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Protein aggregation into highly ordered, regularly repeated cross-β sheet structures called
amyloid fibrils is closely associated to human disorders such as neurodegenerative
diseases including Alzheimer’s and Parkinson’s diseases, or systemic diseases like
type II diabetes. Yet, in some cases, such as the HET-s prion, amyloids have
biological functions. High-resolution structures of amyloids fibrils from cryo-electron
microscopy have very recently highlighted their ultrastructural organization and
polymorphisms. However, the molecular mechanisms and the role of co-factors
(posttranslational modifications, non-proteinaceous components and other proteins)
acting on the fibril formation are still poorly understood. Whether amyloid fibrils play a
toxic or protective role in the pathogenesis of neurodegenerative diseases remains to be
elucidated. Furthermore, such aberrant protein-protein interactions challenge the search
of small-molecule drugs or immunotherapy approaches targeting amyloid formation. In this
review, we describe how chemical biology tools contribute to new insights on the mode of
action of amyloidogenic proteins and peptides, defining their structural signature and
aggregation pathways by capturing their molecular details and conformational
heterogeneity. Challenging the imagination of scientists, this constantly expanding field
provides crucial tools to unravel mechanistic detail of amyloid formation such as
semisynthetic proteins and small-molecule sensors of conformational changes and/or
aggregation. Protein engineering methods and bioorthogonal chemistry for the
introduction of protein chemical modifications are additional fruitful strategies to tackle
the challenge of understanding amyloid formation.

Keywords: amyloid fibril, aggregation, neurodegenerative diseases, protein semisynthesis, posttranslational
modifications, native chemical ligation, fluorescent probes, nanobody

1 INTRODUCTION

Amyloids correspond to amorphous deposits of insoluble proteinaceous materials that are found in a
variety of body tissues and organs. Amyloidoses is a group of diseases associated with amyloid
deposits, including localized amyloidoses such as many neurodegenerative disorders (NDs) or type-
II diabetes mellitus, and systemic amyloidoses. Amyloidoses can be also defined as “protein
misfolding diseases” since their molecular basis relies on misfolding as an early event in the
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amyloid transformation (Benson et al., 2018; Benson et al., 2020).
Indeed, the amyloid-forming protein converts into an abnormal,
misfolded conformation from the same primary sequence that
otherwise encodes either its native functional structure for
globular proteins or its unfolded, dynamic conformational
ensemble for intrinsically disordered proteins (IDPs) (Dobson,
2003; Knowles et al., 2014). Genetic alterations leading to protein
misfolding may increase protein aggregation rate, modify mRNA
splicing or impact the protein lifecycle. Moreover, changes in the
oxidation state, posttranslational modification (PTM) patterns,
protein interaction networks or environmental factors can trigger
amyloid transformation without involvement of any mutation.
Ultimately, protein misfolding results in a “loss-of-function” and/
or a “gain-of-toxic function” (Winklhofer et al., 2008). However,
amyloid formation cannot be strictly reduced to a defect of
protein folding: defects in the cellular machinery of protein
folding and quality control (mediated by molecular

chaperones) or protein homeostasis (mediated by the
proteasome and the lyzosomes) often associated to ageing are
major players in the process. Cellular responses to external
stimuli might in addition participate in the process by
inducing incorrect protein trafficking, mislocalization, and
aberrant interactions with aggregates or “seeds”.
Mislocalization can give rise to changes in the oxidation state,
in the PTM patterns or levels, and in the protein interaction
networks (Yan et al., 2013; Ke et al., 2020).

Natively folded proteins involved in amyloidosis are for
instance transthyretin (TTR) associated to familial amyloidotic
cardiomyopathy, superoxide dismutase-1 (SOD-1) and
transactive response DNA binding protein 43 (TDP-43)
associated to familial amyotrophic lateral sclerosis (fALS),
Huntingtin (Htt) associated to Huntington’s disease (HD), or
the cellular form of prion protein PrPC associated to prion
diseases or transmissible spongiform encephalopathies (TSEs).

FIGURE 1 | Amyloid proteins involved in neurodegenerative diseases (tau, Aβ, α-synuclein, TDP-43 and Huntingtin), and their amyloid folds and polymorphs.
Scheme of protein sequences highlighting domains, and eventually isoforms are presented (left). For tau protein, some prominent pathological phospho-epitopes (AT8,
AT180, PHF-1) associated to tauopathies are indicated. N1, N2, N-terminal inserts; R1-R4, microtubule-binding repeats 1 to 4; NAC, non-amyloid-β component; NTD,
N-terminal domain; NLS, nuclear localization signal; RRM, RNA Recognition Motifs; LCD, low complexity domain; N17, 17-residue N-terminal region; PRD, proline-
rich domain; polyQ, polyglutamine; HEAT, HEAT repeats. The solution NMR structure of micelle-bound α-synuclein is depicted. Some PTM sites studied by chemical
ligation and/or chemical mutagenesis are indicated. The cryo-EM structures of representative fibrils from individual brains (grey structures) and synthetic fibrils (blue
structures) highlight structural discrepancies pointing to the role of trans-acting cofactors and PTMs of amyloid proteins in the amyloidogenic process. For a more
comprehensive description of the multiple tau folds associated to diverse tauopathies and their classification, refer to (Shi et al., 2021). AD, Alzheimer’s disease; CBD,
corticobasal degeneration; PiD, Pick’s disease; MSA, multiple system atrophy; ALS with FTLD, amyotrophic lateral sclerosis with frontotemporal lobar degeneration.
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The latter are the only transmissible neurodegenerative diseases
identified to date arising from proteinaceous infectious particles
(i.e., without involvement of any nucleic acid) called prions
(PrPSc) (Prusiner, 1982; Aguzzi and Calella, 2009). The IDP
class includes the β-amyloid peptide (Aβ) as one of the
sequential proteolysis products of amyloid precursor protein
(APP) in Alzheimer’s disease (AD), tau protein in AD and
other tauopathies, α-synuclein in Parkinson’s disease (PD),
and islet amyloid polypeptide (IAPP) in type II diabetes
(Figure 1). It should be noted that IDPs or alternatively long
intrinsically disordered regions (IDRs), have generally important
signaling and regulatory functions despite their disordered
nature, acting as scaffolds for versatile interactions with
multiple binding partners in cell signaling or to stabilize large
structural components of the cells (Morris et al., 2011).

First histologically stained with Congo red, amyloids are
widely detected with Thioflavin S (ThS) or Thioflavin T (ThT)
fluorescent dyes that are used for both histological staining and
the in vitro kinetics follow-up of amyloid assembly. In tissues,
amyloids can be visualized under polarized light using the apple-
green birefringent properties of the bound Congo red dye owing
to its specific orientation in the regular arrangement of amyloid’s
proteinaceous component (Howie and Brewer, 2009). For clinical
use, aggregated amyloid imaging involves the search of
radioligands for positron emission tomography (PET) that
enable the noninvasive detection of amyloids in the brain with
either pan-amyloids or, recently developed, selective imaging
agents for diagnosis purpose like Pittsburgh compound B
(PiB) targeting Aβ (Shin et al., 2011; Mathis et al., 2017).

In 1950s, electron microscopy shed light into their fibrillary
structure while X-ray diffraction showed a typical pattern of
structures dominating by β-sheet conformations. The fibrillar
structure of amyloids is constituted by the assembly of a given
protein -or part of it-as a repetition unit in a cross β-sheet
conformation running perpendicular to the fibril axis
(Figure 1). At low resolution as investigated by electron or
atomic force microscopy, or by spectroscopic methods such as
Fourier transform infrared spectroscopy or circular dichroism,
amyloids frommultiple origins share structural and spectroscopic
similarities.

The investigations of amyloid structures at high resolution has
benefited from the development of biophysical approaches such
as X-ray crystallography, solid-state nuclear magnetic resonance
(ssNMR) or more recently, cryo-electron microscopy (cryo-EM).
The latter enables now to distinguish between diseases with close
clinical features but associated to distinct strains (Shi et al., 2021).
However, despite the abundance of structural and kinetics studies
of amyloid proteins, external stimuli or stress signals as well as the
molecular mechanisms that drive a native functional
conformation to protein misfolding from the same primary
sequence are not yet fully understood. Moreover, prediction of
amyloid folds is still an issue since amyloid assembly is not
limited to intramolecular contacts (Anfinsen et al., 1961;
Anfinsen, 1973; Jumper et al., 2021; Tunyasuvunakool et al.,
2021). Therefore, structure predictions based on protein sequence
or evolution-based approaches could not be properly applied to
protein aggregation and pathological amyloid fibrils that also

make use of intermolecular interactions and are not
evolutionarily selected (Pinheiro et al., 2021).

In view of the causative roles that the amyloids have in a large
number of diseases with yet unmet medical need, understanding
their formation and structure is a priority. This is also a challenge
due their solid-like state, polymorphic nature, the multi-causative
aspect of amyloidosis, the various organs and tissues affected by
the process and the complex mechanistic steps of their formation.
New tools issued from chemical biology are much needed to
address these challenges in research, and open the way to
innovative therapies.

2 ASSEMBLY, PROPERTIES AND
PROPAGATION OF AMYLOID FIBRILS IN
NEURODEGENERATIVE DISEASES
2.1 Amyloid Structure and Formation
Amyloid fibrils are very stable protein assemblies at the
thermodynamic (Buell et al., 2014) and mechanic (Knowles
et al., 2007; Buehler and Cranford, 2010; Knowles and
Buehler, 2011; Herling et al., 2015) levels due to the
combination of both a tight packing of the polypeptide
backbone into stacked β-sheets and intertwining of residue
side chains. These cross-β structures result invariably in long,
unbranched filaments. Hence, the amyloid core is stabilized by a
wide array of non-covalent interactions and this packing by far
exceeds the stability of the native 3D fold. However, hydrogen
bonding interactions engaging the polypeptide main chain are
prevalent explaining the structural similarity between amyloids
despite the variety of protein sequences in sharp contrast with
protein native state involving a great number of native contacts
between side chains of key residues (Fandrich, 2002; Dobson,
2003). Despite this apparent simplicity, amyloid can take a large
number of distinct folds illustrating their intricate structures and
remarkable heterogeneity. Unexpectedly, an identical sequence
can adopt several folds called polymorphs or strains, associated
with different diseases, and even coexist in a single disease such as
tau protein or Aβ42 in AD (Fitzpatrick et al., 2017; Yang et al.,
2022).

Amyloid structures are only a single, yet peculiar, class of
aggregates that can build up from a misfolded or denatured
protein that stems either from an IDP or an initially folded
protein for which secondary structures were reassigned. As every
conformer, their formation depends on both thermodynamics
(relative free energy) and kinetics parameters (interconversion
rates) that confer stability (Baldwin et al., 2011; Buell et al., 2014).
In addition, tight packing of the amyloid core is responsible for a
lack of polypeptide chain accessibility to degradation (Novak
et al., 1993) that confer to amyloids an increased lifetime (Makin
et al., 2005). Amyloid formation mainly consists of three main
stages defined as nucleation, growth and maturation. During the
nucleation step, metastable species expose aggregation-prone
sequences that self-associate into soluble oligomers or
amorphous aggregates that serves as nuclei of the fibrillization
process. Then, the fibrils rapidly grow during the elongation
phase by an autocatalytic mechanism involving the addition of
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new monomers to the nuclei or seeds that convert their
conformation into the templated amyloid fold resulting in
insoluble, ordered structures with fibril-like morphologies.
Prefibrillar aggregates or seeds evolved into fibrils or
eventually, may be involved in amplifying aggregation through
a secondary nucleation mechanism that catalyzes fibril assembly
at the seed surface or upon fibril fragmentation (Cohen et al.,
2013; Meisl et al., 2014; Gaspar et al., 2017; Rodriguez Camargo
et al., 2021). This process was described as secondary nucleation
since it requires the formation of protofibrils or pre-fibrillar
species to be effective. Finally, during the fibril maturation, the
protofilaments formed during the growth phase associate through
protein-protein interactions at the protofilament interfaces to
form high-ordered fibrillar structures as seen by electron or
atomic force microscopy. In cells, the maturation step may
involve other proteinaceous components and PTMs including
proteolysis leading ultimately to fibrillar deposits (Kimura et al.,
1996; Braak et al., 2006; Aragão Gomes et al., 2021). The
protofilaments can thus assemble into diverse interfaces
leading to different morphologies or strains in the eye of the
electronmicroscope. Some of them are periodic structures such as
Paired Helical Filaments (PHFs) observed in AD by negative
staining transmission electron microscopy (TEM) in which a pair
of protofilaments assemble by twisting around each other with a
helical turn period of about 80 nm (Kidd, 1963).

Very recently, cryo-EM, remarkably exploited by Goedert,
Scheres and collaborators, provides structural details at near-
atomic resolution on amyloid folds of tau protein either from
patients with various tauopathies or made in vitrowith heparin as
aggregation inducer (Fitzpatrick et al., 2017; Falcon et al., 2018a;
Falcon et al., 2018b; Zhang et al., 2019a; Falcon et al., 2019; Zhang
et al., 2020) highlighting profound structural discrepancies. The
same has been noted for fibrils of α-synuclein, wild-type or
mutants, in synucleinopathies (Li et al., 2018a; Li et al., 2018b;
Guerrero-Ferreira et al., 2018; Guerrero-Ferreira et al., 2020;
Schweighauser et al., 2020) or TDP-43 in ALS/FTD
(amyotrophic lateral sclerosis/frontotemporal dementia)
(Arseni et al., 2021) and synthetic filaments. Each new fibril
structure solved by cryo-EM from different diseases highlights the
incredible plasticity of protein sequences of various origins to
adopt multiple amyloid folds as well as the complexity of
cofactors that shape the final amyloid structure and the
misfolding pathway (Diaz-Espinoza, 2021). In the case of tau
protein, the involvement of several protein isoforms in patients’
fibrils (either by a combination of the 3R/4R isoforms, as in AD,
or exclusively 3R, as in Pick’s disease, or 4R isoforms, as in
corticobasal degeneration) is in part responsible of distinct folds
of tau in tauopathies. Interestingly, the amyloid folds of tau
between distinct tauopathies are different, but individuals with
the same disease share an identical fold. Actually, tau folds into
either three or four layers when embedded in filaments, each
categories being divided into distinct folds thereby suggesting a
possible hierarchical classification of diseases based on tau
amyloid folds (Shi et al., 2021).

Remarkably, in most instances, the region encompassed
within the fibril core only represents part of the protein
sequence while a large, if not the most part of the protein,

retains a high degree of flexibility and accessibility, and
projects from the fibril core. For example, in the case of tau
protein, the ratio of residues involved in the fibril core can be as
low as roughly 20% of the largest isoform (Fitzpatrick et al., 2017;
Falcon et al., 2019; Zhang et al., 2020; Shi et al., 2021). The
remaining of the sequence, i.e. the N- and C-terminal segments,
forms a “fuzzy coat” around the amyloid core (Wegmann et al.,
2013). First suggested by negative-staining and scanning TEM
(Wischik et al., 1988), the structurally variable regions of tau
fibrils largely escape further structural characterization by cryo-
EM or ssNMR (Andronesi et al., 2008). They can still be
addressed by ensemble-based methods such as solution-state
NMR (Sillen et al., 2005; Bibow et al., 2011; Lippens et al.,
2016) as well as fluorescence-based single-molecule approaches
that enables dissecting low-populated, transient states that form
during the amyloid assembly including oligomers or secondary
nucleation processes (Kundel et al., 2018a; Kundel et al., 2018b;
Kjaergaard et al., 2018; Rice et al., 2021; Yang et al., 2021). These
structurally dynamic, disordered regions yet deserve particular
attention as they can play a regulatory role in amyloid fibril
formation especially through their abundant and diverse PTMs
including truncations (Morris et al., 2015; Despres et al., 2017).

Cryo-EM has become prominent for the structural analysis of
macromolecules from postmortem tissues at a near-atomic
resolution (Figure 1). Cryo-EM structures point toward a role
of cofactors and PTMs in fibril assembly and polymorphism (Li
and Liu, 2021). Indeed, unresolved, non-proteinaceous densities
(Falcon et al., 2019; Schweighauser et al., 2020; Zhang et al., 2020;
Arseni et al., 2021; Shi et al., 2021), or (poly)ubiquitin chains
(Arakhamia et al., 2020) were found in the vicinity of fibril
surfaces made of tau, α-synuclein or TDP-43 proteins. Beyond
their potential participation to the amyloidogenic transformation,
these protein and non-protein entities highlight interfaces that
could be targeted to prevent fibril assembly or disrupt existing
fibrils. Even though atomic details were not observed for PTMs
corresponding to the addition of small chemical groups such as
Ser/Thr/Tyr phosphorylation, or Lys acetylation and
methylation, these modifications are definitely present in
fibrillar structures extracted from patient brains as detected by
MS methods although heterogeneity or location outside the fibril
core in adjacent flexible regions correspond to weaker densities or
no density at all in cryo-EM high-resolution maps leaving open
the role of these PTMs in fibrillogenesis, fibril packing and
stabilization, and polymorph selection. Finally, the structure of
the amyloid fibril as a final product provide no clue about the
mechanism and kinetics as well as the intermediate structures
that appears along the fibrillization process.

2.2 Features and Properties Related to
Amyloids
Mature fibrillar assemblies, as histopathological hallmarks of
amyloidoses, have long been considered as the causal agent of
disease pathogenesis. In AD, a toxic “gain-of-function” is tightly
related to the formation of amyloid structures that at least partly
correlates with clinical manifestations when a certain amount of
aggregates and/or certain brain areas were affected (Chung et al.,
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2018). It has also become clear that small aggregates formed early
during the fibrillization process, referred to as oligomers or
prefibrillar species, would be the most toxic species and more
damaging to neurons than fibrils (Caughey and Lansbury, 2003).
Hence, it has been argued they are most probably best targets than
fibrillar species from a therapeutic perspective. However, as
metastable assemblies of heterogenous composition and
structure, their molecular description with experimental
methods are scarce. Atomic details of amyloid structures from
combination of experimental models (ssNMR, X-ray, AFM,
TEM) were complemented by molecular dynamics
simulations. Simulations provide details at different
aggregation stages of amyloid peptides such as Aβ40/42, tau,
α-synuclein ranging from the monomeric to the oligomeric states
and protofibrils up to amyloid fibrils (Nasica-Labouze et al., 2015;
Ilie and Caflisch, 2019; Nguyen et al., 2021). For example,
structures of low-populated intermediates of Aβ or IAPP were
trapped in NMR or X-ray studies and observed in computational
studies. Such models provide a molecular basis for
pharmacological targeting of early, on-pathway aggregation
species. While experimental models give time- and space-
averaged properties, computational models offer a view of
dominant states in the aggregation pathway by sampling
various time and length scales and using different
representations such as the all-atom, the coarse-grained and
mesoscopic models. The major issues relate on the accuracy of
the force field, the concentration of monomers, and the limited
size of the simulated system. Moreover, the simulation time is
several orders of magnitude less than the time of in vitro or in vivo
fibrillar assembly that takes typically several hours up to several
days. Besides the investigations of the early steps of aggregation
and the mechanism of fibril elongation, interactions with cell
membrane or metal ions, the role of PTM and complex
coacervation (e.g., for tau protein) can also be explored with
computational methods as discussed in comprehensive reviews
(Nasica-Labouze et al., 2015; Ilie and Caflisch, 2019; Nguyen
et al., 2021). Furthermore, a crosstalk between an amyloid
conformation, or strain, and a naive amyloid-prone protein is
a critical event in neurodegenerative diseases (Soto and Pritzkow,
2018). The ability of amyloid to convert normal protein
conformers into new amyloid conformations is a process
coined as seeding in which “seeds”, an elusive term with
respect to their composition and structure, act as templates of
their self-copy. Hence, the main property of seeds is the
imprinting of the misfolded conformation as a
“conformational memory” that may be structurally propagated
over several seeding generations (Frost et al., 2009; Nizynski et al.,
2018). This is another aspect in favor of the irreversible cellular
accumulation of amyloids once they have started forming.
Moreover, the amyloid transformation of a given protein
could also be triggered in a process named “cross-seeding” by
heterologous seeds, i.e., seeds formed by a heterologous protein,
be it from an unrelated protein, another isoform or amutant form
of the same protein. To implement innovative therapeutic routes
in amyloid diseases, understanding the mechanisms of amyloid
formation and emphasizing critical molecular species along the
pathway are of the highest importance.

According to Braak staging, proteinaceous lesions of PD and
AD progress through the brain in a spatiotemporal manner
(Braak and Braak, 1991; Braak and Braak, 1995; Braak et al.,
2004). They first start at defined, selectively vulnerable brain sites
depending on the pathology, and gradually extend to neighboring
neurons and distant brain structures through connected neurons.
Overall, these pathologies progress silently over years before
becoming symptomatic. Hence, it has been suggested that
spreading of pathological amyloid species by cell-to-cell
transmission is not confined to the sole prion proteins
(Prusiner, 1982). By templating their own replication, many
misfolded proteins including α-synuclein (Luk et al., 2012), β-
amyloid (Ruiz-Riquelme et al., 2018), tau (Braak and Del Tredici,
2018) and huntingtin (Pearce and Kopito, 2018) behave like
infectious prions by propagating seeds of various structures
from a donor cell in a so-called “prion-like” spreading that
results in the formation of amyloid aggregates in recipient
cells (Mudher et al., 2017). However, the “prion-like”
spreading hypothesis is still controversial and the
spatiotemporal evolution of AD and PD that was elegantly
demonstrated by Braak and colleagues is not a proof per se in
favor of a prion-like spreading mechanism that physically
involves seed release and capture from diseased to connected
neurons. A model of selective neuron vulnerability has been
proposed as an alternative to the “prion-like” spreading
hypothesis arguing that neurons bearing aggregates or
oligomers induce external stress on selected neuron
populations that start producing aggregates in response to
adverse stimuli (Walsh and Selkoe, 2016; Chung et al., 2018).
The latter hypothesis does not preclude the “prion-like”
spreading hypothesis, and both mechanisms may coexist.

Among the challenges attributed to amyloid diseases, the
definition of the pathogenic species and how they can cross
cellular membranes and spread from cell to cell is of crucial
importance to be able to decipher disease progression and
mechanisms, find specific and early diagnostic tools and devise
efficient therapies (Colin et al., 2020). Linked to the prion-like
propagation hypothesis, the concept of amyloid strains has
evolved to explain distinct patterns of neuropathology and
transmission through the central nervous system (CNS). The
exact paths of cell-to-cell transmission of the pathogenic species
seem not to be unique and might be dependent on the protein of
interest. Nonetheless, this transmission is described as a non-cell-
autonomous progressive spreading in many studied cases.

Finally, it was suggested that liquid-liquid phase separation
(LLPS) that forms membraneless organelles by molecular
reversible self-assembly, might be the missing link between
protein misfolding, aggregation and pathogenesis associated to
neurodegenerative disorders (Nedelsky and Taylor, 2019;
Babinchak and Surewicz, 2020; Alberti and Hyman, 2021).
Notably, many amyloidogenic proteins are prone to phase
transition that can initiate protein misfolding and aggregation,
and modulate their biological function as shown for tau
(Ambadipudi et al., 2017; Zhang et al., 2017a; Hernández-
Vega et al., 2017; Wegmann et al., 2018; Boyko et al., 2019;
Majumdar et al., 2019; Kanaan et al., 2020; Singh et al., 2020; Rai
et al., 2021), TDP-43 (Li et al., 2018c; Wang et al., 2018;
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Babinchak et al., 2019; Conicella et al., 2020; Watanabe et al.,
2020; Dang et al., 2021; Grese et al., 2021; Hallegger et al., 2021;
Pakravan et al., 2021), α-synuclein (Sawner et al., 2021), the
amyloidogenic type II diabetes-associated IAPP (Pytowski et al.,
2020) and the fused in sarcoma (FUS) protein (Patel et al., 2015;
Monahan et al., 2017; Murthy et al., 2019; Ishiguro et al., 2021;
Levone et al., 2021; Reber et al., 2021). Understanding the
molecular mechanisms of aberrant phase separation should
provide new strategies to control protein aggregation in
neurodegeneration.

2.3 Modulators of Amyloid Aggregation
2.3.1 Trans Acting Factors of Protein Aggregation
The deposits and inclusions in neurodegenerative disorders such
as NFTs, senile plaques, Lewy bodies. . . consist of several proteins
and non-proteinaceous components (carbohydrates, nucleic
acids, metals, lipids, lipid rafts and cholesterol) that could be
linked to the amyloid polymorphisms observed in diseases
(Kollmer et al., 2016; Stewart et al., 2016; Shahmoradian et al.,
2019; Li and Liu, 2021). The proteome analysis of amyloid
deposits has revealed hundreds of proteins (Drummond et al.,

2017; Lutz and Peng, 2018). Some of them act as critical
regulators in protein misfolding diseases exemplified by heat
shock proteins (HSPs) and their co-chaperones, 14-3-3
proteins (Xu et al., 2013; Jia et al., 2014), S100B calcium-
binding protein (Moreira et al., 2021), and the peptidyl-prolyl
isomerases (PPIases) FKBPs and Pin1 (Hamdane et al., 2002;
Landrieu et al., 2006a; Balastik et al., 2007; Lippens et al., 2007;
Chambraud et al., 2010; Giustiniani et al., 2012; Giustiniani et al.,
2014; Kamah et al., 2016; Chen et al., 2018; Wang et al., 2020a).
Notably, Pin1 and 14-3-3 proteins interact with phosphorylated
forms of tau making the link with amyloid PTMs (Lu et al., 1999;
Zhou et al., 2000; Smet et al., 2004; Lim and Ping Lu, 2005; Smet
et al., 2005; Pastorino et al., 2006; Landrieu et al., 2011; Kondo
et al., 2017; Neves et al., 2021). A role of cofactors has been shed
into light in the aggregation of tau protein to specifically address
the challenges of forming amyloid fibrils from full-length tau
in vitro (Fichou et al., 2018; Fichou et al., 2019) in contrast to Aβ
or α-synuclein that readily form amyloid fibrils in a wider range
of conditions. Glycosaminoglycans, lipid membranes and metal
ions are key cofactors that were pointed out in the amyloidogenic
process. They have been found to modulate aggregation rates and

FIGURE 2 | Investigating the role of PTMs in amyloidogenesis by protein semisynthesis and/or chemical mutagenesis. Amyloid proteins are extracted from patient
brains and purified as insoluble material, then the PTM patterns of amyloid fibrils are deciphered by complementary biophysical and biochemical tools (right panel). The
precise role of site-specific PTMs is unraveled by encoding individual PTM or pathological epitope using chemical biology tools. This allows investigating the effect of
these specific chemical modifications on protein conformation and function, on oligomer and amyloid assembly, stability and properties (left panel). The synthetic
fibril morphology and cryo-EM atomic structures could thus be compared to bona fide fibrils from patient brains, here illustrated with pY39 α-synuclein synthetic fibrils
(PDB ID: 6LIT) and α-synuclein fibrils from MSA (PDB ID: 6XYO), providing important information about the role of cofactors in amyloid aggregation.
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are associated with amyloid deposits within the brain.
Interactions of amyloidogenic species with cofactors may
represent an orthogonal strategy of intervention to aggregation
inhibitors in neurodegenerative disorders.

2.3.2 Posttranslational Modifications of Amyloid
Proteins
The polymorphism of amyloid structures from the same protein
reflects distinct environments leading ultimately to different
diseases. In this respect, PTMs and non-amino acid
components associated with the fibrils have focused particular
attention (Figure 2). Arising from the most recent cryo-EM
structures of human prion PrP, wild-type α-synuclein from
multiple system atrophy (MSA), tau from corticobasal
degeneration (CBD) - all of which were from brains of
patients- and phospho-Tyr39 (pY39) α-synuclein from
semisynthesis (Arakhamia et al., 2020; Wang et al., 2020b;
Schweighauser et al., 2020; Zhang et al., 2020; Zhao et al.,
2020), it has been proposed to categorize PTMs based on their
location with respect to the fibril core (Li and Liu, 2021). PTMs in
the interior of the core are likely involved in the initial step of
fibril assembly while PTMs on the exterior may act rather in the
polymorph selection either by driving the folding of
protofilaments or stabilizing the protofilament interface. The
role in fibril assembly of PTMs outside the core, within the
“fuzzy coat”, still remains poorly defined although they are
known to regulate the protein functions, interactions and
aggregation properties by modulating the rate of fibrillar
assembly, toxicity and phase separation. Importantly, they
remain accessible even within the amyloid fibril and may still
be targeted by posttranslational modifying and proteolytic
enzymes (Wegmann et al., 2013; Ulamec et al., 2020).

Hyperphosphorylation, a common feature of tau proteins in
NFTs and inclusions from diverse tauopathies, is mainly found
within the N- and C-terminal regions flanking the amyloid core
(Morishima-Kawashima et al., 1995a; Hanger et al., 1998; Alonso
et al., 2001; Hanger et al., 2007; Hanger et al., 2009; Šimić et al.,
2016) that greatly inhibit the formation of filaments (Abraha
et al., 2000; Lövestam et al., 2021). Tau also exhibits a large
diversity of PTMs such as lysine ubiquitination, SUMOylation,
acetylation and methylation (Morris et al., 2015; Wesseling et al.,
2020). These modifications can be specifically linked to the
disease stage and mediate the structural diversity of tau strains
(Arakhamia et al., 2020). Interestingly, the seeding activity of the
hyperphosphorylated, oligomeric tau species was found to be
heterogeneous from one patient with pure, typical AD to another
while enhanced seeding activity and worse clinical outcomes both
correlate with specific PTM sites (Dujardin et al., 2020). Whereas
phosphorylation of α-synuclein at serine 129 (pS129) is a
dominant characteristic of PD inclusions such as Lewy bodies,
its role in aggregation and toxicity of α-synuclein has not yet been
clearly established (Anderson et al., 2006; Oueslati, 2016;
Ghanem et al., 2022). TDP-43, the main component of
intracellular ubiquitin inclusion bodies found as a hallmark of
ALS-FTLD (Frontotemporal Lobar Degeneration), is
hyperphosphorylated and polyubiquitinated whereas these
PTMs were not detected in normal brain (Dong and Chen, 2018).

Commonly associated to phosphoproteins, the O-β-linked
N-acetylglucosaminylation (O-GlcNAc) is another PTM of
serine/threonine residues that corresponds to the addition of a
single sugar moiety that is regulated in a dynamic fashion by the
antagonist action of two enzymes, the O-GlcNAc transferase
(OGT) and O-GlcNAc hydrolase (OGA) (Iyer and Hart,
2003). Protein O-GlcNAcylation is extremely sensitive to
glucose uptake and metabolism that may be altered in aging
brain. Additionally, the O-GlcNAc modification has been
reported for neuronal proteins such as APP, tau and α-
synuclein highlighting a potential role in neurodegenerative
diseases (Lazarus et al., 2009; Ma et al., 2017).
O-GlcNAcylation of amyloid-forming proteins has been shown
to regulate aggregation (Yuzwa et al., 2014a) and to some extent,
phosphorylation of tau (Liu et al., 2004; Gong et al., 2006; Liu
et al., 2009; Smet-Nocca et al., 2011; Bourré et al., 2018; Cantrelle
et al., 2021). The treatment of transgenic mice with Thiamet-G,
an OGA inhibitor, results in increased brain O-GlcNAc levels,
and alleviate tau pathology and associated neurodegeneration
offering an alternative therapeutic strategy to kinase and
aggregation inhibitors in tauopathies (Yuzwa et al., 2008;
Yuzwa et al., 2012; Yuzwa et al., 2014b; Graham et al., 2014;
Hastings et al., 2017; Lee et al., 2021).

2.3.3 Proteolysis
In addition to PTMs involving the covalent linkage of
proteinaceous or small chemical entities, truncated forms of
amyloid proteins are also frequently found associated to
pathological transformation. The N-terminal region of Htt is
the site of HD-associated pathogenic changes through an
elongation of the CAG repeat of htt gene encoding an
expanded polyglutamine repeat. The truncated N-terminal
proteoforms are more toxic than full-length Htt and form
intranuclear inclusions that disrupt synaptic and axonal
functions (Sun et al., 2002). At the basis of the amyloid
cascade hypothesis in AD, the Aβ peptide is the product of
the sequential cleavage of the transmembrane APP protein by
secretases that generates peptides of different length, the most
common forms being Aβ40 and Aβ42. With a proportion
significantly increased in AD brain, this latter form is the
most neurotoxic and readily form oligomers and fibrils in a
wide range of conditions (Nirmalraj et al., 2020; Yang et al.,
2022). A large panel of tau fragments resulting from cleavage at
N- or C-terminal regions or both are found in fibrillar structures,
cerebrospinal and interstitial fluids, and plasma of patients with
different tauopathies (Quinn et al., 2018; Boyarko and Hook,
2021). The predominant role of proteolysis in various
neurodegenerative disorders deserves particular attention for
characterizing the fragments, their toxicity related to
aggregation and transcellular spreading, and their role in the
selection of strain polymorphs. This approach could afford new
biomarkers and disease-modifying therapies by modulating the
fragment generation and associated toxicity (Rodriguez Camargo
et al., 2021).

The wide range of disease-associated modifications represents
several challenges: 1) discriminating between physiological and
disease-associated changes, 2) characterizing PTMs in terms of
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site-specific identification, quantification, and crosstalk between
PTMs, and their relevance to disease, 3) characterizing PTM-
induced conformational changes, 4) identifying enzymes
responsible of the installation/removal of specific PTMs and
defining the pathway of their (dys)regulation, 5) determining
the functional role of specific PTMs in physiology and pathology,
and 6) identifying and deciphering the role of amyloid interacting
entities or cofactors (Kametani et al., 2020). The role of proteins,
non-proteinaceous entities and PTMs in the aggregation process,
toxicity and spreading of various species that form during the
fibrillization course still deserves further investigations
(Figure 2). They may have prominent implications in
modulating nucleation, aggregation rate, selection of fibril
polymorph, seeding capacity, and amyloid toxicity.
Additionally, interactions of amyloid-prone proteins with
cofactors and posttranslationally modifying enzymes could be
valuable targets for therapeutic intervention (Dujardin et al.,
2020).

3 DECIPHERING THE
POSTTRANSLATIONAL MODIFICATION
CODES OF AMYLOIDS: COMBINING
PROTEIN ENGINEERING WITH THE
CHEMICAL BIOLOGY’S TOOL KIT

As small chemical groups or proteinaceous components, PTMs is
a dynamic way to modulate physicochemical properties and
hence, the biological and pathological functions of proteins by
rapidly and reversibly enlarging the proteome complexity. In this
regard, PTMs regulate the aggregation propensity of amyloid
proteins, the stability of oligomers and seeds, the propagation of
seeds and other toxic species, demixing into liquid droplets, . . . all
as crucial steps in amyloidogenesis. Defining a PTM signature
may be relevant to track disease-associated changes, connect
changes in PTM patterns to a loss or gain of function, and
find new biomarkers and therapeutic targets in disease-
modifying strategies. Deciphering the role of site-specific
PTMs is of highest importance in this area but this knowledge
needs to overcome the issue of multiple, heterogenous
modifications found in a cellular environment or provided
in vitro by enzymatic activities. Mutation of site-specific
positions, e.g. into alanine, is commonly employed to reduce
the number of PTM sites (Despres et al., 2017). Introducing
amino acids mimicking the physiochemical properties of
posttranslationally-modified residues, such as aspartate or
glutamate for phospho-serine/threonine, or glutamine for
acetyl-lysine, is an easy way to achieve homogenous levels of
modification but is poor proxy of the corresponding PTM
(Paleologou et al., 2008). The alternative modification of
proteins by the enzymatic route provides heterogenous
patterns due to multiple sites, PTM crosstalk and different
stoichiometry that are invariably associated to sample
complexity for modified proteins (Theillet et al., 2012). This
feature has been extensively described by our group
illustrating the exceptional complexity of PTMs and PTM

crosstalk within tau protein, as well as their impact on tau
conformation and physiopathological functions (Landrieu
et al., 2006b; Amniai et al., 2009; Landrieu et al., 2010; Leroy
et al., 2010; Landrieu et al., 2011; Kamah et al., 2014; Lippens
et al., 2016; Despres et al., 2017; Gandhi et al., 2017; Bourré et al.,
2018; Despres et al., 2019; Cantrelle et al., 2021).

Chemical biology on the other hand provides a wide range of
tools to unravel the role of PTMs in the mechanism of amyloid
aggregation and tackle the process of fibril assembly. This goes
hand-in-hand with progresses in protein engineering.
Specifically, the development of efficient expression vectors
combined to bacterial strains and other heterologous systems
for recombinant protein expression, together with the use of
multiple purification tags allowed the production of milligram
amounts of proteins (depending on expression systems) with a
high degree of purity. Although this procedure can be routinely
implemented for the preparation of proteins, it is limited to the
20 genetically-encoded amino acids, excluding in most instances
the possibility of chemical modifications of amino acids including
insertion of PTMs, probes, or the incorporation of unnatural or
D-amino acids. However, solving inherent limitations of site-
specific modification of recombinant proteins has benefited from
the development of both protein synthesis by chemical ligation
strategies (Dawson et al., 1994; Moon et al., 2021) and genetic
code expansion through reassignment of sense and nonsense
codons combined to engineered aminoacyl-tRNA synthetase/
tRNA pairs (Wang et al., 2001). In this area, cell-free
expression systems are efficiently developed for the
incorporation of unnatural amino acids (UAAs) that are not
genetically encoded (Gao et al., 2019) or manipulating isotopic
labeling schemes (uniform labeling, selective labeling and site-
specific labeling) for NMR structural analyses. By controlling the
isotopic scheme of amino acids used in cell-free reactions, these
approaches allow reducing isotopic scrambling. This strategy has
been successfully applied for the NMR study of low-complexity
regions of Htt exon1 combining cell-free expression using
transcription-translation systems of Escherichia coli extracts
and nonsense suppression for the site-specific isotopic labeling
(Morató et al., 2020).

3.1 Understanding the Role of Specific
Posttranslational Modifications in
Amyloidogenesis Using Native Chemical
Ligation
The combination of solid phase peptide synthesis (SPPS) with
native chemical ligation (NCL) strategies provide the most
efficient way to quantitatively introduce site-specific PTMs,
and/or chemical/fluorescent labels or UAAs, into a protein of
interest. Of note, amyloid-forming peptides/proteins, as
exemplified by Aβ and IAAP, exhibit an intrinsic tendency to
aggregation during SPPS and purification. Several strategies of
chemical synthesis were implemented to prevent aggregation into
β-sheet structures and improve solubility of difficult sequences
(Butterfield et al., 2012), but these considerations are beyond the
scope of this review. NCL, initially developed by Kent and co-
workers, uses chemoselective reactions between the α-carboxyl
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FIGURE 3 | Expressed protein ligation (EPL) strategy for site-specific modification of proteins (A) and segmental isotope labeling for NMR studies (B). (A) The
synthetic peptide (blue) incorporating a site-specific modification (yellow) is obtained by SPPS and ligated to a recombinant protein fragment (orange) expressed in a
heterologous system which can eventually be isotopically labeled for NMR study. The recombinant protein can be expressed as intein fusion protein (intein in green) with
a CBD tag (pink) for purification on chitin beads. The reaction with sodium 2-mercaptoethane sulfonate (MESNa) and a synthetic peptide with a N-terminal cysteine
leads to a semisynthetic protein. (B) In the NMR 1H-15N HSQC spectrum, only the 15N-labeled region of the protein is visible, therefore the synthetic region bearing the
modification is invisible (orange spectrum). This strategy called segmental isotopic labeling allows a reduction of NMR signals in the spectrum relative to the full-length,
uniformly labeled protein (black) without PTM (black spectrum) or with enzymatically installed PTMs (yellow spectrum). It is noteworthy that modifications of protein
resonances observed locally for the modified residues and its neighbors in the primary sequence in the uniformly labeled protein cannot be observed in the semisynthetic
protein with segmental labeling due to the absence of isotopic labeling in the region of PTM. However, this modification may have a long-range structural impact on
residues of the 15N-labeled fragment due to conformational proximity that can be detected through perturbations of signals in the isotopically labeled region.
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and the α-amino groups of two unprotected peptides to form a
native peptide bond (Muir and Kent, 1993; Dawson et al., 1994;
Hackenberger and Schwarzer, 2008; Agouridas et al., 2019; Moon
et al., 2022). This strategy allows introducing selective and
quantitative modifications of amino acids without altering any
usual peptide bond. However, the requirement of SPPS is limiting
the length of affordable peptides to 50–60 residues, and multiple
rounds of NCL can extend the polypeptide length at the expense
of a significant reduction of the overall yield. To circumvent this
issue, expressed protein ligation (EPL) implements the two-step
reaction of NCL to generate semisynthetic proteins.

The first step of NCL consists of a transthioesterification, or
reversible thiol/thioester reaction, by the nucleophilic attack of a
N-terminal cysteine (through the side chain thiol function) of a
synthetic peptide on the activated C-terminal thioester of another
peptide. Both fragments will constitute the C-terminal and
N-terminal parts of the full-length synthetic protein,
respectively. The second step is a spontaneous and irreversible
rearrangement called “S-to-N acyl shift” that restores a native
peptide bond with a cysteine residue at the junction of both
fragments (Figure 3A). Alternatively, EPL makes use of
engineered mini-inteins as fusion to the expressed
recombinant protein fragment of interest to introduce a
C-terminal α-thioester. Inteins are self-processing domains
involved in posttranslational protein splicing processes. The
intramolecular rearrangement at the intein N-terminal cysteine
generates the C-terminal α-thioester of the expressed fragment.
The functionalized fragment can be next ligated to a synthetic
fragment containing a N-terminal cysteine to generate a
semisynthetic protein (Figure 3A). As the C-terminal
fragment is obtained by SPPS, any modification (PTM, probe,
other chemical modification of amino acid) can be easily inserted
into a specific position of this region of the final semisynthetic
protein. A synthetic N-terminal fragment bearing a thioester can
also be ligated to an expressed C-terminal fragment. In this case, a
N-terminal cleavable fusion tag, e. g. His6-SUMO tag, is used to
afford the N-terminal cysteine required for the subsequent
ligation step (Chiki et al., 2021). The use of a SUMO tag
offers the advantages of improving protein expression and
solubility, and facilitates protein handling and purification. All
these strategies may require final steps of refolding, oxidation of
the ligation product, and eventually desulfurization of the
cysteine residue at the ligation site to restore a native alanine
residue. They are better suited to introduce modifications of the
terminal regions of semisynthetic proteins. Introducing
modifications in the central region requires two ligation steps
with a three-segment strategy (or more) at the expense of the
reaction yield. We refer the readers to references (Hackenberger
and Schwarzer, 2008; Agouridas et al., 2019) for extensive, general
considerations in addressing NCL/EPL including the choice of
ligation site, protection/deprotection strategies, desulfurization
reactions.

The NCL strategy has been successfully used to introduce
UAAs bearing chemical modifications (Chuh et al., 2016), e.g.
metabolically stable phosphonate and difluoro-phosphonate
analogs of phosphorylated residues. It proved to be also useful
for segmental isotopic labeling of large proteins for structural

analyses by NMR spectroscopy (Vogl et al., 2021). In this field,
EPL helped to partially overcome the size limitations inherent
to solution-state NMR by alleviating the number of resonances
and thus, spectral overlap (Figure 3B). Additionally, NMR
offers an orthogonal viewpoint to the study of PTMs from an
analytical, mechanistical, structural and functional perspective
(Theillet et al., 2012). By providing homogenous PTM patterns
and reducing the number of PTM sites, EPL can help
characterizing PTM-driven conformational and functional
changes, although with a limited knowledge on the local
conformational impact due to the absence of isotopic
labeling of the synthetic fragment containing site-specific
PTM(s) (Figure 3B). The occasional use of isotopically
labeled amino acid synthons for SPPS may partially
overcome this limitation albeit with a significant cost
increase. An alternative route to PTM incorporation is the
chemoenzymatic semisynthesis employing in vitro enzymatic
modification of an expressed fragment, or co-expression of the
fragment with the modification enzyme in E. coli, preceding
the ligation step (Pan et al., 2020; Chiki et al., 2021; Kolla et al.,
2021; Pan et al., 2021). This approach is limited to either small
or mutated fragments, or scarce PTMs (such as pTyr) to reduce
the number of modification sites or alternatively, it requires an
efficient purification method to isolate a homogenously
modified fragment preferably before ligation.

As exemplified by the whole proteome, phosphorylation is an
important PTM in neurodegenerative diseases through
modifications of most, if not all, amyloid proteins (Tenreiro
et al., 2014). Involved in the crosstalk with phosphorylation,
O-GlcNAcylation has been extensively investigated by
semisynthetic approaches since the low enzymatic activity of
OGT in vitro still limits the purely enzymatic strategy
(Schwagerus et al., 2016; Balana and Pratt, 2021). Among
other PTMs commonly found in amyloid proteins, lysine
modifications such as acetylation, methylation (poly)
ubiquination and SUMOylation are also explored by EPL.
Several chemical biology groups have thus addressed the role
of site-specific PTMs of amyloid proteins by developing various
strategies of chemical synthesis, EPL and chemoenzymatic
semisynthesis to improve the efficiency and yield of the
ligation reaction as well as traceless purification of the ligation
product (Ansaloni et al., 2014; Reimann et al., 2015; Levine et al.,
2019; Kolla et al., 2021). Because, the NCL/EPL strategy depends
on protein sequence and length, and on the nature and site(s) of
PTM, specific strategies are elaborated in a case-by-case basis, i.e.
for a specific amyloid protein and PTM. In the following,
some examples are given to illustrate both the NCL/EPL
approach involved and the findings related to the
amyloidogenic pathways.

3.1.1 α-synuclein
Either a three-fragment ligation or chemoenzymatic
semisynthesis approach was employed to achieve tyrosine
phosphorylation of α-synuclein at Y39 to evaluate its impact
on aggregation properties and toxicity (Pan et al., 2021; Pan et al.,
2020; Dikiy et al., 2016). Phosphorylation of Y39 was made
possible by the chemoenzymatic strategy because the three
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other Tyr residues of α-synuclein are all located in the C-terminus
that was recombinantly expressed in bacteria while the
N-terminal part was enzymatically phosphorylated before
ligation. Furthermore, desulfurization following the ligation
steps restores native residues at junction sites considering the
absence of cysteine in the native sequence of α-synuclein. It is
noteworthy that recombinant expression of all fragments further
assembled by ligation allowed the uniform 15N isotopic labeling
of the site-specific pY39 α-synuclein for NMR studies (Vogl et al.,
2021). It has been shown using these strategies that pY39
accelerates aggregation kinetics (Pan et al., 2020; Dikiy et al.,
2016) and alters fibril morphology of α-synuclein with pY39
attracting the entire N-terminus within the fibril core through an
array of electrostatic interactions giving rise to the largest fibril
core (residues 1–100) ever seen for the α-synuclein amyloid fibrils
(Figure 2) (Zhao et al., 2020). The homogenously phosphorylated
α-synuclein at S129, one of the major pathological marks of Lewy
bodies in PD, forms a different amyloid fold and has different
propagation properties related to the wild-type protein,
indicating the formation of a distinct strain associated to
higher toxicity (Ma et al., 2016). Be it either localized at pY39
or pS129, single phosphorylation of α-synuclein provided by NCL
highlights a capacity of site-specific phosphorylation to modulate
the fold of the amyloid structure and pathological strain
properties. In contrast, phosphorylation at Y125 does not alter
the structure and morphology of the α-synuclein fibrils (Hejjaoui
et al., 2012).

As α-synuclein has multiple O-GlcNAcylation sites, the site-
specific O-GlcNAcylation provided by EPL underscored its
inhibitory role in fibril assembly on either T72, T75, T81 or
the three together, or S87, with the strongest effect observed for
T75, all these sites being embedded within the fibril core (Marotta
et al., 2015; Lewis et al., 2017; Li et al., 2018b; Zhang et al., 2019b;
Levine et al., 2019; Tavassoly et al., 2021). Additionally, the
combination of three T72/T75/T81 GlcNAc O-glycosylation
reduces the aggregation of wild-type α-synuclein or
aggregation-prone mutant (A53T) that causes early-onset,
familial PD. O-GlcNAcylation alters the structure of aggregates
in a site-specific manner, reduces the cytotoxicity of extracellular
fibrils and impaired the calpain-mediated proteolysis of α-
synuclein. Interestingly, the Pratt’s group has highlighted that
O-GlcNAc at T72 is unique in its aggregation inhibitory
properties as compared to other single sugars including
O-GalNAc suggesting an effect that extend beyond its mere
bulky size and polar properties, owing likely to the chirality of
specific asymmetric carbons that would require further
investigations (Galesic et al., 2021).

Finally, the investigation of site-specific ubiquitination of α-
synuclein involved a strategy of disulfide-directed ubiquitination,
as implemented by Pratt and co-workers, requiring a lysine-to-
cysteine point mutation for installation of ubiquitin through a
disulfide bond instead of the native isopeptide bond. This strategy
involved the recombinant production of a ubiquitin-intein fusion
protein followed by reaction with cysteamine that simultaneously
affords intein cleavage and thiol functionalization of ubiquitin
C-terminus (Figures 4A,B). The subsequent thiol activation as a
disulfide or a redox non-labile function by reaction with

dibromoacetone provided ubiquitinated α-synuclein by
reaction with a free thiol function positioned at diverse
biologically relevant sites (K6, K10, K12, K21, K23, K32, K34,
K46, and K96) (Meier et al., 2012; Abeywardana et al., 2013;
Moon et al., 2020; Lewis et al., 2016). Whatever the ubiquitination
or polyubiquitination site, an inhibition of α-synuclein
aggregation was observed (Meier et al., 2012; Haj-Yahya et al.,
2013). However, the disulfide bond is not chemically stable and
other approaches were used to establish stable isopeptide linkage
of ubiquitin. An alternative strategy formerly developed by
Lashuel and co-workers although less flexible affords a native
isopeptide linkage between K6 of α-synuclein and ubiquitin
(Figures 4A,C). The synthesis of a thiol protected δ-
mercaptolysine derivative is used in SPPS of a N-terminal
fragment, then EPL with a recombinant C-terminal fragment
provides the modified K6 within full-length α-synuclein.
Subsequent NCL between the thiol function of δ-
mercaptolysine and ubiquitin C-terminal thioester forms a
native isopeptide bond between ubiquitin and the targeted
lysine after subsequent desulfurization of the thiol handle of δ-
mercaptolysine (Hejjaoui et al., 2011).

3.1.2 Aβ Peptide
Aβ peptides from AD brain contain a variety of peptide lengths
and post-translationally modified forms with phosphorylation,
isomerization, and pyroglutamate, that modulate aggregation and
propagation properties, and toxicity. In AD, modifications of the
N-terminus in several Aβ subtypes were shown to both accelerate
fibrillation and stabilize fibril structures. Phosphorylation of S8 is
a modification of Aβ featured in late-stage of AD in the dispersed,
membrane- and plaque-associated fractions (Kumar et al., 2011;
Rijal Upadhaya et al., 2014). Homogenous phosphorylation of S8
of Aβ(1–40) peptide, afforded by SPPS, induces a higher cross-
seeding efficiency when compared to unmodified Aβ(1–40) and a
modification of fibril structure shown by ssNMR that highlights a
tight N-terminus association with the amyloid core (Hu et al.,
2019). In contrast, selective enzymatic modification of S26
stabilizes oligomeric forms but inhibits aggregation. Hence, it
has been proposed that an ordered N-terminal region may be
favorable to pS8-Aβ(1–40) strain to propagate to multiple Aβ
subtypes by exerting a dominant role in fibril morphology.
Furthermore, ordered N-terminal conformations in Aβ fibril
structures may be biologically relevant as illustrated by brain-
extracted Aβ40 and Aβ42 fibril structures. In contrast,
Y10 O-glycosylation of Aβ with a (Galβ1-3GalNAc)
disaccharide or sialylated trisaccharide (NeuAcα2-3Galβ1-
3GalNAc) was shown to destabilize the amyloid structure to
form a new fibril polymorph with a less stable protofilament
interface rendering fibrils more prone to degradation in
agreement with short tyrosine O-glycosylated forms found in
CSF of AD patients (Liu et al., 2021).

Recently, the O-GlcNAc glycosylation of small heat shock
proteins (sHSPs) by EPL in the Pratt’s group has extended
targeting modulators of amyloid aggregation to site-specific
PTMs of their cofactors. O-GlcNAc modification was found to
selectively improve the anti-amyloid activity of HSP27 and other
sHSPs in aggregation of both α-synuclein and Aβ(1–42), by

Frontiers in Chemistry | www.frontiersin.org May 2022 | Volume 10 | Article 88638211

Landrieu et al. Chemical Biology of Amyloids

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


competing with intramolecular interactions. The subsequent
conformational rearrangement upon HSP27 O-GlcNAcylation
most likely favors the formation of larger multimers with
increased activity (Balana et al., 2021). Besides highlighting a
protective role of O-GlcNAc in amyloid aggregation, this work
opens new avenues for orthogonal strategies to inhibit the
formation of amyloid fibril by targeting their cofactors.

3.1.3 Tau Protein
The long sequence of tau protein combined to a high proportion
of polar residues (Ser, Thr, Lys, Arg) and Pro in the proline-rich
domain coincides with a large number of PTMs such as

phosphorylation, acetylation, ubiquitination, SUMOylation,
methylation and O-GlcNAcylation. Hyperphosphorylation was
shown to have a dominant role in tau fibril formation and loss-of-
function in MT stabilization (Alonso et al., 1994; Morishima-
Kawashima et al., 1995b; Alonso et al., 2001; Tepper et al., 2014),
but other PTMs may have important effects in modulating tau
functions and amyloid assembly. Site-specific PTMs may exert
antagonist roles as well with some phosphorylation sites
promoting aggregation while others have an inhibitory effect
(Schneider et al., 1999; Liu et al., 2007; Despres et al., 2017;
Brotzakis et al., 2021). Tuning on and off specific phospho-
epitopes was shown to modulate tau function on tubulin

FIGURE 4 |Chemical biology strategies of protein ubiquitination. (A) Posttranslational chemical mutagenesis and EPL approaches involve both the preparation of a
C-terminal activated ubiquitin from a ubiquitin-intein fusion protein that provides a reactive C-terminal thioester. (B) Posttranslational chemical mutagenesis exemplified
for K23 ubiquitination of α-synuclein requires first the thiol activation of a cysteine residue obtained by site-directed mutagenesis at the PTM site. The activated thiol is
further involved in a reaction with ubiquitin-aminoethanethiol (ubiquitin-AET) leading to a bis-thio-acetone (BTA) analog of the ubiquitin-lysine isopeptide bond
(Lewis et al., 2016). Alternatively, a ubiquitin-AET activated by 2,2′-dithiobis(5-nitropyridine) (ubiquitin-AET-DTNP) can react with the cysteine thiol in a disulfide-directed
ubiquitination (Moon et al., 2020). (C) The EPL strategy involves first, the synthesis of full-length α-synuclein by EPL of two fragments, a N-terminal peptide (fragment
1–18) bearing a protected δ-mercaptolysine at position K6 for further ubiquitin linkage and a C-terminal recombinantly expressed fragment with a N-terminal cysteine.
After NCL and thiol deprotection of the δ-mercaptolysine, EPL with the recombinantly expressed ubiquitin with C-terminal thioester and subsequent desulfurization
provide the full-length, native α-synuclein with a native ubiquitin-lysine isopeptide bond (Hejjaoui et al., 2011). Chemical reactions are indicated by blue arrows and
enzymatic reactions by red arrows.
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polymerization or the Pin1-mediated regulation of tau
dephosphorylation by PP2A (Amniai et al., 2009; Landrieu
et al., 2011). The use of enzymes for introducing a limited
pool of PTMs generally requires multiple mutations into an
amino acid that cannot be modified as exemplified by the
restriction of phosphorylation patterns to single phospho-
epitopes, such as AT8 and PHF-1, for functional investigations
(Amniai et al., 2009; Landrieu et al., 2011; Despres et al., 2017;
Cantrelle et al., 2021). Alternatively, mimetics of PTM-amino
acid may be inserted at single or multiple place mimicking a
permanently modified state (Eidenmüller et al., 2001; Min et al.,
2015). First attempts of full-length tau EPL semisynthesis were
made by Hackenberger and co-workers, for the introduction of
phosphorylation on S404 in the C-terminal region by ligation of a
C-terminal phosphorylated peptide (from residue 390–441) to a
N-terminal recombinantly expressed fragment (from residue
1–389) fused to intein (Broncel et al., 2012). Further
improvement of the ligation strategy was required to afford
the triple phosphorylation of PHF-1 epitope (pS396/pS400/
pS404) or S400 O-GlcNAcylation owing to the length of the
synthetic peptide (52 residues) (Reimann et al., 2015; Schwagerus
et al., 2016). Hence, the synthesis of the C-terminal peptide
involved NCL of two fragments followed by desulfurization,
then EPL with the recombinant N-terminal fragment provides
the full-length protein. A traceless purification strategy was also
implemented through the use of a photocleavable biotin handle to
purify the ligation product (Figure 5).

The presence of two native cysteine in tau primary sequence
prevents from desulfurization of the EPL product. To circumvent
this issue, the Lashuel’s group has exploited the native cysteine
residues (C291 and C322) in a three-fragment ligation strategy
for the synthesis of the tau K18 fragment (residues 243–372)
corresponding to the microtubule-binding repeats (MTBR)
containing four repeat/inter-repeat sequences, a region
overlapping the core of amyloid fibrils from diverse
tauopathies. This approach involves the native cysteine at the
NCL junction sites preventing any introduction of non-native
cysteine. The total chemical synthesis of K18 allowed the
installation of phosphorylation at single (pS356) or multiple
sites (pS262/pS356 and pS258/pS262/pS356) known to
modulate tau function in microtubule polymerization/binding
and amyloid assembly (Schneider et al., 1999). The site-specific
phosphorylation of K18 proved to inhibit its aggregation in vitro,
its seeding property in biosensor cells, and its ability to promote
microtubule polymerization (Haj - Yahya et al., 2020). The same
strategy including first NCL of a C-terminal synthetic fragment
was used in combination with an expressed N-terminal tau
fragment (residues 2–245) for EPL allowing the semisynthesis
of full-length tau after ligation of five fragments with either
pY310, Ac-K280 or pS396/pS404 modification (Haj-Yahya and
Lashuel, 2018). To obtain wild-type tau, two desulfurization steps
were performed restoring native alanine at ligation sites before
the incorporation of both fragments bearing native cysteine
residues. The site-specific acetylation of K280 reproduces with

FIGURE 5 | EPL strategy applied to the semisynthesis of full-length tau-S400-O-GlcNAc protein (Schwagerus et al., 2016). The C-terminal synthetic fragment
incorporating the S400-O-GlcNAc modification and a biotin selectively linked to K438 residue for purification is obtained by NCL of two synthetic peptides, followed by
desulfurization to restore the native A426 at the ligation site and deprotection of the GlcNAc moiety. The resulting C-terminal S400-O-GlcNAc peptide is then ligated by
EPL with the N-terminal fragment recombinantly expressed as intein-GST fusion purified on glutathione affinity chromatography. The ligation product is isolated
from the unreacted recombinant fragment through streptavidin-biotin affinity chromatography and traceless released by photocleavage of the biotin linker. The final
product is the full-length protein tau-S400-O-GlcNAc with a A390C mutation at the EPL ligation site that cannot be recovered by desulfurization due to the presence of
two native cysteine in tau sequence.
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increased outcome the effect of K280Q acetylation mimicking
mutant on tau aggregation by forming rather oligomers and short
fibrils instead of the long filaments observed for unmodified tau
consistently with the increased seeding efficiency and toxicity of
this mutant in AD models of tau pathology (Min et al., 2010;
Cohen et al., 2011; Gorsky et al., 2016).

PHF-tau isolated from AD brains is conjugated to ubiquitin at
multiple lysine residues within the MTBR, such as
monoubiquitination at K254, K257, K311 and K317, and K48-
linked polyubiquitination at K254, K311 and K353. Hence, the
chemoselective disulfide coupling reaction implemented for
ubiquitination of α-synuclein was similarly employed for the
site-specific monoubiquitination of the K18 tau fragment at
K254, K311 or K353 in which both native cysteine were
mutated into alanine to prevent unwanted conjugation of
ubiquitin. In contrast to multiple enzyme-derived
ubiquitination that prevents the formation of both prefibrillar
oligomers and amyloid fibrils, the semisynthetic ubiquitinated tau
conjugates form oligomers and filaments to different extent with
ubiquitination at K311 position being the strongest inhibitor
(Munari et al., 2020).

3.1.4 Huntingtin
Mutant Huntingtin as a primary cause of Huntington’s disease is
characterized by an abnormal expansion of polyglutamine (poly Q)
tract at the N terminus which has been described as pathological
when exceeding 40 glutamine repeats instead of the normal 9 to 35.
The length of the expanded polyQ tract was suggested to be
proportional to disease severity. The first 17 N-terminal residues
of Htt act in modulating Htt structure, interactions and aggregation.
Hence, polyQ expansion was shown to cause misfolding of the
N-terminus and could play a key role in aggregation and toxicity.
The polyQ expansion in mutant Htt exon1 causes conformational
changes and increases phosphorylation at multiple sites across the
entire protein (Jung et al., 2020). It was suggested that
phosphorylation of Htt N-terminus could reverse the
conformational rigidity related to polyQ expansion and improve
the toxic properties. Phosphorylation of the N-terminal fragment of
Htt at T3 homogeneously obtained by EPL, either inwild-type (23Q)
or mutant Htt protein (43Q) was shown to stabilize the α-helical
conformation of the N-terminal 17 amino acids and significantly
inhibit aggregation while K6 acetylation reverses the inhibitory effect
of pT3 without exhibiting any intrinsic inhibitory effect by itself
(Ansaloni et al., 2014; Chiki et al., 2017). More recently, a new
chemoenzymatic semisynthesis of Htt N-terminal fragment (1–170)
that forms nuclear and cytoplasmic inclusions in cell and animal
models of HD enables the introduction of phosphorylation in exon3
(Kolla et al., 2021). Phosphorylation of T107 was shown to have
opposite roles on Htt(1–171)-43Q aggregation depending on the
phosphorylation status of S116 highlighting the benefits of site-
specific PTM installation through semisynthesis in deciphering the
PTM code that regulates the aggregation properties of
amyloidogenic proteins.

3.1.5 TDP-43
The semisynthesis of TDP-43 prion-like domain bearing a
site-specific phosphorylation at S404 required the use of

denaturing conditions to solubilize protein fragments
expressed in bacterial expression systems. Indeed, the
strategy of EPL through purification of full-length TDP-43
or prion-like domain as protein thioesters by the traditional
fusion intein-CBD was unsuccessful to produce soluble TDP-
43 variants in contrast to α-synuclein, Htt or tau proteins.
Hence, the selected approach made use of a polyhistidine tag
attached to a C-terminal cysteine residue which is submitted
to S-cyanylated cysteine-promoted C-terminal
hydrazinolysis to remove the tag. The tag removal then
leaves a reactive C-terminal hydrazide that can be
converted into a thioester for further NCL with the
C-terminal pS404 fragment afforded by SPPS. Using this
procedure, phosphorylation of S404 of TDP-43 prion-like
domain was shown to accelerate the amyloid aggregation of
the TDP-43 prion-like domain and worsen cytotoxicity (Li
et al., 2020a).

Although the semisynthesis of post-translationally
modified proteins has taken advantage of the NCL/EPL
strategy, its major drawback is related to the need for a
combined expertise in both peptide synthesis and chemical
ligation reactions, and when applicable, the refolding of
protein fragments of interest may be limiting. Expansion of
the genetic code using amber stop codons and an orthogonal
tRNA/tRNA synthase pair is an alternative strategy to
introduce site-specific PTMs such as phosphoserine, acetyl-
lysine, mono-/di-methyl-lysine, and UAAs (Wang et al., 2006;
Tarrant and Cole, 2009; Park et al., 2011; Ge and Woo, 2021).
However, this route has not been extensively applied so far to
amyloid proteins. Finally, a more flexible method analogous to
NCL implemented the sortase-mediated ligation (SML), or
sortagging, which benefits from the transpeptidase activity of
bacterial Sortase A (SrtA) enzymes that recognize with a high
substrate specificity LPXT motifs and conjugate them to
oligoglycine units through a native peptide bond (Dai et al.,
2019; Li et al., 2020b). This versatile ligation approach
demonstrates broad applications in vivo and in vitro for
protein engineering, for instance by ligating a peptide
substrate bearing PTMs, UAAs or other labeling probes
(obtained from SPPS) into sortagging reactions. The
directed evolution of SrtA to recognize the LMVGG
sequence of Aβ (residues 34–38) enabled labeling of
endogenous Aβ in human CSF for sensitive detection and
conjugating a hydrophilic peptide to Aβ42 that blocks amyloid
aggregation (Podracky et al., 2021). Dual-color fluorogenic
aggregation sensors were introduced by SML to monitor
protein co-aggregation in transthyretin amyloidosis by a
thermal shift assay (Bai et al., 2021).

3.2 Posttranslational Chemical
Mutagenesis
3.2.1 Reactions With Cysteine Thiol Function
The site-specific chemical installation of PTMs made use of the
reactivity of cysteine thiol group and requires first the site-directed
mutagenesis of the PTM site to introduce a non-native cysteine
residue, and eventually replacing native cysteine(s) by serine or
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alanine residues. An acetyl-lysine analog can be introduced
through Lys-to-Cys mutation at a specific site and subsequent
thiol alkylation with methylthiocarbonylaziridine leading to a
thioether bond bearing a terminal S-methyl thiocarbamate
group as acetyl mimic (Huang et al., 2010). Other chemical
approaches for the site-specific ubiquitination of proteins,
comprise the formation of thioether bonds (Hemantha et al.,
2014) or triazole moiety through Copper(I)-catalyzed azide-
alkyne cycloaddition (CuAAC) (Rösner et al., 2015) as stable
analogs of the ubiquitin isopeptide bond. Mono- and di-
methylated (symmetric or asymmetric) arginine-containing
proteins can be prepared by reaction of cysteine thiol with α,β-
unsaturated amidines leading to the corresponding methylated
arginine analogs (Le et al., 2013). The chemical installation of
mono-, di- and tri-methyl-lysine analogs can be provided by thiol

alkylation with the respective N-methylated (2-chloroethyl)-
ammonium halide (Simon et al., 2007). However, none of
these reactions were applied so far to amyloid proteins to our
knowledge.

3.2.2 Versatile Chemistry of Dha/Dhb Precursors
Besides NCL, an increasing number of chemical methods has
been developed to encode or decode PTMs in various proteins, as
extensively described in excellent reviews (Chuh et al., 2016; Ge
and Woo, 2021; Yang et al., 2018). A versatile approach is the
chemical editing of amino acids into protein after their synthesis,
thus independently of the ribosome or any enzymatic machinery.
Dehydroalanine (Dha)/dehydrobutyrine (Dhb) are versatile
chemical precursors to a range of PTMs including
phosphorylation, glycosylation, methylation, acetylation,

FIGURE 6 | Posttranslational chemical mutagenesis. (A)General scheme of the posttranslational chemical mutagenesis approach for incorporation of PTMmimics
by Michael addition of PTM-thiol derivatives on dehydroalanine (Dha) alkene function. The latter is obtained from serine/threonine/lysine-to-cysteine mutation at the PTM
site and β-elimination of the bis-alkylated thiol function of cysteine. Addition of thiophosphate, S-GlcNAc, N-acetylcysteamine and captamine generates mimetics of
phosphorylation, O-GlcNAcylation, N-acetylation and N,N-dimethylation, respectively. The thio-ether bond formation leads to a racemization of amino acid Cα. (B)
This approach is illustrated by S356 phosphorylation and K311 acetylation in tau protein for the investigation of the PTM effect on loss-of-function in microtubule
polymerization (PDB ID: 7PQP) (Brotzakis et al., 2021; Lindstedt et al., 2021). Chemical reactions are indicated by blue arrows and enzymatic reactions by red arrows.
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lipidation, and their analogs (Figure 6A). Dha/Dhb precursors
can be introduced chemically or genetically into proteins
(Jones, 2020; Yang et al., 2019). These reactive Ser/Thr
analogs allow following olefin addition chemistry
introducing a wide variety of PTMs in a strategy named
“posttranslational chemical mutagenesis” as well as UAAs or
molecular probes for purification or detection purposes. A
simple way to obtain Dha site-specifically is through β-
elimination of the cysteine thiol function that requires 1) the
site-directed mutagenesis of the PTM target site to install a
cysteine precursor and 2) the Cys-to-Dha conversion through a
bis-alkylation elimination reaction (Figure 6A) (Chalker et al.,
2011). Although the Cys-to-Dha conversion was used to map
cysteine accessibility in a globular protein (Bertoldo et al.,
2017), all cysteines are equally reactive in IDPs and,
whenever needed, native cysteines must be mutated. An
alternative strategy is the genetic introduction of Dha
precursors reactive to β-elimination, like phosphoserine,
through genetic code expansion using amber codon
suppression (Yang et al., 2016).

Subsequent to Dha formation, the installation of PTMs or
PTM analogs is provided by Michael addition (Figure 6A). Thiol
derivative precursors of PTMs are the most convenient way to
introduce PTM but the formation of the thio-ether bond induces
Cα racemization (and also at Cβ in the case of Dhb derivatives)
which seems not to be an issue in most amyloid case studies. This
strategy was employed to introduce PTMs in full-length tau
protein like pseudo-phosphorylation at pS262, pS356, pS199
by reaction with thiophosphate (to generate a
phosphocysteine) and lysine K311 acetylation (K311-Ac) and
dimethylation (K311-diMe) by reaction with
N-acetylcysteamine and captamine (to generate thio-ether
mimetics of PTM-lysine), respectively (Figure 6B) (Brotzakis
et al., 2021; Lindstedt et al., 2021). While K311-diMe and K311-
Ac have little effect on the formation of microtubules, pseudo-
phosphorylation of pS262 and pS356 in the MTBR as well as
pS199 in the proline-rich region were shown to inhibit the
polymerization activity of tau confirming the role of pS262/
pS356 that was previously investigated by in vitro kinase
phosphorylation and highlighting a novel functional role for
pS199 that is located far outside the MTBR, in the proline-rich
domain (PRD). This is not surprising however, since other AD-
specific phosphorylation epitopes embedded in the PRD were
shown to modulate microtubule assembly (Amniai et al., 2009).
Alternative elegant and versatile strategies to create C-C (sp3-
sp3) bonds instead of unnatural carbon-heteroatom bonds were
described, albeit not applied so far to amyloid proteins. They
made use of mild, carbon-centered free radical chemistry that
are compatible with Dha precursor reactivity and aqueous
conditions suitable for protein chemical reactions. Most
importantly, free radicals are unreactive with most of
functionalities found in biomolecules. The reaction of Dha
with a wide range of free radical precursor halides generates
a stabilized Cα free radical that is further quenched after
formation of the C-C bond allowing the installation of side
chain chemical diversity (unnatural, fluorinated, PTM or
isotopically labeled amino acids) at a specific position with a

high site- and regio-selectivity (creation of Cβ-Cγ bonds), albeit
with Cα racemization (Wright et al., 2016; Aguilar Troyano
et al., 2021).

3.3 Focus on the O-GlcNAc exception:
the chemical biology toolbox for the
installation, detection and enrichment of
O-GlcNAcylated amyloid proteins
The O-GlcNAc modification of proteins, and more particularly
amyloid proteins, has required special attention. As an addition of
single sugar on Ser/Thr, this PTM is closely comparable to
phosphorylation. In addition, the O-GlcNAcome tightly
overlaps the phosphoproteome. Thus, protein O-
GlcNAcylation has long been occulted due to its close
interplay with phosphorylation and a lack of appropriate
detection/analytical methods (Thompson et al., 2018). For
example, the poor immunogenicity of this small, neutral sugar
prevents from raising selective antibodies, and only a few site-
specific O-GlcNAc antibodies are available (e.g. S400-O-GlcNAc
tau-directed antibody from Vocadlo’s lab (Yuzwa et al., 2011)).
Another major limitation is related to the low sub-stoichiometry
of the O-GlcNAc modification requiring the development of
specific enrichment methods for O-GlcNAc profiling. Finally,
the absence of consensus sequences emerging from the number of
O-GlcNAc databases hamper the prediction of O-GlcNAc sites.
Particularly intriguing is the mode of regulation of both OGT and
OGA as the only two enzymes encoded in the human genome to
implement the whole O-GlcNAc modifications of the
O-GlcNAcome facing approximately 500 kinases. This suggests
the recruitment of regulating sub-units for specific substrate
targeting.

Biochemical and genetic manipulations of OGT and its
substrates has provided several solutions to produce
enzymatically O-GlcNAc modified proteins as exemplified by
the co-expression of OGT and the protein of interest in E. coli
given that bacteria do not have any equivalent of OGT protein but
produce UDP-GlcNAc in sufficient amounts. This strategy was
employed with tau (Yuzwa et al., 2011) and α-synuclein (Zhang
et al., 2017b) to address the O-GlcNAc modification pattern of
tau and the role of O-GlcNAc in tau and α-synuclein aggregation,
respectively. The co-expression OGT/substrate can be optionally
accompanied by 1) the co-expression of GlmM and GlmU
enzymes that participate to the bacterial UDP-GlcNAc
biosynthesis and therefore help protein O-GlcNAcylation by
enhancing intracellular UDP-GlcNAc concentration (Gao
et al., 2018), and 2) the treatment of bacterial cultures and
extracts with PUGNAc, a potent glycosidase inhibitor, since
endogenous NagZ glycosidase can hydrolyze O-GlcNAc in
exogenous glycosylated proteins, hence reducing the
O-GlcNAc modification level (Goodwin et al., 2013). This
strategy together with the in vitro incorporation of O-GlcNAc
through incubation of the protein substrate with UDP-GlcNAc
and expressed OGT (from heterologous expression system) lead
to heterogenous, and most importantly, low sub-stoichiometry
modification in most cases. The lack of regulatory sub-units in
artificial systems could in part explain the inefficiency of protein
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O-GlcNAcylation with recombinant OGT or bacterial co-
expression systems.

The semisynthesis of α-synuclein incorporating a site-specific
S-GlcNAcylation at S87C mutation site was used to probe the
OGA activity on S-linked GlcNAc modification. Accordingly, the
S-GlcNAc moiety was shown to be enzymatically stable upon
OGA treatment. Moreover, it has the same effect than the

O-linked counterpart in membrane binding of α-synuclein and
inhibition of its fibrillar aggregation (De Leon et al., 2017).
Following this approach, genetic methods implementing the
CRISPR-Cas9 methodology for the site-specific Ser-to-Cys
mutation of the glycosylation site has allowed incorporating
S-GlcNAc derivatives with high level of protein modification
in living cells (Gorelik et al., 2019) considering the ability of OGT

FIGURE 7 | Posttranslational chemical mutagenesis, genetic code expansion and chemo-enzymatic reactions for incorporation of O-GlcNAc mimics and
derivatives for O-GlcNAc detection/purification. Chemical reactions are indicated by blue arrows and enzymatic reactions by red arrows. Some examples of the manifold
approaches for the incorporation of S-GlcNAc and O-GlcNAc derivatives are given. An extensive review of O-GlcNAc installation and detection can be found in (Saha
et al., 2021). Site-specific O-GlcNAc mimics can be incorporated directly on the cysteine thiol function after Ser/Thr into Cys site-directed mutagenesis or using the
gene-editing tool CRISPR-Cas9. This allows for instance the enzymatic installation of S-GlcNAc mimics with OGT leading to a stable GlcNAc derivative since hydrolysis
by OGA is not possible. Alternatively, the engineered cysteine residue may also be an intermediate to provide a bioorthogonal reactive dehydroalanine (Dha) derivative
after thiol bis-alkylation and subsequent β-elimination. The Dha handle is amenable to a Michael addition with a GlcNAc-thiol derivative for installation of a S-GlcNAc
derivative. A third approach involved the incorporation of unnatural amino acids (UAAs) bearing a reactive handle amenable to “click” chemistry, e.g., acetophenone or
propargyl-lysine, using the amber codon suppression strategy of genetic code expansion for the site-specific O-GlcNAcmodifications. Coupling of the O-GlcNAcmoiety
is performed by azide-alkyne [3 + 2] cycloaddition. For detection or enrichment of O-GlcNAcylated proteins, labeling of O-GlcNAc is performed as a first step either (i) by
“metabolic labeling” through oligosaccharide engineering that introduces chemical handles (azide, alkyne,. . .) directly on the GlcNAc group for subsequent reaction (via
the biosynthesis of UDP-GlcNAc derivatives, depicted in the box) or (ii) by “chemoenzymatic labeling” through an enzymatic reaction of the O-GlcNAc group with a
mutant of β1,4-galactosyltransferase (GalT-Y289L) that forms a glycosidic bond with a galactose derivative (GalNAz). In both strategies, the second step is the
subsequent conjugation of reactive probes (e.g., fluorescent probes, mass tag, biotin. . .) for downstream enrichment or detection. The latter processes through a
reaction of “click” chemistry making use of azide bioorthogonal reactivity through the copper(I)-catalyzed (CuAAC) or strain-promoted azide-alkyne cycloaddition
(SPAAC).
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to process cysteine residues while OGA cannot hydrolyze the
S-linked GlcNAc sugar, thereby increasing the stability of the
modification in the cell (Figure 7) (De Leon et al., 2017). Then,
engineering of a hexosamine thioligase inspired from the GH20
hexoaminidase enzymatic mechanism and utilizing 4-
nitrophenyl N-acetyl-β-D-glucosaminide (pNP-GlcNAc) as
glycosyl donor has improved the GlcNAc S-linkage to targeted
sites after Ser-to-Cys mutation (Tegl et al., 2019). The enzymatic
S-GlcNAcylation of tau at S400C was performed using this
approach. In addition, efforts were made to produce
GlcNAcylated proteins both in vitro and in vivo through
“proximity-induced reactions” improving levels and detection
of GlcNAcylated proteins (see paragraph 4.3) (Ge and Woo,
2021).

Interestingly, O-GlcNAc seems to have an overall protective
effect in amyloid aggregation of various proteins involved in
neurodegenerative diseases, in part owing to its interplay with
phosphorylation. The phosphorylation/O-GlcNAcylation
crosstalk in tau protein derived from the overall modulation of
O-GlcNAcylation (OGA inhibitors, mouse starvation) and
distinct transgenic mouse models suffers from contradictory
outcomes (Yuzwa et al., 2008; Yuzwa et al., 2012; Graham
et al., 2014; Hastings et al., 2017) while in vitro studies
highlight only a limited direct interplay between both PTMs at
the protein level (Bourré et al., 2018; Cantrelle et al., 2021).
Phosphorylation of S129 of α-synuclein, a marker of typical PD
aggregates, was shown to be sensitive to the O-GlcNAc
modulation, either by genetic or pharmacological upregulation
of O-GlcNAcylation, while pS129 reduction has been observed in
the homogenously T72-O-GlcNAc modified semisynthetic
protein upon phosphorylation by different kinases (Marotta
et al., 2015; Lee et al., 2020). Unraveling the regulation of tau
or α-synuclein (hyper)phosphorylation and pathophysiological
functions by the O-GlcNAc glycosylation would deserve further
investigations with the targeted protein O-GlcNAcylation
approaches.

The investigations of the functional impact of amyloid PTMs
and PTM dysregulation in cell and in vivo systems require the
isolation, detection and analytical characterization of
posttranslationally modified proteins which proved to be
particularly difficult in the general case of O-GlcNAcylated
proteins. Indeed, both detection and/or enrichment of
O-GlcNAc proteins usually apply succinylated wheat germ
agglutinin (sWGA) lectin or pan-O-GlcNAc monoclonal
antibodies, RL2 and CTD110.6, that detect O-GlcNAc proteins
in cytosolic and nuclear extracts (Saha et al., 2021). However,
sWGA although relatively selective has a low affinity for the single
O-GlcNAc sugar while pan-O-GlcNAc antibodies have a low
affinity and a limited specificity, sometimes exhibiting cross-
reactivity with terminal GlcNAc of branched N-glycans (Isono,
2011; Tashima and Stanley, 2014). Significant advances using
chemical biology tools during the last decade has strongly
expanded the detection of O-GlcNAcylated proteins as a long-
standing demand, and helped deciphering the functional role of
O-GlcNAcylation as extensively reviewed in (Saha et al., 2021).
Bioorthogonal chemical reactions have been implemented to
afford a wide range of tools and probes for the detection or

enrichment of O-GlcNAcylated proteins from in vivo systems
(Figure 7). In particular, the O-GlcNAc enrichment methods
combined with mass spectrometry-based proteomics have led to
important advances in the profiling of protein O-GlcNAcylation
in systemic approaches. As a first step, the labeling of O-GlcNAc
is performed either by metabolic oligosaccharide engineering that
consists of introducing several types of reporter groups (ketone,
azide, alkene, alkyne, isonitrile) as chemical handles for
subsequent reaction or, alternatively, by enzymatically
coupling a galactose derivative using the specific reaction of
β1,4-galactosyltransferase (GalT). The former approach uses
the manipulation of the UDP-GlcNAc metabolic pathway and
the OGT plasticity to a variety of UDP-GlcNAc derivatives (e.g.
peracetylated N-azidoacetylglucosamine) to directly incorporate
chemical reactive group in the GlcNAc moiety of
glycosylated proteins (Moon et al., 2022; Saha et al., 2021).
The latter approach achieved better efficiency by using a
mutant of GalT (GalT-Y289L) tolerant to UDP-GalNAc
derivatives, such UDP-GalNAz containing an azide group, as a
substrate donor for glycosidic linkage to GlcNAc (Figure 7)
(Khidekel et al., 2003). The second step is the subsequent
reaction with diverse reactive probes (e.g. fluorescent probes,
mass tag, biotin. . .) for downstream enrichment or detection. An
example is the use of azide bioorthogonal reactivity through the
[3 + 2] cycloaddition with alkynes. The development of a
copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC),
termed “click” chemistry, improved the conditions of the
initial Huisgen reaction to proceed in physiological conditions
compatible with biomolecule functionalities. However, as Cu(I) is
toxic in cellular environment, activated alkynes, e.g. induced by
ring strain such as cyclooctyne, has been implemented in a
strategy compatible with cellular environments named strain-
promoted azide-alkyne cycloaddition (SPAAC) (Agard et al.,
2004). The conjugation of fluorescent probes and biotin
through a click chemistry reaction allowed subsequent
O-GlcNAcylated protein detection and isolation while mass
tagging (e.g. with resolvable polyethylene glycol mass tags)
provides a rapid insight into the distribution of O-GlcNAc
proteoforms.

4 DETECTING AND CHARACTERIZING
AMYLOIDS WITH CHEMICAL BIOLOGY
TOOLS

4.1 Chemical Tools for Amyloid Detection
and Structural Characterization
4.1.1 Small-Molecule Sensors of Amyloid Aggregation
Historical fluorescent probes for the detection of amyloids (e.g.,
ThS, ThT, ANS, Bis-ANS, Congo Red, Nile Red. . .) (Figure 8A)
(Naiki et al., 1989; Biancalana and Koide, 2010; Krebs et al., 2005;
Groenning, 2010; Amdursky et al., 2012) were recently
complemented by a wide range of aggregation-induced
emission (AIE) molecules (Tang et al., 2022; Tang et al., 2021)
including hexaphenylsilole (HPS), tetraphenylethylene (TPE)
and tetraphenylbutadiene that expand the detection of
aggregates formed along the amyloidogenic pathway such as
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FIGURE 8 | Detection of amyloids by fluorescence labeling (A–D) or functionalized gold nanoparticles (E). (A) Structures of extrinsic fluorescent probes used for
amyloid detection. (B) Aggregation-induced emission (AIE) molecules exemplified by Thioflavin-T (ThT) emit a fluorescent signal upon binding into hydrophobic pockets
of amyloid β-sheet structures due to restriction of intramolecular rotation (PDB ID: 3MYZ). The structure of [11C]-Pittsburgh Compound B used for PET imaging is based
on ThT structure. (C) Some examples of fluorescent molecules based on BODIPY or tetraphenylethylene (TPE) scaffolds are depicted as well as a near-infrared
(near-IR) fluorescent probe and the oligothiophene p-FTAA (pentameric form of formyl thiophene acetic acid). (D) An example of fluorescent SNAP-tagging is depicted in
a strategy called “AggTag” for amyloid detection. The engineering of a SNAP-tag amyloid protein allows coupling of an AggFluor probe through the selective reaction of a

(Continued )
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oligomers that are poorly detected by ThT, Congo Red and their
derivatives. AIE molecules usually possess twisted structures in
solution limiting the fluorescence yield by non-radiative
transition (Kumar et al., 2017; Aliyan et al., 2019). Restricted
intramolecular motions upon binding to amyloid β-sheets
alleviates this phenomenon due to electrostatic and/or
hydrophobic interactions, structural complementarity and/or
chemical reactions (Figure 8B). For instance, increased
fluorescence signal of new AIE probes with the size increase of
Aβ aggregates enables a sensitive detection of Aβ aggregation and
inhibition (Gour et al., 2019). Development of AIE probes
includes the coverage of a large wavelength spectrum from the
visible to the near-infrared (NIR) (Figure 8C). NIR probes are
more convenient for super-resolution imaging of amyloids in
cells and tissues by increasing the spatiotemporal resolution and
photostability while reducing tissue damages. Probes for excited
state intramolecular proton transfer (ESIPT) or a series of boron
dipyrromethene (BODIPY) derivatives were designed with AIE
properties for the follow-up of amyloid aggregation (Figure 8C)
(Hu et al., 2011; Liu et al., 2019). A fluorescent BODIPY-based
binuclear Zn(II) complex was rationally designed as a molecular
probe with phospho-selective binding properties for peptides
presenting phosphorylated groups at the relative i and i+4
positions. This molecule allowed for a selective detection of
NFTs of hyperphosphorylated tau proteins in AD brain as it
discriminated between NFTs and SPs of Aβ peptides in
histological imaging of hippocampus sections from AD
patients (Ojida et al., 2009). The luminescent amyloid-
binding conjugated poly- and oligothiophenes (LCPs and
LCOs) is a class of amyloid dyes of fibrillar aggregates for
emission fluorescence staining or imaging (Figure 8C)
(Åslund et al., 2009; Brelstaff et al., 2015; Klingstedt et al.,
2011). LCOs are uniquely capable to discriminate different
molecular architectures. The aggregate-specific emission is
achieved due to conformational restriction of the thiophene
backbone upon interaction with specific protein aggregates.
Using the LCOs fluorescence signature, fibril polymorphism
can be monitored both in vivo and in vitro. LCOs will be useful
to link protein conformational features with disease phenotypes
for a variety of neurodegenerative proteinopathies (Magnusson
et al., 2014). Another series of molecular rotor fluorophores
named AggFluor derived from the chromophore core of green
fluorescent proteins (GFPs) was rationally designed with a
gradient of viscosity sensitivity over a wide range
(Figure 8D). AggFluor probes were capable of differentiating
between soluble oligomers and insoluble aggregates through
distinct turn-on fluorescence. This method was extended to
dual-color imaging of aggregation and its modulation thereof
with small-molecule proteostasis regulators in living cells
(Wolstenholme et al., 2020).

4.1.2 Functionalized Gold Nanoparticles
Probing of amyloids with gold nanoparticles or nanorods, or
through immunogold labeling as gold nanoparticle conjugates to
a specific antibody allowed mapping amyloid fibrils in tissue
sections as well as identifying proteins and some of their
molecular features. The presence of PTMs and cofactors, or
the presence/accessibility of a particular sequence can be
characterized in this manner (Fitzpatrick et al., 2017; Falcon
et al., 2018b; Goedert et al., 1996; Al - Hilaly et al., 2020).
However, these methods do not provide detailed information
on the fibril morphology and polymorphism owing to either the
bulkiness of the particle itself or to the distance between the
particles and coated fibrils due to the size of the antibody and/or
nanoparticle attachment linker. Functionalization of gold
nanoparticles of 3 nm-diameter with negatively charged
ligands (e.g. 11-mercapto-1-undecanesulfonate: 1-octanethiol
mixture) enables to detect amyloid polymorphism over a
variety of amyloid sequences under hydrated conditions by
cryo-EM imaging (Figure 8E) (Cendrowska et al., 2020). The
functionalized particles act as contrast agents to rapidly stain
fibrillar structures. Fibrils are stained either at the fibril edges as
exemplified with Aβ40 and tau R2 peptides, or on the whole fibril
surface as for proteins tau and Htt exon 1 with a 43 polyQ
segment, probably through interactions with the fibril fuzzy coat.
This nanoparticle labeling facilitates the characterization of fibril
morphology thereby revealing distinct polymorphs. Moreover,
differential fibril decoration also reflects distinct morphologies.
The functionalized gold nanoparticles have highlighted a higher
homogeneity of periodicity length distribution for in vivo related
to synthetic fibrils in agreement with cryo-EM structures.

4.1.3 Site-specific Introduction of Probes for the Study
of Amyloids
Site-specific labeling of amyloid proteins allows to track
conformation dynamics, interactions, modifications and
seeding aspects by both in vitro approaches based on
biophysical experiments and cell-based assays through
microscopy imaging. Moreover, protein fluorescent labeling
can be helpful in the screening of compounds for anti-
aggregation or disaggregation activity by avoiding
displacement of external fluorescent probes by competitive
binding. The labels can be introduced with approaches similar
to introduction of PTMs as detailed in paragraph 2 by
incorporation of the labeled amino acid, or an amino acid
amenable to bioorthogonal click chemistry (Arsić et al., 2022;
Shimogawa and Petersson, 2021), by UAA mutagenesis, or based
on suppression of stop codons. Another strategy of label
incorporation is the conjugation of SPPS (peptide modified
with a label) combined with NCL (see paragraph 2.1). In
addition, the labels can be introduced using genetically

FIGURE 8 | SNAP tag cysteine residue with O-benzylguanine derivatives. The subsequent aggregation of amyloid-forming proteins turns on fluorescence of the
AggFluor probe. Various AggFluor probes has been designed to detect oligomers and amyloid fibrils, or amyloid fibrils selectively (Liu et al., 2018; Wolstenholme et al.,
2020). (E) Functionalization of gold nanoparticles (gold-thiol polymer) with amixture of 11-mercapto-1-undecanesulfonate: 1-octanethiol (MUS:OT) enables the selective
detection of amyloid fibrils and polymorphism by cryo-EM imaging (Cendrowska et al., 2020).
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engineered reactive tags for N- or C- terminal labeling, such as
SNAP-tag (Keppler et al., 2003) CLIP-tag (Gautier et al., 2008)
and Halo-tag (Liu et al., 2018) that react with derivatives of
O-benzylguanine bearing a chemical probe to label the protein via
a benzyl linker (Figure 8D). SNAP and CLIP or Halo tags can be

simultaneously and differentially labeled with fluorescent
reporters in living cells (Gautier et al., 2008; Jung et al., 2019).
Compared with fluorescent proteins as GFP or mCherry, these
tags are small and can be modified with more stable and brighter
fluorophores.

FIGURE 9 | Nitroxide spin labeling and FRET fluorescent pair labeling for distance measurements by NMR, EPR and FRET exemplified in tau protein. (A) Nitroxide
spin labels such as MTSL (S-(1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl)methyl methanesulfonothioate) can be introduced on thiol function(s) of engineered
cysteine residues obtained by site-directed mutagenesis for NMR experiments. Single spin label is used in paramagnetic relaxation enhancement (PRE) experiments.
Double spin labeling of two distinct cysteine residues is used for paramagnetic relaxation interference (PRI) experiments (not shown in the figure). The same labeling
strategy with single or double paramagnetic probes can be used in EPR experiments (not shown in the figure). Single spin labels are introduced at different positions
along the protein sequence as illustrated by A72C and A239C labeling. Proximal and long-range perturbations of NMR signals (distance >10 Å up to 25 Å) from the spin
label is indicated by red areas (Bibow et al., 2011). The PRE phenomenon is characterized by a selected decrease of peak intensities in the 1H-15N HSQC experiment
acquired on the 15N-uniformly labeled protein and quantified by the Ipara/Idia ratio corresponding to the intensities measured in the paramagnetic specie (Ipara) and the
intensities measured in the diamagnetic specie (Idia) in which the nitroxide is reduced by vitamin C. Such a spatial proximity to the probe of remote residues in the protein
sequence suggests an overall folding of tau protein in its native monomeric form such as the paperclip-like conformation. (B) FRET measurement of distances requires
both the mutagenesis of a hydrophobic amino acid into tryptophan as FRET donor probe (red spot) and coupling of IAEDANS as FRET acceptor probe (blue spot) to
either a native (C322) or engineered cysteine (T17C) of tau protein. Different combinations of positions of FRET donor and acceptor probes allowed to define the
paperclip conformation of native monomeric tau where both N- and C-termini are in close proximity of the central MTBR functional domain (Jeganathan et al., 2006;
Jeganathan et al., 2012).
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The easiest way to introduce a tag is probably by using Cys
residues as attachment points for maleimide or iodoacetamide
derivatives, or other thiol reactive species (Gunnoo and Madder,
2016). The Cys residues can be native protein residues, or
introduced at a unique position by site-specific mutagenesis,
with replacement of the natural Cys residues by an unreactive
amino acid. This has been conveniently used for α-synuclein
labeling with an environment-sensitive fluorescent reporter to
probe binding to lipid membranes and fibrillization by
discriminating between unstructured, membrane-bound and
fibrillar states (Kucherak et al., 20182018). However, for the
introduction of two different probes, a selective (de)protection
of one of the two cysteine is required involving necessarily SPPS
of a fragment at least of the protein of interest. Otherwise, a
combination of different methods should be used. Cysteine
conjugation was combined with amber codon suppression,
transferase mediated N-terminal modification and NCL to
produce α-synuclein variants bearing single or double site-
specific fluorescent labels to probe conformational changes
upon fibril formation and cellular uptake of fibrils (Haney
et al., 2016; Haney et al., 2017).

Fluorescent probes differ whether investigating amyloidogenic
processes in vitro or in living cells, and upon the fluorescence
experiment employed being ensemble or single-molecule Förster
resonance energy transfer (FRET), fluorescence polarization (FP),
fluorescence correlated spectroscopy (FCS) or ESIPT. In any
cases, careful considerations must be taken regarding the
choice of labeling sites to avoid probe-induced perturbations
of the protein conformation and fibrillization process even
though small-molecule fluorophores are less invasive than
their proteinaceous counterparts (e.g., GFP and its derivatives).
Fluorophore are sensitive to change in their environments (e.g.,
exposure to the solvent, pH variation, ion concentration) as
probed by FP and FCS. Introduction of two fluorophore labels
gives access to FRETmeasurements based on distance-dependent
fluorophore interactions. The distance between the fluorescent
probes and dynamic fluctuation of these distances can be
evaluated during fibril formation, upon interaction with small
molecules (for example aggregation inhibitors) or due to a PTM.
Single molecule FRET is of high interest when heterogeneity is
considered, for example to characterize a population of
oligomers. The use of fluorophore labels combined with
microscopy imaging of live-cells is of importance to monitor
cellular uptake, seeding and proteolysis.

The measurement of distance between FRET pairs in tau
mutants carrying a tryptophan and a AEDANS-labeled
cysteine, both residues being introduced by site-directed
mutagenesis highlighted a paperclip-like conformation in
native, soluble tau protein where both N- and C-termini fold
over the MTBR (Figure 9B). Conformational changes of the
paperclip preferential dynamic fold was observed upon
phosphorylation and denaturation (Jeganathan et al., 2006;
Jeganathan et al., 2012). The global fold was further confirmed
by paramagnetic relaxation enhancement (PRE) NMR signals
(see here below). The synthesis and FRET analysis of a site-
specific, dual-labeled Htt exon1 indicated a progressive
compaction of the protein upon increasing polyQ length in

contrast to the pathological threshold length associated to HD
(Warner et al., 2017).

Different conformational ensembles of α-synuclein were
investigated inside cells using FRET pairs of fluorophores.
FRET measurements allow to distinguish the unstructured α-
synuclein and the α-helical conformation when α-synuclein is
bound to the membrane, as both conformations are characterized
by differences in the distance between both labels, the distance
between the labeled amino-acid position being larger in the
unstructured form (Fakhree et al., 2018). Introduction of labels
can be coupled to introduction of modifications, using
combination of the strategies here above briefly described
using strategies addressed in paragraph 2. The semisynthesis
of pY39 α-synuclein allowed to include a pair of FRET
fluorescent labels using 1) coupling to cysteine and 2) UAA
(propargyl-tyrosine, PpY) incorporation by amber codon
suppression followed by click chemistry to reveal that
phosphorylation of Y39 primarily acts on aggregation with
only small interference with monomer conformation (Pan
et al., 2020).

Processing of APP to generate the Aβ peptide was elegantly
investigated in cells using a dual labeling scheme (van Husen
et al., 2019). The APP C-terminal tail was labeled using a SNAP-
tag while an UAA (trans-cyclooctene lysine) was introduced at a
specific location in APP, corresponding to the Aβ peptide, by stop
codon suppression. The side-chain of this UAA was next
modified to attach a fluorescent dye (6-methyl-tetrazine-
BODIPY-FL) by click chemistry reaction, while the unnatural
residue was functionalized using TMR-Star. This double-labeling
scheme allows to follow APP processing into a C-terminal
fragment and Aβ peptide, and imaging the trafficking of the
APP cleavage products in live cells.

Some in vivo experiments take advantage of the specific pH that
characterizes some subcellular microenvironments to track the
processing of amyloid proteins once they enter the cells. For
example, CPX azide derivative was attached on α-synuclein using
the UAA PpY functionalized by an azide-alkyne cycloaddition in a
click chemistry approach. The labeledα-synuclein incorporated infibrils
was then tracked over time after it had entered neurons. Aggregates
penetrating endosomes were highlighted by the green to red emission
shift of CPX in that specific compartment (Jun et al., 2019).

Site-directed spin labeling, coupled to nuclear magnetic and/
or electron paramagnetic resonance (EPR) measurements, are
also of interest to study conformational fluctuations of amyloid
proteins. A commonly employed paramagnetic label is the
nitroxide moiety, which harbors an unpaired electron. This
label is small and expected to cause no conformational
perturbation of the functionalized protein. The paramagnetic
effect of the electron is indirectly detected by NMR upon
perturbation of the recorded signals due to enhanced
transverse relaxation rate induced by proximity to the label
(Clore et al., 2007). This effect has a r−6 dependence on the
electron-proton distance (r) and thus allows the detection of
long-range interactions in proteins (Figure 9A). To determine
an ensemble of conformations consistent with PRE
measurements, NMR signal intensity ratio (with/without
nitroxide effect) can be converted into distance restraints.
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Direct measurements by EPR spectroscopy give information on
the dynamics of the probe environment and is a convenient way
to track oligomer formation (Zurlo et al., 2019). Double
nitroxide labeling have interesting applications in both cases.
Pulsed double electron–electron resonance (DEER) EPR on
frozen samples can be used to derive a distribution of
distances between the paramagnetic probes. For NMR
applications, paramagnetic relaxation interference (PRI) in
the presence of two nitroxide probes has been proposed to
detect concerted conformational fluctuation in disordered
proteins (Kurzbach et al., 2016). PRI being sensitive to
correlated motions in the protein can help to detect a
sparsely populated state in the ensemble, which nevertheless
can be significant on the aggregation pathway. The Overhauser
dynamic nuclear polarization (DNP) made use of site-specific

nitroxide spin label attachment to monitor electron-spin
interactions with water molecules and detect localized
perturbations of hydration during tau protein aggregation
related to the magnetic dipolar nature of interactions
between the nitroxide unpaired electron and water protons
that are mostly localized within 5Å. This allows
discriminating hydration changes upon the formation of
organized protein-protein interfaces associated to fibrils from
non-specific protein-protein interactions (Pavlova et al., 2009).

Kinetics of α-synuclein aggregation was followed by
continuous wave (CW) EPR using nitroxide spin-labeling to
monitor oligomer formation/disappearance and how the
aggregation pathway develops. The CW-EPR method uses the
rotational diffusion time of the spin-labeled protein, visualized as
EPR lineshapes, to cover the nanosecond to second time scales.

FIGURE 10 | Structures of PET radiotracers for amyloid imaging of Aβ deposits (A) or tau inclusions (B). The cryo-EM structure of the PM-PBB3 (APN-1607)
compound bound to PHF-tau amyloid structure shows selected interactions in the C-shaped cavities with R349, Q351 and K353 amino acids of the tau MTBR R4
repeats (PDB ID: 7NRV).
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The label dynamics is influenced by the local structure and
macromolecular interactions at proximity of the probe. The
MTSL label ((1-oxyl-2,2,5,5-tetramethylpyrroline-3-methyl)-
methanethiosulfonate) was attached on α-synuclein C56,
introduced by site-specific mutagenesis. The monomer,
oligomer and fibril concentrations were evaluated at different
time points during kinetics experiment, based on mobility
differences of the species (Zurlo et al., 2019). Pulsed EPR
measurements of various amyloid fibrils were also performed
to gain structural information (Bedrood et al., 2012; Siddiqua
et al., 2012; Pornsuwan et al., 2013).

Interestingly, EPR is also amenable to in vivo experiments
(Cattani et al., 2017). Intracellular CW-EPR combined to a
systematic spin-labeling scan of micro-injected recombinant α-
synuclein shows that the majority of α-synuclein remains in
monomeric, intrinsically disordered state in the Xenopus laevis
oocyte cells, even in the case of disease variants A30P or A53T
that are correlated with PD familial forms. These latter variants
show an increased rate of oligomerization and decreased
membrane binding (Flagmeier et al., 2016). The spin label for
this in-cell study is 3-maleimido-PROXYL, which is more stable
in the reducing environment of the cell than MTSL.

PRE of NMR signals were used to obtain structural
information on α-synuclein. Three MTSL nitroxide labels were
attached to single cysteine mutants. Measurements showed that
α-synuclein adopts in its native state an ensemble of
conformations that is stabilized by long-range interactions.
These interactions are characterized by contacts between the
central and C-terminal domains that shield the aggregation-
prone non-amyloid-β component (NAC) (Bertoncini et al.,
2005a; Dedmon et al., 2005). PRE of NMR signals additionally
show that the familial PDmutations, A30P and A53T, perturb the
ensemble of α-synuclein conformations pointing toward a
reduced shielding of the hydrophobic NAC region in the
A30P and A53Tmutants of α-synuclein (Bertoncini et al., 2005b).

PRE of NMR signals were also used to build tau
conformational ensemble. The paramagnetic probe MTSL was
attached on the native cysteine residues, or on five single-cysteine
mutants located in the various tau domains (Figure 9A). The
intricate network of transient long-range interactions confirms
the “hairpin model” of tau dynamic conformation. Interactions of
the spin-label with distinct area of the tau sequence indeed show
that the C-terminal domain transiently interacts with both the
PRD and the N-terminus. The conformational dynamics of tau
wild-type or harboring the P301L familial FTDP mutation were
additionally compared using a combination of PRE and PRI
experiments (Kawasaki and Tate, 2020). PRI data demonstrate
alteration of the short- and long-range correlated motions in
P301L tau mutant, promoting transient exposure of the PHF6
motif that plays a role as nucleus of tau aggregation (Kawasaki
and Tate, 2020).

4.1.4 Positron Emission Tomography Imaging Tracers
Brain imaging is a major area for which chemical biology has
made a crucial contribution to support research on disease
mechanisms in central nervous system proteinopathies and to
deliver promising compounds for clinical use by providing tracers

for in vivo imaging using positron emission tomography (PET)
(Ni and Nitsch, 2022). This topic can be here only briefly covered
given its scope. The challenge in this field is to provide specific
and sensitive tracers reaching the brain, based on 18F, 11C or 3H
radio-compounds. Ideally, the tracers should allow early and
differential detection of diagnostic biomarkers before the
appearance of clinical symptoms to facilitate access to
treatment ahead of the irreversible damages due to neuronal
and synaptic connectivity loss.

Imaging of AD brain deposits started with the radio-
compound [11C]Pittsburgh compound B (Klunk et al., 2004)
that derives from ThT to detect β-amyloid deposits by PET
imaging (Figure 8B). Amyloid PET is based on β-sheet
structure detection and compounds are mainly benzothiazole
and benzoxazole derivatives. Among these tracers, three have
already been approved for clinical use: florbetapir (Clark, 2011),
flutemetamol (Curtis et al., 2015) and florbetaben (Figure 10A)
(Sabri et al., 2015). Six binding sites on Aβ fibrils are proposed for
the tracers, based on molecular modeling studies. Binding sites
can be divided between core sites (buried in the fold with low
solvent accessibility), and surface binding sites, the latter
providing less specificity (Murugan et al., 2016). These in silico
studies suggest that amyloid tracers of different structures could
detect different Aβ fibrils.

Tau-specific ligands have also been developed for clinical use, and
enable in vivo PET imaging of tau deposition (Leuzy et al., 2019;
Saint-Aubert et al., 2017). Monitoring tau deposits is of interest for
diagnosis as cortical retention of tau tracers better correlates with
cognitive decline than Aβ deposits (Pontecorvo et al., 2017). These
smallmolecules are however specific for the β-sheet structure adopted
in tau fibers, and not to tau protein per se. This structure is found in
other proteinopathies that might co-exist, which can complicate the
image interpretation. Tau tracers should not only be able to cross the
blood brain barrier, but additionally penetrate the intracellular
compartment where tau fibrils also reside. Tau tracers belong to
threemajor different chemical families, namely, pyridinyl-butadienyl-
benzothiazole derivative (11C-PBB3) derived from the same family as
Pittsburgh compound B, benzimidazole-pyrimidine derivatives
(18F-T807/AV 1451, and 18F-T808) as well as different
arylquinoline derivatives (18F-THK5105, 18F-THK523,
18F-THK5117, and 18F-THK5351) (Figure 10B). These tracers
bind to tau with affinities in the nanomolar-picomolar range.
These first-generation tracers are however reported to bind to a
number of off-targets such as monoamine oxidase-B in the basal
ganglia (Lemoine et al., 2017). It leads to optimization of the tracer
binding properties and delivered a second-generation of tracers with
better specificity and a broader dynamic range. Based on in vitro
binding assays, three different high affinity binding sites have been
proposed in tau fibrils (Figure 10B). Computer-assisted docking of
the tracers based on the cryo-EM structures of tau fibrils predict four
different binding sites for the various tracers (Murugan et al., 2018;
Kuang et al., 2020; Murugan et al., 2021).

The tau tracer AV-1451 (Johnson et al., 2016), also known as
flortaucipir, specifically binds to tau fibril from AD and non-AD
tauopathies (Lowe et al., 2016). The clinical validity of flortaucipir
has been demonstrated as diagnostic biomarker and it is approved
for imaging tauopathy in AD patients. A study based on PET
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FIGURE 11 | Chemical biology tools for controlling and deciphering the amyloid aggregation pathways. (A) Fibrils made of the mirror PHF6* hexapeptide of tau
consisting of D-enantiomeric amino acids was used in mirror image phage display to screen L-peptides that bind to mirror PHF6* fibrils. The mirror peptides of the
selected L-peptides were synthesized and evaluated as inhibitors of full-length tau aggregation exhibiting protease stability and reduced immunogenicity (Dammers
et al., 2016; Malhis et al., 2021). (B) The strategy of “click” peptides or “switch” peptides is used to control protein aggregation and decipher the molecular elements
responsible of amyloid aggregation (left panel). A molecular switch element (S) is under control of a protecting group “P” (green dots) that prevent aggregation (Soff) and is

(Continued )
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imaging with [18F]AV-1451 confirms that tau pathology can
propagate though a neuron-to-neuron transfer (Cope et al.,
2018). The different types of tau deposits in the different diseases,
highlighted at the atomic level by the cryo-EM structures (Lippens
and Gigant, 2019), made it quite challenging to develop tau PET
tracers. Given the heterogeneity in tau strains, tracers could be
developed that recognize a sub-set of such strains. This strain
heterogeneity, not only between pathologies but also between
individual patients, is highly relevant because it is proposed to be
linked to clinical heterogeneity in patients with typical AD (Dujardin
et al., 2020). These in vivo diagnostics tool compoundswill have huge
impact on future assembly of better characterized cohorts and
provide an adequate monitoring in clinical assays of the
treatment effects.

4.2 Chemical Methods for Deciphering the
Amyloid Aggregation Pathway
4.2.1 Keeping Amyloids Under Control With Chirality
and Molecular Switches

Manipulating amino acid chirality into amyloid sequences
has been implemented through SPPS to reveal amyloidogenic
pathways and critical hot spots in amyloid assembly (Foley
and Raskatov, 2021). In a strategy termed “chiral editing”,
D-amino acid (D-AA) enantiomers that are site-specifically
introduced either at selected positions of interest or randomly
by D-AA scanning proved to be useful tools to highlight
mechanistic details of Aβ aggregation and toxicity, as well as
key residues in this process. Mirror peptides of Aβ42 and
Aβ40 that incorporate D-AA along the entire sequence were
shown to accelerate Aβ fibrillization into nontoxic fibrils in a
racemic mixture with L-Aβ peptide (Dutta et al., 2017). The
chiral inactivation of Aβ generates distinct fibrillar structures
likely through the formation of rippled instead of pleated
cross-β sheets (Dutta et al., 2019a). D-Aβ42 oligomers were
also shown to have a reduced, if any, cytotoxicity and cellular
internalization (Dutta et al., 2019b). Stereoselective
interactions with chiral components of the phospholipid
membrane could be responsible for this differential effect.
Overall, the advantage of D-AA and mirror peptides is that
chiral mutations do not change the physicochemical
properties of the peptides (side chain chemical groups,

size, polarity, charge. . .). It was shown that D-peptides
targeting the mirror VQIINK tau hexapeptide (PHF6*)
fibrils inhibit full-length tau aggregation while exhibiting
protease stability and reduced immunogenicity
(Figure 11A) (Dammers et al., 2016; Malhis et al., 2021).
Based on these properties, D-peptides may be useful as
therapeutic and diagnostic agents in amyloid-related
diseases (Abdulbagi et al., 2021).

It is well documented that some amyloid-forming
sequences spontaneously undergo into conformational
changes and aggregate during SPPS, purification and other
processing steps. Keeping amyloids under control with
molecular switches is an efficient strategy to decipher their
mechanism of aggregation and toxicity by controlling the
onset of aggregation at early stages of initiation/nucleation,
and identifying aggregation hot spots in amyloid sequences
(Butterfield et al., 2012). A molecular switch is defined as a
reversible modification at a selected location within the
peptide sequence that tunes on and off the amyloid
aggregation properties. O→N (or S→N) acyl shift of
isopeptide bonds in so-called “click peptides” or “switch
peptides” are usual molecular switches that are under
control of a protecting group (Figure 11B). The native
peptide bond is restored by O→N or S→N intramolecular
rearrangement once the protection is released. The
introduction of O-acyl or S-acyl isopeptide bonds efficiently
disrupt misfolding and oligomerization of amyloid-forming
sequences. In some instances, the release of an inhibitory
element elicits amyloid assembly. A panel of triggering
factors (pH change, enzymatic reactions, reducing agents,
photoreactions) can be used for this purpose allowing a
rapid switch from the inert into aggregation-prone sequence
as conveniently illustrated for small, synthetic Aβ, IAPP or PrP
peptides (Taniguchi et al., 2009; Taniguchi et al., 2006;
Bosques and Imperiali, 2003). This provided information
into the fine molecular mechanisms of Aβ42 (dis)
aggregation by decoupling aggregation-prone sequence from
a nucleating or structural element to prevent aggregation or,
reversely, by favoring disassembly of amyloid fibrils into a
soluble conformation (Figure 11B) (Dos Santos et al., 2005;
Mimna et al., 2007). These methods also found applications in
the screening of anti-aggregation compounds (Sohma et al.,
2011).

FIGURE 11 | cleaved by an appropriate trigger factor (pH, enzyme, reducing agents, light, . . .). Upon deprotection, the spontaneous O→N or S→N acyl shift within the
molecular switch element restores the native peptide bond between both fragments at its N- and C-terminal sides. As a result, the structural induction unit σ (grey
fragment) is linked through a native peptide bond to the remaining part of the protein (blue fragment). If the deprotection and subsequent acyl shift trigger the amyloid
aggregation of the protein of interest (Son), σ is identified as an aggregation hot spot as exemplified by the C-terminal region of Aβ42 peptide (right panel). In this case, a
first molecular switch element (S1) at S26 under control of pH is removed without triggering any fibril formation. The enzymatic cleavage of the second switch element
(S2) by the dipeptidyl-peptidase at S37 enables the fibrillization of native Aβ42 peptide supporting a role of the C-terminus in conformational changes and aggregation.
(C) The photo-induced cross-linking of unmodified protein (PICUP) strategy is used to generate protein oligomers by light irradiation of a photocatalyst, the tris(bipyridyl)
ruthenium(II), in presence of ammonium persulfate. Metastable oligomers that form transiently along the amyloid aggregation pathway, as shown by polyacrylamide gel
electrophoresis under denaturing conditions, can thus be captured for further structural and functional investigations. (D) The use of fluoroproline derivatives, 4-cis-
fluoro, 4-trans-fluoro or 4,4-difluoro-proline, in controlling amyloid protein conformational changes and aggregation rely on the alteration of the cis/trans conformational
exchange rate and equilibrium of the peptidyl-prolyl bond with the 4-cis-fluoroproline the most favorable to the cis amide bond conformation. Furthermore, fluoroproline
can be involved as probes in 19F-NMR studies of conformational exchange in peptides and proteins as shown for a model peptide of β2m, Ac-FH(F2-P

32)SD-NH2. The
19F-NMR spectrum of the β2m peptide containing a 4,4-difluoroproline was reproduced from reference (Torbeev and Hilvert, 2013). The corresponding sequence is
shown as sticks in the structure of β2m amyloid fibrils (PDB ID: 6GK3) with P32 (magenta) in trans conformation.
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4.2.2 Stabilizing Oligomers by
Photo-Induced Cross-Linking
Often poorly defined at the molecular level, oligomers are of variable
size ranging from dimers to a few hundred monomers. Their
molecular and structural characterization suffers from their
unstable nature and heterogeneity, and must overcome
methodological hurdles. Cross-linking has been used to stabilize
Aβ dimers in several experimental setup (Bitan and Teplow, 2004)
although covalently cross-linked Aβ dimers isolated fromAD brains
were found to be neurotoxic species of biological relevance (Vázquez
de la Torre et al., 2018; Brinkmalm et al., 2019). Cross-linking
applied to tau protein has shown conformational differences
between inert and seed-competent monomer highlighting
inaccessibility vs. exposure, respectively, of the hydrophobic,
amyloid-prone PHF6 and PHF6* sequences (Mirbaha et al.,
2018). The photo-induced cross-linking of unmodified proteins
(PICUP) method by light irradiation of a tris(bipyridyl)
ruthenium(II) photocatalyst was amenable to the study of
amyloid proteins to capture intermediate, metastable oligomers
for further purification, characterization and investigation of their
seeding activity in inducing fibril formation (Figure 11C) (Bitan
et al., 2001). The site-specific incorporation of photo-induced cross-
linking probes such as trifluoromethyldiazirine derivative of
phenylalanine into the sequence of Aβ peptide fragment
stabilized “on-pathway” oligomeric species providing structural
details about the very first pathological species involved in
fibrillization onset (Smith et al., 2008).

4.2.3 Fluorine Labeling and 19F NMR
19F NMR offers an interesting opportunity to study fibril
formation, as it provides residue-level quantitative
information about structure and mechanism. Because the
19F nucleus is highly sensitive to its chemical environment,
it displays a very wide range of chemical shifts and chemical
shift perturbations even for very subtle structural changes.
Given also the complete absence of 19F in biomolecules, no
background signals are present, meaning conformational
changes can be detected using simple 1D spectra. A wide
repertoire of fluorine labelled amino acids exists, and can be
incorporated in recombinant proteins or via chemical peptide
synthesis (Salwiczek et al., 2012; Gimenez et al., 2021). 19F
NMR spectroscopy is able to detect signals from soluble
proteins or small soluble aggregates, conversely to ThT that
detects fibrils. Fluorotyrosine-labelled α-synuclein was used to
monitor aggregation kinetics by acquisition of one-
dimensional spectra (Li et al., 2009). These kinetics data
were compared with a fluorescence-monitored time course,
in the presence of ThT, in the same conditions. The time
course of the 19F NMR data was similar to the ThT-monitored
aggregation kinetics. 19F NMR allows the additional
quantification of the fraction of monomers or small
oligomers remaining in solution at all time-points during
the kinetics. Tracking amyloid formation of IAPP using this
technique shows that IAPP fibrillizes without formation of
nonfibrillar intermediates, in contrast to the well-studied Aβ
and α-synuclein proteins (Suzuki et al., 2012). Interestingly,

aggregation can be monitored in this manner without addition
of an external reporter, such as ThT. This is of importance
when studying inhibitor compounds of the aggregation
process. It was indeed shown that ThT strongly competes
with a polyphenolic compound for binding sites on IAPP
fibers. To investigate the conformational polymorphism of
the prion oligomers, a 3-fluoro-phenylalanine reporter was
introduced in the prion fragment PrP(90–231). 19F-NMR
spectroscopy was used to quantify the populations of
oligomeric species on the path from the monomeric soluble
PrP state to fiber formation. In addition, thermodynamic and
kinetic parameters of the interconversion of the oligomeric
species were extracted from the 19F NMR data obtained by
temperature or pressure scanning (Larda et al., 2013). 19F
NMR real-time measurements was also used to investigate
the formation of small oligomers during the aggregation of
Aβ1−40. Five distinct oligomers (estimated of 30–100 kDa)
with unique spectral signatures, which allow to monitor each
individually, were detected at distinct time points in the time-
course of fibril formation (Suzuki et al., 2013). Their build-up
and decay were evaluated in real-time during aggregation and
transient species could be identified. Fluorine can also be used
to subtly alter the conformational preference of individual
amino acids, allowing their role in the aggregation process to
be interrogated. A well-known example is fluorinated prolines,
which, besides allowing 19F NMR investigation (Sinnaeve
et al., 2021), also modulates the proline cis/trans ratio and
the interconversion rate (Figure 11D) (Verhoork et al., 2018).
The human protein β2-microglobulin (β2m) aggregates as
amyloid fibers in patients undergoing long-term
hemodialysis. Isomerization of P32 from its native cis to a
nonnative trans conformation was shown to cause β2m
misfolding and aggregation using replacement of this
crucial residue with 4-fluoroprolines by total chemical
synthesis (99 residues) (Figure 11D). The β2m monomer
was stabilized by incorporation of (2S,4S)-fluoroproline (or
cis-fluoroproline), which favors the native cis amide bond
while the monomer was destabilized by the (2S,4R)-
fluoroproline (or trans-fluoroproline), which disfavors cis
conformation (Figure 11D). 4,4-difluoroproline, which
enhances the isomerization rate without modifying the cis/
trans equilibrium relative to regular proline, increases the
oligomerization rate. Altogether, these data demonstrate the
major effect of P32 conformation on β2m aggregation
(Torbeev and Hilvert, 2013). To study the role in the
aggregation process of a kink within the R3 repeat of the
tau protein, at residue S316, a peptide was used containing a
S316P mutation (Jiji et al., 2016). In the peptide wherein
(2S,4S)-fluoroproline at position 316 was introduced, the cis
conformation is favored compared to regular prolines and the
modified peptide aggregates twice as fast. In the peptide
containing the stereoisomeric (2S,4R)-fluoroproline at
position 316, the trans conformation is preferred and the
modified peptide aggregates at a slower rate. The results
clearly showed that favoring the cis conformer of L315-
P316 peptide bond promotes aggregation of the R3-S316P
peptide. The authors of this study propose that a trans-to-
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cis conformation shift in the peptide bond preceding P316
occurs during peptide aggregation, with the potential type I β-
turn encompassing P316 being replaced by a type VI β-turn
favored by the cis bound in the R3-S316P fibrils.

Taken together, these various examples illustrate that the
introduction of fluorine can be very useful in deciphering key
aspects of the aggregation process by directly reporting events
at a residue scale. This allows tracking of conformational
changes occurring on the path to fibril formation and
documenting the conformational heterogeneity due to the
formation of oligomeric species using 19F NMR, but equally

can be used to elucidate the role of individual residue
conformations during aggregation.

4.3 Nanobody-Directed Detection and
Modulation of Amyloid Proteins
Single domain antibody fragments, scFv (single chain variable
fragments), and VHHs (heavy chain variable domain or single-
domain antibodies or nanobodies) are interesting tools to probe
protein aggregation (De Genst et al., 2012; Pain et al., 2015). These
single domain antibodies have many interesting properties such as

FIGURE 12 | Modulation of O-GlcNAc modification of proteins by proximity-induced protein glycosylation using nanobody-OGT protein engineering. (A)
Schematic representation of the O-GlcNAc dynamics regulated by single OGT and OGA enzymes, and modulation of OGA activity by an OGA inhibitor such as Thiamet
G contributing to overall increased O-GlcNAc levels. (B) As OGT is the unique O-GlcNAc transferase in human, it has been suggested that it may act with regulatory
subunits that address OGT to specific substrates depending on external stimuli and increase protein-specific O-GlcNAc levels. Treatment with Thiamet-G by
increasing overall O-GlcNAc levels may contribute to increase protein-specific O-GlcNAc level. (C) Modulation of protein O-GlcNAc levels in cell or animal models.
Condition 1, external stimuli and signal transduction lead to the expression of protein-specific regulatory subunits of OGT that increase its activity on selected proteins;
condition 2, overall increase of protein O-GlcNAc levels upon treatment with Thiamet-G; condition 3, selected increase of O-GlcNAcylation of a target substrate by a
nanobody fused to OGT targeting a specific protein tag. (D) This latter method (C, condition 3) was further extended to O-GlcNAcylation of endogenous α-synuclein
using a nanobody-OGT targeting α-synuclein EPEA C-terminal sequence (Ramirez et al., 2020). EPEA-(4-TPR)-OGT refers to a truncated form of OGT containing 4
tetratricopeptide repeats fused to a nanobody targeting the EPEA sequence of α-synuclein. The TPR truncation of OGT limits the overall increase of O-GlcNAc levels
while OGT coupling to a nanobody targeting the EPEA sequence increases the selectivity for α-synuclein. This approach leads to a selective elevation of α-synuclein
O-GlcNAc levels.
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their lowmolecular weight and their ease of production, whichmakes
them perfect candidate for protein engineering (Holliger andHudson,
2005; Deffar et al., 2009; Desmyter et al., 2015; Könning et al., 2017).

In vitro-based ligand selection, without the use of animal
immunization, made it possible to identify antibody fragments
with a conformational selectivity. Antibody fragments can thus be
selected to target each species formed on the way of fibril
formation, from the soluble monomer to the fibril structure.
Their ease of expression and small size in particular allow them to
be used efficiently in combination with NMR spectroscopy and
X-ray crystallography. Single domain antibodies have been
reported to specifically detect soluble oligomers of various
amyloidogenic proteins (Emadi et al., 2009; Zhang et al., 2011;
Butler et al., 2016). They can thus be used to address the
biophysical properties/cytotoxicity relationship of the
oligomers, which is a challenging task given their transient
and heterogenous nature (Bitencourt et al., 2020). Antibody
fragments are also helpful to decipher the underlying
microscopic stages of the aggregation mechanism (De Genst
et al., 2012; Pain et al., 2015). NUsc1, for an example of scFv,
recognizes a unique conformational epitope displayed on
oligomers of Aβ and preferentially select for oligomers larger
than 50 kDa that are neurotoxic (Sebollela et al., 2017). NUsc1
discriminates oligomers over monomers or fibrils. Interestingly,
rational design was used to obtain conformation-specific single
domain antibodies able to detect Aβ oligomers (Aprile et al., 2020;
Limbocker et al., 2020). These antibody fragments were designed
to bind different epitopes covering the entire sequence of the
target protein. This procedure enables the determination through
in vitro assays of the regions exposed in the oligomers but not in
the fibrillar deposits. VHHs that recognize α-synuclein fibers at
different maturation stages have also been characterized and used
to gain insight in fibril structures (Guilliams et al., 2013), thus
helping in deciphering the fibril formation mechanisms. Even
antibody fragments that bind the monomeric soluble forms of
amyloidogenic proteins can be used to provide information on
the aggregation process. For example, scFv antibody D10, which
binds α-synuclein monomers in the C-terminal part, was
instrumental in showing that this region of α-synuclein
interferes in the aggregation process (Zhou et al., 2004). The
nanobodies NbSyn2 and NbSyn87 have similarly been used to
identify the role of different C-terminal regions of α-synuclein in
aggregation (De Genst et al., 2010; El-Turk et al., 2016). Finally, a
VHH targeting α-synuclein showed protection against α-
synuclein toxicity in a cellular model. This study also showed
that a proteasome targeting PEST motif enhanced this protective
effect (Butler et al., 2016). The use of VHH in tauopathies is also
considered: a VHH directed against the PHF6 motif of tau, a
nucleation core, proved to be efficient against tau fibril formation
in in vitro and cellular models, and showed efficacy in preventing
tau seeding in a mouse model (Dupré et al., 2019; Danis et al.,
2022).

Besides nanobodies directly targeting the amyloid-forming
regions in proteins, other routes involved in the regulation of
amyloidogenic properties such as functional modulation by
PTMs may be addressed with nanobodies (El Turk et al.,
2018). As a PTM involved in regulation of protein functions,

the O-GlcNAc modification started to be scrutinized in the
processes of amyloid formation (Ryan et al., 2019). To achieve
this goal, global alteration ofO-GlcNAc levels can be fulfilled with
chemical inhibitors (Yuzwa et al., 2008; Yuzwa et al., 2012; Yuzwa
et al., 2014b; Gloster et al., 2011; Dorfmueller et al., 2006;
Macauley et al., 2005; Martin et al., 2018; Haltiwanger et al.,
1998; Macauley and Vocadlo, 2010) (Figures 12A–C) or through
manipulating gene expression of enzymes involved in the
hexosamine biosynthesis pathway (HBP) (Wells et al., 2003)
or directly the O-GlcNAc cycling enzymes, OGT and OGA
(Akan et al., 2018; Wang et al., 2012; Shafi et al., 2000;
O’Donnell et al., 2004; Olivier-Van Stichelen et al., 2017).
Alternatively, approaches limiting an overall elevation of
O-GlcNAc levels in cells are of great interest (Gorelik et al.,
2019; Ramirez et al., 2020). Along these lines, nanobodies fused to
OGT were engineered as proximity-directing agents in an
innovative strategy for selectively increasing O-GlcNAc levels
on a target protein in cells aiming at understanding the role of this
key PTM (Figure 12C) (Ramirez et al., 2020). Truncation of the
tetratricopeptide repeat (TPR) domain of OGT which is
implicated in protein-protein interactions for substrate
recognition and binding further achieved increased nanobody-
directed selectivity for the target protein (Ramirez et al., 2020).
First attempts were made with nanobodies targeting protein tags
excluding the modification of endogenous proteins but providing
increased levels of O-GlcNAcylation with similar O-GlcNAc
profiles as OGT (Figure 12C). Moreover, this approach
represents a versatile and economical way of increasing
O-GlcNAc levels of a specific protein by preventing from
screening nanobody libraries against the protein of interest. The
use of a α-synuclein-targeted nanobody-OGT further proved its
efficiency by selectivelymodifying endogenous α-synuclein in a cell
model (Figure 12D). This approach could be further extended to
in vitro systems to improve the efficiency of O-GlcNAc installation.
A similar strategy for targeted protein deglycosylation in cells was
described using nanobody-fused split OGA (Ge et al., 2021). As
OGT TPR truncation reduces the overall elevation of protein
O-GlcNAcylation, splitting of OGA minimize the overall effect
of OGA overexpression on the O-GlcNAcome. Both nanobody-
fused OGT and OGA are informative, complementary approaches
to decipher O-GlcNAc-mediated functional regulation in vivo and
in cells. Other strategies of proximity-induced O-GlcNAc
modulation were evolved albeit not applied to amyloid proteins
by now. They are based on designing recombined RNA aptamers
that bind to both OGT and the protein of interest thereby inducing
proximity for targeting OGT to specific proteins in cells (Zhu and
Hart, 2020).

An extension of the antibody fragment properties in tracking
amyloid formation could be in vivo diagnosis to track disease
progression. VHHs are well considered in imaging the brain on
multiple targets (Li et al., 2016), and coupling with the possibility
to engineer them to cross the blood brain barrier could lead to a
whole new series of molecule in diagnosis of brain pathologies.
VHHs could well be the new trend in brain diagnostic tools, as
many studies have shown their potency, as in amyloid plaques
imaging (Li et al., 2016; Vandesquille et al., 2017; Pothin et al.,
2020).
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These different examples give a short glimpse at the power of
antibody fragments targeting various forms of amyloid proteins.
They can be useful research tools, easy to manipulate and
engineer, to help in deciphering complex mechanisms down
to a molecular basis. Coupled to the progresses in rational
design, antibody fragments show additional promises for
diagnosis and therapy (Gerdes et al., 2020; Messer and
Butler, 2020) and could address the bottle-neck of crossing
the blood brain barrier to reach amyloid deposits in the central
nervous system.

5 CONCLUSION

The recent resolution of amyloid fibril structures from individual
brains at near-atomic resolution by cryo-EM has brought into
focus the complexity of amyloid folds and polymorphism
associated to neurodegenerative diseases while leaving open
many questions. The regulation of amyloid assembly and
selection of polymorph by PTMs of amyloid proteins and
their interacting cofactors still remains to be deciphered as
they are only poorly described in the cryo-EM structures
due to heterogeneity. Chemical biology is helping to
delineate the intricate processes of amyloid fibril formation
and propagation, and amyloid protein toxicity. The tool kit
from chemical biology and protein engineering offers
handling of site-specific, posttranslationally modified
amyloid proteins by semisynthesis, genetic code expansion,
posttranslational chemical mutagenesis, or combination
thereof. It also provides specific tools for the detection and
characterization of amyloid PTM codes including enrichment
strategies. In conjunction with cryo-EM, it should afford new
insights into the role of PTMs in the mechanism of amyloid

aggregation and how they shape the amyloid fold. In this
regard, this rapidly expanding field also provides new probes
to control and unravel the mechanisms of amyloid formation
and associated conformational changes as probed by
spectroscopic and optical methods, and for the detection of
amyloids in vitro and in vivo as crucial mechanistic and
diagnosis tools.
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