle-mesh Ewald (PME) 
framework. PME electrostatics eliminates artifacts due to the abrupt truncation of the Coulomb potential by 
introducing cutoff values and/or effects due to the finite size of the simulation box. Reprinted with permission 
from ref 5. Copyright 2021 Elsevier. 
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The derivation of the CHARMM all-atom biomolecular force field to carbohydrates into the CHARMM36 

force field offers a way to treat monosaccharides in their pyranose36 and furanose forms,37 including sulfate 

and phosphate derivatives,38 all types of glycosidic linkages, glycans, and glycoproteins, with full provision for 

dynamic simulation in aqueous media.39  

Through a proper parametrization of AMBER, the GLYCAM06 force field can cope with a wide range of 

monosaccharides, including those occurring in glycosaminoglycans. 40 Carbohydrates of all sizes and 

conformations41 can be built, and their structures can be investigated. Extensions of the parameters set to 

glycoproteins, glycolipids,42,43 lipopolysaccharides, 44 lipids,45 proteins, and nucleic acids have been reported.  

GROMOS, based on a united atom framework, represents a broad family of carbohydrate force field 

hexopyranose-based saccharides. With the GROMOS engine, several implementations have provided a series of 

improved parametrizations to account for particular important carbohydrate features. The following describes 

the main steps of such endeavors and their areas of application: GROMOS 45A4 and GROMOS 53A6GLYC 

hexopyranose in an explicit solvent,46 GROMOS 56ACARBO,47,48 conformational ring equilibria in 

hexopyranose, 49 GROMOS 56ACARBO_CHT chitosan and its derivatives,50 GROMOS 56ACARBO/CARBO_R 

furanose based carbohydrates,51 and GROMOS96 43A1 glycan structure simulation in glycoproteins.52,53  

The continuous developments of the all-atom optimized potentials for liquid simulations (OPLS)54,55 

force field provide improvement to correct the performances in estimating the conformational changes around 

the glycosidic torsion angles and treatment of the carbohydrate-carbohydrate interactions in solution and 

explicit-water simulations.56 Developments of a polarizable empirical force field for hexopyranose based on 

CHARMM Drude are bringing significant improvements in treating a series of monosaccharides57− 59 and their 

glycosidic linkages.60−62  
 
3.5. Coarse-Grained Calculations 

 

Simulating large macromolecular systems or materials for millisecond-scale times requires reducing the 

atomistic level of representation to reach longer simulation times and larger spatial domains. CG models offer a 

way to accelerate such a reduction by grouping a given functional group or a molecule into a single "particle". 

The first coarse-grained model proposed for proteins almost half a century ago.63 The pioneering CG model of 

hexopyranose glucose was presented in 2004 by Molinero and Goddard.64 Terms such as "bead", "pseudo 

atom", the particle", "interaction site", or "super atoms" are synonyms. As a result, the description of molecules 

or systems requires a much lower number of components than in an all-atom (AA) representation. The choice of 

beads is not unique. Chemical intuition or personal experience often guides the choice. Different mapping 

schemes may exist for the same molecular system. A mapping operator helps determine the coordinates of a CG 

bead. This determination is made from a linear combination of the coordinates of the atoms that will form the 

particular bead. The construction comes at the cost of the nonuniqueness of the mapping scheme. It might differ 

from one system to another or from one researcher to another (Figure 7). 

The determined "beads" are usually chosen as the center of mass or the geometric center of a particular 

group of atoms from the atomistic model. With the progress of computing techniques and machine learning, 

new methods for constructing and mapping atoms in the CG bead have been developed. This could help 

eliminate human bias and potentially develop better CG models. The merging schemes vary depending on the 

specific approach used and the precision required. The least invasive approach is to group the nonpolar hydrogen 

atoms with the heavy atoms they are bound to. A "united atoms" framework yields up to a 10-fold reduction of 

the computational effort. Merging schemes can accelerate simulations by three to four orders of magnitude 

compared to classical all-atom MD simulations. 

 After mapping the atomistic structure into the desired CG representation, potential functions 

determining the bonded and nonbonded interactions of the model should be assigned prior to validating these 

functions against atomistic simulation or experimental results. The use of atomistic simulations to develop CG 

potentials is known as a bottom-up approach, while the use of experimental data to fit the potentials is called a 

top-down approach. Several techniques are often used to fit a CG potential based on all-atom simulations, 

including the inverse Monte Carlo method,68,69 Boltzmann inversion, relative entropy,70 force matching 

(multiscale magnification),71,72 and the realistic extension algorithm via the Hessian covariance (REACH).73  

The straightforward way to construct a CG force field is to import the respective all-atom force field 

expressions. The equations are analogous to those used in classic empirical force field representation. Evaluating 



12 
 

Multifaceted Computational Modeling in Glycoscience S Perez & O. Makshakova 
 

 

 

the covalent interactions between beads uses harmonic functions to calculate the potential energy for the virtual 

bond length bond angles and the virtual torsion angles. Dispersion interaction through a Lennard−Jones term 

and electrostatic interaction through a Coulomb term account for the noncovalent term. Additional terms in the 

form of multibody terms are introduced to account for the internal correlations between groups of atoms.74 The 

effect of such an addition is to smooth the potential energy landscape, thus accelerating the sampling.75−77 

Some local energy terms that describe the spatial correlation between pseudo bond vectors need to be 

considered and processed with arbitrarily chosen functions, as they do not follow the classical harmonic 

behavior. Finally, water is implicitly represented through continuum electrostatic.78 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 7. Graining multiple atoms together into “pseudo atoms” or “beads”. Atomistic (on the left) and CG (on 
the right) representations of the GM3 ganglioside. All-atoms versus coarse-grained energy landscape, showing 
the effect of smoothing the energy surface and its flattening, enables efficient energy landscape 
exploration.65−67 An empirical function represents the force field, which general functional form is given by 

 
In the equation, di, di°, and kid are the length, equilibrium length, and force constant of the ith virtual bond, qi, 
qj, and kid are the actual and equilibrium value and the force constant of the ith virtual bond angle. γi is the ith 
virtual bond dihedral angle, and ai (n) and bi (n) are the coefficients in the expressions for the torsional potentials. 
qi is the partial charge on the ith site, D is the relative dielectric permittivity, σij and εij are the constants of the 
Lennard−Jones potential for the interaction of site i with site j, and rij is the distance between these two sites. 
The coefficient of 332 in the expression for theCoulombic energy is introduced to express the energy in kcal/mol 
(if the distance is expressed in ångstroms and the charges are expressed in electroncharge units). 

 

The straightforward way to construct a CG force field is to import the respective all-atom force field 

expressions. The equations are analogous to those used in classic empirical force field representation. Evaluating 

the covalent interactions between beads uses harmonic functions to calculate the potential energy for the virtual 

bond length bond angles and the virtual torsion angles. Dispersion interaction through a Lennard−Jones term 

and electrostatic interaction through a Coulomb term account for the noncovalent term. Additional terms in the 

form of multibody terms are introduced to account for the internal correlations between groups of atoms.74 The 

effect of such an addition is to smooth the potential energy landscape, thus accelerating the sampling.75−77 

Some local energy terms that describe the spatial correlation between pseudo bond vectors need to be 

considered and processed with arbitrarily chosen functions, as they do not follow the classical harmonic 

behavior. Finally, water is implicitly represented through continuum electrostatic.78 

 The MARTINI force field is undoubtedly the most popular CG force field.79 It applies to lipid systems, 

proteins, nucleic acids, glycans and polysaccharides,80 and materials science. It is appropriate for simulating 

glycolipid membranes and monotopic and transmembrane proteins. The MARTINI force field uses universal 

modular blocks for which representation can be applied to various biomolecular systems once translated from 

all-atom to CG. The force field uses a one-to-four mapping approach where a single bead stands for a group of 

four heavy atoms. In such a scheme, one bead represents four water molecules. A slightly higher resolution of 
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up to two heavy atoms per bead is needed for small ringlike fragments (such as monosaccharides, aromatic 

amino acid side chains, and cholesterol). Then according to their nature, the chemical property is attributed to 

these four coarse-grained blocks as polar (P), nonpolar (N), apolar (C), and charged (Q). Based on hydrogen 

bonding capability, an additional attribute subdivides them into five classes: donor, acceptor, both or none, and 

polarity. Their combination gives a total of 18 unique "building blocks".67,81,82 The MARTINI force field follows 

the CG parameters' iterative fitting that defines bonded interaction potentials to atomistic trajectory data. The 

development of the parametrization strategy combines both structure-based (or topdown) and thermodynamic-

based (or bottom-up) parametrization strategies67,80−84 (see Figure 10). There is no electrostatic field and 

polarization effect within the selected water treatment (e.g., four water molecules devoted to charges per bead). 

A uniform dielectric constant compensates for neglecting an explicit polarization, which may be a reasonable 

approximation for bulk water. Such an implicit screening affects the strength of the interactions between polar 

substances, which is underestimated in nonpolarizable solvents. Introducing a three-bead model to represent 

four water molecules provides a polarizable water model, as this effect accounts for a reorientation of the water 

molecules. Q type represents ions. The first hydration shell of single ions is included in the CG representation, to 

which the total charge is assigned. The CG ion force field is only qualitatively accurate. 

 Some caveats result from the losses of the directionality of hydrogen bonding interactions. They 

prevent using CG and MARTINI in protein folding studies. The loss of atomistic resolution and torsional structure 

within the CG beads does not allow proper treatment of puckering of the carbohydrate ring or to obtain 

information on stereoisomers in glycan. An imbalance of the nonbonded solute−solute, solute−water, and 

water− water interactions can result in nonphysical aggregations of glycans treated by MARTINI.85 In the most 

recent version of MARTINI 3, some imbalances have been improved, using new bead types and the expanded 

ability to include specific interactions, for example, hydrogen bonding and electronic polarizability.86 

Nevertheless, CG models can efficiently explore complex biomolecular systems' conformational space and time-

averaged properties.87  

The CG representation perturbs the evaluation of a modeled system's thermodynamic properties, 

particularly the balance between entropic and enthalpic contributions. The entropic evaluation is perturbed by 

reducing the degree of freedom inherent to any CG-based modeling, which is somehow counterbalanced by 

reducing the evaluation of the enthalpic terms. Therefore, a CG model may adequately yield free energy 

differences with inaccurate entropy and enthalpy values. When applied to carbohydrates, one of the main 

advantages of a CG model lies in its flexibility of the representation, i.e., the number of "beads" chosen per 

monosaccharide unit.  

Upon going to coarser representations, the more detailed features of the model are sacrificed. The 

regulation of the thermodynamic contribution can be achieved by appropriately scaling the terms describing the 

nonbonded interactions. 

 However, the transferability of the CG model to a wide range of concentrations and molecule types, i.e. 

glycolipids and glycoproteins, to describe diverse and biologically relevant systems remains essential. Except for 

the generic MARTINI model, none of the proposed CG force field schemes can describe the precise arrangements 

of real biosystems.88 Through an intrinsically consistent CG approach, MARTINI can extend the simulation to an 

extensive range of molecules, including different lipid types, sterols, sugars, peptides, and polymers. Such 

flexibility is required to investigate complex carbohydrate-based systems (such as glycoconjugates, 

functionalized glycomaterials, and glycoconjugates) or explore carbohydrate−protein interactions.89  

 

3.6. Heuristic Algorithms 

 

Parallel to the application of deterministic algorithms, several heuristic-based algorithms have been employed 

in software that aims to explore the complex potential energy space of glycan conformations to extract the 

location(s) of the most probable conformations and provide a low energy conversion pathway.  

The development of a method entitled "Channels in Conformational Space Analyzed by Driver 

Approach" (CICADA) offered an alternative way to explore complex potential energy surfaces using a single 

coordinate driving approach.90,91 Despite its relevance and efficiency, this application deals with the difficulties 

arising from the conformational flexibility of carbohydrates.18,92 Such a heuristic approach has not gained 

popularity among the developers and practitioners of carbohydrate computational modeling. 
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 The application of a random search method based on the Monte Carlo algorithm, was explored to 

provide average ensemble parameters. The repetition of the procedure results in many conformations, which 

should represent the system. Its application to oligosaccharides provided satisfactory results to be used in 

conjunction with experimental data.93,94 It was advocated that the method would be more efficient for simple 

molecular systems instead of random displacements.  

The field of genetic algorithms (GAs), evolutionary programming, and similar areas of computer science 

take their inspiration from biological evolution: survival of the fittest, the inheritance of traits from parents to 

offspring, mutation, crossover, and population genetics. Lamarckian evolution is based on the idea that the 

parent can pass on acquired traits to the offspring. One genetic algorithm implementation offers different 

searches. Standard GA and parallel GA with Lamarkian and natural evolution)95,96 addressed the automatic 

conformation prediction of carbohydrates.97,98 It has been applied to complex bacterial 

polysaccharides.99−101  

 

3.7. Free Energy Calculations 

 

The results derived from molecular dynamics simulations offer a way of comparison with experimental 

thermodynamics and dynamic properties. The most critical thermodynamic quantities are the fundamental free 

energies to compute the accurate estimates of how chemical entities recognize each other, associate and react. 

There are differences between free energy calculations depending on whether a completely free energy pathway 

is looked for or a pure free energy difference is present. Therefore the methods calculating equilibrium free 

energy range from more accurate based on the perturbation theory methods to less accurate end-point 

methods. 

 The first groups of methods include free energy perturbation (FEP) and thermodynamic integration (TI). 

The difference between the initial and the final state is described in terms of intermolecular or intramolecular 

coordinate changes. They may comprise differences in both geometry and chemical "mutation" of one molecule 

into the other. The free energy map of such a transition is described by a potential of mean force (PMF). In the 

case of geometry changes, the PMF will characterize the reaction between a reactant and product and provide a 

change in coordinate indicative of a conformational pathway with a detailed depiction of barriers, heights, and 

energy changes. The rigorous simulations of the ligand−protein binding free energy can require an extremely 

high computational cost because of sufficient sampling of the minimum free energy pathway between the 

unbound and bound states, including entropic differences. Alchemical binding free energy calculations consider 

the fundamental principle that free energy is a state function and does not depend on the pathway that connects 

the end states. In practice, a thermodynamic cycle is constructed utilizing an "alchemical" pathway that is 

computationally optimal. To this end, a coupling parameter (so-called lambda, λ) is used to make the chemical 

transformation's thermodynamic path from the initial state to the end state smoother by bringing the 

neighboring states closer. The TI requires the Boltzmann averaged potential energy calculations at each 

intermediate state λ. Although alchemical simulations cannot provide a complete kinetic characterization of the 

binding process, they are highly efficient in predicting the binding affinities critical in drug discovery. Nonetheless, 

these approaches remain computationally expensive, and their use becomes rational only when the initial-to-

final state perturbation is minimal (or negligible), i.e. when it is not accompanied by large conformational changes 

upon the complex formation. 

 The principal scheme of the binding energy calculations between a ligand and its host is given in Figure 

8. 

 The second group of methods includes molecular mechanics with generalized Born and surface area 

solvation (MM/GBSA), molecular mechanics with Poisson−Boltzmann surface area MM/PBSA when the 

Poisson−Boltzmann method is used instead of GB, and linear interaction energy (LIE). This range can extend to 

the scoring function widely used to rapidly estimate binding energy in molecular docking. 

 The development of free energy calculations performed on unbound carbohydrate molecules in vacuo 

and solution7 addressed essential issues such as the interconversion of sugar ring conformations, rotations of 

the primary and secondary hydroxyl groups, and rotations about the various glycosidic linkages.102−105 These 

studies aimed at developing and improving force-field parameters.48,49,51,106,107 The free perturbation 

methods and advanced replica-exchange sampling methods can enhance the sampling.  
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The computation of the relative and absolute free energy of noncovalent protein−substrate binding is 

primarily covered in the literature describing the methods commonly used: MMPBSA, LIE, and absolute 

alchemical methods. Most investigations dealt with lectins since these proteins bind to specific carbohydrates 

without modifying them.108−114 

 Classical force fields for calculations of protein−carbohydrate complexes were selected for evaluation 

in predicting lectin-carbohydrate binding free energies. 115 

 Their accuracy is hampered by technical difficulties, such as the conformational flexibility of 

carbohydrates and the highly polar nature of the complexes. A more extensive and detailed comparison of the 

three prominent families of force fields (CHARMM, GROMOS, and GLYCAM/AMBER) indicates the conservation 

of the qualitative patterns of the structural descriptors of the interaction, particularly the reproduction of the 

CH−π interactions. However, the computed values of the unbinding free energies display deviated differently 

from the experimental data.116  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 8. The thermodynamic cycle calculates the free energy of binding between the receptor and ligand. The 
absolute free energy of binding in an implicit solvent environment is calculated by molecular mechanics 
Poisson−Boltzmann surface area (MM-PBSA) (ΔGAI). Thermodynamics integration methods evaluate the free-
energy binding difference between closely related systems (A and B) (ΔΔG = ΔGC − ΔGD =ΔGA − ΔGB). A gradual 
transformation of the initial state A to the final state B is described by an additional nonspatial coordinate, λ. The 
following equation ΔGTI =∫ 01 dλ⟨δV(λ)/δ(λ)⟩λV(A) for λ = 0 and V(B) for λ = 1 is used to evaluate the free energy 
difference between the states. 

 

3.8. Molecular Docking 
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Molecular docking aims to explore the ligand's preferred orientation to a receptor to form a stable complex. Each 

snapshot of the pair is referred to as a pose. Exploring the whole conformational space of the interacting 

molecules is an essential part of binding free energy simulations. It requires sufficient sampling to explore all 

accessible poses with MD, a prohibitive computational cost. It is essential to obtain a reasonable initial pose, and 

in cases where the best starting pose is ambiguous, multiple poses should be searched. Docking programs utilize 

molecular modeling approaches for protein−glycan complexes. They rely on initial geometry generations, 

conformational sampling, grafting, and active site mapping and estimate binding affinity.117−121 

 Choosing the appropriate software for the problem to be studied remains critical to the proposed 

solution. It is mainly the case when small ligands interact in large and ill-defined binding sites. Docking is a 

computational method that places a small molecule (ligand) in its macromolecular target's (receptor's) binding 

site and estimates the binding affinity. Molecular docking requires (at least partial) three-dimensional knowledge 

of the ligand and receptor of interest. Glycans are usually constructed using molecular mechanics methods or 

directly from structural databases. Several energy parameters tailored to the energy minimization of protein-

glycan complexes are available from different force fields.122 

 X-ray crystallography and NMR spectroscopy previously solved the receptor structures in most 

investigated cases. Otherwise, homology modeling, threading, and de novo methods provide the receptor 

coordinates in the absence of experimentally determined data.  

Several docking programs are performing well in the docking of glycans to proteins. They are available 

as stand-alone software or/and as online services: BALLDock/SLICK123,124 (https:// ball-

project.org/download/), GlycoTorch Vina125 (http:// ericboittier.pythonanywhere.com/); HADDOCK Modeling 

of biomolecular complexes with support of glycosylated proteins126 (https://wenmr.science.uu.nl/), Cluspro 

Sulfated GAG docking127,128 (https://cluspro.bu.edu/login.php), Vina- Carb129 (http://glycam.org/docs/), and 

GlycanDock130(https://new.rosettacommons.org/docs/latest/application_ 

documentation/carbohydrates/GlycanDock).  

They work in slightly different ways. They all share two main features: sampling and scoring. Sampling 

concerns the conformational position and orientation of the ligand in the receptor-binding site. Flexible docking 

methods account for the pendant groups' possible influence in evaluating the glycans' preferred orientations in 

the binding sites. Typically, they are concerned with the orientation of the hydroxyl and hydroxymethyl groups 

or sulfate groups, the network of hydrogen bonds they direct, and the conformational flexibility occurring at each 

glycosidic linkage. 

 Most docking programs treat the ligand as flexible while the protein conformation is kept rigid. 

However, some programs can perform a type of "soft docking". Correctly accounting for receptor flexibility is 

much more computationally expensive and is not yet common practice. The high conformational flexibility is one 

of the essential features of complex carbohydrates, along with CH−π interactions. Some programs have 

provisions for treating such features.125,129−132  

Docking algorithms are grouped into deterministic approaches that ensure reproducibility and 

stochastic approaches. The algorithm includes random factors that do not allow full reproducibility in the latter 

case. The incremental construction algorithms consist of splitting a ligand into rigid fragments. One of the 

fragments is selected and placed in the protein binding site. The ligand reconstruction is performed in situ by 

adding the remaining fragments (as implemented in the DOCK program).133 Among the stochastic search 

approaches, the genetic algorithm (inspired by evolutionary biology) is implemented in AutoDock. Various other 

sampling methods are used in docking programs. These include simulated annealing protocols and Monte Carlo 

simulations. Glide uses a hierarchical algorithm.134 

 Scoring functions evaluate the best conformation, translation, and orientation (called poses) and rank 

the ligands. Energy scoring functions evaluate the binding of free energy between proteins and glycans. The 

affinity is evaluated using the Gibbs−Helmholtz equation. Finally, empirical scoring functions use parametrized 

terms describing properties critical in protein-glycan binding and formulate an equation for predicting affinities. 

These terms typically describe polar−apolar interactions, loss of ligand flexibility and desolvation effects. 

 The hydrogen bonds formed between the carbohydrate ligand and the protein determine the 

selectivity. Their impact on the binding energy might not be crucial for the free energy of binding135 since these 

interactions can be substituted by water in the unbound state. In addition, the modest gain of enthalpy can be 

compensated by the changes in entropy due to water displacement.136,137 Charged residues, ions and 
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structural water molecules are essential for the carbohydrate-binding.138,139 A correct charge treatment is 

another crucial point for accurate scoring.1  

A distinctive feature of protein−glycan recognition is the interaction between the aromatic side chains 

of proteins and the C−H bonds of the hydrophobic faces of the constituting monosaccharides, which results in 

the formation of critical CH−π contacts.124,140−142 However, in the docking procedure, which does not take 

the solvent into account explicitly, the electrostatic interactions in the protein−carbohydrate complex may 

contribute to the scoring dominantly when compared to the CH−π interactions.123 As such an effect accounts 

differently from other interactions, some programs may not adequately consider them. 

 Widely used docking programs, which take different accounts of these interactions, may not work for 

the protein−glycan complexes. Various docking programmes and scoring functions perform differently for other 

targets. Such variable performances could occur for different types of ligands. An accurate determination of 

carbohydrate−protein complexes remains a nontrivial issue.130,131 The biased methods offer a tool to improve 

carbohydrate-binding mode prediction.143 The solvent- structure-biased docking considers the similarity in the 

location of water molecules in the binding sites and the interactions of carbohydrate's OH-groups with the 

protein in the complex. The solvent binding sites, where the probability of finding a probe atom is higher than 

that in the bulk solvent, are used as structural knowledge to place the OH− sugar groups.144,145  

The protein "mapping" using small molecules of a different physicochemical nature allows guiding of 

the docking toward pharmacophoric interactions, namely, hydrogen bonds and hydrophobic or aromatic 

interactions.146−148  

In carbohydrate−lectin complexes, difficulties arise from many lectins' shallow, multi-chamber binding 

sites. The extension of several docking software packages to handle glycans has improved the comprehension of 

several systems. Many docking studies have been performed in the case of lectin−glycan interactions compared 

to those complexes determined experimentally by crystallography.149 In contrast, relatively few published 

docking studies on carbohydrate antibody recognition have been reported150 (http://glycam. org/ad). This 

situation reflects the limited number of suitable validation tests (i.e., high-resolution carbohydrate−antibody 

crystal structure complexes) and the inherent difficulty in modeling such systems 

. Despite these difficulties arising from the challenges posed by protein−glycan complexes, molecular 

docking has begun to produce reliable and insightful results. The extension of several docking software packages 

to handle glycosaminoglycans (GAGs)125,127,151 has improved the comprehension of GAG−protein 

interactions.152,153 

The complete characterization of glycan recognition by proteins requires quantitative 

measurements of the strength and specificity of the interactions, which can be assessed through the combined 

use of biophysical methods and computer simulation. Together with docking simulation, NMR methods have 

addressed several classes of interactions at recognition sites.155  

NMR techniques can be based on either protein156,157 or ligand observations.154,158 The glycan 

receptor binding illustrates the latter by mumps virus hemagglutinin-neuraminidase. This is an example of the 

combination of an NMR, docking, and molecular modeling search, together with CORCEMA-ST calculations, to 

unravel the structural features of sialoglycan/MuV-HN complexes. When compared to unbranched ligands, the 

different activity of the enzyme for longer and more complex substrates has been examined by NMR kinetic 

analysis154 (Figure 9).  

However, many challenges remain, and it remains a nontrivial exercise far from being a turnkey tool. In 

particular, the ability of docking programs to correctly score docking positions (especially in cases of small ligands 

in large and ill-defined binding sites) requires a critical inspection of the results.  

 

4. LOW MOLECULAR WEIGHT CARBOHYDRATES 

 

4.1. 3D Structures 

 

Over the years, many simulations of carbohydrates have been carried out. They concern carbohydrates 

in isolation or the solvated state. Quantum mechanics methods deal with relatively simple model compounds. 

They offer a proper quantified description of the main stereoelectronic effects and interactions that determine 

the behavior and properties of these molecules, e.g., mutarotations in solution, optical rotations, glassy states 

of sugar, the conformational preferences in the gas phase, and aqueous solution and the chemical reactivity. In 
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a continuous dialogue between quantum mechanics and molecular mechanics methods, evaluating the 

conformational features of many disaccharides has attracted much attention, and the comparison with 

experimental data has ascertained the credibility and the limitations of these methods.159 Large 

oligosaccharides, such as cycloamylose with 26 glucose residues per cycle,160 and RhamnoGalacturonan II, a 30-

mer mega-oligosaccharide,161 stand among the examples where molecular modeling revealed insightful 

architectural features. The application of molecular mechanics methods, often in conjunction with solution NMR 

experiments, has been repeatedly applied for complex glycans and their fragments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9. Structural features of the glycan receptor binding by mumps virus hemagglutinin-neuraminidase. (a) 2D 
plot illustrating the interaction of the sialylated undecasaccharide with the residues in the binding pocket. (b) 3D 
representation of the undecasaccharide in interactions with the receptor. (Drawn with OneAngstrom, SAMSON 
from structural data kindly provided by the authors.154)  

 

4.2. Chemical Reactivity 

 

The assembly of two carbohydrate building blocks connected by a glycosidic linkage occurs throughout a 

glycosylation reaction, a substitution reaction between a nucleophile and an electrophile. In a glycosylation 

reaction called oxocarbenium ions, the reactive intermediates appear as glycosyl cations. These glycosyl cations 

are notably different from the parent glycosides due to the change in the hybridization state of an anomeric 

carbon atom from sp3 to sp2 hybrids and the acquisition of a positive charge. The electron-withdrawing 

substituents strongly influence the shape and reactivity of the glycosyl donor. The archetypal mechanisms of 

glycosylation, SN2- and SN1-pathways, are found as extreme cases on the continuum. Stepwise transformations 

can transform the oxocarbenium ion to a reactive covalent α- or β- intermediate.  

The general mechanism for the most commonly employed glycosylation reaction is depicted in Figure 

10, showing the step of activating a donor molecule by a promotor system.162−166 Such an activation leads to 

an array of reactive intermediates. Covalent species can undergo SN2-like substitutions, while cationic 

intermediates can partake in SN1-like reactions in two possible envelope oxocarbenium ion conformers.  

Several computational studies have been undertaken to gauge the effects of multiple substituents on 

the conformational behavior, reactivity, and stability of pyranosyl oxocarbenium ions.167−174 Whitfield and co-

workers have investigated the conformational preference of tetra-O-methyl-gluco- and tetra- O-methyl-

mannopyranosyl oxocarbenium ions and their 4,6-Obenzylidene analogues. They studied the conformational 

behavior of the oxocarbenium ions formed upon dissociation of the triflate-leaving group.170 Hansen and co-
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workers have developed a computational approach to investigate the stability and reactivity of glycosyl cations 

as a function of their shape175 (Figure 11). The developed computational application probes the entire 

conformational space available to the six-membered ring cations and their representation on the Cremer−Pople 

sphere. The aim was to establish a conformational energy landscape (CEL) that could be displayed. They 

constructed and computed at the DFT level all the different conformers arising from a systematic scan of the 

three intracyclic torsional angles (C1−C2−C3−C4, C3−C4−C5−O5, and C5−O5−C1−C2). All energy is computed at 

the PCM(CH2CL2)-B3LYP/6- 311G(d,p) level of theory and expressed as the solution-phase electronic energy. The 

scheme was applied to more than 30 glycosyl oxocarbenium displaying different substitution patterns. The 

selectivity of the product formed in an SN1 glycosylation reaction could be assessed based on the conformational 

preference of the intermediate ions. The computed CEL maps could fully display these glycosyl oxocarbenium 

ions' stability, reactivity, and conformational mobility. The conformational preference of the cations could be 

directly related to the experimental stereochemical outcome of addition reactions with typical SN1-nucleophiles. 

 

Figure 10. General overview of the glycosylation reaction. Glycosylation reactions are best considered as 
occurring at a continuum between two formal extremes of the mechanism, the SN1- and SN2-mechanisms (LG, 
leaving group; P, protective group, E-X promotor system). Reproduced with permission from ref 166, Copyright 
2021 Elsevier.  

The examination of the CEL maps highlights the influence of the various substituents' electronic effect 

on the cations' overall shape. Such an influence drives the subsequent stereochemical course of the reactions. 

Decreasing electronegativity and increasing the size of the substituent translate to a preference to adopt an 

equatorial position (3H4-like conformations) to minimize steric interactions. This trend was also found for 

substituents at the C3 position and electronegative substituents at the C2 position. They occur preferentially in 

a pseudoequatorial position to enable the hyperconjugative stabilization of the oxocarbenium ion by the 

pseudoaxial C2− H2 bond. 

 

 

 

 

 

 

 

 

 

 

 
Figure 11. Overview of the workflow to map the conformational and stereoselective preference of pyranosyl 
oxocarbenium. (1) The entire conformational space of the six-membered ring was established by computing 729 
prefixed structures. A few canonical conformations (chair, half-chair, envelope, and boat) are depicted. (2) The 
associated energies are displayed on slices dividing the Cremer−Popple sphere. (3) Top- and bottom-face of 
selective conformers in separate areas of the sphere. The family of the top-face-selective (3E, 3H4, E4, and B2,5)-
like structures occurs in the area contoured with the red-dashed line, while the bottom face-selective family 
(4E,4H3, E3, and 2,5B)-like conformers occurs on the opposite side of the sphere, grouped with the blue-dashed 
line. (4) Based on the Boltzmann distribution of the top- and bottom-face selective structures, the stereochemical 
outcome of nucleophilic addition to reactions to pyranosyl oxocarbenium ions can be computed. Reproduced 
from ref 175. Copyright 2019 AmericanChemical Society. 
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Hansen and co-workers studied the formation of dioxolenium ions by remote acyl groups mounted on 

the donor molecules C- 3, C-4, or C-6.176 They were established to follow the order: 3- Ac-Man "4-Ac-Gal > 3-Ac-

Glc ∼ 3-Ac-Gal > 4-Ac-Glc > 4-Ac- Man ∼ 6-Ac-Glc/Gal/Man. The CEL maps quantitatively explained the 

experimentally found trends, and the stability of the dioxolenium ions could be linked to the strength of 

longrange participation. The central role of long-range participation in C-3 acyl mannosyl systems could be traced 

back to the strong preference for the formation of a dioxolenium ion.  
 

4.3. Carbohydrate−Water Interactions 
 

Carbohydrate hydration results from the balance between intramolecular hydrogen bonding and hydrogen 

bonding to water molecules, with the water molecules being distributed within several strata, the so-called 

hydration shells. The shape of some carbohydrates can fit into a network structure of icosahedral clusters of 

water molecules, with hydrogen bonding, by substituting a chair-form water hexamer in a cluster. Carbohydrate 

hydration is still not fully established despite its importance in determining the structure, interaction, and 

function. An ab initio investigation of glucose's first hydration shell structure has been reported. Both α- and β-

glucose reach complete hydration shells of 15 water molecules with 28 hydrogen bonds.177 Each hydroxyl group 

participates in about two hydrogen bonds, forming a weaker acceptor and a stronger donor to water molecules 

which fit poorly within a locally tetrahedral network.177 This feature may lead to water and glucose clusters by 

hydrogen bonds in aqueous glucose solutions.177 The equatorial/axial configuration of the hydroxyl groups 

fundamentally influences the hydration scheme. The occurrence of intramolecular hydrogen-bonding reduces 

the hydration of the carbohydrate, with a resulting increase in the nonpolar character and its subsequent impact 

on the biological recognition177 

 Considering the first hydration shell leads to the question of the total number of water molecules inside 

the first hydration shell, and whether water molecules can be shared and are a dominant feature of the solute 

structure,179 molecular dynamics simulation offers straightforward access to the hydration scheme's essential 

features. It identifies the number of water molecules and their contacts on the first hydration shell (Figure 12). 

Nevertheless, due to the structural complexity of the solute, the large number of water molecules, and the high 

degree of mobility, ad hoc treatment requires a statistical approach for an accurate description and analysis. An 

adequate tool uses a radial pair distribution function that evaluates the probability of finding two atoms at a 

distance, r, relative to the probability expected for a random distribution at the same density. The radial pair 

distribution function identifies the significant differences in the first and second hydration shells of different 

solute atoms. In the case of flexible disaccharides (where the first hydration shell number of water molecules per 

solute molecule is about 27), the normalized 2D radial pair distribution function is particularly adequate for 

investigating bridging water molecules between two monosaccharide rings in carbohydrates. 179,180 The 

calculation of the average residence time for all water molecules around solute atoms of interest is a descriptor 

of the dynamics that occurred within the first hydration shell. Typically, a residence time of about 0.5(2) ps is 

characteristic of water−water interactions, which is slightly lower than the average residence time of (0.6 

(2)−0.700 (2) ps) for water molecules in their interactions with hydroxyl oxygen of carbohydrates. Notorious 

exceptions exist, as in sucrose and trehalose, where the interaction between water molecules and some hydroxyl 

groups is 2.7−3.0 ps.178  
 
4.4. Carbohydrate−Carbohydrate Interactions 

 

The crystal morphology of low molecular weight carbohydrates is directly related to how these molecules 

organize in three dimensions, as in the case of sucrose. These features result from the symmetry elements 

composing the crystalline unit cell and the carbohydrate−carbohydrate interactions. The same principles apply 

to polysaccharides in the solid state with a supplementary contribution of a multivalent effect since the 

interactions reproduce along the polysaccharide chains. Such noncovalent interactions between individual 

polysaccharide chains have been recognized and documented.  

The most prominent surface-exposed structure, carbohydrates, must play a reliable and versatile role 

in cell adhesion and recognition. Nevertheless, carbohydrate−carbohydrate interactions have been less 

considered for other biochemically and biologically relevant situations181 since their measurements are 

challenging to perform. Nevertheless, such interactions result from embryonal cell compaction and aggregation, 
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myelin compaction, and melanoma cell adhesion.182,183 The adhesion of freshwater sponge cells results from 

carbohydrate−carbohydrate interactions in a low-calcium environment.184 

 Using extensive atomistic molecular dynamics simulations, the computational characterization of the 

homophilic carbohydrate carbohydrate-carbohydrate interactions of the trisaccharide LewisX leads to 

quantifying the association constants and the adhesion energy of the anchored glycolipid in the membrane, 

which is in good agreement with experimental results, previously reported. The authors observed fuzzy, weak 

carbohydrate−carbohydrate interactions (in the order of piconewtons) that appear to be a generic feature of 

such small neutral carbohydrates.185  
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Figure 12. Radial pair distribution function calculated from molecular dynamics trajectory of sucrose. Top: HO-
2g···Ow (gray); O-2g···Ow (blue) C-2g···Ow (thin dark). Bottom: O-6g . . . Ow(gray); O-6g···Ow (blue) and C6g···Ow 
(thin dark). Two-dimensional radial pair distribution functions for sucrose. Left: neighboring intra-ring water 
density O-2g···Ow···O-3g. Right: inter-ring bridging water density between O-2g···Ow···O-3f. (Adapted from ref 
178.) 

5. GLYCANS AND GLYCOCONJUGATES 
 
5.1. N- and O-Linked Glycans 

 

Protein glycosylation is one of the major post-translational modifications. More than half of human proteins have 

the potential to be glycosylated or proved to be glycosylated.186 There are two types of glycosylation where the 

glycans are linked to N- or O-atoms in the protein side chains. In the N-linked glycosylation, the oligosaccharide 

is enzymatically transferred from a lipid-linked oligosaccharide to the asparagine residue of a nascent protein in 

an en bloc manner. Oligosaccharyltransferases operate at the endoplasmic reticulum membrane. The asparagine 

is located in a consensus sequon Asn-X-Thr/Ser, where X is any residue except proline.187,188 In the O-linked 

protein glycosylation, a single GalNAc (one of the many Oglycans) is enzymatically attached (by N-acetyl 

galactosaminyltransferases) to serine or threonine residue, and then it can be further extended or modified on 

the site. There is no well-defined amino acid sequence for O-glycosylation189 (Figure 13). N-Glycans have a 

common core architecture, namely, Manα1→6(Manα1→3)Manβ1→4GlcNAcβ1→4GlcNAcβ1→ attached to Asn. 

The three mannose residues initiate branches or antennae that form arms, linear or branched. The antennae 

consist of oligomannose glycan, complex glycans (GlcNAc, Gal, Neu5Ac, and Fuc residues), and a mixture (a hybrid 

type). The antennae length, branching, and composition may vary within each type of glycan. Such a 

functionalization is case-dependent and specific to health and disease states.190,191 N-Glycan modification 

regulates the flexibility of the protein to which the glycan is attached and the protein−glycan recognition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 13. Major types of mammalian glycosylation (glycoproteins, N- and O-glycans, etc.). Schematic depiction 
of some major antigen determinants displayed according to the SNFG representation. 

 

O- and N-glycans are highly flexible, challenging their conformational sampling. The number of glycosidic 

torsion angle pairs for a typical biantennary N-glycan of complex type is 22.192. The linkage position and 
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branching may affect the glycosidic bond and pyranose ring flexibility, implying the variability of glycan motions 

and their functional diversity.193 Conformational flexibility and numerous intramolecular hydrogen bonds 

require extensive sampling to explore the conformational landscape of glycans, to which biased methods are 

applied. Replica exchange molecular dynamics (REMD) is widely used for N-glycan calculations.194−196 The 

Gaussian accelerated replica-exchange umbrella sampling (GaREUS) applies to free-energy calculations. It has 

been developed and applied to N-glycans.197 The improvement of glycosidic linkage sampling and the PMF 

calculations were reported for Hamiltonian replica exchange (H-REX), which was combined with biasing 

potentials in one-dimensional and two-dimensional grid-based correction maps (bpCMAP).198,199 An overview 

describes the recent challenges of enhanced sampling of N-glycans. 200 

 According to the unbiased simulation protocol validated (experimentally consistent) for N-glycan 

conformational sampling in explicit water, the simulations of 10 μs long allow coverage of all aqueous 

conformers.193 To plot the glycan conformational ensemble as an extension of carb-Rama plots (f Φ, Ψ, and ω 

angles).201 Andréet al. proposed a fingerprint-like presentation as a single plot in polar coordinates that describe 

the conformational dependence of many glycosidic linkages.192 For the past decades, these computational 

approaches have been extensively applied to both N- and O-glycans in solution and those attached to their 

aglycones, proteins, and lipids.202−205  

The analysis of N-glycan's structural dynamics at the atomistic level reveals two features determining 

glycan's structural complexity, e.g., the monosaccharide type and linkages (Figure 14). The functionalization has 

a relatively local effect that is case-dependent and specific to health and disease states.190,191 N-Glycan 

modification regulates the flexibility of the protein to which the glycan is attached and the protein−glycan 

recognition in its vicinity. An alternative vision of glycans made of glycoblocks has been proposed, integrating 

the monosaccharide and linkage types to rationalize the structural disorder.206 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 14. Conformational analysis of the (1-3) arm and (1-6) branch of the N-linked Man9 in terms of ϕ and ψ 
torsion angles, obtained from the 2 μsof cumulative MD sampling of the Man9 glycosylated FcγRIIIa. Heat maps 
are labeled in the top-left corner according to the Man9 numbering in the sketch. The two dominant 
conformations of the N-linked Man9 are shown on the right-hand side, with the protein represented by the 
solvent-accessible surface and underlying cartoons in grey and the mannose residues with different shades of 
green, as described in the legend. Heat maps were made with RStudio,207, and the structure was rendered with 
PyMol.14 N-Glycans are colored according to the SNFG convention. Reproduced from ref208. Copyright 2021 
American Chemical Society 

 

 Mammalian glycans contain about ten types of monosaccharides. Sialylation and fucosylation are the 

most common types of functionalization of N-glycans. Sialic acidic monosaccharides often terminate N-glycans 

and play a role in cell recognition interacting with selectins. In humans, sialic acids are limited by N-
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acetylneuraminic acid (Neu5Ac). Sialylation serves for protein recognition and regulates the conformational 

dynamics of glycans. Desialylation influences glycan's flexibility, shifts its preferential conformation and allows a 

larger opening of the antennae.  

In contrast, the core fucosylation does not disturb the overall glycan conformation. However, it may 

block some antennae.209 The stacked rings are highly rigid in sialyl Lewis antennae, while other pyranose rings 

in the oligosaccharide exhibit flexible conformational equilibrium.193 The addition of bisecting GlcNAc to 

biantennary N-glycans changes the glycan conformation and shifts the linear extension to back folding of α1−6 

antennae and the stacking of GlcNAc with Man or GlcNAc neighboring residues.210 Miyashita et al. distinguish 

five conformations for N-glycans. Some conformers' population change is due to the bisecting GlcNAc addition. 

It regulates the selection of a particular "key" from the "bunch of keys" .194  

N-linked glycans may have different conformational behavior when attached to a protein than solutions 

due to direct interactions to protein surface and water- or ion-mediated contacts. Glycans may obtain increased 

conformational diversity on the protein surface.211,212 Glycans influence protein folding and dynamics, playing 

a multifaceted role in regulating protein functioning and cell signaling.213−216 The impact of glycosylation may 

propagate to other protein regions; MD simulations visualized the allosteric mechanism.217,218 

 An essential role of glycan decorating the protein surface is shielding the peptide core from potentially 

aggressive surroundings. For example, on the HIV gp120/ gp41 envelope trimer surface, the shield is 

conformationally heterogeneous with a glycan−glycan interaction network. Such a network may regulate the 

interactions with neutralizing antibodies.219 Glycosylation modulates the flexibility of the V1/V2 and V3 loops, 

regulating the entropy cost of antibody recognition.220,221 The roles of glycans in HIV-1 gp120 binding to the 

neutralizing antibodies PG9 and PGT128 revealed multivalent interactions between glycans and the protein 

surface, enhancing the binding.221 The influence of N-glycans on antibodies of IgG class are considered in ref 

222. The CG parameters for N-glycans within the Martini force field have been optimized and applied to glycan-

lectin interactions.223  

 

5.2. Structure and Dynamics of SARS-CoV-2 

 

The recognition is an essential step preceding the cell membrane fusion and pathogen penetration into the cell. 

In SARS-CoV-2, the spike protein (S) decorates the viral cell surface (Figure 15). It binds to the angiotensin-

converting enzyme 2 (ACE2) membrane on the host cell's surface.224,225 Both S and ACE2 are highly N-

glycosylated.226−230 As viruses hijack the host biosynthetic machinery, viral proteins acquire the glycan shield 

similar to the endogenous host proteins. As already reported for HIV, the highly dense glycan coat masks the 

virus from the host immune system.231 Furthermore, the glycan epitopes may elicit specific neutralizing 

antibody responses.232 As established by cryo-EM studies, the spike protein of SARS-CoV-2 occurs as a 

homotrimer.233 Each protomer consists of two subunits: S1 and S2. It carries 22 canonical sequons for N-linked 

glycosylation and a few for O-linked glycosylation sites.228 The subunit S1 comprises (i) N terminal domain (NTD); 

(ii) receptor-binding domain (RBD). The subunit S2 includes (i) one fusion peptide; (ii) two heptad repeats (HR) 1 

and 2, (iii) one transmembrane domain (TM); and (iv) a cytoplasmic domain (CT).  
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Figure 15. Three-dimensional representation of the SARS-CoV-2 spike protein assembly: (Left) Single amino-acid 
polypeptide chain with N- and Oglycans shown in ball representation (the N- and O-glycans, along with their 
amino acid linkage to the protein, are depicted according to the SNFGrepresentation). (Middle) Trimeric 
assembly of the left panel with glycans shown as stick representation. (Right) molecular representation of the 
middle panel where glycans at several frames are shown with blue lines. The right panel is reproduced from ref 
234. Copyright 2020 AmericanChemical Society. 

 Cryo-EM diffraction provided the structures of the trimer in open (PDB 6vxx) and closed (PDB 6vsb) 

conformations.233 In conjunction with those derived from mass spectrometry,226,228 these data became the 

source of computational studies, from which several all-atom models were constructed. Of particular relevance 

was the construction of some missing domains: the ″stalk″ comprising the HR2 and TM domains and CT domain; 

positioning of missing loops and their glycans; addition of full-length glycans, which were not detected in the 3D 

structures, to GlcNAc or GlcNAc β1−4 GcNAc. Despite bearing some similarities, all-atom models show several 

differences. Some of these models considered the S protein inserted into the membrane. A trajectory of 10 μs 

long was reported as calculated on Anton 2 supercomputers and became available online (D. E. Shaw Research. 

https://www.deshawresearch.com/ downloads/download_trajectory_sarscov2.cgi/). Another structural model 

of S protein was derived from all-atom microsecond MD simulations calculated with the Amber/ Glycam force 

field.235 Five different glycoforms were considered: (1) glycosylated paucimannose (Man3), (2) the high 

mannose (Man9), (3) biantennary complex (Complex), (4) core-fucosylated biantennary complex (Complex Core 

F), and (5) one reported for site-specific glycosylation of the protein produced recombinantly in HEK293 (human 

embryonic kidney 293) cells.228 Another group of authors236 reported the complete model of glycoprotein S 

inserted into the lipid membrane. The carbohydrate moiety was adjusted to the composition with the highest 

abundance estimated by the experiment.226,228 The authors also included palmitoylation of a certain Cys in the 

CP domain (CYSP for a palmitoylated Cys residue in the CHARMM force field, still missing in Amber force fields). 

This addition was built up using CHARMM-GUI and equilibrated in the CHARMM force field for 600 ns. All the 

initial structures are available in the COVID-19 Archive of CHARMM-GUI (http://www.charmm-

gui.org/docs/archive/ covid19), and the input files for CHARMM,237 NAMD,238 GROMACS,239 AMBER,240 

GENESIS,241 and OpenMM242,243 are provided.  

A thorough analysis of the structural role of glycosylation, which is beyond shielding, was performed in 

ref 234. The authors reported an essential role of N-glycans at positions N165 and N234 in regulating the 

conformational dynamics of S1 in the part of the RBD opening. The opening of the S protein is needed for the 

ACE2 binding. The MD simulations showed that, in the absence of glycosylation at position N234 and at both 

N234 and N165 positions, the RBD exhibits larger conformational freedom, which leads to its instability. A bilayer 

interferometry experiment supports that S binding to ACE2 is remarkably reduced for the mutant N234A and 

slightly impaired for N165A. Intriguingly, the presence of Man9 and Man5, respectively, at these positions, 

stabilizes the RBD in the ″up″ conformation due to their particular interactions with the protein, as seen from 

MD simulations. Man9 at the N234 position located on NTD (B subunit) ″crawls″ and deeply extends into the 

large cavity created by the opening of the RBD of the adjacent protomer (A subunit). It props the latter up, 

forming several stable hydrogen bonds with RBD residues. The N-glycan at N165 position are more exposed to 

the solvent and extensively interacts with the ″up″ conformation of RBD.  

Man9 is a nascent form of glycan, which can be processed further or remains as such, in which case 

steric crowding occurs. A further report244 explored the role of glycosylation at N234 using MD techniques. They 

concluded that the N234-Man5 model is competent compared to the N234-Man9 model regarding its exposure 

to the open RBD, regardless of its higher dynamics. The decrease of the mannose level in the N234-Man3 model 

leads to a ″more closed″ conformation of RBD since the paucimannose is insufficient to form stable interactions 

within the pocket. Therefore, finetuning of N-glycans is essential in lifting the RBD and stabilizing open 

conformation.  

Another critical position is N370, which, due to a recent mutation T372A in the NST sequon, is 

nonglycosylated in SARS-CoV-2 and unlikely in SARS-CoV and MERS. To investigate the impact of this lack of 
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glycosylation, N370 can be "artificially" glycosylated in the molecular modeling of the S protein. This glycan does 

not interfere with the binding pocket's glycan chains at N234, N165, and N343. It may contribute to stabilizing 

the RBD ″up″ conformation. Additionally, it may contribute to stabilizing the closed trimer interacting with the 

RBD of the adjacent subunit in a specific cleft. In contrast, in the absence of the glycan chain, this cavity on the 

close conformation remains available for other glycans such as glycosaminoglycans245,246 or glycolipids.247 

The role of glycosylation, in the modulation of the lifetime of open and closed states, has been further explored 

in ref 248. 

 Point mutations modify the efficacy of RBD binding to ACE2. In the case of D614G (most dominant 

around the world249), the mutation favors the open conformation state.250 The N439K mutation enhances RBD 

affinity for ACE2.251 Glycans are broadly involved in interactions between S and ACE2. The glycan-mediated 

interactions occur between the S protein and the glycans located at N090, N322, and N546 of ACE2 (Figure 

16).229 Steered MD results in agreement with an experimental force spectroscopy study support N-linked 

glycan's importance on N090 of ACE2. It prolongs the interaction lifetime, mostly absent in the SARS-CoV-1 RBD-

ACE2 complex. After removing N-linked glycans on ACE2, its mechanical binding strength with SARS-CoV-2 RBD 

decreases to a similar level to that of the SARS-CoV-1 RBD-ACE2 interaction.252 In addition to being important 

in protein receptor interactions, N-glycan may stabilize the global allosteric interaction network.253,254 Several 

ways to enhance temporal dimension are using a CG level of representation253,255 or increasing the computer 

power, as exemplified throughout the Folding@home experience.256  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Interactions of glycosylated soluble human angiotensin-converting enzyme 2 (ACE2) and glycosylated 
SARS-CoV-2 S trimer. ACE2 is colored red, with ACE2 glycans interacting with the spike protein's upper part. 
Reproduced with permission from ref 229 Copyright 2020 Elsevier. 
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5.3. Structure, Function, and Dynamics of Glycolipids 

 

Many vital processes occur in the vicinity of cell membranes, including host−pathogen recognition, cell−cell 

communication, and signalling. These processes are regulated by glycoconjugates tethered to the lipid 

membrane. In this regard, computational modeling of influenced transmembrane protein conform glycoproteins 

and glycolipids in the membrane environment provides an insightful vision of such structural complexity. 

  The atomistic simulations demonstrated glycosylation cruciallyation and spatial orientation. In the 

epidermal growth factor receptor (EGFR),257, the Man3GlcNAc2 glycan altered the receptor subdomain 

orientation and its orientation to the membrane. The glycans attached at positions N151 (DI), N172 (DII), N389 

and N420 (DIII), and N504 (DIV) lifted these domains from the membrane plane. Such an elevated position was 

in agreement with experimental FRET studies.257 In the case of CD2, a small cell adhesion receptor expressed 

by T-cells and natural killer cells, the ectodomain orientation is determined by glycosylation and the local lipid 

composition of the membrane. The glycans attached at positions Asn141 and Asn150, located close to the 

membrane surface, create a shield preventing the electrostatic interactions with charged lipids.258 

 About 1% of human proteins are anchored to the cell membranes via glycolipids called 

glycosylphosphatidylinositol (GPI) anchors. GPI has a flexible259 pseudo-pentasaccharide glycan core Man-α(1-

2)-Man-α(1-6)-Man-α(1→4)-GlcN-α(1- 6)-Myo-inositol, which is connected to a lipid tail. The conformational 

behavior of GPI and GPI-anchored green fluorescent protein (GFP) in the membrane surrounding has been 

studied using CG MD.260 In addition to the novel CG parameters of GPI, consistent with the Martini force field, 

the authors outlined the importance of polarizable water model usage. 

 In membranes, glycolipids play an essential role as receptors for protein binding. Lipids are not 

uniformly distributed across the membrane, forming micro- and nanosized domains. Many signaling molecules 

accumulated in regions enriched with sphingomyelin and cholesterol in the plasma membrane, so-called rafts. 

Furthermore, the proteins may sort the glycolipids. Computer simulations of such partitioning and trafficking are 

in high demand. Some simplified models of lipid patches can be calculated using atomistic molecular 

representation in terms of computer power. However, the events occurring in the highly heterogeneous 

membranes at a large temporal scale are demanding and can be grasped only at the CG level of calculations.79  

Gangliosides are glycolipids that contain one or more sialic acids in the oligosaccharide headgroup 

attached to a ceramide. They are involved in many neuronal processes, particularly 

monosialotetrahexosylganglioside (GM1) and monosialodihexosylganglioside (GM3). These cell-surface 

receptors are located at the outer membrane leaflet; they may be available for binding by their respective ligands 

or hidden from this, a phenomenon termed "crypticity". Many studies have been devoted to ganglioside 

headgroup conformation on the membrane surface.261−263 The conformations of linkages GalNAc-β1-4-Gal 

and Neu5Ac-α2-3-Gal were reported to be restricted when GM1 is embedded in the micelle.261 The GM1 

headgroup can form charge pairs with the choline group of the DOPC molecules with a lifetime in the order of a 

few nanoseconds, which is much longer than DOPC−DOPC interactions.262 The conformation of GM1 is mainly 

similar in the Lo and Ld phases.264 Nonetheless, in the presence of cholesterol, the GM1 adopts a conformation 

tilted toward the membrane plane.265  

Another question addressed is the influence of gangliosides on membrane curvature.266,267 The 

spatial distribution of lipids strongly influences membrane curvature. The appearance of glycolipids raft domains 

was detected in a membrane leaflet with negative curvatures.266,267 Interestingly, atomistic simulations 

showed that GM3 clusters are slightly larger and more ordered than GM1 clusters because of the smaller 

headgroup of GM3.268 

 The nanoscale dynamics of bilayers mimicking plasma membranes with the complexity of lipid 

composition increasing up to dozens of lipid species have been evaluated.270−274 From the combination of 14 

headgroups and 11 types of tails, 63 lipid species were asymmetrically distributed across the two leaflets. 274 

The MD analysis revealed nonideal lipid mixing with transient domain formation, which disappeared at the 

microsecond time scale. The domains on two membrane leaflets were coupled and enriched with gangliosides 

on the outer leaflet. 

 Gangliosides are used as receptors for recognition by pathogen lectins, i.e., Cholera toxin B 

subunit264,275 and SV40s Viral Capsid Protein VP1.276 Shiga toxin B subunit and LecA from Pseudomonas 

aeruginosa share Globotriaosyl ceramide (Gb3), also known as the PK blood group, for the host cell 



28 
 

Multifaceted Computational Modeling in Glycoscience S Perez & O. Makshakova 
 

 

 

recognition.277,278 A comparative study has demonstrated that lipids randomly distributed across the 

membrane revealed different modes of Gb3 clustering upon virulence factor binding279 (Figure 17). 

Glycolipids play a significant role in embedding transmembrane proteins. The thylakoid membranes are 

where the galactolipids may bind specifically to the photosystem II complex.280,281 CG modeling unveiled the 

role of glycolipids in forming supercomplexes between photosystem II and the light-harvesting complex.282,283 

Some other relevant investigation studies relate to the diffusion of small molecules and ligands in the 

photosystem II embedded into the thylakoid membrane.284,285 The role of lipid composition in their mixing 

was studied through a comparative analysis of the thylakoid membrane of cyanobacteria and higher plants.286 

The lipid composition was closely related to the real membranes and included up to five galactolipids plus 

phosphatidylglycerol in each case. The analysis showed the nanoscale heterogeneities existing, particularly in the 

plant membrane, while the fluidity of the cyanobacterial membrane was markedly reduced compared to the 

plant membrane. For more details about MD simulations in photosynthesis, see ref 287. 

 

Figure 17. Globotriaosyl ceramide molecules (Gal-α1-4Gal-β1-4Glcβ1-Cer, shown as van der Waals spheres) 
clustering in the 1,2-dioleoyl-sn-glycero-3- 

 

 
6. POLYSACCHARIDES  
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Polysaccharides constitute the most diverse and abundant class of biopolymers. Several hundred known 

examples offer a great diversity of chemical structures whose number and nature of constituents exceed those 

usually found in mammalian glycans.288 Polysaccharides range from linear homopolymers to complex 

heteropolymers where the repeating units may be as large as octasaccharides. It is the case for bacterial 

polysaccharides, including capsular and exopolysaccharides, lipopolysaccharides, and peptidoglycans. Some of 

these polysaccharides can be branched, a unique feature among natural macromolecules. Depending on their 

primary structures, polysaccharide chains adopt distinctive shapes which characterize their secondary structures: 

ribbons, extended helices, hollow helices, and multiple helices. Metastable structures may appear whenever 

crystallization and biosynthetically driven polymerization are concomitant. Some of these features may persist 

locally in the dilute state and direct the solution properties of the polysaccharides. Polysaccharides exhibit 

various structures and architectural organizations depending on their origin. They can develop over several 

orders of magnitude, as observed for cellulose,289 chitin,290 or starch.291 The computational methods initially 

dealt with small- and medium-sized polysaccharides; they must be extended to cope with various situations. 

Simulations based on the principle of all-atoms representation remain used.  

Nevertheless, the characterization of the structural characteristics of polysaccharides has benefited 

from developing a CG model in its ability to simulate biomolecular systems on large scales and possibly time 

scales, inaccessible to all-atom models. These applications mainly concern polysaccharides: (i) From biomass, i.e., 

cellulose292−301 nanocellulose,302−304 cellulose-polysaccharide interactions,305,306 and chitin.307,308 The 

development of an accurate CG model for chitosans offers a characterization of the microscopic and mesoscopic 

structural properties of large polysaccharides in solution for a wide range of solvent pHs and ionic strengths. Of 

particular interest is the investigation of the effect of polymer length and degree and pattern of deacetylation 

on the polymer properties.309 (ii) From the extracellular matrix, GAGs,6,310−313 and other polysaccharides such 

as α(1-3) glucan.314,315 In most cases, these applications study the interactions of these polysaccharides with 

proteins.  

 

6.1. Polysaccharides in Solution 

 

Polymer chains in solution adopt disordered structures that fluctuate between local and global configurations. 

Polysaccharides adopt various spatial arrangements around glycosidic bonds because these molecules have 

much conformational freedom. Theoretical models of polysaccharides are established on studies of the relative 

abundance of different conformations, following the statistical theory of polymer chain configuration.316  

The possible interactions between the polysaccharide chain residues other than nearest neighbors are 

ignored in the first approximation. A Monte Carlo sampling reflects the range of conformations of polymer 

molecules. The dilute solution conformation properties, such as persistence and mass per unit lengths, are 

derived over the full range of conformations available to the chain. These properties correspond to the 

equilibrium state of the chain and refer to unperturbed chain dimensions that ignore the long-range excluded 

volume effect. They are computed from the conformational states derived from the potential energy surfaces Φ 

and Ψ of consecutive disaccharide fragments.  

A Monte Carlo algorithm has been developed that operates on the MD trajectories; it offers a more 

accurate description of the systems since all physical interactions between even distant residues are 

computed.317 Despite an ad hoc application,239, the dynamic simulation of molecular motion and 

polysaccharides' conformation is not frequent. The dynamic simulations of the molecular motion and 

conformation of the triple helix conformation (1→3)-β-D-glucans having β-D-glucopyranosyl units attached by 

(1→6) linkages extracted from a black fungus (Auricularia auricula) were reported.318  

The following example illustrates the application of a series of computational tools to decipher the 

structural features and calcium-mediated interactions of the exopolysaccharide produced by the deep-sea 

hydrothermal bacterium Alteromonas infernus: Infernan319 (Figure 18).  

 

6.2. Polysaccharides in the Solid-State 

 

Half of the annual biomass produced is cellulose, the most abundant being bio-organics on the planet. The 

understanding and the "intelligent use" of cellulose and complex architectures of components are attracting 
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considerable attention in setting up computational methods. The quest to overcome cellulose recalcitrance for 

producing biofuels and sustainable biomaterials, on the one hand, and the establishment of structure-properties 

relationships, on the other hand, have paved the way for the most recent developments.  

Plants have evolved complex nanofibril-based cell walls. The nanoscale to mesoscale organization meets 

the strength and the extensibility of growing cell walls and can be approached throughout the development of 

CG models.320 The model reveals some biomaterial design principles encompassing stiffness while yielding 

extensibility. As a complement, modeling the interactions in a plant's primary and secondary cell walls requires 

elucidating the interactions between cellulose and hemicelluloses such as xylan and xyloglucan.321 A molecular 

dynamics study suggests that the adsorption of xyloglucan to cellulose surfaces is driven by entropy.322 The 

presentation of a CG model describing xylan and its interactions with crystalline cellulose highlighted how the 

complementarity of the chains directs the interaction. Extended modeling revealed that the adsorbed xylan could 

adopt coiled structures, especially on hydrophobic cellulose surfaces.305   

 

Figure 18. The exopolysaccharide Infernan is produced by the bacterial strain Alteromonas infernus from 
collected samples of vent fluids at a depth of 2000 m. (a) Infernan has a complex repeating unit of nine 
monosaccharides established on a double-layer of side chains. A uronic and sulfated monosaccharide cluster 
confers to Infernan functional and biological activities. (b) Molecular mechanics and dynamics along molecular 
dynamics trajectories clustered the conformations in extended 2-fold and 5-fold helical structures. (c) The 
electrostatic potential distribution over all the structures revealed negatively charged cavities explored for Ca2+ 
binding through quantum chemistry computation. (d) The ribbonlike shape of 2-fold helices brings neighboring 
chains in proximity without steric clashes. The cavity chelating of the Ca2+ of one chain is completed by the 
interaction of a sulfate group from the neighboring chain. The resulting “junction zone” is based on unique 
chain−chain interactions governed by a heterotypic binding mode. Drawn with PyMol.14 Reprinted with 
permission from ref 319. Copyright 2022 Elsevier. 

 

Several CG models using distinct ″beads″ representations have provided important insights (Figure 19). 

For example, a simplified representation using ″bead″ for each monomeric glucose subunit described the intrinsic 

conformational transition of long cellulose macro fibrils between crystalline and amorphous phases on long time 

scales.301 The investigation was further extended to evaluate the significance of considering an explicit solvent. 

The results showed that the cellulose fibril's persistence length in the transition region between fully crystalline 

and amorphous corresponds to that of native cellulose fibrils. As indicated by the analysis of the individual 

energetic contributions, the polysaccharide−water interactions contribute to the crystalline to amorphous 

transition of the cellulose fibril.292,293,295,299  
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Figure 19. Coarse-grained schemes used for cellulose. In many studies, three beads have represented each 
glucose unit.64,75,292−294,301 Reproduced with permission from ref 5. Copyright 2021 Elsevier 

 

A group of authors derived one set of coarse-grained MARTINI force field parameters to simulate 

crystalline cellulose fibers. The model is adapted to reproduce different physicochemical and mechanical 

properties of native cellulose. The model can handle the transition between cellulose allomorphs and capture 

the physical response to temperature and mechanical bending of longer cellulose nanofibers.294 These few 

examples are among the many investigations where computational methods decipher complex macromolecular 

architectures related to physical and mechanical properties. At the same time, they lay the foundations for 

further exploring the relationship between the crystal morphology in topo-enzymology and topo-chemistry.  

 As biodegradable nanomaterials, cellulose nanocrystals (CNCs) and cellulose microfibrils offer many 

applications with unique physical, chemical, and mechanical properties. CG simulations allow the construction 

of reliable structural models that can be extended to predict mechanical properties. For example, a CG model 

based on a "bead" representation of the cellobiose unit indicated that well-aligned CNCs lead to a more brittle 

and catastrophic failure mechanism, while naturally twisted interfaces favor hardening mechanisms that help 

achieve optimal mechanical performance.303 The same model was applied to investigate the effect of interfacial 

energy and torsion on mechanical performance. It showed that elastic modulus, strength, and toughness are 

more sensitive to the torsion angle than interfacial energy.304,306  

 

6.3. Lipolysaccharides in Membranes 

 

Bacterial membranes are complex in the chemical composition of their constituents that form the cell envelope 

surrounding the Gram-negative bacteria cytoplasm, e.g., the inner membrane, the periplasm, and the outer 

membrane. The outer membrane is an asymmetrical bilayer where zwitterionic and anionic phospholipids 

compose the inner leaflet.323  

Lipopolysaccharides (LPSs) have the most extensive and complex chemical diversity that composes the 

outer leaflet (Figure 20). They offer a challenge to establish their structure and dynamics via computational 

methods.79 They offer a way to investigate membrane biophysics and properties resulting from the distribution 

and behavior of LPS in the outer membrane. 324−329  
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Figure 20. Schematic representation of the general structure of lipopolysaccharides. The zigzag lines in lipid A 
represent fatty acid chains.  Abbreviations: Rha, 6-deoxy-mannose (rhamnose); GlcN, 2-amino-2-deoxy-glucose 
(glucosamine); Kdo, 3-deoxy-α-D-manno-oct-2-ulopyranosonic acid; L,D-Hep, L-glycero-D-manno-heptose; Glc, 
glucose; Gal, galactose; GalNAc, 2-acetamido-2-deoxy-galactose (N-acetylgalactosamine); GalA, galacturonic 
acid; Man, mannose; P, phosphate. Structural comparison between a core-type LPS and corresponding Martini 
model. The constituting monosaccharides are depicted following the SNFG representation. Phosphates and Kdo 
carboxyl groups are colored in tan and dark blue, respectively. The Martini model of LPS follows a 4-to-1 mapping 
scheme of the Martini force field.330 

The size and complexity of LPSs can benefit from the application of CG methods, provided that 

parameter sets for a MARTINI representation are developed from atomistic simulation and compared to 

experimental data. Developing such a parameter set requires several approximations, mainly concerning the 

glycan part of the LPS, which contains several anomeric centers. Information about the many stereoisomers is 

lost because the CG beads lack atomic resolution. The application of this model to 27 different membrane 

compositions was carried out for a 100 μs cumulative MD simulation. It revealed critical structural evolutions, 

including a significant result when studying the effect of increasing the composition of LPS in 1,2-dipalmitoyl-3- 

phosphatidylethanolamine (DPPE) in the outer leaflet. The change in composition induces a decrease in the 

packing of the LPS molecules. It is accompanied by an increase in the membrane’s surface area per lipid. Thus, 

the phase transition values decrease from 346 to 290 K. This simulation describes how chemical heterogeneity 

in membrane composition can lead to significant membrane properties, such as fluidity and phase transition 

temperatures, varying by ±15° in the experimental systems.  

While losing resolution compared to all-atom simulations, CG simulations provide a better 

understanding of the architecture and physicochemical properties resulting from the curvature and permeability 

of membranes.87,331 The combined use of all-atom and CG methods provided a description of the outer 

membrane architecture of Pseudomonas aeruginosa, from which the effects of its LPS on membrane 

permeability and dynamics and their impact on antimicrobial resistance were discovered.87,332,333  

The main results indicate that the LPS layers are arranged in a closely interacting mesh within the outer 

leaflet, forming a gel phase, which offers resistance to mechanical breakage. The observation of limited lateral 

mobility of the outer leaflet may impact the movement of the molecules through the membrane during their 

translocation to the upper leaflet.  

Another study revealed how divalent cations, such as Ca2+ and Mg2+, help maintain the integrity of the 

outer membrane structure by forming stable lamellae from forming strong complexes with phosphate 

groups.332,334 The stability of lipid A bilayers for different acylated structures was studied by GC-MD 

modeling.335 The effect of O-antigen on the lipid bilayer enlightens the tendency to pack and the subsequent 

role in increasing mechanical strength and stability. When the outer membrane sheets contain only LPS, their 

firm, cohesive intermolecular interactions generate tight packing of O-antigen chains. However, when 

phospholipids and LPS are present in the outer leaflet, the O-antigen chains are tilted and less tightly packed. 

The diversity of O-antigen chain packing affects lipid mobility and the mechanical strength of the membrane.327  

Gram-negative membranes with outer leaflets of LPS alone withstand surface tensions that cause the 

membrane to rupture much more readily. Insights into understanding the bacterial cell envelope are 

accumulating from CG modeling.8 The motions of the LPS molecules are highly correlated with each other and 

the outer proteins embedded with the membrane.  

The discovery of the tlr4 gene encoding for a receptor able to bind LPS, the Toll-like receptor 4 (TLR4), 

remodeled the LPS immunology. TLR4, along with its accessory protein myeloid differentiation factor 2 (MD-2), 

builds a heterodimeric complex that recognizes LPS explicitly. This discovery initiated, among others, structural 

investigations to decode the specific sequence of events from when and how the immune system discerns the 

LPS to how and when it triggers a response from it.336−341 
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 A series of molecular modeling and computational studies have provided insights into the mechanism 

regulating the activation/inactivation of the TLR4/MD-2 system receptor and the fundamental interactions 

modulating the molecular recognition process by 

agonist and antagonist ligands (Figure 

21).342−352  

 
Figure 21. All-atom representation of model 
membrane of Escherichia coli. DPPE lipids are 
shown as gray. For LPS moieties, the 
followingcolor coding was used: Lipid A (Type 1), 
red; core oligosaccharide (R1) (−3)βDGlc(1-
3)[αDGal(1-2)αDGal(1-2)]αDGlc(1-3)αDGlc- (1-
3)[αLDHep(1-7)]αLDHep(1-3)αLDHep(1-
5)[αDKdo(2-4)]- 2)]αLRha(1- 2)αLRha(1-
2)αDGal(1-3)βDGlcNAc(1-), cyan. 

 
7. PROTEIN CARBOHYDRATE INTERACTIONS 
 

7.1. Presentation: Synopsis of the Protein Families 

All naturally occurring glycan structures and conjugates result from complex actions involving several critical 

steps in which interaction with proteins occurs. It is beyond the scope of this review to cover these events, and 

we consider broad classes of biological events and protein actions. Those interactions driving these different 

biological events involve the classes of enzymes having catalytic activity: biosynthesis, modification and 

hydrolysis. Other important events are mediated by or involved in recognition, such as transporters and an 

essential group of carbohydrate-binding proteins: lectin, antibodies, carbohydrate-binding modules, and 

glycosaminoglycan-binding proteins. Prediction experimentally based on the availability of elucidation of 

protein−carbohydrate crystalline complexes353− 355 or protein sequences.356 Figure 22 is a schematic 

description of the events involving protein−carbohydrate interactions.  
 

Figure 22. Synopsis of the families of the principal families of proteins interacting with carbohydrates along with 
their functions: transport; synthesis  (glycosyltransferase) modifications (auxiliaries enzymes); degradation 
(glycosyl hydrolase, on single glycan and semicrystalline and crystalline glycan); carbohydrate-binding modules; 
antibodies, lectins, and chemokines. Reproduced with permission from ref 5. Copyright 2021 Elsevier. 
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These are glycosyltransferases (GT) and glycoside (glycosyl) hydrolases (GH). Glycosylation proceeds in 

a stepwise manner. The enzyme’s expression, location, and specificity constitute regulatory elements in 

generating the repertoire of biosynthesized glycans and glycoconjugates. The covalent additions of the glycans 

to peptides, lipids, and proteins represent the most abundant post-translational modifications, which generate 

a paramount number of structural diversities. These structural changes in cell surface glycans guide physiological 

and pathological cellular processes. The same holds for carbohydrate polymers and their resulting functional 

properties. Computational modeling has contributed to the atomistic understanding of some origins of catalysis, 

and its machinery, from ideal to highly relevant complex cases. Consequently, it is interesting to decipher the 

mechanisms these carbohydrate-acting enzymes use.  

The combined quantum mechanics-molecular mechanics QM/MM approaches are most suited to 

provide a realistic atomistic description of the enzyme environment and offer reliable electronic structure 

calculations. Combined with molecular dynamics simulations that scan the configuration space available, 

estimates computational methods have been chosen to characterize the breaking/formation of chemical bonds 

as they occur in a fully hydrated enzyme. These methods offer access to other essential features, such as 

representing the reaction transition state (TS) or obtaining an estimate of the free energy barrier (ΔG). 

Computation can also be used to study ligand association−dissociation or processivity.  

 

7.2. Insights into Glycosyltransferases 

 

Glycosyltransferases (GTs) comprise a group of processing enzymes (EC 2.4) that transfer glycosyl residues from 

a donor to other molecules.357−360 The catalysis transfers donor substrates (mainly sugar nucleotides, such as 

UDP-GlcNAc, UDP-Gal, GDP-Man, and unsubstituted glycosyl phosphates and lipid-linked sugars) to a 

nucleophilic glycosyl acceptor. Other molecules, such as proteins, lipids, DNA, antibiotics, or other small 

molecules, can act as acceptors. GTs require a specific metal ion cofactor for catalysis. These divalent metal ion 

cofactors are Mn2+ and Mg2+. In the presence of other ions, the catalysis is often impaired361,362 (Figure 23). 
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Figure 23. Schematic diagram of overall reaction catalyzed by GTs. The reaction mechanism proposed for 
inverting GTs proceeds in a single displacement SN2-like mechanism, forming an oxocarbenium ion transition 
state. A catalytic amino acid (B) serves as a general base that deprotonates the nucleophile hydroxyl group of 
the acceptor. The reaction mechanisms proposed for retaining glycosyltransferases imply double-displacement 
mechanisms. They involve two successive SN2-like steps with a nucleophilic attack of an amino acid of a 
glycosyltransferase on the anomeric center of the donor substrate, leading to the formation of a covalent 
glycosyl−enzyme intermediate. In the second step, the glycosyl−enzyme intermediate is attacked by a hydroxyl 
group of the acceptor facilitated by its deprotonation by a catalytic base, resulting in overall net retention of 
configuration. For the SNi-like mechanism, the front-side nucleophilic attack proceeds in a single step to form an 
enzyme-stabilized oxocarbenium ion. The interaction with the departing phosphate and the incoming acceptor 
nucleophile facilitates the deprotonation of the acceptor nucleophile (drawn with ChemDraw13). 

GTs display low sequence homology.363 They are classified into more than 114 families based on amino 

acid sequence similarities of about 100,000 sequences (http://www.cazy.org/ 

GlycosylTransferases.html).364,365 As assessed from X-ray crystallography, the three-dimensional structures of 

GT exhibit a small range of folds366 as derived from the Structural Classification of Proteins 

(http://scop.berkeley.edu/). They are referred to as GT-A, GT-B, and GT-C. The GT-A architecture comprises two 

domains involving nucleotide binding and acceptor binding. GT-A enzymes contain a single Rossmann-like fold, 

a domain found in enzymes that bind nucleotides. Most, but not all, GT-A fold enzymes require divalent cations 

for activity and contain a “DxD” motif involved in coordinating the metal and nucleotide sugar. GT-B fold enzymes 

do not require divalent cations for activity. GT-C fold enzymes, such as oligosaccharyltransferases, contain 

multiple transmembrane α-helices and employ lipid-linked sugar donors.367  

The chemistry of the catalytic reaction involves a nucleophilic displacement of the substituted 

phosphate leaving group (for example, the UDP functional group) at the anomeric C-1 carbon of the transferred 

sugar residue of a donor by a hydroxyl group of a specific acceptor. 

 Each GT family can invert or retain the stereochemistry at the anomeric linkage during transfer. They 

belong to the ″retaining″ or ″inverting″ class of enzymes according to whether the stereochemistry of the 

anomeric bond of the donor is retained (α→α) or inverted (α→β or β→α) after the transfer. Several detailed 

reviews have been published on mechanistic and structural studies of glycosyltransferases.368−378 

 Based on experimental and theoretical calculations, the inversion of the anomeric configuration obeys 

an SN2-like direct displacement. The amino acid side chain in the active site acts as a catalytic base that 

deprotonates the acceptor nucleophile.379 As with the retaining GTs, a dual displacement mechanism involves 

a covalent glycosyl-enzyme intermediate. However, fundamental questions about the reaction mechanism 

remain to be answered, which has motivated an active field of computational research380−387 with, sometimes, 

the knowledge of experimental observations.388  

Structural and kinetic data have provided information on mechanistic strategies these enzymes employ. 

Nevertheless, molecular modeling studies remain essential for understanding the reaction catalyzed by GT at the 

atomistic level. QM/MM methods have become crucial to establishing different chemical reaction mechanisms. 

These methods allow enzymatic reactions to be modeled using quantum mechanical methods to calculate the 

electronic structure of the active site models and treat the remaining enzymatic environment with faster 

molecular mechanical methods. There is still a long road to travel to fully understand the role of conformational 

dynamics in enzyme activity and disclose the various reaction mechanisms these enzymes employ. Several 

reports on applying QM/MM methods to GT-catalyzed reactions highlight the insight gained from modeling 

glycosyl transfer into the mechanisms and transition states structures of both inverting and retaining 

GTs.389−394  

However, only a few studies consider the physiological context of the reaction.395−400 Chloroplast 

provides a challenging example to investigate the enzymatic catalytic event in a complex organization.401 The 
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chloroplast converts the collected photons into chemical energy. Within the chloroplast, thylakoids are 

membrane-bound compartments and sites of the light-dependent reactions of photosynthesis. Chloroplast 

thylakoids form stacks of membraneous disks (or grana) connected by unstacked stroma membranes (Figure 24). 

Within such photosynthetic machinery, there exists a unique spatial architecture that results from the presence 

and organization of two uncharged galactoglycerolipids (monogalactosyldiacylglycerol (MGDG) and 

digalactosyldiacylglycerol (DGDG)). Their content reaches 80% of the total amount of lipids. A monotopic 

monogalactosyldiacylglycerol synthase (MGD1) is embedded in the outer leaflet of the inner envelope 

membrane of chloroplasts and synthesizes MGDG. It adds galactose from the water-soluble donor substrate, 

UDP-α-D-galactose, to the hydrophobic acceptor substrate, diacylglycerol (DAG). The transfer needs an anionic 

lipid and proceeds with the inversion of the anomeric configuration to the donor substrate and the reaction 

product. The intricate organization and process of assembling and synthesizing the complexes were studied at 

coarse-grained and all-atom computer simulation levels.401,402 It allowed for a large covering of the temporal 

and spatial scales.  

 

 

 

 

Figure 24. (a) Schematic representation of the main actors for synthesising monogalactosyldiacylglycerol (MGDG) 
in the chloroplast's inner envelopemembrane (IEM). The N- and C-domains of MGD1 are highlighted in red and 
blue, respectively; the galactosyl residue is shown in yellow. (b) Compelling features of interactions between 
MGD1 and lipid bilayers and lipid capture reveal the reciprocal influence of the membrane and the protein. A 
snapshot ofMGDG (cyan)/DGDG (pink)/PG (gray)/DAG (yellow) lipid bilayer and MGD1 (N-domain is in red, C-
domain is in blue, and LOOP is in green). View from the top (left). The PG/DAG cluster with MGD1 bound, frontal 
view (right). The protein induces lipid reorganization in the membrane, facilitating the activator's and substrate's 
capture. This reorganization is concomitant to the intrinsic dynamics of the proteins, which is essential for 
enzyme activity. Reproduced with permission from ref 401. Copyright 2020 Nature Publishing Group. 
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7.3. Insights into Glycosyl Hydrolases 

 

Glycosidases or glycoside hydrolases (GH) hydrolyze glycosidic bonds in carbohydrates, polysaccharides, 

glycoproteins, glycolipids, etc. These enzymes are classified as endo- and exo-types. Exotype glycosidases attack 

and hydrolyze monoglycosides into free sugar and aglycon. When acting on oligo- or polysaccharides, they 

liberate a monosaccharide unit from the nonreducing end. Endotype glycosidases act on oligo- and 

polysaccharides and catalyze the hydrolysis of an internal glycosidic linkage, thereby liberating two carbohydrate 

moieties or releasing an oligosaccharide (or polysaccharide) and monoglycoside of the reducing end. Some 

glycosidases can act as both exo- and endotypes. Based on the similarities in their sequences, GH has been 

clustered into over 128 families.403  

Members of the same family function throughout a similar catalytic mechanism and share the same 

general fold. For more than 90 families, at least one 3D structure is available. From the availability of 

crystallographic data for more than 90 families, it has been observed that 3D structures are more conserved than 

primary sequences.  

Consequently, 15 superfamilies called GH clans regroup different families sharing similar structures. The 

catalytic cleavage of glycosidic linkages by GH proceeds according to two distinct general canonical mechanisms. 

They yield either retaining or inverting of the anomeric configuration, a double nucleotide substitution for the 

former, and a single displacement for the latter. Both mechanisms involve an oxocarbenium-like transition state. 

A pair of carboxylic acids promotes the aglycon’s departure as a leaving group, followed by a nucleophilic water 

attack at the anomeric center. The study of these mechanisms has been the subject of many computational 

investigations.368,369,374,375,378,394,404−408 A stepwise mechanism drives the catalytic cleavage of 

retaining glycosidases (Figure 25). 
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Figure 25. Schematic representation of the two nucleophilic displacement mechanisms of inverting glycosyl 
hydrolases exemplified by the hydrolysis of an α-D-glycoside. The hydrolysis involves a single step via the direct 
displacement of the aglycone. The transition state displays oxocarbeniumion-like features. One carboxylic acid 
(B) acts as the general base and activates a water molecule for nucleophilic attack at the anomeric center of the 
substrate. Simultaneously, the second carboxylic acid (B1) facilitates the departure of the leaving group via the 
general acid catalysis mechanism. A distance between 5 and 10 Å separates the two catalytic residues. Schematic 
representation of the two nucleophilic displacement mechanisms of retaining glycosylhydrolases exemplified by 
the hydrolysis of an α-D-glycoside. The first glycosylation step involves the formation of a glycosyl enzyme 
intermediate via an oxocarbenium ion-like transition state. The general acid catalyst is deprotonated in the 
following deglycosylation step and acts as a general base. It occurs by activating a water molecule for nucleophilic 
attack at the anomeric center of the glycosyl−enzyme intermediate. This step also proceeds via an oxocarbenium 
ion-like transition state. A distance of approximately 5 Å separates the two carboxylic acid residues: B and B1 
(drawn with ChemDraw13). 

Hydrolysis requires two nucleophilic displacement steps. A covalent glycoside−enzyme intermediate is 

formed in the first step via an oxo-carbenium ion-like transition state. In the second step, the general acid catalyst 

is deprotonated and acts as a general base. It activates a water molecule for nucleophilic attack at the anomeric 

center of the glycosyl-enzyme intermediate. This step also occurs via an oxocarbenium ion-like transition state. 

Most glycoside hydrolases operate by these two steps. The main exceptions are those that act on 2- acetamido 

sugars.  The acetamido carbonyl’s oxygen atom acts as an intramolecular nucleophile in a substrate-assisted 

nucleophile. In glycosidases’ catalytic mechanism, the pyranose ring at subsite-1 occurs in a distorted 
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conformation instead of the more stable 4C1 conformation. First proposed for hen eggwhite lysozyme,409−411, 

this feature was repeatedly observed in several retaining and inverting glycosidase complexes.405,412−418 

 Computational methods contributed significantly to elucidating this substrate preactivation showing 

that monosaccharide distortion determines the pathway of the glycosidase reaction. This is supported by 

reported calculations of conformational free energy surfaces that allowed a description of the catalytic routes 

used by glycosidases.418−421  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 26. (a) Distribution of the canonical conformations on the computed free-energy surface of (A) β-D-
mannopyranose, (B) β-D-glucopyranose, and (C) α-L-fucopyranose (southern hemisphere). Reproduced from ref 
419. Copyright 2010 American Chemical Society (b) Results obtained for the QM/MM metadynamics simulation 
of glycosidic bond cleavage in α-mannosidase II. Collective variables definition. Evolution of the CVs during the 
metadynamics simulation. Structures of the reactants (R), transition state (TS), and glycosyl-enzyme intermediate 
(P). Reproduced with permission from ref 425. Copyright 2016 Elsevier 

The free energy surfaces for α-D-glucopyranose,420 α-Lfucopyranose, 422 and β-D-mannopyranose419 

were calculated using metadynamics simulation using the CPMD formalism and Cremer and Pople 

puckering.423,424 Figure 24 displays the calculated free energy maps and the evident qualitative differences. 

Low-energy regions (the most stable minima) are located on one side of the diagram but shifted from the 

southwest (α-D-glucopyranose) to the northeast (α-L-fucopyranose) and northwest (β-D-mannopyranose). The 

agreement between the experimental data derived from X-ray structures of the complexes corroborates the 
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computation results and suggests an evolution of the corresponding glycosidases to select those conformations 

that require less energy for ring distortion (Figure 26). 

 As for inverting the glycoside hydrolases, the catalytic mechanism underlying the inversion of 

configuration proceeds via a single displacement mechanism. Because of its simplicity, a limited number of 

reported investigations are reported for inverting enzymes (Figure 25).426−429 One dealing with endoglucanase 

from GH8 was investigated with the DFT QM/MM method. Another group characterized the nature of the 

reaction’s transition state and the conformations adopted by the glycan xylopyranosyl ring along the reaction 

pathway under the action of an inverting β-xylosidase.426,427 A series of articles have been reported describing 

the application of computational methods in retaining glycosidases.430−440  

 
7.4. Enzymatic Degradation of Polysaccharides in the Solid-State 

 

Some polysaccharides occur in very compact three-dimensional arrangements, resulting from extensive 

networks of inter and intramolecular hydrogen bonds and van der Waals interactions. These characteristics make 

the structures utterly insoluble in water (e.g., cellulose, chitin) and highly resistant to attack by most enzymes. 

The degradation of cellulose to glucose requires the cooperative action of three enzymes, collectively known as 

cellulases. Spatial models of cellulose degradation must consider effects such as enzyme crowding and surface 

heterogeneity, which result in reduced hydrolysis rates (Figure 27). 

The first QM/MM study of the cellulose hydrolysis mechanism focused on the mechanism of 

endoglucanase (GH8 family). The free energy landscape’s chemical reaction path and the obtention were 

obtained through DFT calculation using QM atoms and metadynamics. A reduced number of collective variables 

was used. The quantification of the free energy barrier of the reaction could not be assessed.427 The simulations 

reproduced the concerted one-step general inversion mechanism. They confirmed the identity of the general 

base residue and the boatlike conformation of the transition state. The complete reaction pathway for the 

hydrolysis of cellulose was investigated using transition pathway sampling. The results of the investigation 

indicate that deglycosylation proceeds via a product-assisted mechanism in which cellobiose interacts with a 

water molecule for nucleophilic attack on the anomeric carbon atom of the glycosyl−enzyme intermediate.441  

Recent years have seen the discovery and characterization of lytic polysaccharide monooxygenases 

(LPMOs) that significantly improve cellulose degradation.446 The first QM/MM study of H2O2-dependent 

activity in the AA9 LPMO family shows that the catalysis involves forming a caged hydroxyl radical and a Cu(II)-

oxyl intermediate that oxidizes the H C4 bond of the polysaccharide substrate.447,448 In parallel to these 

investigations aimed at understanding the mechanisms of GH and capturing the complex reaction coordinates 

and conformational route that substrates follow throughout the catalytic pathway by the quantum chemical 

method, another research direction is exploring the potential of the CG method. Indeed, the size of the complete 

system to be studied requires the development and applications of such low-resolution CG representations.449 

The authors use the MARTINI representation450 and reparameterized cellobiose so that the nonbonded 

interactions are fitted to reproduce the water-cyclohexane partitioning free energies for a series of cello-

oligomers. The extrapolation of the model to longer cello-oligomers and the assignment of the specific 

nonbonding interactions to cellulose resulted in a model that yields a stable, ordered structure in water that 

closely resembles the crystal structure of cellulose Iβ. The potential of the methods is illustrated by the successful 

simulation of the motion of the carbohydrate-binding domain of Cel7A (the fungal cellulase from Trichoderma 

reseei) on the surface of crystalline cellulose.  

The representation of the cellulose surface layer as a twodimensional grid is another way to illustrate 

the significant events during the enzymatic degradation of cellulose at the mesoscopic level. The calculation 

considers the free and bound states of endo- and exo-cellulases with explicit surface reactive terms (e.g., 

hydrogen bond breaking, covalent bond cleavage) and corresponding reaction rates.451  
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Figure 27. Interaction and deconstruction of cellulose. The middle portion of the figure shows an idealized 
construction of the parallel arrangement of 36 cellulose chains constructed for an MD simulation with full 
consideration of hydration. The water molecules are not displayed. Two sections of the microfibrils display the 
van der Waals surface to highlight the potential for interactions. The left-hand side panel displays the interactions 
between the cellulose microfibril and xylan (one of the constituents of the plant cell) resulting from a molecular 
modeling study.305 The figure shows the three-dimensional structures of the representative cellulolytic enzymes 
degrading cellulose down into glucose: endoglucanase, cellobiohydrolase, and β-glucosidase. They follow the 
action of the carbohydrate-binding module and lytic polysaccharide monooxygenases (LPMOs), which 
significantly enhance cellulose breakdown. CBM, PDB: 4B96; endoglucanase, PDB: 5XBU;442 β-glucosidase PDB 
3WH5;443 CBH, PDB: 505D;444LPMO, PDB: 6RW7445. Reproduced from ref 5. Copyright 2021 Elsevier 

 

Cellulose interactions with other macromolecules, such as proteins,449 enzymes,450,452 and 

polysaccharides, have also been investigated by CG simulations. Enzymes, such as Trichoderma reesei 

cellobiohydrolase (CBH) I (Cel7A), are responsible for cellulose hydrolysis and thus are industrially crucial for 

cellulose decomposition. The translational motion and thermodynamic driving forces of the carbohydrate-

binding module (CBM) of Cel7A on the cellulose surface were investigated with the Martini CG model450 and 

mixed atomistic−CG simulations 452, respectively. Specific CG models for cellulose interacting with xylan305 and 

ionic liquids453 were also developed and provided fundamental insight into the interactions between the 

different species.  

 

7.5. Transport 

 

The transport of carbohydrates is critically essential for the proper functioning of many cellular processes. These 

molecules diffuse poorly across membranes and must travel across the channel and pores. Such a role is achieved 

by a family of membrane protein secondary transporters belonging to the Major Facilitator Superfamily 

(MSF).454 Instead of using ATP directly for transport, MSF uses an existing electrochemical gradient. Materials 

can move against the concentration gradient. Transport can concern just one substrate (uniporter) or two 
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substrates in the same direction (symporter) or in the opposite direction (antiporter). These transmembrane 

proteins allow the permeation of low molecular weight carbohydrates. 

The subject of intense research is elucidating their three-dimensional structures and modeling the 

mechanistic transport model. During the past decade, a combination of high-resolution structures of transporters 

in multiple functional states and biochemical analysis, biophysical analysis, and in silico MD computations led to 

interpret more specific details of the fundamental transport process, to the point that the functional motions of 

membrane transporters can be visualized with molecular dynamics simulations.455 Glucose transporters (GluTs) 

are among the most prominent families of membrane transporters. They occur in all the kingdoms of life. They 

provide the pathway to transport mono and disaccharide across the membrane. Molecular dynamics simulations 

have been performed on the human glucose transporter GluT1,456, a neuronic protein glucose transporter 

3.457. The molecular basis of the Glucose Transport mechanics in plants was also investigated.458 The 

mechanism of the conformational transition of the human glucose transporter was studied in the absence and 

presence of glucose. It has been investigated through extensive MD simulations of the GLUT1 transporter.459 

One of the salient features resulting from this investigation is the characterization of the behavior of glucose 

while residing in the central cavity of the protein. Glucose interacts with the surrounding amino acids through 

multiple hydrogen bonds upon entering the protein cavity, contributing to a favorable enthalpy. At the same 

time, glucose undergoes numerous rotations and axial movements that contribute to favorable entropy. Within 

the protein cavity, the free energy of glucose binding may be lower than in other ligand positions. These 

continuous movements affect the orientation of the side chains, which impacts the mechanics of the protein, 

allowing the progression of glucose and slowing down the process of glucose transfer to the intracellular 

medium.  

Resolution of the crystal structure of E. coli maltoporin460 suggested that maltose and malto-

oligosaccharide could be translocated across the membrane by guided diffusion through the track. The 

mechanistic aspects of maltotriose translocation across the maltoporin membrane channel were deciphered by 

molecular dynamics simulation. Like the general diffusion transport mechanism, the movements involve 

continuous conformational changes.461 A ″greasy slide″ within the channel is formed by a continuous stretch of 

aromatic residues forming a left-hand path. The first event is the binding of maltotriose to the first residue of the 

″greasy slide″, which occurs via van der Waals interactions with the hydrophobic side of the glucosyl ring. Deeper 

penetration into the channel occurs throughout the guided diffusion of the oligosaccharide with the ″greasy 

slide″. Due to the progressive dehydration of the oligosaccharide, short hydrogen bonds promote interactions 

between the hydroxyl groups of the maltotriose and the surrounding amino acids. It is due to the conformational 

flexibility of the glycosidic bonds and primary hydroxyl groups. The presence of charged side chains (called ″polar 

tracks″) mimics the first hydration shell of maltotriose, providing hydrogen bonds to its hydroxyl groups. 

Alongside the ″greasy slide″, the polar tracks are divided into donor and acceptor lanes. The movement of 

maltotriose to the following binding site of the “greasy slide” occurs with a rearrangement of hydrogen bonds. 

The authors describe such an arrangement as the “register shift”. The movement of maltotriose through the 

porin occurs capillary fashion due to hydrogen bonds’ continuous creation and breaking.  

Characterizing the machinery around the maltose transporter is still a matter of computational 

investigation. The analysis of the free energy landscapes for the opening-closing of the maltose transporter 

ATPase MaIK(2) has been conducted using enhanced-sampling molecular dynamics.462 In contrast, an all-atom 

molecular dynamics simulation dealt with the mechanism of nucleotide-binding domain dimerization in the 

intact Maltose Transporter.463  

 

7.6. Lectins 

 

Lectins are proteins of nonimmune origin that bind mono- and oligosaccharides reversibly and specifically while 

not exhibiting any catalytic or immunological activity.464 The established roles of lectins in biology relate to 

fertilization, embryogenesis, inflammation, and metastasis. Other essential functions deal with 

parasite−symbiote recognition and invertebrates and plants. Throughout their interactions with carbohydrates, 

lectins play a crucial role in innate as they facilitate discrimination between self and non-self.465 Within one of 

the ongoing concepts of the glycocode, lectins could be considered molecular readers deciphering the high-

density bio-encoding of complex carbohydrates.  
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While lectins display a very high specificity toward monosaccharides, the affinity describing the 

interaction in an individual binding site is not high (typically in the millimolar range). Affinity expresses the 

thermodynamic principles which govern any reversible biomolecular interaction. Lectins exhibit diverse folds and 

display several modes of “architectural multivalence”. Such a feature results in a strong avidity. It reflects the 

overall binding strength of the interaction between a carbohydrate and a multivalent lectin. Avidity cannot be 

described by thermodynamic terms but by kinetic measurements. 466  

Rich literature deals with the three-dimensional structures of lectins, most coming from X-ray 

crystallography (Figure 28). At the end of 2021, among the 2400 structures deposited in the PDB,471 1500 are 

reported to be protein−carbohydrate complexes.472 Such an ensemble of highly characterized structures offers 

a rich portfolio to test and develop computational methods. A wide variety of lectins have been studied using 

molecular docking. Nevertheless, accurate determination of carbohydrate−lectin complexes remains a nontrivial 

problem because of many lectins' shallow and multichambered binding sites. 
 

Figure 28. Topography of lectin structural arrangement: from carbohydrate combining to a trimeric base. Top 
and side surface representations of highly multivalent lectins with their binding-site distribution. From left to 
right: Lb-Tec2 (PDB: 5FCB) CEL-III from sea cucumber with lactulose  (PDB: 3W9T),467 GNA from Galanthus nivalis 
with α-methyl-D-mannoside (PDB: 1MSA),468 and rattlesnake venom; galactose-specific C-type lectin (RSL) with 
lactose (PDB: 1JZN)469 (drawn with PyMol14). Reproduced with permission from ref 470. Copyright 2018 
American Chemical Society. 

 

When used in glycan conformational studies, molecular modeling methods provide ways to extend the 

study of protein-glycan interactions. These simulations are among the most potent methods to obtain atomistic-

level information on the molecular recognition of highly dynamic systems, such as glycans. They offer some 

avenues to explore whether recognition pathway processes between two opposed processes are described as 

″conformational selection″ and ″induced fit″. Following the conformational selection theory, the receptor will 

bind only the conformers corresponding to the final bound conformation, which defines an adequate substrate 

concentration in practice. The induced-fit theory explains that recognition occurs regardless of the substrateʼs 

specific 3D conformation. The substrate will fold in place to match the spatial constraints of the receptor-binding 

site. Borrowing from the “intrinsically disordered proteins” field, an intermediate case scenario describes that 
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the substrate can form local 3D motifs, known as molecular recognition features (MoRFs)473, that the receptor 

recognizes. MoRFs act as nucleation sites initiating a folding-in-place process. Because of their highly dynamic 

architecture, glycans are intrinsically disordered biomolecules. 

Consequently, it is rather difficult, if not impossible, to experimentally determine how lectins or glycan-

processing enzymes recognize them. Significant steps have occurred, most notably the development and 

implementation of force fields capable of accounting for glycan specificity and compatibility with those 

developed for proteins. The conformational flexibility of glycans must be characterized and considered at every 

research step. 

 The resolution of the crystal structure of the β propeller lectin from Ralstonia solanacearum (RSL) 

opened up a very demanding case with the observation of an unexpected ″open″ conformation of the Lewis X 

trisaccharide (LeX)474 (Figure 29). The structure's high resolution established the observation's validity, away 

from the observations gathered for the unbound conformation of Lewis X (LeX) in the solid-state, solution, or 

other lectin complexes.475,476 A conventional (nonaccelerated) molecular dynamics simulation of two LeXRSL 

complexes of 1 and 0.85 μs trajectory followed the detailed crystallographic analysis of the open RSL-LeX 

complex. This investigation determined both the binding and unbinding pathways of LeX to and from the 

lectin.477 Moreover, the analysis of thirty 1 μs long trajectories from uncorrelated conformations probed the 

dynamic of the conformations of LeX in solution. One lesson from this analysis shows that enhanced sampling 

protocols provide results in structure, dynamics, and energetics compared with those obtained from 

microsecond-long multiple trajectories. For the time being, the application of exhaustive sampling is limited to 

tri- and tetra-saccharides, even if it faces a high-energy transition. However, it rapidly becomes unattainable as 

the glycan’s complexity and size increase.  

 

 

 
Figure 29. Hidden conformations of LewisX (LeX): β-D-Gal (1-4) (α-L-Fuc (1-3), β-D-GlcNAc). The conformations 
of fucosylated Lewis oligosaccharides are considered rigid, adopting a single shape referred to as the “closed” 
conformation. This rigid shape is due to stacking between fucose (Fuc), and galactose (Galp) rings by a 
nonconventional−Ohydrogen bond and by steric hindrance of the theN-acetyl group of GlcpNAc. The crystal 
structure of the crystalline conformation of LeX trisaccharide, together with NMR and modeling data, confirmed 
that the trisaccharide presents only limited conformational fluctuations around the closed shape. When bound 
to the Ralstonia solanacearum lectin, the LeX core adopts several distinct conformations (open). Extensive 
molecular dynamics simulations confirm rare transient LeX openings in solution, frequently assisted by distortion 
of the central N-acetyl glucosamine ring. Additional directed molecular dynamic trajectories revealed the role of 
a conserved tryptophan residue in guiding the fucose into the binding site. The conformations taken by these 
different conformations are displayed on the corresponding (Φ, Ψ) maps (drawn with SweetUnityMol478) 
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The results from comprehensive molecular dynamics simulations confirmed the stability of the LeX open 

conformation in its interaction with RSL. They provided a detailed understanding of the ensemble of specific 

interactions that stabilize this open form. The lengths of the MD simulations of LeX were long enough to capture 

how the opening events occur. The opening pathway involves a concerted change of the GlcpNAc ring puckering 

and two glycosidic linkages. The LeX structure’s opening happens in solution but is too rare an occurrence to be 

picked up by NMR. The enthalpy of binding is estimated to be around 10.6 kJ/mol. The nature of the interactions 

and the morphology of the lectin binding site compensate for such a cost (Figure 29). A series of contributions 

addressed predicting rare events in solution through computational methods. 193,196,479−481 In the case of 

LeX and sialyl LeX, the evaluation of the conformational free-energy surfaces was conducted under four different 

computational protocols:482 (i) multidimensional variant of the swarm-enhanced sampling molecular dynamics 

method (msesMD), (ii) accelerated MD,483 (iii) microseconds unbiased MD, and (iv) umbrella sampling. The 

authors discussed the potential of the msesMD simulation in its capacity to analyze glycan conformations.  

 

7.7. Antibodies 

 

Many pathogens and aberrant malignant cells display unique glycans on their surfaces. Minimal carbohydrate 

epitopes occur at the terminal end of more complex polysaccharide chains, experiencing various contexts and 

environments or surface densities. Consequently, antibodies with similar specificities for individual glycan 

epitopes may display a different cell-selective profile depending on their unique presentations in targeted cells. 

It is typically the case for many tumor-associated carbohydrate antigens expressed by tumors or normal tissues 

at a lower level.484  

New carbohydrate-based vaccines have been designed, and some have reached clinical phase studies, 

such as Streptococcus pneumoniae, Neisseria meningitides, Haemophilus influenza type b, or Salmonella enterica. 

The extension of such developments offers new opportunities for cancer immunotherapy. Carbohydrate 

antigens recognized by preformed and elicited antibodies are essential in blood group transfusion and organ 

transplantation. In these cases, the antibody-recognized carbohydrate determinants are expressed on the cell 

surface as glycolipids and glycoproteins. 

 New challenges aim to target carbohydrates on the surface of bacteria, protozoa, helminths, viruses, 

fungi, and cancer cells for vaccination purposes as the identification and evaluation of unique carbohydrate 

epitopes on a plethora of pathogens and malignant cells becomes available.485  

Although monoclonal antibodies are clinically effective tools, those against carbohydrates tend to have 

low affinity and complex or mixed specificity. Glycan antigen recognition may depend on glycan density, valence, 

presentation, and flexibility. 486 There is an important limitation in exploiting glycans as disease markers or 

therapeutic targets due to the scarcity of high specificity and high affinity of specific antibodies against 

carbohydrate targets. In such complex environments, experimental methods cannot establish glycan 

conformations and must be complemented by systematic computational modeling, the antibody and the glycan-

antibody epitope. Elucidating the molecular basis of the complexes’ formation and the balance between the 

enthalpic and entropic contribution involved in the binding are required.487 Recognizing that computational 

approaches do not lead to one plausible model, a confrontation with experimental remains essential to select 

the most likely plausible models. An example of how such a computational, experimental approach can lead to 

a rational design of potent antibodies targeting glycans is given by elucidating the structural origin of antibody 

recognition of sialyl-Tn antigen, a tumor-associated carbohydrate antigen (TACA). The information from a glycan 

microarray screening and STD-NMR experiment helped select an optimal three-dimensional model of the glycan 

antibody (Sialyl-Tb-mAbTKH2) by molecular dynamics docking simulations.488 Compared with many docking 

studies on carbohydrate−lectin and carbohydrate−enzyme recognition, there are few published computational-

aided carbohydrate-antibody recognition studies. 

 Most life-threatening septicaemia, meningitis, and pneumonia cases occur from the deleterious action 

of surface capsular polysaccharides on bacteria. While these bacterial polysaccharides may have similar 

carbohydrate sequences, they differ in immunogenicity, antigenicity, virulence, and geographical dispersion. 

Moreover, diseases might occur from several strains that circulate simultaneously in a region, such as N. 

meningitidis, Shigella flexneri, S. pneumoniae, Klebsiella pneumoniae, etc. The broad protection conferred by 

vaccines often relies on several serogroups/serotypes (vaccine valency). The subsequent task is to design a 

vaccine with maximal coverage against prevalent bacterial strains with minimal vaccine valency. The valency of 
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a vaccine can be reduced if the selected vaccine serotype(s) can confer protection against closely related 

nonvaccine serotypes. 489 

 The contribution of molecular modeling aims at providing detailed descriptions of the dynamic motion 

of the polysaccharide chain to enlighten the effects of substituents (or lack of) on the backbone conformation in 

chemically similar carbohydrate chains.490−493 

Molecular dynamics simulations proceed with progressively extending chains while increasing the 

simulation length. This approach establishes prevalent conformations and starts with initial carbohydrate 

structures with low-energy conformations. At this stage, the simulation trajectory will likely converge quickly and 

explore the solution's most general conformations of the native carbohydrate chains. Two metrics of chain 

flexibility are needed to assess the convergence of the MD simulations. They are the end-to-end distance, t, and 

the radius of gyration of the polysaccharide chains. A block-averaging analysis assesses the simulation 

convergence. This algorithm divides a simulation trajectory, having N frames, into a set of M ″blocks″ of length n 

frames, N = Mn. Then, the selected metric (e.g., the radius of hydration, end-to-end distance) is averaged in each 

block. The block (n) length is progressively increased, and the block averages are recalculated at each value of n. 

The standard deviation in the block set yields the blocked standard error for each value of n. The convergence of 

the simulation is assessed whenever the current estimate of the blocked standard error asymptotes to a plateau. 

It represents the standard error in the estimate of the mean. 

S. fLexneri is the primary causal agent of the endemic form of bacillary dysentery (Figure 30). The O-

antigen is the polysaccharide moiety of the lipopolysaccharide; it is the principal target of the serotype-specific 

protective humoral response elicited upon host infection by S. flexeneri. Among the 30 serotypes reported, 29 

with a common repeat unit differentiate through variations in the lateral substituents. Whereas a quadrivalent 

serotype-based vaccine could enhance broader protection, the question arises as to whether other serotypes 

should be considered. The application of the above-described computational method aims at identifying whether 

the quadrivalent vaccine containing serotype could provide coverage against other prevalent serotypes.495 

 The central role of carbohydrates in blood group transfusion and organ transplantation dramatically 

underscores the importance of glycan-protein interactions in major biological processes. The families of antigens 

called ABH(O) and Lewis determinants are among the significant carbohydrate determinants of blood groups. 

Most ABO antigens are expressed on human erythrocytes at the ends of long polylactosamine chains, a minority 

of the epitope occurring on neutral glycosphingolipids. Despite the critical role played by these determinants, 

the description at the three-dimensional level of the interactions between antigens and antibodies is slowly 

accumulating. Without detailed structures, a comprehensive study of the cross-reaction patterns of 9 antibodies 

against 12 carbohydrate antigens was conducted using computational methods. Three-dimensional descriptors 

of the molecular properties of carbohydrate antigens were used in comparative molecular field analysis 

(COMFA). Processing the quantitative structure−activity relationship (QSAR) data provided insights into the 

carbohydrate epitopes required for antibody recognition while also providing insight into the nature of molecular 

recognition.496,497  

The limited number of antibody−carbohydrate docking studies reflects the paucity of crystal structure 

complexes at high resolution. The structural analysis of these available structural data indicates some general 

trends about how such antibodies recognize different types of carbohydrates. Those antibodies which recognize 

a terminal carbohydrate motif display a cavity-like binding site, reminiscent of the combining sites found in 

lectins, where the insertion of one or more monosaccharide residues occurs at is ″end-on″. Antibodies that 

recognize an internal carbohydrate motif (a single or several repeat units) of a polysaccharide display, in general, 

groove-like binding sites or vast cavities which are ″open″ at both ends of the sites allowing for ″side-on″ entry 

of the antigen. While displaying some structural similarities with the catalytic sites of glycoside hydrolases, these 

features allow the carbohydrate to be recognized as a ″conformational epitope″ as shown in the case of group B 

meningococcal α-2-8 linked sialic acid polysaccharide.498  
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Figure 30. (a) Depiction of the three-dimensional structure of a decasaccharide fragment of S. flexeneri from 
serotype 2a in complex with a protective monoclonals antibody Fab F22-4 (PDB: 3BZ4494) (drawn with PyMol14 
and SweetUnityMol478). (b) Structures All serogroups share the same serotype backbone but are distinguished 
with substitution. Results of the exploration of the effect of glucosylation on the conformation and dynamics of 
the S. flexeneri O-Ags, using descriptor r, as a simple measure of the molecular extension and flexibility, over a 
1000 ns molecular dynamics simulation, as computed for 8 serotypes. The differences in the r time series (left 
column for each serotype) and corresponding distribution captured the significant influence arising from the 
variations in substitutions on a common backbone repeating unit. Adapted with permission from ref 495. 
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7.8. Glycosaminoglycans and Signaling 

 

Molecular modeling of the structure, dynamics, and interactions of glycosaminoglycans (GAGs) assembles most 

of the difficulties of glycoscience, as they combine the challenges of glycans and polyelectrolyte polysaccharides. 

GAGs are a family of complex anionic polysaccharides, including (i) glucosaminoglycans (heparin and heparan 

sulfate), (ii) galactosylaminoglycans (chondroitin sulfate and dermatan sulfate), and (iii) hyaluronic acid and 

keratan sulfate (Figure 31). 

 
Figure 31. Cartoon representation of the chemical constitution of the five families of GAGs and of six categories 
of proteoglycans (aggrecan; decorin, perlecan, and collagen; glypican; and syndecan and serglycin). ES, 
extracellular; IS, intracellular; N, nucleus; SV, secretory vesicle. Reprinted in part from ref 499. Copyright 2008 
Wiley-Liss. Reproduced with permission from ref 500. Copyright 2021 MDPI. 

 

Several features pose difficulties in the computational modeling of GAGs and their interactions with 

proteins. GAGs exhibit structural and chemical heterogeneity. Various sulfation motifs and their distribution 

along the chain contribute to their sequence, conformational diversity, ring puckering,479 and high charge 

density. Many torsional angles between glycosidic angles and side chains create high conformational flexibility. 

Despite the limited number of constituting elements, the conformational flexibility of idpoyranoses increases to 

32, which is the set of possible low-energy conformations to be considered elementary building blocks. Despite 

the large number of unique GAG disaccharides, which amounts to 202,501 macromolecular builders to deal with 

nonsulfated or sulfated glycosaminoglycans, allow grasping of their 3D features.502−504 

 It is difficult to characterize the impact of solvation and desolvation on GAG structures. Their size and 

heterogeneity necessitate multiscale modeling of glycosaminoglycans, from disaccharide fragments to 

polysaccharides.6 Computational studies have been performed on the GAG fragments, usually no longer than 

5−10 monosaccharide units, shorter than the significantly longer natural polysaccharides. Attempts to accelerate 

and improve the construction and the simulation of GAGs have been developed.502,503,505,506 Moreover, they 

offer new perspectives on the computational simulations of GAGs.507  

Characterization of a heparin disaccharide in optimized conformation by quantum methods, application 

of molecular modeling to hyaluronan decasaccharide in water, and multi-microsecond aqueous simulation of 

heparan and heterogeneous proteoglycans313 and glycosaminoglycans provide some illustrations of spatio-

temporal realizations. CG simulation is particularly relevant to characterize the dynamic features of GAGs on 

long-time scales, despite the low resolution resulting from this kind of computation.508 GAGs display important 

physicochemical properties.509  
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GAGs bind to numerous proteins on the cell surfaces, including growth factors, cytokines, proteases, 

and coagulation enzymes, and within the extracellular matrix. For example, heparin and heparin-sulfate interact 

with several hundred proteins and numerous pathogens. These interactions mediate their biological activities 

and play essential roles in physiopathological processes such as growth factor control, anticoagulation, 

hemostasis, and cell adhesion.510,511 New data are being integrated to complement the investigation of the 

integration of glycosaminoglycans.501 As part of the interactions between proteins and GAGs imply electrostatic 

interactions, it is indispensable to consider solvent for the interactions, but the impact of solvation/desolvation 

on complex formation is difficult to assess.128,508 The challenge remains identifying well-defined and predicted 

GAG-binding pockets on bound proteins.151,512 

 GAGs interacting with proteins bear a high negative charge, and electrostatic interactions partly drive 

their binding onto protein surfaces.509 A preliminary step is the calculation of the electrostatic potential 

isosurfaces for the protein that indicates the location of the GAG binding region (Figure 32).513 A complementary 

way to assist the determination of the binding site may result from rigid or multiple docking of a GAG 

fragment(s).514 Such a local docking approach guide the initial search on grossly determined binding sites. 

Nevertheless, the challenge remains to predict a binding pose, even for short GAGs, whenever a putative binding 

site on a protein is known. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 32. Stability of the spike−heparin complexes. Representative closed (left), and open (right) structures 
obtained after MD simulation of spike bound to three heparin chains are displayed as molecular surfaces with 
electrostatic potential mapped onto them to show the partially grooved positively charged path occupied by a 
heparin 31mer. Heparin is shown in a stick representation colored by elements with cyan carbons. The yellow 
dashed lines show H-bonds between the spike and heparin. The insets for the closed and open conformations 
highlight the H-bonding interactions between heparin and the residues in the RBD (T345, R346, N354, R355, 
N360) and S1/S2 (R682, R683, R685) HBDs shown in stick representation with carbons colored according to the 
subunits to which they are bound. Reproduced with permission from ref 513. Copyright 2021 MDPI. 
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 In the quest to evaluate the performances of docking protein-GAG complexes with several widely used 

docking programs, a comparison established that the commercial program Glide and the free docking software 

Autodock515−517 provided reasonably good performance.153 The authors conclude that an adequate 

prediction of the protein−GAG biding pose is best achieved when clustering and experimental data are 

applied.518 Nevertheless, the situation worsens when constituting monosaccharides are higher than six.153 

Other investigations using conventional docking protocols and tools also showed limited success in investigating 

protein-GAGs systems with modest fragments having lengths between four and six monosaccharides.519−521  

The adaptation of the program for docking flexible molecules522 to the GAG-protein system first used 

a “coarse6docking” approach to predict the binding site, followed by a “fine-grained” calculation to further 

minimization. As for docking more extended GAGs into a protein, a molecular dynamics docking method based 

on a steered MD simulation proved to perform better than other approaches at the cost of requiring more 

computational resources.523  

A fragment-based docking approach has been explored in the quest for new computational tools 

capable of dealing with more extended GAGs. The GAGs fragments are separately docked on the proteins, and 

the results are used to rebuild a profile of massive conformations of the entire GAG.524−526 As applied to GAGs, 

the fragment-based docking protocol uses an incremental ligand construction starting from the docking seed 

pose of one fragment. The accuracy of the seed pose determines the success of the operation. Another fragment 

docking approach has been used for binding site prediction throughout evaluating the number of contacts with 

docking poses made by the protein residues.514,527 Starting from a coarsely identified protein binding site, a 

novel fragment-based method with a fully flexible long GAG ligand was validated on a benchmark of 13 

experimentally known GAG−protein structures.528  

There is a continuous exploration of approaches to tackle the complexity of solving the interactions of 

proteins with GAGs of suitable length. In particular, molecular docking coupled to MD simulations provides a way 

to explore the induced-fit mechanism of protein−GAG binding. The evaluation of complex stability, as well as the 

refinement and the rescoring of docking poses.125,153,528,529  

GAG−protein interactions constitute an intense area of research to understand fundamental biological 

problems and develop new bioactive molecules of therapeutic value. In experimental and computational studies, 

almost half of the studies concern heparin, frequently used as a structural analogue of heparin and heparan 

sulfate proteoglycan.512 It is easy to understand given the wide range of biological functions heparin performs 

and the importance of designing heparin-like drugs to treat coagulation disorders, abnormal inflammatory or 

immune responses, and angiogenesis-dependent diseases. It explains the relatively low number devoted to 

studying chondroitin sulfate, despite its biological relevance. A few computational investigations aim to design 

innovative functional materials, to control and promote application processes in bone and skin regeneration. 

Over 20 protein GAG systems have been characterized in the last 15 years. 

 The development of new force fields40,506, scoring functions and databases has contributed to 

understanding GAGs in conjunction with data from experimental techniques. These have proved relevant and 

valuable for the detailed characterization of structure−function and structure−property relationships.29 A 

flowchart describing the use of computational approaches to be addressed and critical questions about GAG-

protein interactions have been proposed to understand a series of critical points, such as the following: (i) Is this 

protein interacting with GAGs? (ii) Where does the binding occur? (iii) Is there an optimum GAG sequence for 

the binding? (iv) Is the GAG−protein complex stable?128 

 Many computational modeling challenges remain: (i) to investigate the role of solvation and 

counterions, (ii) to elucidate the contribution of the polyelectrolyte nature of GAGs to the interaction, (iii) to 

characterize GAG chains with a degree of polymerization greater than 10, which exhibit a high degree of 

conformational flexibility, (iv) to develop new docking protocols based on the fragment-based approach or 

coarse-grained techniques, (v) to elucidate the specificity of the interactions with proteins and the role of GAG 

degree of polymerization and sulfation patterns, (vi) to explore whether GAG molecules induce allosteric effects 

on their target proteins, (vii) to assess the thermodynamic and kinetic features of protein−-GAG systems, and 

(viii) to decipher how GAG−protein interactions take place in the context of the multicomponent nature of the 

peri- and extracellular matrix.  
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8. STRUCTURAL GLYCOBIOINFORMATICS. TOOLS AND DATABASES 
 

Future scientific output in glycoscience represents the publication of some 70,000 research articles annually. The 

availability of powerful high-performance computing and search capabilities dramatically amplifies the space of 

accessible information. In addition to offering the generalization of network analysis of a semantic corpus to 

study the dynamics of science, technology, innovation, and knowledge production, such data mining opens up 

new opportunities for discovery. This new vision emphasizes the value of analyzing and curating the raw data of 

published works. Untapped wealth can be harvested from the collected data sets from which the extracted 

information is translated into knowledge. Such advances benefit the entire field of structural glycoscience by 

developing tools and databases in various online resources. They cover the structures of glycans and 

glycoconjugates, the enzymes responsible for their biosynthesis and degradation, and the binding of glycans to 

human pathogens, glyco-epitopes and their antibodies as typical examples. The development of enabling 

technologies has led to a rich computational toolbox for solving the 3D structures of complex glycans and their 

identification and manipulation. Simultaneously, several computational tools and databases have been 

developed through the activities of several independent research groups worldwide. By early 2021, more than 

150 entries were available on the Internet as open-source applications.   
 
8.1. Applications to Building and Visualization 

 
8.1.1. Structure Modeling. 

 
  CHARMM-GUI Glycan Modeler: in silico N-/O-glycosylation of proteins; modeling of carbohydrate-only 
systems, web service530 (http://www. charmm-gui.org/?doc=input/glycan). CHARMM-GUI Glycolipid/LPS 
Modeler  

CHARMM-GUI Glycolipid/LPS Modeler: Glycolipid and lipoglycan structure modeling web service530 

(http://charmmgui. org/?doc=input/glycolipid; http://charmm-gui.org/?doc= input/lps).  
MARTINI General Purpose Coarse-Grained Force Field: The Martini force field is a CG force field suited 

for molecular dynamics simulations of biomolecular systems86 (http:// cgmartini.nl/).  
Glycosylator: Rapid modeling of glycans and glycoproteins (including glycosylation) based on a 

CHARMM force field, Python framework531 (https://github.com/tlemmin/glycosylator).  
Rosetta Carbohydrate: Modeling various saccharide and glycoconjugate structures (including loop 

modeling, glycoligand docking, and glycosylation), Python framework131,532− 534 

(https://www.rosettacommons.org/docs/latest/application_documentation/carbohydrates/ 
WorkingWithGlycans).  

Azahar: Monte Carlo conformational search and trajectory analysis of glycans, Python framework, 
PyMol plugin535 (https://github.com/BIOS-IMASL/Azahar).  

Shape: Carbohydrate-dedicated fully automated MM3-based conformation simulation, stand-alone 
software98 (https:// sourceforge.net/projects/shapega/) 
  Glydict: MM3-based N-glycan structure prediction based on MD simulations, web service536 
(http://www.glycosciences.de/modeling/glydict/). 

 GLYGAL: MM3-based conformational analysis of oligosaccharides, stand-alone software97.  
 Fast Sugar Structure Prediction Software (FSPS): Automatic structure prediction tool for oligo- and 
polysaccharides in solution.537 
 

 8.1.2. Structure Building and Model Preparation. 
 doGlycans: Preparing carbohydrate structures (including polysaccharides, glycolipids and 

glycoproteins) for GROMACS atomistic simulations538 (https://bitbucket.org/biophys-uh/ 
doglycans/src/master/).  

GLYCAM-Web Carbohydrate Builder: 3D structure prediction of carbohydrates and related 
macromolecules using GLYCAM06 force field and MD in AMBER (successor of GLYCAM Biomolecule Builder)41 

(https://glycam.org).  
SWEET-II: Rapid 3D model construction of oligo- and polysaccharides with MM3 optimization539 

(http://www. glycosciences.de/modeling/sweet2/).  

https://github.com/BIOS-IMASL/Azahar
https://glycam.org/
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Polys-Glycan Builder: Structure generation of polysaccharides and complex oligosaccharides from 
MM3-precalculated glycosidic linkage torsions and energy minimization504 (http://glycan-
builder.cermav.cnrs.fr/). 
 

8.1.3. Glycosylation Modeling and Grafting.  
GLYCAMWeb Glycoprotein Builder: Attaching a glycan (user input) to a protein (PDB file), web service 

(http://glycam.org/gp).  
GlyProt: in silico generation of N-glycosylated 3D models of protein540 

(http://www.glycosciences.de/modeling/glyprot/ php/main.php). 
 Phenix CarboLoad: Loading a carbohydrate structure into protein model and PDB file generation541 

(https://www. phenix-online.org/documentation/reference/carbo_load. html).  
GLYCAM-Web GlySpec (Grafting): Prediction of glycan specificity by integrating glycan array screening 

data and 3D structure3,542−545 (https://glycam.org).  
 
Noteworthy stand-alone programming frameworks for structure modeling are Glycosylated (modeling of glycans, 
glycoproteins and glycosylation) and Rosetta Carbohydrate (loop modeling,131 glycan-to-protein docking, and 
glycosylation modeling). 
 

8.1.4. Biological Membranes and Micelles.  
Three applications are available to construct biological membranes and micelles. 
CHARMM-GUI Membrane Builder: Constructs complex glycolipid, lipopolysaccharides and lipo-

oligosaccharides inserted in biological membranes334,530,546−548 (http://www.charmm-
gui.org/?doc=input/membrane.bilayer). 

GNOMM: A lipopolysaccharide-riched bacterial outer membranes can be constructed 
(http://thalis.biol.uoa.gr/ GNOMM/, prior MD simulations in GROMACS).549 

 Micelle Maker: The web-based Micelle Maker application provides a broad range of starting lipids and 
glycolipids readily compatible with AMBER and the GLYCAM library550 (http:// www.micellemaker.net).  
 

8.1.5. Polysaccharide Builders.  
To build diverse saccharide 3D models online, one can use such tools as REStLESS and SWEET-II. 

doGlycans stand-alone framework can be used to prepare the atomistic models of glycopolymers, glycolipids and 

glycoproteins. Complex polysaccharide 3D models can be generated via POLYS551,552 (http://www. 
models.life.ku.dk/polys,http://glycan-builder.cermav.cnrs.fr/) and CarbBuilder553 
(https://people.cs.uct.ac.za/~mkuttel/ Downloads.html). Another particular class of polysaccharide builders is 
dedicated to glycosaminoglycans (GAGs) which can be accessed using POLYS GAG-builder 
(http://matrixdb.univlyon1.fr/)501 and GLYCAM-Web GAG-builder506 (http://glycam.org/gag). Another 
approach for building GAG molecules was reported.503 Unfortunately, the application scope of most of the 
existing structure building and modeling services is limited to a rigidly defined set of supported sugar residues 
and lacks non-carbohydrate moiety support.  
 

8.1.6. Visualization. 
The majority of molecular modeling software can achieve visualization of carbohydrates based on 

atomic coordinates. Nevertheless, several applications have been developed over the years to cope with the 
complexity of carbohydrate structures.269,478,539,554−568  

The first attempt to display carbohydrate molecules in a meaningful and straightforward way was 
achieved by developing PaperChain and Twister graphics algorithm,562 and these have been implemented in 
CarboHydra569 and Visual Molecular Dynamics269 packages. The most recent developments have emerged 
intending to convert the input of the 2D SNFG representation into a 3D-SNFG illustration.  

SweetUnityMol:478 https://sourceforge.net/projects/ unitymol/files/UnityMol_1.0.37/. With an 
extension: Umbrella visualization for N-glycan structures.570 
  Azahar plugin for PyMol535 http://www.pymolwiki.org/ index.php/Azahar.  
3D-SNFG VMD interface:269 http://glycam.org/docs/othertoolsservice/2016/06/03/3d-symbol-nomenclature-
forglycans-3d-snfg/. Tangram plugin: https://github.com/insilichem/tangram_ snfg.566  

LiteMol (https://www.litemol.org/ and https://github.com/dsehnal/LiteMol) and its successor Mol* 
(https:// molstar.org/viewer/).558  

https://glycam.org/
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SAMSON − OneAngstrom: Molecular simulation in the cloud. Provide a complete series of 
monosaccharides conformations for 3-dimensional constructions, optimization, visualization 
(https://www.oneangstrom.com).  

 
 

8.1.7. Structural Data Analysis.  
Conformational Analysis Tool (CAT): Analysis of carbohydrate molecular trajectory data derived from 

MD simulations, stand-alone software19 (http:// www.md-simulations.de/CAT/).  
Best-fit, Four-Membered Plane (BFMP): Analysis of conformational data from crystal structures 

andMDsimulations of carbohydrates571 (http://glycam.org/docs/ othertoolsservice/download-
docs/publication-materials/ bfmp/).  

Distance Mapping: Estimation of nuclear Overhauser effects in disaccharides 
(http://www.glycosciences.de/modeling).  

MD2NOE: Calculation of Nuclear Overhauser effect buildup curves from long MD trajectories572 
(http://glycam.org/docs/othertoolsservice/download-docs/publication-materials/ md2noe/).  

GS-align: Glycan structure alignment and similarity calculation, stand-alone software217 
(http://www.glycanstructure. org/gsalign).  

GlyTorsion and GlyVicinity analyze: Respectively, the torsion angles in carbohydrates and the amino 
acids in the vicinity of carbohydrates from Protein Data Bank573,574 (http:// www.glycosciences.de/tools/).  

 
8.1.8. Tools for Structural Validation of Glycans.  
CNS: Macromolecular structure determination and refinement (including carbohydrates and 

glycoproteins) based on X-ray and NMR data, stand-alone software575−578 (http://cns-online. org/v1.3/).  
pdb-care: Identification and assigning carbohydrate structures using atom types and coordinates from 

PDB files, web tool579 (http://www.glycosciences.de/tools/pdb-care/).  
CARP: Glycoprotein 3D quality evaluation based on the analysis of glycosidic torsion angles from PDB, 

web tool573 (http://www.glycosciences.de/tools/carp/).  
GlyProbity: Accuracy and internal consistency check of carbohydrate 3D structures, part of a web service 

pipeline580 (https://dev.glycam.org/portal/gf_home/).  
PDB2Glycan: 3D structure analysis and validation of glycoprotein PDB entries, part of a web service 

pipeline581 (https://glyconavi.org/TCarp/) (https://gitlab.com/ glyconavi/pdb2glycan).  
PDB-REDO: Glycoprotein structure model improvement and validation, web service and stand-alone 

software582,583 (https://pdb-redo.eu/). 
Coot: Refinement and validation of glycoprotein 3D structure from cryoEM and X-ray crystallography 

data, stand-alone software584,585 (https://www2.mrc-lmb.cam.ac.uk/personal/ pemsley/coot/).  
Rosetta: Carbohydrate refinement of glycoprotein 3D structure from cryoEM and X-ray crystallography 

data, based on correction of conformational and configurational errors in carbohydrates, Python 
framework586  https://www.rosettacommons.org/docs/latest/application_documentation/ 
carbohydrates/WorkingWithGlycans). Privateer: Automated validation of carbohydrate conformation data 
based on 3D structure analysis, stand-alone software587,588 (https://smb.slac.stanford.edu/facilities/ 
software/ccp4/html/privateer.html).  

Privateer: The case for postpredictional modifications in the AlphaFold Protein Structure Database.589 
According to the authors, the latest versions of Privateer can even graft glycans from other PDB structures onto 
AlphaFold models.  

Phenix: Determination, refinement, and validation of macromolecular structure (including 
carbohydrates and glycoproteins) from cryoEM, X-ray diffraction and neutron diffraction crystallography data, 
stand-alone software541 (http://phenixonline. org/).  

Motive Validator: Automatic custom residue validation in biomolecules, including carbohydrates, web 
service590 (https:// webchem.ncbr.muni.cz/Platform/MotiveValidator).  

ValidatorDB: Precomputed validation results of ligands and nonstandard residues in PDB (including 
carbohydrates), web service591 (http://webchem.ncbr.muni.cz/Platform). 
 

 
 8.2. Structural Databases  
 

http://www.md-simulations.de/CAT/
http://www.glycosciences.de/modeling
http://www.glycosciences.de/tools/
http://www.glycosciences.de/tools/pdb-care/
http://www.glycosciences.de/tools/carp/
https://dev.glycam.org/portal/gf_home/
https://pdb-redo.eu/
http://webchem.ncbr.muni.cz/Platform
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In parallel with the development of methods in molecular modeling, there has been a revival in the number and 
scope of databases, websites, and both real and virtual glycan libraries that address the information needs in 
glycosciences. These efforts intend to (1) assess “primary data: (covalent and 3D structures of glycans and 
glycoconjugates) and (2) organize these primary data into databases, which can (a) speed up the production of 
primary data, (b) predict new features, and (c) characterize structure−activity or structure−function relationships, 
throughout their integration into meta-databases. Most existing repositories for glycan 3D structures are 
accessible via the web interface. They offer a variety of data covering oligosaccharides, polysaccharides, 
glycoproteins, and protein−carbohydrate complexes. These data are associated with experimentally resolved 
structures, NMR, X-ray and neutron crystallography,592 cryoEM, and small angle X-ray scattering. Some other 
databases contain data derived from molecular mechanics or molecular dynamics simulations. A complete list of 
glycan databases with 3D structure support, as existing in 2020, is given by Scherbinina and Toukach.4 

 
8.2.1. 3D Structure Centric.  
Carbohydrate Structure Database (CSDB):288,593,594 http://csdb.glycoscience.ru/ database.  
Glycosciences.de:595−597 http://www.glycosciences.de/.  
Glyco3D: A portal for structural glycosciences598,599 that includes a family of databases covering the 

3D features of monosaccharides, disaccharides, oligosaccharides, polysaccharides, glycosyltransferases, lectins, 
monoclonal antibodies, and glycosaminoglycan binding proteins that have been developed with nonproprietary 
software and are freely available to the scientific community (http://glyco3d.cermav.cnrs.fr).  

POLYSAC3DB:600 PolySac3DB is an annotated database that contains the 3D structural information and 
original fiber diffraction data of 157 polysaccharide entries that result from an extensive screening of scientific 
literature (http://www. polysac3db.cermav.cnrs.fr/).  

EPS Database601 The EPS database provides access to detailed structural (1D−3D) taxonomic and 
bibliographic information on bacterial EPS (http://www.epsdatabase.com/). 
  EK3D: An E. coli K antigen 3-dimensional structure database602 (https://www.iith.ac.in/EK3D/).  

3DSDSCAR: A three-dimensional structural database for sialic acid-containing carbohydrates through 
molecular dynamics simulations603,604.  
MATRIX-DB: A biological database focused on molecular interactions between extracellular proteins 

and polysaccharides. It contains protein−protein interactions (PPIs) and also protein−glycosaminoglycan 
interactions and 3D structures of glycosaminoglycans605−607 (http://matrixdb.univ-lyon1.fr/).  

GFDB: A glycan fragment database of PDB-based glycan 3D structures608 
(http://www.glycanstructure.org). 

 
 
8.2.2. Glycoproteomics. 

  UniLectin3D: The UniLectin platform is a dedicated portal of databases and tools to study the 
lectins472,609 (https://unilectin.eu/).  

CBM 3DB: A curated database containing 3D structures of carbohydrate-binding modules of proteins 
that have been crystallized with their ligands610 (https://cbmdb.glycopedia. eu/).  

GAG 3DB: A curated database that classifies the threedimensional features of the six mammalian GAGs 
(chondroitin sulfate, dermatan sulfate, heparin, heparan sulfate, hyaluronan, and keratan sulfate) and their 
oligosaccharides complexed with proteins505 (https://gagdb.glycopedia.eu/).  

ProCarbDB: A comprehensive database containing over 5200 3D X-ray crystal structures of 
protein−carbohydrate complexes611 (http://www.procarbdb.science/procarb/).  

GBSDB GLYCAN: GBS-predictor; GS-align. GlyMDB. Statistics; How To Use; Reference; Search Glycan 
Microarray DB.612 (http://www.glycanstructure.org/gbs-db/pdb/) 

ProCaff: Protein−carbohydrate complex binding affinity database.613  
StackCBPred: A stacking-based prediction of protein-carbohydrate binding sites from a sequence.614  
SAbDab: Database of antibody structures annotated with several properties (experimental data, 

antibody nomenclature, curated affinity, and sequence annotations)615 (http://opig. 
stats.ox.ac.uk/webapps/newsabdab/sabdab/).  

 

 
9. CONCLUSIONS 
 

http://www.glycosciences.de/
http://glyco3d.cermav.cnrs.fr/
http://www.epsdatabase.com/
https://www.iith.ac.in/EK3D/
http://www.glycanstructure.org/
https://gagdb.glycopedia.eu/
http://www.procarbdb.science/procarb/
http://www.glycanstructure.org/gbs-db/pdb/
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In the last 15 years, there has been a significant increase in the development and applications of computational 

methods. These methods established many structural and dynamic features of complex carbohydrates, either in 

isolation or in complex with other biomolecules. Quantum chemical methods provided the theoretical basis for 

understanding the stereoelectronic effects that characterize carbohydrates. The developments and 

implementations of force fields integrating these effects in several “generic” software packages provide many 

users with a comprehensive way to carry on computational explorations of their endeavors in association with 

their experiments. The use of quantum chemical methods to rationalize the reactivity principle in carbohydrate 

chemical synthesis is a remarkable example of such an achievement. Molecular simulation techniques have 

reached the sampling power and sophistication to provide the missing structural insight necessary to interpret 

or support experiments and be a primary scientific discovery tool. Complementing these developments, 

advances in high-performance computing have enabled molecular simulation methods to play a more significant 

role in supporting experiments and transcending this mandate to guide experimental design and make scientific 

discoveries independently. Untouched spatial and temporal dimensions are accessible in a reasonable 

computational time. As such, atomistic MD simulations provide a unique insight, accurately describing the actual 

3D structure and dynamic patterns at the real-time scale where molecular events occur. Not only can 

structure−function relationships be proposed in some cases, but the characterization of physicochemical and 

mechanical properties paves the way for establishing new structure−property relationships.  

The development of coarse-grained simulations allows the application of these techniques to most 

glycoscience systems. The applications are manifold and concern polysaccharides (mammalian, bacterial, 

microbial, plant and marine polysaccharides, lipopolysaccharides in membranes), N-linked and oxygen-linked 

glycans, and glycolipids. As the coarse-graining procedure embraces a wide range of length scales, it is expected 

that the modeling of complex carbohydrate-embedded materials will develop, an essential step in the quest for 

a biomass-based economy.  

Due to the reduced complexity inherent in the model, coarse-grained computer simulations can offer 

an alternative and bridge the gap between experiment and all-atom calculations for systems of high complexity. 

In particular, they are well suited to investigate the dynamic glycolipid nano-aggregation, in which 

carbohydrate−carbohydrate interactions play a crucial role. The question remains whether such methods help 

decipher the multivalent effect that drives protein-carbohydrate assembly. 

 Indeed, as most carbohydrate-binding proteins, especially adhesins and lectins, have a relatively low 

affinity and generally narrow carbohydrate recognition domains, their intrinsic specificities often lie in their 

valence and various topologies. The simultaneous presentation of several proper and identical glycoside units 

converts relatively weak interactions into specific recognition effects. Therefore, one needs to consider some 

physicochemical principles that underline such associations as patches of glycolipids and glyco-surfaces that 

would define a “glyco landscape: or “glycotope”. If this concept develops, computational tools should consider 

the glyco-surface generated by the side-by-side arrangement of glycolipids and consider the interaction with the 

glyco-surface or glyco-canopy (by analogy with the crown-canopy as the uppermost layer formed by the crown 

of trees in a forest).  

This concept applies to research dealing with the solid-state degradation of crystalline or semicrystalline 

polysaccharides by enzymes. The computational exploration of these systems is far from complete, despite the 

fundamental contribution that computer simulations have made to understanding the chemical mechanisms 

underlying the actions of glycosyl hydrolases. They have allowed the identification of catalytic residues, the 

discovery of complex conformational pathways, and the identification of mechanistic details that escape 

experimental probes. This field of research takes advantage of the availability of an extensive collection of crystal 

structures of proteins and their carbohydrate complexes. 

 Structural data collected by X-ray crystallography offers the possibility of organizing well-targeted 

databases using PDB information, with appropriate treatment of the topology of the glycans. Nevertheless, there 

are many documented cases where the high degree of structural disorder that characterizes unbound glycans 

makes them inferior targets for experimental structural biology studies. Meanwhile, molecular simulations are a 

powerful complementary tool to standard structural biology techniques that can provide valuable high-

resolution structural and energetic information on glycans. However, despite its extensive use of computational 

resources, molecular modeling does not have a place where documented results could be deposited and made 

available to the public. Therefore, it is tempting to envisage creating and organizing such a 3D data repository. 

The stored data would correspond to the most populated conformers derived from the simulation with 



56 
 

Multifaceted Computational Modeling in Glycoscience S Perez & O. Makshakova 
 

 

 

annotated details on energetics and relative populations. The constitution of such a structural database would 

allow data reproduction, a presently absent feature. It would give users the unique ability to monitor the actual 

volume of space-specific glycosylation patterns on a membrane or a protein surface, allowing or preventing 

recognition from other receptors. Its integration into meta-databases would enrich the computational and 

experimental data available for training machine learning endeavors to enable rapid progress and contribute to 

deciphering the many complex processes involving these complex biomolecules.  
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