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Abstract9

Under the Strong Exponential-Time Hypothesis, the diameter of general unweighted graphs10

cannot be computed in truly subquadratic time (in the size n + m of the input), as shown11

by Roditty and Williams. Nevertheless there are several graph classes for which this can be12

done such as bounded-treewidth graphs, interval graphs and planar graphs, to name a few. We13

propose to study unweighted graphs of constant distance VC-dimension as a broad generalization14

of many such classes – where the distance VC-dimension of a graph G is defined as the VC-15

dimension of its ball hypergraph: whose hyperedges are the balls of all possible radii and centers16

in G. In particular for any fixed H, the class of H-minor free graphs has distance VC-dimension17

at most |V (H)| − 1.18

• Our first main result is a Monte Carlo algorithm that on graphs of distance VC-dimension19

at most d, for any fixed k, either computes the diameter or concludes that it is larger than20

k in time Õ(k ·mn1−εd), where εd ∈ (0; 1) only depends on d 1. We thus obtain a truly21

subquadratic-time parameterized algorithm for computing the diameter on such graphs.22

• Then as a byproduct of our approach, we get a truly subquadratic-time randomized algo-23

rithm for constant diameter computation on all the nowhere dense graph classes. The latter24

classes include all proper minor-closed graph classes, bounded-degree graphs and graphs of25

bounded expansion. Before our work, the only known such algorithm was resulting from26

an application of Courcelle’s theorem, see Grohe et al. [47].27

• For any graph of constant distance VC-dimension, we further prove the existence of an28

exact distance oracle in truly subquadratic space, that answers distance queries in truly29

sublinear time (in the number n of vertices). The latter generalizes prior results on proper30

minor-closed graph classes to a much larger graph class.31

• Finally, we show how to remove the dependency on k for any graph class that excludes a32

fixed graph H as a minor. More generally, our techniques apply to any graph with constant33

∗Results of this paper were partially presented at the SODA’20 conference [33].
1The Õ() notation suppresses polylogarithmic factors.
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distance VC-dimension and polynomial expansion (or equivalently having strongly sublin-34

ear balanced separators). As a result for all such graphs one obtains a truly subquadratic-35

time deterministic algorithm for computing all the eccentricities, and thus both the diam-36

eter and the radius. Our approach can be generalized to the H-minor free graphs with37

bounded positive integer weights.38

We note that all our algorithms for the diameter problem can be adapted for computing the39

radius, and more generally all the eccentricities. Our approach is based on the work of Chazelle40

and Welzl who proved the existence of spanning paths with strongly sublinear stabbing number41

for every hypergraph of constant VC-dimension. We show how to compute such paths efficiently42

by combining known algorithms for the stabbing number problem with a clever use of ε-nets,43

region decomposition and other partition techniques.44

1 Introduction45

In this paper we present new results on exact diameter computation within several classes of un-46

weighted (undirected) graphs with a geometric flavor. We recall that the diameter of an unweighted47

graph is the maximum number of edges on a shortest path. Beyond its many practical applications,48

this fundamental problem in Graph Theory has attracted a lot of attention in the fine-grained com-49

plexity study of polynomial-time solvable problems [1, 4, 9, 19, 22, 28, 31, 40, 67]. More precisely,50

for every n-vertex m-edge unweighted graph the textbook algorithm for computing its diameter51

runs in time O(nm). In a seminal paper [67] this roughly quadratic running-time (in the size n+m52

of the input) was matched by a quadratic lower-bound, assuming the Strong Exponential-Time53

Hypothesis (SETH). We stress that for graphs with millions of nodes and edges, quadratic time is54

already prohibitive.55

The conditional lower-bound of [67] also holds for sparse graphs i.e., with only m = O(n)56

edges [1]. However it does not hold for many well-structured graph classes [1, 12, 15, 17, 26, 27, 29,57

31, 38, 41, 45, 63]. Our work proposes some new advances on the characterization of graph families58

for which we can compute the diameter in truly subquadratic time.59

1.1 Related work60

Before we detail our contributions, we wish to mention a few recent (and not so recent) results that61

are most related to our approach.62

Interval graphs. An early example of linear-time solvable special case for diameter computation63

is the class of interval graphs [63]. For every interval graph G and for any integer k, if we first64

compute an interval representation for G in linear-time [48] then we can compute by dynamic65

programming, for every vertex v, the contiguous segment of all the vertices at a distance ≤ k from66

v in G. It takes almost linear-time and it implies a straightforward quasi linear-time algorithm for67

diameter computation. More efficient algorithms for diameter computation on interval graphs and68

related graph classes were proposed in [26]. Nevertheless we will show in what follows that interval69

orderings are a powerful tool for diameter computation on more general geometric graph classes.70

Bounded-treewidth graphs. More recently, quasi linear-time algorithms for diameter compu-71

tation on bounded-treewidth graphs were presented in [1, 14, 15] with almost optimal dependency72

on the treewidth parameter. The cornerstone of these algorithms is the use of k-range trees in order73
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to detect the furthest pairs that are disconnected by some small-cardinality separators. This tech-74

nique was first introduced in [18] in order to compute the sum of all distances on bounded-treewidth75

graphs. Since then a few other applications of k-range trees and, more generally, orthogonal range76

searching for diameter computation, have been presented in [31, 32]. In our work we uncover deeper77

connections between diameter computation and range searching techniques from computational ge-78

ometry.79

Planar graphs. Finally, in a recent breakthrough paper [17], Cabello presented the first truly80

subquadratic algorithm for diameter computation on planar graphs (see also [44, 45] for improve-81

ments on his work). For that he combined r-divisions: a recursive decomposition technique for82

planar graphs and other hereditary graph classes with sublinear balanced separators, with a clever83

use of additively weighted Voronoi diagrams. Cabello conjectured that his algorithm could be gen-84

eralized to bounded-genus graphs. The long version [45] indicates that their techniques could allow85

such a generalization if computing the diameter of a graph embedded onto a surface of genus g86

reduces to the planar case with O(g) holes in the regions of some r-division. Although it is known87

that such a graph can be decomposed into planar subgraphs by removing 2g shortest paths [53, 39],88

such reduction is not clear, and we could not find references formally supporting this. More re-89

cently, Li and Parter proposed a distributed algorithm for planar diameter which is based on metric90

compression [57] and uses a VC-dimension argument to bound the number of distance profiles with91

respect to a given subset of nodes. Following the basics of planar graphs algorithms, we partly92

reuse r-divisions within our algorithms. However we replace the intricate use of Voronoi diagrams93

with a quite different approach that is based on some interval representations of the balls of a94

given radius in a graph. Our approach is also based on a VC-dimension argument but in a very95

different way than [57]. By doing so, we can obtain truly subquadratic-time algorithms for diame-96

ter computation on bounded genus graphs (and more generally, on any proper minor-closed graph97

family) while avoiding a great deal of topological complications. Note that, similarly to the Voronoi98

diagram method, our approach allows us to compute all eccentricities.99

We stress that for the aforementioned graph classes, the techniques used for computing their100

diameter are quite different from each other. Our work is a first step toward unifying all these101

previous results for unweighted graphs in a single framework. Note that some of the aforementioned102

results also hold in the directed weighted case. Under some mild conditions (always satisfied by103

the proper minor-closed graph classes), so does our approach for the undirected graphs of bounded104

integer edge-weights.105

1.2 Our contributions106

We study the parameterization of graph diameter by the VC-dimension of various hypergraphs.107

More precisely, a set Y is shattered by a hypergraph H if by intersecting Y with all hyperedges of H108

one obtains the power-set of Y . The VC-dimension of H is then defined as the largest cardinality109

of a subset shattered by H. This powerful notion was first introduced by Vapnik and Chervonenkis110

in [70]. Since then it has found applications in sampling complexity and machine learning, among111

other domains. We refer to [56] for early work on VC-dimension in graphs. In particular, the VC-112

dimension of a graph G is defined as the VC-dimension of its closed neighbourhood hypergraph:113

whose hyperedges are the closed neighbourhoods of vertices in G. Graphs of bounded interval114

number and proper minor-closed graph classes are two examples of graph families with a constant115
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upper-bound on their VC-dimension [56, 23, 32].116

First example. As an appetizer we first consider an n-vertex split graph with clique-number117

logO(1) n, that is a notouriously hard case for diameter computation [9]. Given such a split graph118

G with stable set S and maximal clique K, we can pre-process G in linear-time so as to partition119

the vertices of S into twin classes: with two vertices in S being called twins if and only if they120

have the same neighbourhood in K (e.g., see [27]). If the VC-dimension of G is at most d then,121

by the Sauer-Shelah-Perles Lemma [68, 69] the number of twin classes is in O(|K|d) = logO(d) n.122

Therefore, after some linear-time preprocessing, we are left with computing the diameter on a graph123

of polylogarithmic order. Unfortunately, such simple brute-force arguments are no longer sufficient124

for split graphs of arbitrary clique-size.125

Overview of our techniques. In order to generalize our approach to any graph of constant126

VC-dimension, we use the central notion of spanning paths with low stabbing number. Chazelle and127

Welzl [21] defined a spanning path for a hypergraph H as a total ordering of its vertex-set. The128

stabbing number of such a path is, up to 1, the maximum number of maximal intervals of which a129

hyperedge in H can be the union (we refer to Sec. 2 for a formal definition).130

Assume for now that we are given a spanning path with stabbing number t for the closed131

neighbourhood hypergraph of G. Then in linear time, we can compute for every vertex v the ends132

of the O(t) intervals of which NG[v] is the union. We denote this set of intervals by I(v) in what133

follows. Then, in order to decide whether G has diameter at most two, it is sufficient to check134

whether for every vertex u we have
⋃
v∈NG[u] I(v) = V (G). Since we only need to consider the135

extremities of such intervals, this verification phase takes time Õ(degG(u) · t) for a vertex of degree136

degG(u), and so, Õ(tm) total time. Note that such running-time is always subquadratic if t is137

sublinear in n. Overall, we reduced the diameter-two problem to the computation of a spanning138

path with low stabbing number for the closed neighbourhood hypergraph.139

Motivated by range searching problems, Chazelle and Welzl proved the existence of spanning140

paths with strongly sublinear stabbing number for every hypergraph of constant VC-dimension [21]!141

Following this approach, we obtain our first main result in this paper:142

Theorem 1. For every d > 0, there exists a constant εd ∈ (0; 1) such that in deterministic time143

Õ(mn1−εd) we can decide whether a graph of VC-dimension at most d has diameter two.144

We stress that in contrast to Theorem 1, under the Strong Exponential-Time we cannot decide145

whether a general graph has diameter at most two in truly subquadratic time [67]. Note also that146

the bound d on the VC-dimension is not needed as part of the input. This is further discussed at147

the end of this section, and also in Sec. 2.4.148

On our way to prove Theorem 1 our main difficulty was to show how to compute for a hypergraph149

H a spanning path of low stabbing number. Computing a spanning path of minimum stabbing150

number is NP-hard [6]. However, there exist approximation algorithms for this problem that run in151

polynomial time [6, 49]. Their approximation ratio is logarithmic, that is fine for our applications.152

Unfortunately, the fastest known algorithms require us to solve a linear program. So far, the best153

known algorithms for this intermediate problem run in superquadratic time [24]. We show how to154

decrease the running-time of this part, at the price of a slightly increased stabbing number. For155

that, we carefully apply the deterministic algorithm resulting from [21] to some arbitrary partition156

of H in subhypergraphs of sublinear size. This feature might be of independent interest. We thus157
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state the following theorem, where the size of a hypergraph is defined as the sum of its hyperedge158

cardinalities.159

Theorem 2. For every d > 0, there exists a constant εd ∈ (0; 1) such that in Õ(m + n2−εd)160

deterministic time, for every n-vertex hypergraph H of VC-dimension at most d and size m, we161

can compute a spanning path of stabbing number Õ(n1−εd). In particular, this algorithm computes162

for each hyperedge the ends of its corresponding Õ(n1−εd) intervals.163

Moreover, εd = 1
2d+1(c(d+1)−1)+1

for some universal constant c > 2.164

From VC-dimension to distance VC-dimension. In order to go beyond Theorem 1, we need165

to consider a stronger notion of VC-dimension for graphs. The distance VC-dimension2 of G is166

equal to the VC-dimension of its ball hypergraph: of which the hyperedges are all possible balls in G.167

Note that a bounded distance VC-dimension implies a bounded VC-dimension, but the converse a168

priori does not hold. Nevertheless, and perhaps surprisingly, there are still many classes of graphs169

with constant distance VC-dimension. These classes include, among others: interval graphs, planar170

graphs [23] and, more generally, any proper minor-closed graph family (from Remark 3 in [23]), as171

well as graphs of bounded rank-width [11].172

Theorem 3. There exists a Monte Carlo algorithm such that, for every positive integers d and k,173

we can decide whether a graph of distance VC-dimension at most d has diameter at most k. The174

running time is in Õ(k ·mn1−εd), where εd ∈ (0; 1) only depends on d.175

Eppstein proved in [38] that for any constant k, we can decide in linear time whether the176

diameter of a planar graph is at most k. Our result can be seen as a generalization of his to any177

graph class of constant distance VC-dimension – but at the price of a superlinear running-time.178

Furthermore, our techniques also apply to superconstant diameters, say polylogarithmic in n, or179

even polynomial in n provided the exponent is in o(εd).180

Our main technical contribution in this part is the efficient computation of spanning paths with181

strongly sublinear stabbing number for some dense hypergraphs of constant VC-dimension. More182

precisely, the `-neighbourhood hypergraph of G has for hyperedges the balls of radius ` in G. For183

instance, the 1-neighbourhood hypergraph of G is exactly its closed neighbourhood hypergraph. In184

order to prove Theorem 3, we reduce the problem of deciding whether a graph has diameter at most185

k to the computation of a spanning path with low stabbing number for its (k − 1)-neighbourhood186

hypergraph. In this sense, the proofs of Theorems 1 and 3 are very similar. However, an additional187

difficulty here is that we cannot have direct access to this (k − 1)-neighbourhood hypergraph.188

Indeed, in the worst case all hyperedges of this hypergraph may have a cardinality in Ω(n), and189

then storing the hypergraph itself would already require quadratic space.190

We overcome this issue by computing an ε-net [51, 70] in order to partition the vertices of191

the graph in a small number of groups, with every two vertices in the same group having almost192

the same ball of radius k − 1. By selecting only one vertex per group, we so reduce the number193

of hyperedges (i.e., balls of radius k − 1) to be considered. Finally, once a spanning path was194

computed for this smaller hypergraph, for every unselected vertex we compute the symmetric195

difference between its ball of radius k − 1 and the one of the unique vertex taken in its group.196

Our solution in order to do that efficiently is to first compute a spanning path with low stabbing197

number for the (k − 2)-neighbourhood hypergraph. This is where the dependency on k occurs, as198

2Our definition of distance VC-dimension is slightly weaker than the one proposed in [11].
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overall we will need to compute a spanning path for k− 1 consecutive hypergraphs. Our algorithm199

is randomized and succeeds with high probability. The use of randomization comes from the ε-net200

construction. Although deterministic algorithms do exist for that [16], it is not clear whether they201

can be used as efficiently as the simple sampling technique of the randomized algorithm. We leave202

open the question of finding a deterministic variant of Theorem 3.203

We note that this above technique can be applied under slightly weaker hypothesis than the204

one we state in Theorem 3. For instance, Nešetřil and Ossona de Mendez proved that for all205

nowhere dense graph classes (i.e., a broad generalization of proper minor-closed graph classes and206

bounded-degree graphs), for any graph in the class and for any constant k, the VC-dimension of the207

k-neighbourhood hypergraph is constantly upper-bounded [62]. It allows us to derive the following208

version of our Theorem 3:209

Theorem 4. Let G be a class of nowhere dense graphs. There exists a Monte Carlo algorithm such210

that, for every constant k = O(1), for any graph in G we can decide whether its diameter is at most211

k in Õ(mn1−εG(k)) time, for some constant εG(k) ∈ (0; 1) that only depends on k.212

We observe that we can express the property of having diameter at most k as a first-order213

formula of length O(k). Therefore, it directly follows from [47] that for any class of nowhere dense214

graphs, there exists an O(f(k) · n1+o(1))-time algorithm for deciding whether the diameter is at215

most k. However, the function f is (at least) a tower of exponential, since this algorithm results216

from an application of Courcelle’s theorem. Furthermore, let us mention that under SETH, a truly217

subquadratic algorithm for constant diameter computation is the best result that we can hope for218

nowhere dense graph classes. Indeed, bounded-degree graphs are nowhere dense and, under SETH,219

we cannot compute their diameter in truly subquadratic time for diameter ω(log n) [40].220

Application: Distance oracles. The seminal work of Cabello for fast diameter computation221

within planar graphs also paved the way to the discovery of exact distance oracles for this class of222

graphs, which only require truly subquadratic space and answer distance queries in polylogarithmic223

time [25, 46]. We derive from our approach the following result:224

Theorem 5. Let d > 0 and let εd be as defined in Theorem 2. For any graph G of distance VC-225

dimension at most d, there exists an exact distance oracle in Õ(n2− εd
2 ) space, that answers distance226

queries in Õ(n1− εd
2 ) time. Moreover, there is a Monte Carlo algorithm for constructing such an227

oracle, in Õ(mn1− εd
2 ) randomized time. This oracle may fail in reporting a distance correctly with228

probability at most 1/nO(1).229

In comparison with our Theorem 5, all proper minor-closed graph classes have hub labels of230

size O(
√
n log n), that follows from the existence of balanced separator of cardinality O(

√
n) [43].231

There also exist approximate distance oracles with a better trade-off than those we obtain with232

Theorem 5 [53]. However, our results apply to a much larger graph class than proper minor-closed233

graph classes, and interestingly they do not leverage on the existence of small balanced separators.234

We conjecture that on every graph family of constant distance VC-dimension, we can compute235

the diameter in truly subquadratic time. Our next main result shows the conjecture to be true236

for any monotone graph family with strongly sublinear balanced separators, a.k.a the graphs of237

polynomial expansion [35].238
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Theorem 6. Let G be a monotone graph class with strongly sublinear balanced separators. Then,239

for every d > 0, for any graph in G of distance VC-dimension at most d, we can compute all the240

eccentricities (and so, the diameter) in deterministic time Õ(n2−εG(d)), for some constant εG(d) ∈241

(0; 1) that only depends on d.242

Let us recall that H-minor free graphs have a constant distance VC-dimension from Remark 3243

in [23] (see also [11]), and that they all have strongly sublinear balanced separators [2, 54, 72].244

Therefore, as an important consequence of Theorem 6, we get a truly subquadratic-time algorithm245

for computing all the eccentricities, on all the proper minor-closed graph classes.246

It might be tempting, in the above Theorem 6, to drop the assumption that the distance VC-247

dimension must be bounded. Unfortunately, this cannot be done assuming SETH. Indeed, there is248

also an equivalence between the graphs of strongly sublinear treewidth and those monotone graph249

classes with strongly sublinear balanced separators [36]; however it follows from [1] that under250

SETH, we cannot compute the diameter in truly subquadratic time already for n-vertex graphs of251

treewidth ω(log n). Conversely, not all graph classes with constant distance VC-dimension have252

strongly sublinear separators. This can be seen, e.g., with interval graphs.253

The speed-up of Theorem 6 follows from a faster computation of spanning paths for the neigh-254

bourhood hypergraphs. More precisely, our first main insight is that, in order to decide whether the255

diameter is at most k, we do not really need to compute a spanning path of low stabbing number for256

Nk−1(G). In fact, it is sufficient to compute a suboptimal representation for Nk(G) that minimizes257

what we call the total stabbing number (defined as the sum, over all vertices v, of the number of258

maximal intervals in the representation whose union is the ball of center v and radius k). Doing259

so, we avoid using ε-nets, which makes our algorithms fully deterministic. So the problem becomes260

how to compute efficiently these suboptimal representations?261

For that, we use a rather classical divide-and-conquer approach. Frederickson [42] proved that262

a planar graph can be edge-covered with O(n/r) subgraphs of order at most r such that at most263

O(
√
r) vertices of each subgraph can be contained in another subgraph of this decomposition.264

His construction directly follows from the planar separator theorem of Lipton and Tarjan [58],265

and as such it can be easily adapted for any monotone graph family with sublinear balanced266

separators [52]3. For illustrating our method, we now focus in this introduction on the planar case.267

We can first compute, for some well-chosen r = nγ , γ ∈ (0; 1), a decomposition as described above.268

For every two vertices in a same subgraph, we can check whether they are at distance at most k in269

the subgraph, by solving All-Pairs Shortest-Paths for the latter; this operation takes O(r2) time per270

subgraph but, assuming r is small enough, this whole phase can be implemented in order to run271

in truly subquadratic time. Then for every subgraph of the decomposition, we compute a breadth-272

first search from each of the O(
√
r) boundary vertices that are also contained in another subgraph.273

Overall, there can only be O(n/
√
r) such boundary vertices, and so, it takes truly subquadratic274

time. Furthermore by doing so, we computed for every subgraph of the decomposition the O(r
√
r)275

distances between the boundary vertices and all the others. For any vertex v that is not on the276

boundary, we observe that a vertex u can be at a distance ≤ k from v if and only if, (i) the unique277

subgraph of the decomposition that contains v also contains u and a uv-path of length ≤ k, or (ii)278

distG(u, x) ≤ k − distG(v, x) from some vertex x on the boundary (O(
√
r) balls to be considered).279

3Note that Frederickson proposed several refinements of his construction in [42], some of which do use the fact
that the input graph is planar. We will use in our proofs an even weaker version of his result than the one presented
in this introduction.
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Our strategy consists in computing a spanning path with low stabbing number for some “boundary280

hypergraph” whose hyperedges are the O(r
√
r × (n/r)) = O(n

√
r) balls that we need to consider.281

We encounter a similar problem as for Theorem 3 because storing this hypergraph may require282

superquadratic space. Fortunately, we can encode this hypergraph in a much more compact way283

by taking advantage of (i) the fact that we can only have O(n/
√
r) different centers for the balls,284

and (ii) that all the balls with a given center have a chain-like inclusion structure.285

Note that we can apply the same strategy as above if, instead of deciding whether the diameter286

is at most k, we are given (kv)v∈V and, for every vertex v, we want to decide whether its eccentricity287

is at most kv. In particular, we can perform n simultaneous binary searches in order to compute288

all the eccentricities.289

Although we keep the focus on computing the diameter, we shall stress in Sec. 2.4 that all our290

techniques can also be applied to radius computation (i.e., see Remark 1). Our algorithms almost291

need no particular information about the graph structure in order to be applied. In fact, we do not292

even need to compute the (distance) VC-dimension of the input graph! From the applicative point293

of view, this observation (further discussed in Sec. 2.4) is quite important. Indeed, computing294

the VC-dimension is W[1]-hard [30] and LogNP-hard [65]. Results of this paper were partially295

presented at the SODA’20 conference [33].296

1.3 Organization of the paper297

In Sec. 2 we formally introduce the concepts of (distance) VC-dimension and stabbing number, along298

with some of their basic properties. Then, we explain in Sec. 3 how to compute a spanning path299

with strongly sublinear stabbing number for a hypergraph of constant VC-dimension (Theorem 2).300

As a direct application, we give a short proof of Theorem 1. Our techniques are generalized in Sec. 4301

so as to prove Theorems 3,4,5. Finally, our main technical result (Theorem 6) is proved in Sec. 5.302

For that, we will need to recall some useful results on the graphs of polynomial expansion [35]. We303

discuss some partial extensions of our results to weighted graphs, and some possible future work,304

in Sec. 5.3 and 6, respectively.305

2 Preliminaries306

After recalling a few basic definitions about graphs and hypergraphs (Sec. 2.1 and 2.2) we introduce307

our framework for computing the diameter of a graph in Sec. 2.3 and 2.4.308

2.1 Graphs and diameter309

For any undefined graph terminology, see [8]. Throughout all this paper we only consider graphs310

that are undirected, unweighted and connected. For every graph G = (V,E), let n := |V | be311

its order and m := |E| be its size. We denote by NG(v) and NG[v] := NG(v) ∪ {v} the open312

and closed neighbourhoods of vertex v, respectively. The degree of v is equal to |NG(v)| and is313

denoted by degG(v) in what follows. The length of a path is its number of edges, and the distance314

distG(u, v) between u, v ∈ V is equal to the length of a shortest uv-path. For every v ∈ V and315

k ≥ 0, the k-neighbourhood of v, also known as the ball of center v and radius k, is defined as316

Nk
G[v] = {u ∈ V | distG(u, v) ≤ k}. For instance, N1

G[v] is exactly the closed neighbourhood of317
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v. The eccentricity of a vertex v is equal to eccG(v) = maxu∈V distG(u, v). The radius and the318

diameter of G are, respectively, rad(G) = minv∈V eccG(v) and diam(G) = maxv∈V eccG(v).319

Problem 1 (Diameter).

Input: A graph G = (V,E).

Output: The diameter of G.

320

Theorem 7 ( [67]). Under the Strong Exponential-Time Hypothesis, we cannot decide whether a321

graph has diameter at most two in time O(mn1−ε), for any ε > 0.322

2.2 Hypergraphs323

A hypergraph is a pair H = (X,R) with X being the set of vertices and R ⊆ 2X being the set of324

hyperedges. See also [5] for any undefined hypergraph terminology. Let n := |X|, m :=
∑

q∈R |q|325

and r := |R| be the order, the size and the number of hyperedges of H, respectively. For every326

vertex x ∈ X, let Rx := {q ∈ R | x ∈ q}. The dual of H is the hypergraph H∗ := (R,X∗), where327

X∗ := {Rx | x ∈ X}. In particular, H and H∗∗ are isomorphic.328

Several hypergraphs can be related to a graph G:329

• The closed neighbourhood hypergraph, denoted byN1(G), has vertex-setX = V and hyperedge-330

set R = {NG[v] | v ∈ V };331

• More generally, for every fixed ` ≥ 0, the `-neighbourhood hypergraph of G is defined as332

N`(G) = (V, {N `
G[v] | v ∈ V }). We stress that N`(G) and its dual N ∗` (G) are isomorphic [11].333

• Finally, the ball hypergraph of G, simply denoted by B(G), has for hyperedges the balls of all334

possible centers and radii in G. Equivalently, B(G) =
⋃
`≥0N`(G).335

2.3 VC-dimension336

Let H = (X,R) be a fixed hypergraph. A subset Y ⊆ X is shattered by H if, for every Y ′ ⊆ Y ,337

there exists a hyperedge q ∈ R such that Y ∩ q = Y ′. Then, the Vapnik-Chervonenkis dimension of338

H (abbreviated in what follows to VC-dimension) is the largest cardinality of a shattered subset.339

Similarly, the dual VC-dimension of H is the VC-dimension of its dual hypergraph H∗. We will340

often use the following (easy) properties in our analysis:341

Lemma 1 (Sauer-Shelah-Perles, [68, 69]). Every n-vertex hypergraph of VC-dimension at most d342

has O(nd) hyperedges.343

Lemma 2 ([21]). Every hypergraph of VC-dimension d has dual VC-dimension at most 2d+1.344

Lemma 3 ([55]). For every hypergraph H = (X,R) and Y ⊆ X, let R[Y ] = {q∩Y | q ∈ R}. Then,345

the VC-dimension of H[Y ] := (Y,R[Y ]) is at most the VC-dimension of H.346
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VC-dimension for graphs. The VC-dimension of a graph G is defined as the VC-dimension of347

its closed neighbourhood hypergraph N1(G). For instance, Kh-minor free graphs (and so, H-minor348

free graphs for any H of order at most h) have VC-dimension at most h − 1 [3]. Every k-interval349

graph has VC-dimension in O(k log k) [32]. Other classes of constant VC-dimension – at most three350

– are unit disk graphs, chordal bipartite graphs, C4-free bipartite graphs, graphs of girth at least351

five and undirected path graphs [10].352

The distance VC-dimension of a graph G is defined as the VC-dimension of its ball hypergraph353

B(G). Chepoi, Estellon and Vaxès proved in [23] that planar graphs have distance VC-dimension at354

most 4, and remarked that more generally every Kh-minor free graph has distance VC-dimension at355

most h−1. Bousquet and Thomassé proved in [11] that graphs of bounded distance VC-dimension356

also generalize graphs of bounded rankwidth. Indeed, every graph of rankwidth k has distance357

VC-dimension at most 3 · 2k+1 + 1. For purpose of illustration, we next adapt a proof from [10] in358

order to show that interval graphs have distance VC-dimension at most two:359

Lemma 4. Every interval graph has distance VC-dimension at most 2.360

Proof. Let G = (V,E) be an interval graph. We fix an interval model for G. For every v ∈ V , let361

I(v) = [av, bv] be the corresponding interval in the representation. Suppose now by contradiction362

that there is a set S = {v1, v2, v3} that is shattered by B(G). W.l.o.g., av1 < av2 < av3 . Since363

S is shattered, there exist some u ∈ V and k ≥ 0 such that Nk
G[u] ∩ S = {v1, v3}. But then,364

let Ik−1(u) :=
⋃
w∈Nk−1

G [u] I(w) be the contiguous segment of all the intervals of the vertices at a365

distance ≤ k − 1 from u. Note that Ik−1(u) ∩ I(v2) = ∅ because we assume that v2 /∈ Nk
G[u]. In366

this situation, either Ik−1(u) ⊆]−∞, av2 [ or Ik−1(u) ⊆]bv2 ,∞[ where ]x, y[ = [x, y] \ {x, y} denotes367

the open interval between x and y. In fact we must have Ik−1(u) ⊆]bv2 ,∞[ because otherwise,368

Ik−1(u) ∩ I(v3) = ∅ would imply v3 /∈ Nk
G[u], a contradiction. Since Ik−1(u) ∩ I(v1) 6= ∅, it implies369

that bv1 > bv2 , and so, I(v2) ⊆ I(v1). As a result we have NG[v2] ⊆ NG[v1]. But then, for any370

w ∈ V and ` ≥ 1, we have v2 ∈ N `
G[w] =⇒ v1 ∈ N `

G[w]. The latter contradicts our hypothesis that371

S is shattered.372

2.4 Stabbing number and applications to Diameter373

A spanning tree of H = (X,R) is a (classical) tree T whose node-set is exactly X. The stabbing374

number of such spanning tree T is the least k such that, for every hyperedge q ∈ R, there exist at375

most k edges uv ∈ E(T ) such that |q ∩ {u, v}| = 1 (we also say that uv is stabbed by q). Given a376

set q ⊆ X, we let ET (q) = {uv ∈ E(T ) | u ∈ q, v /∈ q} be the set of all edges stabbed by q. Finally,377

the stabbing number of H is the minimum stabbing number over its spanning paths. Indeed, as378

noted in [21], every spanning tree T can be transformed into a spanning path of stabbing number379

at most twice bigger than for T . Therefore, there is essentially no loss of generality in restricting380

ourselves to spanning paths.381

Lemma 5 ( [21]). Every n-vertex hypergraph of dual VC-dimension d has stabbing number Õ(n1− 1
d ).382

Overall it follows from Lemmata 2 and 5 that any n-vertex hypergraph of VC-dimension at most383

d has strongly sublinear stabbing number in Õ(n
1− 1

2d+1 ). We stress that the proof of Lemma 5 is384

constructive but that it cannot be transformed into a truly subquadratic-time algorithm. Efficient385

computations of spanning paths with sublinear stabbing number – or related data structures – were386

proposed for many special cases from computational geometry [20, 59, 71].387
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Problem 2 (f-Approx Stabbing Number).

Input: A hypergraph H = (X,R) of VC-dimension at most d.

Output: A spanning path P of stabbing number at most Õ(n
1− 1

f(d) ) and, for every q ∈ R, the
set EP (q) = {uv ∈ E(P ) | u ∈ q, v /∈ q} of all edges stabbed by q.

388

For simplicity of exposition, we will assume throughout the remainder of this paper that the389

VC-dimension of all the hypergraphs considered is part of the input. However in practice, we can390

easily weaken this assumption as follows. Given some “guess” d on the VC-dimension of the input,391

we can modify our proposed solutions so that they either output a spanning path whose stabbing392

number is at most Õ(n
1− 1

f(d) ), for some function f , or conclude that the VC-dimension of the input393

is larger than d. By dichotomic search, we so can compute some minimum d∗ such that, for any394

d ≥ d∗, our algorithms always output a spanning path of stabbing number Õ(n
1− 1

f(d) ). We stress395

that d∗ is at most the VC-dimension of the input, but that it could be much smaller in practice.396

Reduction from diameter computation. We now recall the following simple approach that397

we use in order to solve Diameter on graphs of constant (distance) VC-dimension.398

Lemma 6. Let G be a graph and k ≥ 2. If the hypergraph Nk−1(G) has VC-dimension at most d,399

and we can solve f-Approx Stabbing Number for Nk−1(G) in time T (n,m), then we can decide400

whether G has diameter at most k in time Õ(T (n,m) +mn
1− 1

f(d) ).401

Proof. Let us first compute a spanning path P of stabbing number at most Õ(n
1− 1

f(d) ) for Nk−1(G).402

By the hypothesis, it takes O(T (n,m)) time. For every v ∈ V we can compute from EP (Nk−1
G [v]) a403

set Ik−1(v) of tv intervals, where |EP (Nk−1
G [v])|−1 ≤ tv ≤ |EP (Nk−1

G [v])|+1, such that
⋃
Ik−1(v) =404

Nk−1
G [v]. Note that the set EP (Nk−1

G [v]) defines two possible unions of intervals stabbing its405

edges. We select the one containing v. This preprocessing phase takes time O(|EP (Nk−1
G [v])|) =406

Õ(n
1− 1

f(d) ), and so, Õ(n
2− 1

f(d) ) total time. Then in order to decide whether diam(G) ≤ k, we are407

left to decide whether for every u ∈ V we have
⋃
v∈NG[u] Ik−1(v) = V (G). For that, it suffices to408

collect the Õ(degG(u) · n1− 1
f(d) ) extremities of the intervals in

⋃
v∈NG[u] Ik−1(v), and then to order409

them according to the path order. We first check that the first opening extremity occurs at the410

first node of the path. A linear scan then allows to count for each interval extremity the number411

of intervals opened before it and not yet closed. It then suffices to check that this number does not412

reach 0 except for the last closing extremity that should occur at the end of the path. As a result,413

this last verification phase can be done in total time Õ(mn
1− 1

f(d) ).414

Remark 1. We recall that the radius of a graph G is equal to rad(G) = minv∈V eccG(v). Under415

the Hitting Set conjecture, we cannot compute the radius of a graph in truly subquadratic-time [1].416

We here observe that we can easily modify the framework of Lemma 6 in order to decide whether417

a graph has radius at most k. Indeed, for that it suffices to check whether there exists at least one418

vertex u such that
⋃
v∈NG[u] Ik−1(v) = V (G).419

Our main task in the remainder of this article will be to solve f-Approx Stabbing Number420

efficiently on `-neighbourhood hypergraphs, for some increasing function f . Then, we can apply421

Lemma 6 in order to efficiently solve Diameter.422
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3 Computation of Spanning Paths with low Stabbing Number423

We prove in this section our first main result in the paper, whose statement is reminded below:424

Theorem 1. For every d > 0, there exists a constant εd ∈ (0; 1) such that in deterministic time425

Õ(mn1−εd) we can decide whether a graph of VC-dimension at most d has diameter two.426

We will need the following result in our proofs:427

Lemma 7 ([21]). There is a deterministic polynomial-time algorithm that outputs, for every n-428

vertex hypergraph H of VC-dimension at most d, a spanning path of stabbing number O(n1−1/2d+1
log n).429

This above lemma is a consequence of Theorem 4.3 in [21] and the discussion about the com-430

plexity of the algorithm resulting from their proof. We note that their result applies to infinite431

range spaces too, with the initial step in their proof reducing to the finite case. In order to derive432

Lemma 7 from [21], we use the bound on the dual VC-dimension resulting from Lemma 2 and433

the fact that no initial step is required as we start from a finite range space. Better randomized434

algorithms can be obtained through the approximation results in [6, 49]. They are expressed for435

spanning trees but easily convert to paths as previously noted. The algorithms in [6, 49] use LP436

relaxation and randomized rounding. It is not immediately clear if they can be derandomized437

using classical techniques. Indeed, the algorithm from [49] works by phases. During a phase, it438

needs to solve an ILP relaxation and then to apply some randomized rounding technique. In the439

worst case, this main phase is repeated O(log n) times. We observe that even by using the best440

known upper-bounds on the time complexity of linear programming [24], this overall process takes441

super-quadratic time. In what follows, we use the Sauer-Shelah-Perles Lemma (Lemma 1) in order442

to obtain better trade-offs between the running-time and the quality of the solution.443

Theorem 2. For every d > 0, there exists a constant εd ∈ (0; 1) such that in Õ(m + n2−εd)444

deterministic time, for every n-vertex hypergraph H of VC-dimension at most d and size m, we445

can compute a spanning path of stabbing number Õ(n1−εd). In particular, this algorithm computes446

for each hyperedge the ends of its corresponding Õ(n1−εd) intervals.447

Moreover, εd = 1
2d+1(c(d+1)−1)+1

for some universal constant c > 2.448

We will use several times the following folklore lemma about sorting sets.449

Lemma 8. Given p subsets S1, . . . , Sp of {1, . . . , n}, it is possible to sort them in lexicographic450

order in time O(n+
∑p

i=1 |Si|).451

Lemma 8 can be achieved through partition refinement (see [64, 48]): starting from a single452

part with all sets, we extract the sets containing 1 to obtain two parts, and then similarly split453

each part by extracting sets containing 2, and so on for remaining elements. In the end each part454

contains sets that are pairwise equal. When splitting a part according to an element i, we order the455

sub-part of sets containing i just before the other sub-part. This allows to obtain a lexicographic456

ordering of the parts in the end.457

Proof of Theorem 2. Let η ∈ (0; 1) to be fixed later in the proof. We arbitrarily partition the vertex-458

set X into subsets X1, X2, . . . , Xp such that p = Θ(n1−η) and, for every 1 ≤ i ≤ p, |Xi| = O(nη).459

Our aim is to apply Lemma 7 to the induced subhypergraphs H[X1],H[X2], . . . ,H[Xp]. We stress460

that all these subhypergraphs can be constructed in total O(m)-time, as follows: we scan all the461
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hyperedges q once in order to compute (q ∩ Xi)1≤i≤p; then, for every i, we use the linear-time462

sorting algorithm of Lemma 8 in order to suppress duplicated values in {q ∩ Xi | q ∈ R}. This463

is indeed linear-time because, for any hyperedge q the sets in (q ∩ Xi)1≤i≤p are pairwise disjoint,464

and therefore,
∑p

i=1

∑
q∈R |q ∩Xi| =

∑
q∈R |q| = m. We store, for each hyperedge q, what are the465

non-empty sub-hyperedges q ∩Xi, for 1 ≤ i ≤ p.466

Claim 1. Given H[X1],H[X2], . . . ,H[Xp], we can compute a spanning path for H of stabbing467

number Õ(n
1− η

2d+1 ). Moreover, it takes O(n1+η(c(d+1)−1)) time for some universal constant c > 2.468

Proof. By Lemma 3, every H[Xi] has VC-dimension at most d. This implies that H[Xi] has O(nηd)469

hyperedges (Lemma 1), and so it has size O(nη(d+1)). Furthermore by Lemma 7 we can compute470

deterministically a spanning path of stabbing number Õ
(
n
η
(

1− 1

2d+1

))
, in time O(ncη(d+1)) for471

some universal constant c.472

Let P1, P2, . . . , Pp be the spanning paths that we obtain. We obtain a spanning path P473

for H by concatenating all the Pi’s. For every 1 ≤ i ≤ p, we recall that the stabbing num-474

ber of Pi is in Õ
(
n
η
(

1− 1

2d+1

))
. Therefore by construction, the stabbing number of P is in475

Õ
(
p · nη

(
1− 1

2d+1

)
+ p− 1

)
= Õ

(
n

1− η

2d+1

)
. �476

477

Let P be the spanning path obtained with Claim 1. Finally, for every q ∈ R, we compute the478

set EP (q) of all edges of P stabbed by q, in total O(m)-time. For that, we simply scan once all479

the edges uv ∈ E(P ). We enumerate all hyperedges in Ru and in Rv. For every q ∈ Ru \Rv (resp.480

s ∈ Rv\Ru), we add uv to EP (q) (resp. EP (s)). Note that for the above, we only need to scan twice481

all the hyperedges. The total running-time is inO(m+p·ncη(d+1)) = O(m+n1+η(c(d+1)−1)). Overall,482

we achieve a good trade-off between running-time and approximation factor if we have 2− η
2d+1 =483

1 + η (c(d+ 1)− 1). Therefore we set η = 1
c(d+1)+ 1

2d+1−1
, and then εd = η

2d+1 = 1
2d+1(c(d+1)−1)+1

.484

485

We observe that our analysis could be easily improved in some particular cases, e.g., for all486

hypergraphs that are isomorphic to their dual.487

We are now ready to prove the main result in this section:488

Proof of Theorem 1. We compute the closed neighbourhood hypergraph of G. It can be done in489

linear time, simply by scanning the adjacency list. Then, we apply Theorem 2 to N1(G). The490

result now follows from Lemma 6 applied to the function f : d→ 1/εd.491

4 Bounded Diameter with ε-Nets492

For graphs of bounded distance VC-dimension we now generalize Theorem 1 from the previous493

section to larger values for the diameter.494

Theorem 3. There exists a Monte Carlo algorithm such that, for every positive integers d and k,495

we can decide whether a graph of distance VC-dimension at most d has diameter at most k. The496

running time is in Õ(k ·mn1−εd), where εd ∈ (0; 1) only depends on d.497
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Our proof crucially relies on the concept of ε-net. We recall that for a hypergraph H = (X,R),498

a subset Y ⊆ X is called an ε-net if, for every q ∈ R such that |q| ≥ εn, we have Y ∩ q 6= ∅.499

Lemma 9 ([51, 70]). For every hypergraph of VC-dimension at most d, any random subset of size500

Ω
(
d
ε log

(
1
εδ

))
is an ε-net with probability 1− δ.501

We will also need the following result:502

Lemma 10 ( [21]). For every hypergraph H = (X,R), let R̂ := {q∆q′ | q, q′ ∈ R} be the set of503

symmetric differences between hyperedges. If H has VC-dimension at most d then, Ĥ := (X, R̂)504

has bounded VC-dimension.505

We observe that no explicit upper bound on the VC-dimension of Ĥ was stated in [21]. Never-506

theless it can be easily deduced from their proof that it is in O(d log d) (see also [37]).507

The following partition lemma is the cornerstone of our algorithm.508

Lemma 11. Let G = (V,E) be a graph of distance VC-dimension at most d, and let S be any509

random subset of size Θ̃(d/ε). Then w.h.p., for every ` ≥ 0 and for every u, v ∈ V such that510

N `
G[u] ∩ S = N `

G[v] ∩ S, we have | N `
G[u]∆N `

G[v] | ≤ εn.511

Proof. Let R̂ = { N `1
G [x]∆N `2

G [y] | x, y ∈ V and `1, `2 ≥ 0} be the set of the symmetric differences512

between the balls of G. Since G has distance VC-dimension at most d then, by Lemma 10, the513

hypergraph Ĥ = (V, R̂) has VC-dimension in O(d log d). Then by Lemma 9, w.h.p. S is an514

ε-net for Ĥ. Therefore, for every ` ≥ 0 and for every u, v ∈ V , | N `
G[u]∆N `

G[v] | > εn =⇒515

(N `
G[u]∆N `

G[v]) ∩ S 6= ∅. We stress that (N `
G[u]∆N `

G[v]) ∩ S 6= ∅ =⇒ N `
G[u] ∩ S 6= N `

G[v] ∩ S.516

This above partition lemma will be useful in order to group the vertices in a small number of517

groups, with every two vertices in a group having almost the same ball of radius `. Here there is518

a trade-off between the number of groups (that we upper-bound by using the Sauer-Shelah-Perles519

Lemma) and, for every two vertices in the same group, the maximum number of vertices in which520

their respective balls of radius ` can differ.521

More precisely, our approach in the next two sections can be summarized as follows:522

1. We compute a spanning path P ′k for Nk(G) of low total stabbing number, with the latter523

being equal to
∑

v∈V |EP ′k(Nk
G[v])|;524

2. Then, we compute an ε-net, for some well-chosen ε, and by doing so we partition the vertex-525

set into p(ε) disjoint groups V1, V2, . . . , Vp(ε). For every j we select a unique vj ∈ Vj . We526

restrict ourselves to Hk := (V, {Nk
G[vj ] | 1 ≤ j ≤ p(ε)}). We compute a spanning path Pk of527

low stabbing number for this subhypergraph.528

3. We observe that if Pk is a spanning path of stabbing number t for Hk, then it is also a529

spanning path of stabbing number t +O(εn) for Nk(G). Finally, for every 1 ≤ j ≤ p(ε), we530

consider the unselected vertices u ∈ Vj \ {vj} sequentially. We compute the set of all the531

edges in E(Pk) that are stabbed by Nk
G[u]. For that, it suffices to compute the O(εn) vertices532

of Nk
G[u]∆Nk

G[vj ]. We do so efficiently by using the auxiliary spanning path P ′k.533

We next give a first application of our approach (our proof of Theorem 6 also follows a quite534

similar approach).535

Proof of Theorem 3. Let εd be the constant of Theorem 2. We shall prove the following claim by536

finite induction:537
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Claim 2. For every 1 ≤ i ≤ k − 1, we can compute a spanning path of stabbing number Õ(n1−εd)538

for Ni(G). Moreover, it can be done in time Õ(i ·mn1−εd).539

The result will follow from this claim and Lemma 6 by taking i = k − 1.540

Proof. By Theorem 2, the claim is true for the base case i = 1. Assume by our induction hypothesis541

that the claim holds for i− 1. We divide the remainder of the proof into two subclaims.542

Subclaim 1. Let Pi−1 be a spanning path of stabbing number t for Ni−1(G). We can transform543

Pi−1 into a spanning path P ′i for Ni(G), such that
∑

v∈V |EP ′i (N
i
G[v])| = O(tm). Moreover, the544

transformation takes time O(tm).545

Proof. Let u ∈ V . We have that N i
G[u] =

⋃
w∈NG[u]N

i−1
G [u]. In particular, the ball N i

G[u] is the546

union of all intervals contained in a ball N i−1
G [w], for w ∈ NG[u]. Then in time O(degG(u)·t), we can547

collect the edge-sets EPi−1(N i−1
G [w]) of all the edges of Pi−1 that are stabbed by w, for w ∈ NG[u].548

We compute from these edge-sets a (suboptimal) representation ofN i
G[u] intoO(degG(u)·t) intervals549

of Pi−1. ◦550

Subclaim 2. Let P ′i be a spanning path for Ni(G), such that
∑

v∈V |EP ′i (N
i
G[v])| = O(tm). Then,551

in time Õ((n1−εd + t) ·m), we can compute a spanning path Pi of stabbing number Õ(n1−εd).552

Proof. Let ε := Θ(n−εd). We perform a breadth-first search from every vertex in some random553

subset S of cardinality Õ(d/ε) = Õ(d · nεd). By doing so we define an equivalence relation ∼554

on V such that u ∼ v ⇐⇒def N i
G[u] ∩ S = N i

G[v] ∩ S. We so partition V into some groups555

V1, V2, . . . , Vp. Since by the hypothesis G has distance VC-dimension at most d then, by Lemma 1556

we have p = O(|S|d) = O(dd logd n · nεdd). Furthermore by Lemma 11, we have w.h.p. u ∼ v =⇒557

| N i
G[u]∆N i

G[v] | = O(εn) = O(n1−εd).558

We first compute V1, . . . , Vp thanks to the outputs of breadth-first search from every vertex of559

S and to Lemma 8. It takes O(m|S|) = Õ(dmnεd) time. The algorithm now proceeds as follows:560

1. For every 1 ≤ j ≤ p, we select a unique vj ∈ Vj , and then we start a breadth-first search from561

this vertex. Since p = Õ(dd ·nεdd) and we have εd < 1/(d+1), this phase can be implemented562

in time O(mdd logd n · nεdd) = O(mn1−εd), that is truly subquadratic. Note that this time563

bound also holds for non constant d as long as d = O( logn
log logn).564

2. Let Ri := {N i
G[vj ] | 1 ≤ j ≤ p}, and let Hi := (V,Ri). Note that since Hi ⊆ B(G), the565

VC-dimension of Hi is at most d. Furthermore, the order and size of Hi are, respectively, n566

and mi := O(pn) = Õ(n1+εdd). By Theorem 2, we can compute a spanning path Pi for Hi of567

stabbing number Õ(n1−εd) in time Õ(mi + n2−εd) = Õ(n1+εdd + n2−εd) = Õ(n1−εdm).568

3. We observe that Pi is a spanning path of Ni(G) of stabbing number:

Õ(n1−εd) + max
1≤j≤p

max
u∈Vj\{vj}

| N i
G[u]∆N i

G[vj ] | = Õ(n1−εd).

Indeed, for every 1 ≤ j ≤ p, let u ∈ Vj \ {vj} be arbitrary. Let us consider the Õ(n1−εd)569

maximal intervals of which the union equals N i
G[vj ]. Every vertex of N i

G[vj ] \ N i
G[u] breaks570

one of these intervals in two sub-intervals, thus increasing by at most one the number of571

intervals needed for the ball N i
G[u]. Furthermore, every vertex of N i

G[u] \N i
G[vj ] (since it is572
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not contained in one of the intervals of which N i
G[vj ] is the union) may also require one more573

interval in order to span the ball N i
G[u]. As a result, the ball N i

G[u] is the union of at most574

Õ(n1−εd) + | N i
G[u]∆N i

G[vj ] | intervals of the path Pi.575

We are now left with computing, for every 1 ≤ j ≤ p and u ∈ Vj \ {vj}, the set EPi(N
i
G[u])576

of all the edges stabbed by the ball of radius i centered at u. For that, since we are already577

given EPi(N
i
G[vj ]), it suffices to compute N i

G[u]∆N i
G[vj ]. We proceed in three steps:578

• We use the spanning path P ′i for Ni(G) and a (suboptimal) representation Ii(u) of N i
G[u]579

into O(|EP ′i (N
i
G[u])|) intervals. We also compute a representation Ii(u) of V \N i

G[u] into580

O(|EP ′i (N
i
G[u])|) intervals of P ′i . Overall this step takes total time Õ(tm).581

• Let σi : V → V (P ′i ) be the permutation that maps every vertex to its position in the582

spanning path P ′i . For every 1 ≤ j ≤ p, we construct two balanced binary search trees583

whose items are, respectively, {σi(x) | x ∈ N i
G[vj ]} and {σi(y) | y /∈ N i

G[vj ]}. Overall,584

this takes total time Õ(np) = Õ(n1+εdd) = õ(mn1−εd).585

• Finally, let us again consider some u ∈ Vj \{vj} for some j. For every interval from Ii(u),586

we want to enumerate the vertices of V \N i
G[vj ] that lie on this interval. Since we stored587

all of V \ N i
G[vj ] into a balanced binary search tree, this can be done in time O(log n)588

plus O(1) extra time per vertex in the solution. In the same way, for every interval from589

Ii(u), we enumerate the vertices of N i
G[vj ] that lie on this interval. For a fixed u, the total590

time for this step is in Õ( |Ii(u)|+ |Ii(u)|+ |N i
G[u]∆N i

G[vj ]| ) = Õ(|EP ′i (N
i
G[u])|+n1−εd).591

Therefore, this last step takes total time Õ(tm+ n2−εd).592

◦593

Now, by the induction hypothesis we get a spanning path of stabbing number Õ(n1−εd) for594

Ni−1(G). By Subclaim 1 we transform such spanning path into a spanning path P ′i forNi(G), where595 ∑
u∈V |EP ′i (N

i
G[u])| = Õ(mn1−εd). Finally, by Subclaim 2 we can use P ′i in order to compute, in596

time Õ(mn1−εd), a spanning path Pi of stabbing number Õ(n1−εd). The above algorithm achieves597

proving that our claim holds for i. �598

599

Summarizing, by Claim 2 we can compute a spanning path of stabbing number Õ(n1−εd) for600

the hypergraph Nk−1(G), in time Õ(k ·mn1−εd). By Lemma 6 it implies that we can also decide601

whether G has diameter at most k, and if so, we compute diam(G) exactly, in time Õ(k ·mn1−εd).602

603

4.1 Application to nowhere dense graph classes604

A closer look at the proof of Theorem 3 shows that it also holds if, instead of having bounded605

distance VC-dimension, there rather exists some constant d such that, for every 1 ≤ i ≤ k − 1,606

the VC-dimension of the i-neighbourhood hypergraph is at most d (the latter value is sometimes607

called the distance-i VC-dimension of the graph [62]). It has algorithmic implications for some608

special cases of sparse graphs. Namely, H is an r-shallow minor of a graph G if it can be obtained609

from some subgraph of G by the contraction of pairwise disjoint subgraphs of radius at most r [66];610

a graph family G is termed nowhere dense if, for any r, there exists a graph Hr which is not an611

r-shallow minor for any graph in G [61]. Of interest here is that, for any graph class G nowhere612
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dense, and for any i, the distance-i VC-dimension of any graph in G is upper-bounded by some613

constant di [62]. By choosing d := max1≤i≤k−1 di, we thus obtain the following weaker version of614

Theorem 3 for nowhere dense graphs:615

Theorem 4. Let G be a class of nowhere dense graphs. There exists a Monte Carlo algorithm such616

that, for every constant k = O(1), for any graph in G we can decide whether its diameter is at most617

k in Õ(mn1−εG(k)) time, for some constant εG(k) ∈ (0; 1) that only depends on k.618

Note that, for any class of nowhere dense graphs, there also exists an FPT algorithm, in time619

O(f(k) ·n1+o(1)), for deciding whether the diameter is at most k [47]. The function f is, at least, a620

tower of exponentials in k. Our result shows that a better dependency on k is possible at the cost621

of a higher exponent on n. We leave as open to find FPT algorithms with better trade-offs.622

4.2 Exact distance oracles623

Before ending this section, we present an interesting by-product of our approach for exact distance624

computations.625

Theorem 5. Let d > 0 and let εd be as defined in Theorem 2. For any graph G of distance VC-626

dimension at most d, there exists an exact distance oracle in Õ(n2− εd
2 ) space, that answers distance627

queries in Õ(n1− εd
2 ) time. Moreover, there is a Monte Carlo algorithm for constructing such an628

oracle, in Õ(mn1− εd
2 ) randomized time. This oracle may fail in reporting a distance correctly with629

probability at most 1/nO(1).630

Proof. We start presenting the construction of our distance oracle (pre-processing). Let k be a631

parameter to be fixed later in our proof.632

1. For every 1 ≤ i ≤ k, we construct a spanning path Pi for Ni(G), of stabbing number Õ(n1−εd)633

— along with the corresponding Õ(n1−εd) intervals for N i[v], for every vertex v.634

2. Then, we sample a subset Sk of Õ(n/k) vertices, and we compute a shortest-path tree for635

each such vertex.636

Let us analyze the runtime of this above construction. As it was explained in the proof of Theorem 3,637

the first step (computation of k spanning paths of low stabbing number) can be done in randomized638

time Õ(kmn1−εd). For the second step, since we only need to perform a BFS for each vertex of639

Sk, the runtime is in deterministic time Õ
(
n
km
)
. Overall, the total pre-processing time is in640

Õ
((
kn1−εd + n

k

)
m
)
.641

Furthermore, let us analyze the space of this oracle. Each spanning path Pi requires O(n) space.642

Since, for every vertex v, N i[v] is the union of Õ(n1−εd) intervals, we have
∑

v∈V |EPi(N i[v])| =643

Õ(n2−εd). Thus, we need Õ(kn2−εd) space for the k spanning paths and the corresponding sets644

EPi . For the second step, each shortest-path tree requires O(n) space, and therefore the total space645

required is in Õ
(
n2

k

)
. Overall, the oracle requires Õ

(
kn2−εd + n2

k

)
space.646

Finally, given a pair (u, v) of vertices, we compute dist(u, v) as follows:647

• We check whether dist(u, v) ≤ k. By using Pk, it can be done in time Õ(n1−εd).648
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• If dist(u, v) ≤ k, then we compute the smallest i such that u ∈ N i[v], which is precisely649

dist(u, v). Note that we only need to test O(log k) values for that (because we can apply650

binary search), and that each test takes time Õ(n1−εd) by using the corresponding spanning651

path.652

• Otherwise, we output dist(u, v) = mins∈Sk dist(u, s) + dist(v, s). Since we sampled Sk u.a.r.,653

the probability that dist(u, v) 6= mins∈Sk dist(u, s) + dist(v, s) for at least one pair (u, v) at654

distance more than k is at most 1/nc, for some arbitrarily large constant c [7].655

Overall, the query time is in Õ(n1−εd) + Õ
(
n
k

)
. In order to optimize the space complexity, we set656

the value of our parameter to k = Õ(n
εd
2 ).657

5 Diameter Computation in Truly Subquadratic Time658

We finally improve the results of Theorem 3 for a more restricted family of graphs of bounded659

distance VC-dimension. Before that, we need to introduce a bit more of graph terminology. A class660

of graphs is called monotone if it is closed by taking subgraphs. For a connected n-vertex graph G,661

a separator is a subset S such that G \ S is disconnected. It is called balanced if every connected662

component of G\S has order at most 2n/3. Finally, a class of graphs has strongly sublinear balanced663

separators if every connected n-vertex graph in the class has a balanced separator of cardinality at664

most C · nα for some constants C and α < 1.665

Theorem 6. Let G be a monotone graph class with strongly sublinear balanced separators. Then,666

for every d > 0, for any graph in G of distance VC-dimension at most d, we can compute all the667

eccentricities (and so, the diameter) in deterministic time Õ(n2−εG(d)), for some constant εG(d) ∈668

(0; 1) that only depends on d.669

We postpone the technical proof of this result to Sec. 5.2. Let us emphasize that Theorem 6670

cannot be applied to all graph classes of bounded distance VC-dimension. For instance, we proved671

in Lemma 4 that the intervals graphs have distance VC-dimension at most two. However, there672

exist intervals graphs with no balanced separators of sublinear size. We give some interesting cases673

where Theorem 6 does apply in Sec. 5.1 (see also Sec. 5.3, where we partially extend our results to674

weighted graphs).675

Finally, we say that a class of graphs G has polynomial expansion if there exists a polynomial p676

such that, for every r-shallow minor of a graph in G (cf. Section 4.1), its average degree is at most677

p(r). We want to stress that there is an equivalence between the monotone classes of graphs G with678

strongly sublinear balanced separators and those of polynomial expansion [35]. In particular, the679

graphs in G have bounded degeneracy, and so, they are sparse (i.e., with m = O(n) edges). We680

will often use this property in what follows.681

5.1 Application to H-minor free graphs682

Let us now review some interesting classes where Theorem 6 does apply. Since planar graphs have683

distance VC-dimension at most four [11] then, it follows from the planar separator theorem of684

Lipton and Tarjan [58] that Theorem 6 applies to the class of planar graphs. Therefore, Theorem 6685

gives us a new subquadratic-time algorithm for diameter computation on unweighted planar graphs,686
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but with a slower running-time than for the algorithms presented in [17, 45]. More generally, the687

following separator theorem is from Alon et al.:688

Lemma 12 ([2]). Every Kh-minor free graph has a balanced separator of cardinality O(h3/2√n).689

Moreover, such a separator can be found in O(n3/2) time.690

See also [54, 72] for various trade-offs between the size of the separator and the time that is691

needed in order to find it. We recall that Kh-minor free graphs have distance VC-dimension at692

most h− 1 [23, 11]. By combining this result with Lemma 12, we so prove the following theorem:693

Corollary 1. For any H-minor free graph, we can compute all the eccentricities in deterministic694

time Õ(n2−εH ), where εH ∈ (0; 1) is a constant that only depends on H.695

For most values of H this is the first known subquadratic-time algorithm for diameter compu-696

tation on H-minor free graphs. In particular, this is the first known subquadratic-time algorithm697

for diameter computation on (unweighted) bounded-genus graphs to the best of our knowledge (see698

the planar graphs paragraph in the introduction).699

5.2 Proof of Theorem 6700

The remainder of this section is devoted to the proof of Theorem 6. We start by presenting, in a701

separate subsection, all the required background on r-divisions.702

Algorithmic aspects of r-divisions703

Throughout all this section, let Gα,C be the class of all the graphs G such that, for every connected704

h-vertex subgraph of G, there exists a balanced separator of order at most C · hα. The following705

intermediate result is an almost direct consequence of a previous algorithm from Plotkin et al. [66].706

Lemma 13 ( [34]). For every n-vertex m-edge graph G ∈ Gα,C , we can find a balanced separator707

of order O(n
4+α
5 ) in time O(mn

4+α
5 ) = O(n2− 1−α

5 ).708

We will also use the following simple result:709

Lemma 14. Let G be a graph and S a balanced separator. We can bipartition in linear time the710

connected components of G \ S in two disjoint sets A and B such that max{|A|, |B|} ≤ 2n/3.711

Proof. Let C1, C2, . . . , Ck be the connected components of G \ S. They can be computed in linear712

time. We define i0 := max{i | |
⋃
j<iCj | ≤ 2n/3}. This value i0 can be computed in O(n) time,713

simply by scanning the connected components in order until we have scanned more than 2n/3714

vertices. Let A′ :=
⋃
j<i0

Cj and B′ :=
⋃
j>i0

Cj . If |B′ ∪ Ci0 | ≤ 2n/3 then we are done by setting715

A := A′, B := B′ ∪ Ci0 . Thus, from now on let us assume that |B′ ∪ Ci0 | > 2n/3. Note that since716

S is a balanced separator, it implies that i0 < k. Then, by the very definition of i0 we also have717

|A′ ∪ Ci0 | > 2n/3. Overall, |A′| + 2|Ci0 | + |B′| > 4n/3. Since |A′| + |B′| + |Ci0 | < n, we obtain718

|Ci0 | > n/3. We are done by setting A := A′ ∪B′ and B := Ci0 . The total runtime is linear.719

Now, set a parameter4 β := 4+α
5 < 1. By Lemma 13, for every n-vertex m-edge graph in Gα,C720

we can compute a balanced separator of order O(nβ) in time O(n1+β). Following Frederickson [42],721

we define an r-division for an n-vertex graph G ∈ Gα,C as follows:722

4More generally, let G ⊆ Gα,C . We may choose any parameter β ∈ [α; 1) such that for all the graphs in G we can
compute a balanced separator of size O(nβ) in truly subquadratic-time. For instance by Lemma 12, if G is proper
minor-closed then we can set β = α = 1/2.
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• If n ≤ r then, we output G;723

• Otherwise, let S be a balanced separator of cardinality O(nβ). Since S is balanced then, by724

Lemma 14 we can partition the connected components of G\S in two disjoint sets A and B of725

cardinality ≤ 2n/3. We end up computing an r-division for the induced subgraphs G[A ∪ S]726

and G[B ∪S] separately. Note that since S is a separator, all edges of G are covered by these727

two subgraphs.728

Therefore by construction, an r-division of a connected graph G is a collection of connected induced729

subgraphs of order at most r that cover all edges of G. We will use the terminology from [50]. In730

particular, the subgraphs in an r-division are termed clusters. A vertex is interior if it is contained731

in a unique cluster, otherwise it is a boundary vertex. Finally, if the sum of the orders of all the732

clusters is n+ q then, we call q the excess.733

The following result is essentially a reformulation of [50, Lemma 2.2].734

Lemma 15 ( [50]). Set β := 4+α
5 . There exists a constant r0 such that, for any n-vertex graph735

G ∈ Gα,C and r ≥ r0, any r-division of G has an excess in O(n/r1−β).736

Note that in our applications, we will choose r = nγ for some γ ∈ (0; 1) that only depends on737

β and on the distance VC-dimension.738

It is easy to prove that an r-division can be computed in polynomial time [50]. Next we use the739

known connections between strongly sublinear separators and polynomial expansion [34] in order740

to bound the running-time by some truly subquadratic function.741

Lemma 16. Set β := 4+α
5 . Then, for any n-vertex m-edge graph G ∈ Gα,C , we can compute an742

r-division in time Õ(n1+β).743

Proof. We recursively use Lemmata 13 and 14 to split the graph into smaller and smaller clusters.744

Let us assume that at the initialization step, n > r (otherwise, we are done). We claim that it745

is sufficient to prove that the total number of edges in the final clusters is in O(n). Indeed, if746

this is true for the final clusters then, this is also true for the intermediate clusters at any given747

step of the decomposition. In particular, every step runs in time O(n1+β). Furthermore, since748

we only consider balanced separators of sublinear cardinality, for every n above some constant the749

two induced subgraphs constructed have sublinear order (say, ≤ 3n/4). Therefore it takes O(log n)750

steps to decrease the order of all the subgraphs in this collection to less than r. This upper-bound751

on the number of steps proves, as claimed, that the total running time is in Õ(n1+β).752

We are left proving that the total number of edges in the final clusters is indeed in O(n).753

For that, let us consider any of the clusters Wi. Since Gα,C is monotone, we have Wi ∈ Gα,C .754

Furthermore, every graph in Gα,C must be O(1)-degenerate (e.g., see [34, Lemma 2 (b)] where the755

author proved a stronger result, namely that Gα,C has polynomial expansion). It implies that Wi756

has size O(|V (Wi)|). Overall, if the total excess is q then, the total number of edges in the clusters757

is in O(n + q). By Lemma 15 we have q = O(n), and so the total number of edges is also in758

O(n).759

Boundary Hypergraphs760

Let G be a graph equipped with some r-division, and let
−→
` = (`v)v∈V be a collection of positive761

integers that is indexed by the vertex-set of G. Roughly, our objective is to use the r-division in762
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order to compute, for every vertex v, a compact interval representation of its ball of radius `v. This763

leads us to the following natural object:764

Definition 8. Let Λr be an r-division of a graph G, and let
−→
` = (`v)v∈V be a collection of positive765

integers that is indexed by the vertex-set of G. The
−→
` -boundary hypergraph H−→

` ,G
(Λr) has for766

vertex-set V . Moreover, for every cluster Wi ∈ Λr and for every u, v ∈ V (Wi), if v is a boundary767

vertex and distG(u, v) < `u, then the ball N
`u−distG(u,v)
G [v] is a hyperedge of H−→

` ,G
(Λr).768

To understand better this above construction, let Wi be a cluster, let u ∈ V (Wi) be internal769

and let z /∈ V (Wi). Then, since an r-division is also an edge-covering, we have distG(u, z) ≤ `u770

if and only if there exists a boundary vertex v ∈ V (Wi) such that distG(u, v) + distG(v, z) ≤ `u.771

Equivalently, we want to have z ∈ N `u−distG(u,v)
G [v].772

Lemma 17. Let β = 4+α
5 . Then, for any n-vertex graph G ∈ Gα,C , and for any r-division Λr, the773

−→
` -boundary hypergraph H−→

` ,G
(Λr) has O(nrβ) hyperedges.774

Proof. For every Wi ∈ Λr, we create O(r ·bi) hyperedges, where bi denotes the number of boundary775

vertices in the cluster. We observe that the number of boundary nodes is at most the excess and that776 ∑
Wi∈Λr

bi is at most twice the excess. Then, by Lemma 15 we have O(r)×O(n/r1−β) = O(nrβ)777

hyperedges.778

We stress that by Lemma 17, a boundary hypergraph may have a superlinear number of edges.779

Therefore, if we restrict ourselves to subquadratic-time computation, we cannot compute this hy-780

pergraph explicitly. Fortunately, we show next that this is not needed if one just wants to compute781

for this hypergraph a spanning path of low stabbing number.782

Lemma 18. Set β := 4+α
5 , and let G ∈ Gα,C have distance VC-dimension at most d. Then,783

there exists a constant εd ∈ (0; 1) that only depends on d and such that, for any r-division Λr, the784

stabbing number of H−→
` ,G

(Λr) is in Õ(n1−εd). Moreover, we can compute a spanning path reaching785

this upper bound in deterministic time Õ(n2/r1−β + n2−εdrβ).786

Proof. By construction,H−→
` ,G

(Λr) is a subhypergraph of B(G), the ball hypergraph ofG. Therefore,787

the VC-dimension of H−→
` ,G

(Λr) is at most d. Let εd be the constant of Theorem 2. In order to788

prove the result, we are left proving that we can adapt the algorithm of Theorem 2 so that it runs789

in time Õ(nm/r1−β + n2−εdrβ) when it is given Λr and
−→
` as input. For that, let F be the set790

of the boundary vertices. We have that |F | is at most the excess, and so, by Lemma 15 we get791

|F | = O(n/r1−β).792

1. We start with a breadth-first search from every vertex of F . This pre-processing phase takes793

time O(|F |m) = O(n2/r1−β). Furthermore, note that by doing so we can compute all the794

pairs (v, t) ∈ F × N such that N t
G[v] is a hyperedge of H−→

` ,G
(Λr).795

2. Let η = 2d+1εd. We arbitrarily partition the vertex-set V into subsets V1, V2, . . . , Vp such796

that p = O(n1−η) and, for every 1 ≤ i ≤ p, |Vi| = O(nη). Furthermore, as explained in797

the proof of Theorem 2 (i.e., Claim 1), we can compute a spanning path of stabbing number798

Õ(n1−εd) for H−→
` ,G

(Λr) if we are given the subhypergraphs H1,H2, . . . ,Hp that are induced799
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by V1, V2, . . . , Vp respectively. It takes time Õ(n1+η(c(d+1)−1)) for some constant c, that is in800

Õ(n2−εd).801

In order to compute all the subhypergraphs Hi, we could proceed by brute-force, as follows.802

For every i and for any boundary vertex v, we read the vertices of Vi by non-decreasing803

distance to v. Furthermore, if N t
G[v] is a hyperedge of H−→

` ,G
(Λr), then as soon as we exceed804

distance t all the vertices read so far are exactly N t
G[v] ∩ Vi. Overall, for a fixed boundary805

vertex v we could obtain this way up to O(|Vi|) different subsets of order O(|Vi|) each. But806

unfortunately, that would give us a time complexity in O(|F ||Vi|2) = O(n1+2η/r1−β) for a807

given i, and so a total running time in O(n2+η/r1−β). In order to lower this running-time,808

we proceed as follows.809

(a) For every v ∈ F , we group all the vertices in Vi at equal distance to v. We totally810

order this partition by increasing distance of its vertices to v. Doing so we get exactly811

ni := |Vi| ordered groups (possibly, by adding some empty groups in the sequence),812

denoted V 1
i (v), V 2

i (v), . . . , V ni
i (v). Overall, this phase takes time Õ(|F ||Vi|), and so total813

time (for all i) Õ(|F |n) = Õ(n2/r1−β).814

(b) Then, we introduce a complex subprocedure in order to gradually remove the duplicates815

from the sets N t
G[v] ∩ Vi, for v ∈ F and t ≥ 0. For every j ∈ {0 . . . ni}, we map816

every boundary vertex v to
⋃
j′≤j V

j′

i (v). More precisely, we maintain some collection817

of different subsets of Vi, denoted Pj =
(
V j,1
i , V j,2

i , . . . , V
j,si(j)
i

)
(note that Pj is a list of818

lists). For every v ∈ F we ensure that there is a unique t such that V j,t
i =

⋃
j′≤j V

j′

i (v).819

Then, there is a pointer from vertex v to this tth subset (equivalently, for every list in820

Pj , we store an auxiliary list of all the corresponding vertices of F ).821

We will show next that it is easy to construct Pj+1 from Pj , but that the natural method822

for doing so might generate some duplicates. Roughly, by using in our analysis the Sauer-823

Shelah-Perles lemma, we prove that it is more efficient to remove duplicates at every824

single step rather than doing it only once at the end of the subprocedure.825

We observe that initially for j = 0, there is a unique subset V 0,1
i = ∅. Furthermore if826

all the subsets V j,t
i have been computed at step j, then we can compute those at step827

j + 1, as follows:828

• For every v ∈ F , if we have V j,t
i =

⋃
j′≤j V

j′

i (v), then we add a copy of V j+1
i (v) into829

some buffer b′j+1(t) and a pointer from v to this copy. It takes timeO(
∑

v∈F |V
j+1
i (v)|).830

• Then, for every 1 ≤ t ≤ si(j), we remove all the duplicated subsets in the buffer831

b′j+1(t). The new buffer that we get is denoted bj+1(t). We can compute it by using832

partition refinement (e.g., see [48] or Lemma 8), that takes time O(
∑

W∈b′j+1(t) |W |)833

up to some O(|Vi|)-time pre-processing. Overall the removal of all the duplicates, for834

all t, takes total time O(nη +
∑

v∈F |V
j+1
i (v)|). Furthermore on our way to remove835

the duplicates, we also need to actualize the pointers between the boundary vertices836

and the buffer contents, that takes additional time O(|F |) = O(n/r1−β).837

• For every 1 ≤ t ≤ si(j), we can now refine V j,t
i in |bj+1(t)| new subsets. Every838

such subset has order O(nη), and so this operation takes total time O(nη|bj+1(t)|).839

Overall, we obtain a new collection of O(
∑

t |bj+1(t)|) subsets. Furthermore, on840
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our way to construct this collection, we can add a pointer from every boundary841

vertex v to one subset equal to
⋃
j′≤j+1 V

j′

i (v) (there may be duplicated subsets).842

By carefully using the pointers added between the boundary vertices and the buffer843

contents during the previous phases, this operation takes additional time O(|F |) =844

O(n/r1−β).845

• Finally, since all the subsets in the new collection have order O(nη), by using again
partition refinement we can merge all the duplicated subsets in time

O(|Vi|+ nη ·
∑
t

|bj+1(t)|) = O(nη ·
∑
t

|bj+1(t)|).

We also need to actualize the pointers between the boundary vertices and the sub-846

sets, that takes total time O(|F |) = O(n/r1−β).847

Let us upper bound si(j). For that we stress that every subset V j,t
i represents a different

intersection of Vi with a ball of G, hence of a hyperedge of B(G). Since B(G) has VC-
dimension at most d, by Lemma 3 so does its subhypergraph H′i induced by Vi. In

particular, every V j,t
i is a hyperedge of H′i. By Lemma 1 we get that si(j) = O(nηd). In

the same way, since for a fixed t the |bj+1(t)| new subsets that are obtained by refinement

of V j,t
i are pairwise different, we have |bj+1(t)| ≤ si(j + 1) = O(nηd). As a result, the

passing from step j to step j + 1 takes time:

O

([∑
v∈F

∣∣∣V j+1
i (t)

∣∣∣]+ n/r1−β + nη · nηd · nηd
)

= O

([∑
v∈F

∣∣∣V j+1
i (t)

∣∣∣]+ n/r1−β + n(2d+1)η

)
.

There are O(nη) loops, that gives us a total running time of:

O

∑
v∈F

ni−1∑
j=0

∣∣∣V j+1
i (t)

∣∣∣
+ n1+η/r1−β + n(2d+2)η

 = O

([∑
v∈F

nη

]
+ n1+η/r1−β + n2(d+1)η

)

= O
(
n1+η/r1−β + n2(d+1)η

)
.

(c) Here the key observation is that
⋃
j Pj contains the intersection with Vi of all the balls848

whose center is in F . We so computed a superset of order O(n(d+1)η) (i.e., O(nηd) per849

loop) that contains all possible intersections between a hyperedge of H−→
` ,G

(Λr) and Vi.850

Since every subset in
⋃
j Pj represents the intersection of a hyperedge of B(G) with Vi,851

and furthermore B(G) has VC-dimension at most d, then for simplicity we may replace852

Hi by the slightly larger hypergraph H′i of which these are the hyperedges (i.e., the853

hyperedges of H′i are the intersections of Vi with all the balls whose center is in F ). Note854

that in order to compute H′i, it is sufficient to eliminate all the duplicated elements in855

this collection
⋃
j Pj , that takes total time O(n(d+2)η).856

The running-time is in Õ(n1+η/r1−β +n2(d+1)η) for any fixed i. Therefore, the total running-857

time is in Õ(n2/r1−β + n1+[2(d+1)−1]η). Recall (see Theorem 2 and its proof) that we have858

Õ(n1+η(c(d+1)−1)) = Õ(n2−εd) for some constant c > 2. As a result, the running-time of this859

part is also in Õ(n2/r1−β + n2−εd).860
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3. By continuing the algorithm of Theorem 2 with the hypergraphs H′1,H′2, . . . ,H′p, we get a861

spanning path ofH−→
` ,G

(Λr) whose stabbing number is in Õ(n1−εd). It remains to compute, for862

every hyperedge of H−→
` ,G

(Λr), the set of the stabbed edges. For that, let v ∈ F be fixed. We863

add all the radii t such that N t
G[v] is a hyperedge of H−→

` ,G
(Λr) in a balanced binary research864

tree Tv. Then, we scan all the edges xy of the spanning path. By symmetry let us assume865

that distG(v, x) ≤ distG(v, y). The edge xy is stabbed by all the hyperedges N t
G[v] such that866

distG(v, x) ≤ t < distG(v, y). Then by using Tv, after some pre-computation in time O(log n)867

every value t in the range [distG(v, x); distG(v, y)) can be enumerated in constant-time.868

Overall, by Lemma 17 there areO(nrβ) hyperedges, and so the construction of all the balanced869

binary research trees takes time Õ(nrβ). Scanning all the edges, for every boundary vertex,870

takes total time Õ(n2/r1−β). Any other operation corresponds to an edge of the spanning871

path that is stabbed by a hyperedge of H`,G(Λr), and as a result there can only be Õ(n1−εd)×872

O(nrβ) = Õ(n2−εdrβ) such operations.873

Altogether combined, the running time of the algorithm is in Õ(n2/r1−β + n2−εdrβ).874

The algorithm875

We are now ready to prove the main result of this section.876

Proof of Theorem 6. By a classical dichotomic argument it is sufficient to prove that for any877 −→
` = (`v)v∈V , we can decide whether ∀v ∈ V, eccG(v) ≤ `v in truly subquadratic time (i.e., we878

perform n simultaneous binary searches in order to compute all the eccentricities). Furthermore,879

we claim that in order to solve this decision problem, we are left with computing a spanning path880

of strongly subquadratic total stabbing number for the hypergraph E−→
`

(G) := (V, {N `v
G [v] | v ∈ V }).881

More precisely, we claim that it is sufficient to compute a spanning path P−→
`

for the latter, along882

with a collection (IP−→
`

(v))v∈V such that, for every vertex v, IP−→
`

(v) is a set of (possibly intersecting883

and/or overlapping) intervals of P−→
`

whose union equals N `v [v], and furthermore
∑

v∈V |IP−→` (v)| is884

strongly subquadratic in n. Indeed, with essentially the same proof as for Lemma 6, then we can885

solve our decision problem, for every vertex separately, in time Õ
(∑

v∈V |IP−→` (v)|
)

. Let C and886

α < 1 be such that G ⊆ Gα,C and set β := 4+α
5 < 1. We first prove the following intermediate result887

for any value r > 0.888

Claim 3. In Õ(nr + n2/r1−β) time, we can compute a spanning path P−→
`

for E−→
`

(G), such that889 ∑
v∈V |IP−→` (v)| = Õ(n(r + n1−εdrβ)).890

Proof. By Lemma 16 we can compute an r-division, denoted Λr, in time Õ(n1+β) = Õ(n2/r1−β).891

Then, we proceed as follows.892

1. We first consider all the clusters W ∈ Λr sequentially. For every x ∈ W , we compute a893

breadth-first-search from x in G[W ], the subgraph induced by W . It takes time O(r) per894

vertex. Furthermore by Lemma 15 we have
∑

W∈Λr
|W | = Θ(n), and so this step takes time895 ∑

W∈Λr
O(|W |2) = O(r) ×

∑
W∈Λr

|W | = O(rn). Overall for every u ∈ V , we computed all896

the vertices v ∈ N `u
G [u] such that at least one uv-path of length ≤ `u is fully contained in a897

cluster.898
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2. Let us now consider the
−→
` -neighbourhood hypergraph H−→

` ,G
(Λr). By Lemma 18 we can899

compute a spanning path P−→
`

of stabbing number Õ(n1−εd) for this hypergraph, in time900

Õ(nm/r1−β + n2−εdrβ) = Õ(n2/r1−β + n2−εdrβ). Let u ∈ V . There are two cases:901

• Case u is a boundary vertex. Since N `u
G [u] is a hyperedge of the boundary hypergraph,902

we have |IP−→
`

(u)| = Õ(n1−εd) (already computed).903

• Case u is an internal vertex. Let W ∈ Λr be the unique cluster containing u, and set904

initially IP−→
`

(u) := ∅. For every boundary vertex v ∈ V (W ), if distG(u, v) < `u then, we905

add all intervals corresponding to N
`u−distG(u,v)
G [v] to IP−→

`
(u). Assuming there are bW906

boundary vertices in W , we obtain that |IP−→
`

(u)| = Õ(bW · n1−εd). Furthermore, this907

above set of intervals covers exactly the balls N
`u−distG(u,v)
G [v], for the boundary vertices908

v ∈ V (W ). By construction, every vertex that is contained in one of these balls, defined909

above, is at a distance ≤ `u to u; conversely, since Λr is also an edge-covering, every910

vertex of N `u
G [u]\N `u

G[W ][u] must be in one of these balls. As a result, in order to construct911

IP−→
`

(u), it suffices to update this set using the vertices of N `u
G[W ][u] (already computed912

during the first step). Note that by doing so, we can only modify the cardinality of913

IP−→
`

(u) by an O(|W |) = O(r).914

Overall, we obtain that
∑

u∈V |IP−→` (u)| = Õ(nr+n1−εd ·
∑

W (bW · |V (W )|)) = Õ(nr+rn1−εd ·915 ∑
W bW ). Again we observe that

∑
W bW is at most twice the excess, and so by Lemma 15916 ∑

W bW = O(n/r1−β). Therefore,
∑

u∈V |IP−→` (u)| = Õ(n(r + n1−εdrβ)).917

�918

Overall, the running-time of our algorithm is optimized when we have n2/r1−β = n2−εdrβ. As919

a result, a good choice is r = Θ(nεd). Finally, we stress that in this case, the running time is in920

Õ(n2−(1−β)·εd), that is truly subquadratic because β < 1.921

5.3 Extension to weighted graphs922

Finally, we study whether some of our results can also be applied to weighted graphs. By a weighted923

graph, here we mean a pair (G,w) where G = (V,E) is an unweighted graph and w : E → R+
924

assigns a positive weight to every edge. The distance distG,w(u, v) between two vertices u, v is the925

least weight of a uv-path in G. For any non-negative real r and any vertex v, we define similarly926

as before N r
G,w[v] = {u ∈ V | distG,w(u, v) ≤ r}. Finally, let Bw(G) = {N r

G,w[v] | v ∈ V, r ≥ 0} be927

the ball hypergraph of (G,w). Note that Bw(G) is finite since G also is. We define the distance928

VC-dimension of (G,w) as the VC-dimension of Bw(G).929

Lemma 19. Let G be a class of unweighted graphs that is closed under edge-subdivisions. If every930

graph in G has distance VC-dimension at most d, then every weighted graph (G,w) such that G ∈ G931

also has distance VC-dimension at most d.932

Proof. We first transform all the edge-weights in rational numbers, then in integers. Specifically,
fix ε > 0, and for every edge e, replace we by a rational number w′e such that |we − w′e| < ε

n .
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Note that doing so, we have for every pair u, v of vertices: |distG,w(u, v) − distG,w′(u, v)| < ε. In
particular, for a small enough ε, we will have:

∀u, v, x, y ∈ V (G)

{
|distG,w′(u, v)− distG,w′(x, y)| < 2ε if distG,w(u, v) = distG,w(x, y)

|distG,w′(u, v)− distG,w′(x, y)| ≥ 2ε otherwise.

As a result, every ball in Bw(G) is a ball in Bw′(G), i.e., Bw(G) ⊆ Bw′(G). So, we assume from933

now on that all the edge-weights are rational numbers. By multiplying all the edge-weights by a934

sufficiently large integer, we may further assume that all the edge-weights are positive integers.935

Under this above assumption, we may replace every edge e ∈ E(G) by a path of length we.936

Doing so, we get an unweighted graph Gw such that V (G) ⊆ V (Gw) and, for every u, v ∈937

V (G), distG,w(u, v) = distGw(u, v). By the hypothesis, Gw ∈ G, and therefore it has distance938

VC-dimension at most d. We are done as Bw(G) is a partial sub-hypergraph of B(Gw) (i.e., the939

ball hypergraph of Gw, as it was defined in Sec. 2.2).940

Now, let us consider the framework introduced in Theorem 6. Given
−→
` = (`v)v∈V , we want to941

decide whether ∀v ∈ V, ecc(v) ≤ `v. For that, in the algorithm that we proposed for Theorem 6,942

we need to compute an appropriate r-division. We also need to compute shortest-path trees from943

different source vertices, which for weighted graphs can be done in quasi linear time by using944

Dijkstra’s algorithm. Correctness of this algorithm only follows from the boundedness of the VC-945

dimension for the ball hypergraph. So, in particular, under this same condition, we may apply our946

algorithm to weighted graphs, and for an arbitrary collection of positive real numbers. However, in947

order to compute the exact value of the eccentricities, we need to apply this algorithm for different948

values of
−→
` . More precisely:949

• If all the edge-weights are positive integers bounded by M , then the eccentricities must be950

between 1 and Mn. We compute the exact value of the eccentricities with n simultaneous951

binary searches, that induces an O(log (nM)) overhead in the total running time.952

• If now all the edge-weights are positive real numbers, then the range of possible eccentricities953

for each vertex is too large and we cannot perform a binary search directly. We compute954

the eccentricity of an arbitrary vertex, which we denote by `0. By the triangular inequality,955

every vertex has its eccentricity between `0/2 and 2`0. Then, we only consider in this interval956

[`0/2; 2`0] the powers of 1 + ε, where ε > 0 is an arbitrarily small precision parameter. We957

observe that the number of distinct powers of 1 + ε between these two values is in O(ε−1).958

As a result, we can compute an (1 + ε)-approximation of all the eccentricities by using binary959

search, that induces an O(log (1/ε)) overhead in the running time.960

Summarizing, we get:961

Theorem 9. Let G be a monotone graph class with strongly sublinear balanced separators, that962

is stable under edge-subdivisions and such that all the graphs in G have distance VC-dimension at963

most d. Then for some constant εG(d) ∈ (0; 1) that only depends on d, for any weighted graph964

(G,w) such that G ∈ G we can compute:965

• the exact value of all the eccentricities, in deterministic time Õ(n2−εG(d) logM), if all the966

edge-weights are integers bounded by M ;967
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• or, for any ε > 0, an (1 + ε)-approximation of all the eccentricities, in deterministic time968

Õ(n2−εG(d) log (1/ε)).969

Finally, we observe that all the required conditions for the graph class G in Theorem 9 hold for970

the proper minor-closed graph classes:971

Corollary 2. For every weighted H-minor free graph, for some constant εH ∈ (0; 1) that only972

depends on H, we can compute:973

• the exact value of all the eccentricities, in deterministic time Õ(n2−εH logM), if all the edge-974

weights are integers bounded by M ;975

• or, for any ε > 0, an (1 + ε)-approximation of all the eccentricities, in deterministic time976

Õ(n2−εH log (1/ε)).977

6 Open Problems978

We left open whether we can compute the diameter of all the graphs of constant distance VC-979

dimension in truly subquadratic time. In order to prove that it is the case, we stress that by our980

Theorem 3 we only need to consider the graphs of large diameter, i.e., above some polynomial.981

Furthermore, we observe that there exist graph families of unbounded (distance) VC-dimension982

for which we can compute the diameter very efficiently. For instance, recall that a vertex is universal983

if its closed neighbourhood contains all vertices. If we add a universal vertex to a graph G, thus984

getting a supergraph G′ with one more (universal) vertex, then any subset shattered by N1(G) is985

also shattered by N1(G′), and therefore the VC-dimension of G′ is at least the one of G. It implies986

that the class of all the graphs with a universal vertex has unbounded VC-dimension. Clearly, we987

can compute the diameter of any graph with a universal vertex in linear time. Even more strongly,988

such graphs are a particular case of dually chordal graphs, for which we also know how to compute989

the diameter in linear time [13]. We observe that the ball hypergraphs of dually chordal graphs990

also admit some nice characterizations. Thus, it would be very interesting to study whether a truly991

subquadratic algorithm for computing the diameter could be derived from some common property992

of dually chordal graphs and graphs of constant distance VC-dimension (say, a bounded fractional993

Helly number [60]).994

Finally, it would be interesting to study whether we can solve other distance problems using995

our techniques in this paper. For instance, the Wiener index of a graph is the sum of all its996

distances. In [17], Cabello also presented the first truly subquadratic algorithm for computing997

the Wiener index on planar graphs, using the same techniques based on Voronoi diagrams as for998

diameter computation. For the graphs of constant distance VC-dimension and constant diameter,999

we can slightly modify the proof of Theorem 3 in order to also compute their Wiener index in truly1000

subquadratic time. Indeed, this is because we compute a spanning path of low stabbing number1001

for every k-neighbourhood hypergraph (from k = 1 up to the diameter value). Doing so, we can1002

compute the distance distribution of the graph (i.e., the number of pairs of vertices at distance1003

i, for any i), and therefore, also the Wiener index. However, for the proper minor-closed graph1004

classes, we currently do not see any way to extend our approach in Theorem 6 in order to also1005

compute their Wiener index in truly subquadratic time. The fine-grained complexity of computing1006

the Wiener index within proper minor-closed graph classes is left as an intriguing open question.1007
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[13] A. Brandstädt, F. Dragan, V. Chepoi, and V. Voloshin. Dually chordal graphs. SIAM Journal1043

on Discrete Mathematics, 11(3):437–455, 1998.1044

[14] K. Bringmann, T. Husfeldt, and M. Magnusson. Multivariate analysis of orthogonal range1045

searching and graph distances parameterized by treewidth. In IPEC, 2018.1046

[15] K. Bringmann, T. Husfeldt, and M. Magnusson. Multivariate analysis of orthogonal range1047

searching and graph distances. Algorithmica, 82(8):2292–2315, 2020.1048
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