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Abstract

Optimization of multiplicative algebraic reconstruction technique (MART), simultaneous
MART and block iterative MART reconstruction techniques was carried out on synthetic and
experimental data. Different criteria were defined to improve the preprocessing of the initial
images. Knowledge of how each reconstruction parameter influences the quality of particle
volume reconstruction and computing time is the key in Tomo-PIV. These criteria were

applied to a real case, a jet in cross flow, and were validated.
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1. Introduction

Tomographic reconstruction techniques appeared in 1970
(Gordon et al 1970). These techniques were first used in
the medical field, and in this context internal organs can be
reconstructed in a computational domain and analyzed. This
type of tomography relies on essentially infinite viewing or
sampling angles on a stationary target. With the introduction of
Tomo-PIV, tomographic algebraic reconstruction techniques
(ART) have been extended to the PIV field to reconstruct 3D
particle distribution to study complex flows. These methods
are well suited to resolve the problem of an indeterminate
system, but are very expensive in computation time and
memory storage. The multiplicative ART (MART) method
is the algebraic technique mostly used in Tomo-PIV. This
method has proved its relevance for reconstructing objects
with large velocity gradient (Verhoeven 1993). It has also
been shown that MART gives a better result than ART with
more distinct particles. Tomographic reconstruction results

realized with MART have shown that the particles positions
are reconstructed correctly (Elsinga 2008).

Different comparisons between algebraic reconstruction
techniques such as ART, adaptive ART, SIRT (simultaneous
iterative reconstruction technique), simultaneous ART, MART
and simultaneous MART (SMART) have already been
performed and results showed that MART and SMART were
the more robust reconstruction techniques (Atkinson and Soria
2007, 2009).

A drawback of such reconstruction techniques is the
computational cost. Discetti and Astarita (2011a) proposed
a multi-resolution strategy to reduce it. Bilsky er al (2012)
introduced the MENT algorithm for Tomo-PIV which is even
faster than SMART but seems to be slightly less accurate than
the previous algorithms. Most of the ways to accelerate the
computation are based now on the massive parallelization on
CPUs or GPUs. Recently, more efforts have been dedicated to
accelerate the correlation algorithms.

Recently, the optimization of the technique has
slowed somewhat and a survey of the literature suggests
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that, increasingly, published material is dedicated to the
applications of the technique. The recent review by Scarano
(2013) shows the diversity of the applications using Tomo-PIV.

In this paper, we wanted to show that the classical
reconstruction algorithms (MART and SMART) have not
yet been optimized and that some parameters can be tuned
to increase the reconstruction quality and to reduce the
reconstruction time. In section 2, the volume reconstruction
problem is detailed and the methodology is described. In
section 3, the influence on synthetic images of all the
parameters is studied and an optimization is proposed. An
optimized algorithm is applied on experimental images in
section 4 and some specific problems are addressed.

2. Volume reconstruction

2.1. Definitions

In this part, the problem of volume reconstruction is considered
as an inversion of the projection operator. Let VV be a volume of
particles illuminated by a laser sheet. N cameras focus on this
volume, generating N images Z, with 1 < n < N. The light
intensity ata point X in V is E (X ). The intensity of the light ata
pointx in the image Z, is I, (x). The geometric correspondence
between a point X in the volume and a point x in the image Z,, is
determined by the camera optical arrangement. It is described
by a projection function ,, defined in equation (1):
Un(X) = x. ey

It is considered that the projection of a point in the volume on a
given image is unique. A back-projection function can also be
defined; however, for a given point x in the image Z,,, there is
not one unique corresponding point in the volume but a set of
points. This set of points, in the volume whose projection is x,
is a curve called the line-of-sight (LOS),, (x). In the remainder
of this paper, ey is the direction perpendicular to the laser sheet.
All the lines of sight can be parametrized using the variable
Z. For a given Z, the back-projection function can be defined
such as given in equation (2):

v, (. 2) = (X. Y, 2). @
In practice, these projection and back-projection functions are
obtained through a rigorous calibration procedure.

To obtain arelation between E and I,,, the light propagation
must be taken into account and some assumptions made on the
medium constituted by the particles. If the particles are small
enough to diffuse the light, then the medium can be considered
transparent and the particles are modeled as localized light
sources. In PIV applications, the concentration of particles is
sufficiently sparse that the light attenuation can be considered
negligible. The optical system must also be considered as some
defaults can be accounted for. An optical transfer function
(OTF) (Schanz et al 2010) can be introduced. The projection
of a Dirac light distribution in the volume is therefore a
distribution of light in the image. The relation between E and
I, is given in equation (3):

Zmax
I, (x) =f ¢ (x; u)/ EW, ' x+u, 2)
x+uel, Znin
%
X

_n_

’ 4z du, 3)

where ¢ is the OTF. In this paper, a Dirac function in
the volume gives a Dirac function in the images. Hence,
equation (3) simplifies to equation (4):
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Equation (4) describes the direct problem of the projection. The
volume reconstruction in Tomo-PIV consists in the inversion
of this equation. It is an ill-posed inverse problem. The solution
is not unique and has been shown to be very sensitive to noise.
This problem can be solved numerically using an inversion in
Fourier space, but in the case of a restricted number of views,
iterative methods are more appropriate (Herman 1980). These
iterative methods are based on a discretization of the problem
and are described in the next section.

2.2. Discretization

Let the dimensions of the camera images be n; x n; where i
and j refer to the row and column dimension respectively. The
position of a pixel is given by x, = (i, j). It is possible to use
a 1D representation using the index p = i 4 n;j. The intensity
distribution on each image 7, is decomposed on a finite set of
pixels following equation (5):

Py
L(x) = Lypix(x — x,). )

p=0

The function pix() describes the pixel basis function. In
this paper, a squared function of side length equal to 1 is
considered, defined in equation (6):

pix(x) = x () x (), (6

where x is the characteristic function over the interval
[—0.5, 0.5]. The intensity of one pixel is then given in
equation (7):

Zmax

dZ dx.
(N

a —1
EW,; ' (x, 2)) H;”—Z

Inp Z/ pix(x_xp)
7,

n Zmin

The volume can be discretized in the same way. The
dimension of the volume is Nx x N; x Nj. The origin of
the volume is (Xy, Yy, Zp). The voxel real dimensions are
AX, AY and AZ. The position of a voxel is given by
Xy = (Xo +JAX, Yo + IAY, Zy + KAZ). The index used
for a 1D representation is given by V = I + N;J + N/N,;K.

The voxel basis function is defined in equation (8) as a
squared function but other functions could be considered (Petra
et al 2009):

X Y Z
o =x(ge)r(z7)e(2) w

The intensity of one pixel is then given in equation (9):

Ly = Z wpvEy, ©))
v



where w,y defined in equation (10) is the geometric interaction
between the pixel np and the voxel V:

/ x( ) wHy X Xy Y — Yy
w = 1X(X — X
v Inp )4 ZV7¥ X AX X AY

2y,
0Z
where X = ¥, '(x, Z).ex and Y = ¥, (x, Z).ey. wpy is
the volume of the intersection between the voxel (a cube in
our case) and a pyramid, which cannot be calculated exactly.
Different approximations are proposed in the literature.
Several methods are tested in this paper.

X

(10)
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e Direct. The simplest model considers that if the center
of the voxel V is projected inside the pixel p, wy,y = 1,
otherwise, w,yy = 0.

e Bilinear. w,y is given here by the weight the voxel V
would have if we wanted to interpolate, with a bilinear
method, the volume intensity at the position of the back
projection of pixel p.

e LOS length. The voxel V is modeled by a sphere and
the pixel by a point. wy is the length of the intersection
between the sphere and the LOS divided by the sphere
diameter.

e Gaussian. wp,y is a Gaussian function depending on the
distance r between the projection of the voxel center and
the pixel considered. w,y = exp(—r?1log 20).

e Disc-intersect. As introduced by Lamarche and Leroy
(1990), the pixel is approximated by a disc of radius
R=1/ V2 and the voxel by a sphere of the same radius.
The pyramid is approximated by a cylinder of radius R.
w,y is the volume of the intersection of the cylinder and
the sphere divided by the sphere volume. r is defined
as the distance between the center of pixel p and the
projection of the voxel V, if d > 2r, w,y = 0, otherwise
wpy = 2(2R%acos(r/2R) — r/2v/4R* — 1?)

o Subvoxel. The voxel V is decomposed into nsx X nsy X nsz
subvoxels. wpy is the proportion of subvoxels that are
projected inside the pixel p.

Some of these models are plotted in the figure 1. Except
for the subpixels and subvoxels approximations, all the models
depend only on the distance between the projection of the voxel
center and the pixel center (Thomas et al 2010). It is supposed
that they are uniform for all voxels and pixels. This hypothesis
can be reduced using the OTF functions. For example, the
Gaussian function with circular shape can be replaced by a
Gaussian function with an elliptical shape and variable radius
to take into account the variation of the voxels’ projection size
and some optical aberrations such as defocusing, blurring or
astigmatism. The main drawback of using OTF functions is
that a calibration is needed to adjust these parameters (Schanz
et al 2010).

The discretization of the problem leads to the linear
problem given in equation (9) to invert. Many algorithms have
been developed so far. The most commonly used in Tomo-PIV
are presented in section 2.3.
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Figure 1. 1D representation of some of the projection models.

2.3. Reconstruction algorithms

As the problem is ill posed, all the methods aim to minimize
the difference between the images’ intensity and the projected
volume intensity. Two strategies are mainly used to achieve
this minimization: using a sparse norm (Petra et al 2007)
or maximizing the entropy. In this paper, the last family of
algorithms, MART, SMART and BIMART, which maximize
the entropy, are discussed.

e Multiplicative algebraic reconstruction technique. It is
the first algorithm used in Tomo-PIV. It was introduced in
the domain by Elsinga ef al (2006). It is based on global
entropy maximization. For each pixel p, the intensity of
all the voxels along LOS(p) = {V € V, w,y > 0} is
updated iteratively following equation (11):

EST = E} ( (11)

Hwpy
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MART converges toward a positive solution. w is a
relaxation parameter.

o Simultaneous multiplicative algebraic reconstruction
technique). It was used in Tomo-PIV for the first time by
Atkinson and Soria (2009). It is based on a maximization
of global cross-entropy. The intensity of all the voxels is
updated iteratively following equation (12):

k+1 k Ip ey T
EMtl = (1, | =—2— )
st (n(stg) )

SMART converges toward a positive solution. The main
advantage of SMART is that it can use less memory than
MART, using a proper initialization (see section 2.4).

e Block iterative MART. This method has been introduced
by Byrne (2009). It is a generalization of both MART

12)



and SMART. It is based on the maximization of the cross-
entropy. Eachimage is divided in Q blocks B,,1 < ¢ < Q.
The algorithm is given in equation (13):

Ip Yabvwpy
= . (13)
>y wEy )

There is a condition on y,; and dy: 0 < sy y,6V < 1.5y is
definedas } ;5 wpy. Similarly, sy is given by ZqQ=1 Sqv-
There are two ways two define dy and y:

Eé*l = E\’;npegq (

* 8y = land y, = (maxv{sqv})_l

* Sy = s;l and y, = (maxv{squ;l})’l.

In practice, we considered y,6y = p in order to reduce
the computation time slightly.

2.4. Initialization

All these algorithms need to be initialized. The simplest way
to initialize the volume is to set all the voxels’ intensities to 1.
This initialization is generally not ideal because it is far from
the final solution, a volume of predominantly zero intensity
voxels. One way to improve this is to initialize the volume
with a first guess. Several procedures have been implemented
so far. Worth and Nickels (2008) suggested to use a minimum
LOS initialization (minLOS): each voxel is initialized with
the minimum value of each pixel in direct interaction with it.
As in ideal images, the background has a zero value, this first
guess of the volume is sparse. The main interest is that, in
further reconstruction iterations, there is no longer any need
to process zero value (or black) voxels. Although this is a
non-iterative and therefore fast method to determine particle
locations in the volume, it is not sufficient to obtain a proper
solution by itself because it does not reduce the ghost particles’
intensity. Another similar way to initialize the volume is the
multiplicative LOS (MLOS): instead of taking the minimum
value, the geometric average is considered.

Another technique to speed up the process is to use a
fast reconstruction algorithm first and then switch to a slower
but more precise algorithm. In this paper, a fast version of
the SMART algorithm, called the SMART_FAST, was used.
It is similar to SMART but with a fast implementation of
the bilinear weighting function. For each voxel, the weight is
computed using only 4 pixels per camera. The initial solutions
are compared and also the solution after 5 MART iterations and
15 SMART iterations. The smart n initialization corresponds
to n iterations of SMART_FAST.

3. Synthetic data results

To characterize the different algorithms, we tested them on
the same computer configuration: a single Intel Core2 T9600
2.8 GHz CPU using 4 Go RAM. All the programs were
developed in C++ using the SLIP library (Tremblais et al
2010).

3.1. Image generator

Synthetic images were generated in this study to investigate
the accuracy of the reconstructed volumes. Volumes were filled
with Gaussian particles, with 3.5 voxels diameter leading to
particle images of around 6 pixels in diameter. The reference
concentration was chosen so the number of particles per pixel
(ppp) is equal to 0.05. This ppp was computed exactly as the
number of particles in the volume, divided per number of active
pixels in the considered image, which are defined as the pixels
whose LOS is crossing the volume. Another characteristic of
the concentration of particles in the images is the image signal
ratio Ns (Scarano 2013), defined as the percentage of non-
black pixels in the active pixel’s set. This parameter is more
representative of the particle concentration as it takes into
account the particle size. The projection is made in the same
way it is performed in volume reconstruction. The particles
are advected using a Runge—Kutta 45 algorithm. The velocity
field used is an ABC flow defined by

u(X,t) = Asin(kZ) 4+ Ccos(kY)
v(X,t) = Bsin(kX) + A cos(kY)

w(X,t) = Csin(kY) 4+ Bcos(kX)

with A = +/3, B = +/2, C = 1 and k = 1/20. The images
are 300x300 pixels and the volume is 238 x238x 72 voxels.
The calibration model is a pinhole model, without distortions.
Four cameras are used, set regularly on a circle and viewing
the volume at a 30° angle with the Z axis.

3.2. Correlation algorithm

The correlation algorithm is iterative and multi-grid, with
signal-to-noise ratio validation and median filter. The main
goal was to compare the velocity field computed using the
reconstructed volumes and the ones obtained with the original
synthetic volumes. The time interval d¢f between the two
exposures was found best equal to 1, leading to around 4 voxels
for the maximum particle displacement. The interrogation
window size is chosen equal to 24° voxels. These values
are not universal, but they are the best in this case for the
correlation algorithms and this velocity field. The particle size
corresponds to 23 voxels particles, equivalent to a particle
diameter of 3.5 voxels. For a seeding density of 0.001 ppv,
the number of particles per interrogation window is equal
to 12.

3.3. Quality evaluation

The quality of the reconstruction algorithm is evaluated
through several quantities.

e Reprojection quality Q;. It is computed as the normalized
cross-correlation between the original images and the
projections of the reconstructed volume. It characterizes
the convergence of the algorithm, but not the accuracy of
the solution.
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Figure 2. Evolution of the volume reconstruction quality with the
voxel size divided by the reference voxel size (computed by the
program).

e Reconstruction quality Q,. It is computed as the
normalized cross-correlation between the original volume
and the reconstructed one. It is independent of the volume
discretization as the reference volume is computed from
the list of particle locations and discretized using the same
grid as the reconstructed volume.

e Correlation quality Q.. The quality of the velocity field
can be computed similarly to the previous quality factors
(normalized cross-correlation Q.). However, as the field
is vectorial, a normalized cross-correlation compares only
the angle and not the magnitude. For that reason, Q.
is defined as the ratio between the root-mean-square
difference between the velocity field computed using the
synthetic volumes u.; and the analytical one u.f and the
root-mean-square difference between the velocity field
computed using the reconstructed volumes Wyeconstruct and
the analytical one:

Q/ _ Z[ ”ucorri — urefi||2
¢ Z,’ | |ureconslrucli - urefi| |2 .
This quantity is used in order to eliminate the correlation
algorithm errors and consider only the influence of
the volume reconstruction quality on the velocity field
computation.

(14)

3.4. Volume discretization

In this study, only cubic voxels were considered of size cs.
The volume is discretized such that the voxel projection size
is approximately equal to 1 pixel. In general, this cannot
be true inside the whole volume, since the voxel projection
size depends on the distance of the voxel from the camera.
Therefore, in this analysis, the largest voxel projection size
is equal to 1 pixel. This voxel size gives a projection to
1 pixel and is labeled as having size csy. The influence of
the volume discretization is presented in figure 2. The effect of
the voxel size on Q; and Q, is shown for the MART, SMART
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Figure 3. Evolution of the quality factors with the number of MART
iterations for the different projection discretization methods.
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Figure 4. Reconstruction time for the different projection
discretization methods.

and SMART_FAST algorithms. Concerning Q;, the smaller
the voxels, the better the reprojection is. However there is
only marginal improvement for cs/csy < 1. The computation
time is inversely proportional to the voxel size. When the
reconstruction quality @, is considered, there is an optimal
value; for MART, this is around 1, but if the voxels are smaller,
the quality stays acceptable. For SMART_FAST, the optimum
is around 0.8, but below 1 it is almost constant. For SMART,
the optimum is around 1.1, with a rather pronounced peak. The
value cs generally chosen for the voxel size seems to be a good
compromise between the computation time and reconstruction
quality.

3.5. Projection discretization

The influence of the projection discretization is considered in
terms of the quality (figure 3) and computation time (figure 4).

Concerning the reprojection quality @;, all the
discretizations are equivalent except the direct method, which
is to the point where we recommend it is unusable. The



first column: 0O iterations |:| Q

second column: 5 MART iterations ] Q,

third column: 15 SMART iterations o Q)
1 — — — — — — —

3 1o init — [ [ |
Gl pelel sl ( (SRl | (SR | (s[=| | [s[=
0.8 — — — - 1 1

I . 5 .
u . O L
- 0O
0.6 11 — — — - 1 1
| u
o i Ol
B u
0.4 | 1l | — — — —
0.2 — — — — — 1
[~ ||
° :\ & & v RSN ®
Q&
(\o\ &\&, & é((b é‘@ é((b é‘@

Figure 5. Influence of the initialization of the algorithms on the
different qualities.

reconstruction quality is much more influenced by the
projection discretization. The best results are obtained using
the bilinear and the Gaussian weighting functions. Eventually,
the correlation quality is the best for the disc-intersect and the
Gaussian weighting functions. The los-length method is less
precise than the others and should not be used.

Concerning the computation time, except for the los-
length and the subvoxel methods, the computation time is
more or less equivalent. The direct method is the fastest, but
not by far.

3.6. Initialization

The initialization of the algorithm can have a great influence
on the final solution of the problem, as there can be several,
and on the computation time. This has been reported in figures
5 (for the quality) and 6 (for the computation time). SMART
n represents an initialization modification that encompasses a
minLOS first step and then # iterations of SMART_FAST.
Figure 5 compares the initial solution and also the
solution after 5 MART iterations and 15 SMART iterations.
SMART_FAST initialization gives the best initialization.
However, at the end of the reconstruction algorithm, the
differences are not so obvious in terms of quality. minLOS
and SMART 5 lead to the same reconstruction quality, but the
correlation quality is slightly better with SMART 5. MLOS
gives a little lower quality, and the ‘no init’ result is below
MLOS. The main differences are in terms of the computation
time. SMART 4 is more efficient (around 15% faster), because
it eliminates quickly some voxels with low intensity. With this
initialization, 5 MART iterations is equivalent to 15 SMART
iterations. With only minLOS, SMART is slower than MART.
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Figure 6. Influence of the initialization of the algorithms on the
reconstruction time.
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Figure 7. Evolution of the qualities with the number of iterations.
Comparison of different algorithms.

3.7. Number of iterations

The number of iterations needed to converge is different for
the algorithms. The convergence is shown in figure 7. The
best reconstruction quality that can be obtained in these data is
92% for SMART, 94.5% for BIMART and 95.5% for MART.
The number of iterations needed to reach this maximum
is 8 for MART and BIMART and 20 for SMART. Five
MART iterations are equivalent to eight BIMART iterations.
The reprojection quality is around 98.5% for MART and
BIMART and 98% for SMART, showing that the convergence
is equivalent. The maximum correlation quality is 95% for
SMART after nine iterations and 97.5% for BIMART after
two iterations. The MART correlation quality is still increasing
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Figure 8. Evolution of the computation time with the number of
iterations. Comparison of different algorithms.

after 11 iterations where it reaches 98%. Hence MART in
general converges toward a better solution, but it is closely
followed by BIMART. SMART seems to be slightly less
accurate.

As a standard test case, we use 5 iterations for MART,
8 iterations for BIMART and 15 iterations for SMART.
Considering these values, the computation time is presented
in figure 8. Five MART iterations take 132 s on a single
2.8 GHz CPU, while it takes 77 s (almost 50% gain) to
compute eight BIMART iterations. This is equivalent to 20
SMART iterations. SMART is faster than the other algorithms,
because all images simultaneously update the reconstruction
field, but the accuracy is lower, due to the difficulty we have
had to find an appropriate filtering of the volume. BIMART is
a good compromise: its accuracy is equivalent to MART and
the computation time is comparable to SMART.

3.8. Relaxation parameter

The relaxation parameter p is usually taken equal to 1.
Nevertheless, its optimal value depends on the number of
iterations. This influence is evaluated in figure 9 with the
reconstruction quality.

For each iteration number, the optimized value of u is
obtained. It can be observed that the optimal values vary with
the number of iterations if. The optimal reconstruction quality
at each step is always increasing, and after two iterations
the optimal relaxation parameter decreases monotonically,
otherwise, the algorithm does not converge any more. The
same kind of evolution can be observed for the different
reconstruction algorithms tested in this paper. The law for
it > 11is given in equation (15):

w=ait™’ +ec. (15)

The specific coefficients a, b and c are given in table 1.

The same study can be performed for SMART, but the
law is much less regular and the relaxation parameter value is
in general larger than 1. This value is less stable in the sense
that if the relaxation parameter value is slightly increased, the

0.96 s
g St ———
B A o ———
- @
it=4
0.94 | © L
i it=3
0.92} ® it=2
. |
¢ i
09}
0.88 |-
- it=1
0.86 |-
[ | |
0.6 0.8
ol

Figure 9. Optimization of the relaxation parameter. For each
number of iterations (MART algorithm), the curves show the
variation of Q, with the relaxation parameter . The gray dots are
put on the maximum values of Q, for each total number of iterations
(given on the right).

Table 1. Coefficients of the law giving the relaxation parameter as a
function of the number of iterations (equation (15)).

Algorithm a b c
MART 0986 0.150 0
BIMART 0.809 0354 0
SMART 228 0410 O
SMART_FAST 8.71 0422 1.07

algorithm can diverge severely. For 15 and more iterations, the
coefficients are given in table 1.

3.9. Volume filtering

Two filters are considered here. The first type, vt, is a threshold
of the volume using a level vtl, considering that the intensities
are normalized between 0 and 1. The second filter, called the
volume Gaussian filter vgf, is a 3 x 3 Gaussian filter applied on
each slice perpendicular to Z in the volume. It was introduced
first by Discetti and Astarita (2011b) as the spatial filtering
improved tomographic (SFIT)-PIV. The effect of the volume
threshold is shown in figure 10, without Gaussian filtering
(black symbols) and with Gaussian filtering (white symbols).
The volume threshold filter, applied without Gaussian filtering,
when the SMART 4 initialization is used, decreases all the
qualities (reprojection, reconstruction and correlation) and
does not speed up the reconstruction. When combined with the
volume Gaussian filter vgf, the quality can be neatly increased
in the MART case, but in the SMART case, it is more difficult
to improve the result because of the slower convergence and
the gain is lower. Concerning the threshold value, there is an
optimum around 0.8% of the volume maximum intensity, but
this value is not universal and depends on the seeding density.

The effect of the frequency of vgf against the number of
iterations was investigated. The best strategy that we found to
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Figure 10. Influence of the volume threshold filter level on the
reconstruction algorithm quality, with and without volume Gaussian
filter.
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Figure 11. Best value (in terms of Q,) of the number of iterations
(vgf_it) during which is applied the volume Gaussian filtering, for
each total number of MART iteration (it).

increase the reconstruction quality Q,, using MART is to apply
the filter only at the beginning of the algorithm. The number
of steps during which it is applied vgf_it can be optimized
as in figure 11. The vgf filter is applied after the iterations 0
to vgf_it (included). What is for sure is that the filter should
not be applied after the last iteration. For SMART, it is better
to apply it three times regularly spaced during the iterations,
with the last filtering pass just before the last iteration. The
threshold level can be optimized for each ppv value, leading
to the curves given in figure 12. The values leading to the best
reconstruction quality are the same for MART and BIMART,
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Figure 12. Optimized volume threshold level (vtl) as a function of
the image signal ratio Ns.

Table 2. Coefficients of the law giving the volume threshold level as
a function of the image signal ratio (equation 16).

Algorithm a b
(BHMART —0.0319176 0.030 4891
SMART —0.049 152 0.050 7119

but different for SMART. For signal image ratio (Ns) values
lower than 70% (corresponding to a ppp equal to 0.05), the
optimal value is constant (0.007 75 for MART and BIMART,
0.01 61 for SMART). For higher seeding density, the optimal
threshold level decreases linearly. The expression is given in
equation (16):

vtl = aN; + b. (16)

The specific coefficients a and b are given in table 2.

3.10. Extra volume thickness and noise

In the previously discussed sections, the laser sheet was
modeled as a square/‘top hat’ function. When the images are
perfect, it should be enough to restrict the reconstruction to
the illuminated volume. In all experimental cases, there is
inherent noise in the data, arising from diffusion, soft edges
on the laser sheet, optical aberrations, defocused particles, to
name a few. It is a good practice to ensure that the laser sheet
profile intensity can be correctly reconstructed, and to show
this one must reconstruct a region thicker than the prescribed
laser sheet thickness. If the laser sheet is located between Z;,
and Z,,.«, while the volume is reconstructed between Z,;, — AZ
and Zyax + AZ, the volume enlargement is defined as 5— XA_Zme ,
where AZ is the added volume thickness. Only the part of the
volume inside the laser sheet is compared to the synthetic
volume. This is shown in figure 13. It represents the impact
of the volume enlargement on the reconstruction quality for
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Figure 13. Evolution of the reconstruction quality with the volume
enlargement for different noise levels.
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Figure 14. Reconstructed laser sheet intensity profiles for a 40%
noise level for different volume enlargements.

different noise levels. When there is no noise, or 10% of
noise (n/ = 0.1), the reconstruction quality does not change
much when a thicker volume is reconstructed. However, in
the presence of a stronger noise, the reconstruction quality
reaches a maximum for a volume enlargement of around 10%.
The improvement gets better as the noise level increases. In
experiments, noise is always present, hence the reconstruction
should always be enlarged by 10% compared to the laser
sheet thickness. It is possible to understand this result by
looking at the laser sheet intensity profile. It is computed as the
average intensity along the XY planes along Z, of the non-zero
voxel values. The result for a 40% noise level is presented
in figure 14 for several enlargements. Without any volume
enlargement, the voxel energy is observed to increase near the
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Figure 15. Saturation of the signal in the images when increasing
the seeding density.

volume edges. With 15% enlargement, the profile is constant
inside the original volume. When increased by more than the
volume thickness, the profile stays flat, but the global level
inside the volume divided by the minimum level outside the
original volume, this quantity giving a signal-to-noise ratio,
decreases. This can be explained as that the contrast between
real and ghost particles decreases, leading to a poorer volume
reconstruction.

3.11. Seeding density and particle size

The influence of the seeding density is important for two
reasons. The first one is a practical one: it is impossible to
estimate the particle concentration from the images for high
densities because of their saturation as illustrated by figure 15.
Figure 15 shows the ratio between the ppp obtained with the
local peaks counting, and the exact ppp, as a function of the
image signal ratio Ns. The number of particles detected tends
to decrease with respect to the real number of particles as
the image signal ratio increases. That means the experimental
ppp is not really an adequate indicator of the number of
particles per voxel (ppv). N is a better indicator to predict the
reconstruction quality that can be obtained, because it takes
into account the particle size. The evolution of the quality of
the reconstruction is given in figure 16 for different algorithms.
The reprojection quality is equivalent for all algorithms and
it increases with Ns. The Q, drops rapidly as Ns increases. It
decreases faster for SMART than for MART. If one considers
also the correlation quality, a limit of 90% gives the limit in
terms of Ns slightly above 80% for MART and BIMART, and
around 65% for SMART.

In figure 17, the reconstruction time for SMART and
BIMART (for different block sizes) is compared. SMART and
BIMART are faster than MART until Ns reaches around 85%.
SMART is the fastest, and for Ns = 70%, the computation time
is 2.2 times higher than for MART. The choice of the block size
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Figure 16. Evolution of quality with the image signal ratio Ns for
the MART, SMART and BIMART algorithms.
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Figure 17. Relative evolution of computation time with the image
signal ratio Ns for the MART, SMART and BIMART algorithms.
The ordinate is the ratio between the computation time needed to
reconstruct a volume with MART and the time needed by the other
algorithm. For MART, this value is always equal to 1.

for BIMART depends on the seeding density. The lower the
density, the bigger the blocks should be. However, for typical
Tomo-PIV density, a block size of 4 seems to be the best choice
as it corresponds to the particles’ size in the images. The best
strategy for choosing the blocks would consist in associating
a block to each particle in the image. For Ns = 70%, the
computation time gain is 1.8, which is similar to SMART, for
a better quality.

The particle size has also an influence on the image signal
ratio. For a typical ppv value of 0.001, the influence of the
particle size (via the number of voxels per particle (vpp)) on the
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Figure 18. Evolution of quality and reconstruction time with the
number of voxels per particle (vpp) for the MART (red), SMART
(blue) and BIMART (green) algorithms.

qualities and the reconstruction time is investigated in figure
18. The reconstruction quality is a constant in the range of 15—
25 vpp (diameter between 2.4 and 3.2 voxels). Over this range,
the quality decreases linearly. Globally, the quality is higher
for MART and BIMART and the results are slightly more
stable than for SMART. The useful range is wider for MART
and BIMART. The correlation quality has a similar behavior
except for small particles. The quality is comparable to the best
results for MART and BIMART. For SMART, the correlation
robustness does not compensate the loss in the reconstruction
quality. Concerning the reconstruction time, MART is slower
than BIMART, which is comparable to SMART.

3.12. Cameras

The position of the cameras is a key parameter to consider as it
cannot be modified a posteriori. It should be optimized during
the experiment setting. The first parameter to be optimized
is the cameras’ spatial arrangement. Five configurations are
shown in figure 19 and the results are presented in figure 20.
In the first configuration (four cams, single plane (squares)),
the cameras are in a single plane perpendicular to Y. They are
on the same side of the volume and the angle between two
adjacent cameras is constant. The optimum angle was found
to be 22°.

In the second configuration (n cams, circle (circles)),
the cameras are regularly placed along a circle, with the
same viewing angle. With three cameras, the optimum is
around 20°, while for more cameras (four, five and six), it is
around 28°.

In the third configuration (four cams, one cam moving
(triangle)), the second configuration with four cameras is
considered. Two cameras are in the XZ plane and two are in the
YZ plane. One camera in the X plane is moving in this plane.
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Figure 19. Sketch of the five different cameras’ configurations studied.
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Figure 20. Comparison in terms of reconstruction quality of four
cameras’ configurations.

For an angle equal to 0, the camera is close to the same position
as the other camera and for 60°, it corresponds to the (four
cams, circle) configuration. The best position is the symmetric
configuration (four cams, circle) (second configuration).

In the fourth configuration (four cams, central camera
(pyramid)), a central camera is added compared to the second
configuration. The viewing angle is varied. The best angle is
also around 28°, but the reconstruction quality is lower. This
configuration is more compact, but leads to lower quality.

In the fifth configuration (four cams, each vol side
(diamonds)), two cameras are on one side, in the X Z plane, with
a30° viewing angle. Two other cameras are on the other side of
the volume in the same plane. The angle varying is between the
cameras’ planes. When equal to 0°, the four cameras are in the
same plane; for 90°, the two cameras planes are perpendicular.
The best angle is when the planes are perpendicular, giving a
result equivalent to the configurations where the cameras are
on the same side. The best configuration is the configuration
2, with a 28° viewing angle for each camera. The effect of
Mie light scattering (that modifies the particles’ intensity on
the images) on the cameras’ best position can be found in de
Silva et al (2012).

Another numerical experiment concerns the number of
cameras and the evolution of reconstruction quality with the
volume thickness (with the same ppv). The results are given
in figure 21, as a function of the laser sheet thickness. Clearly,
the quality loss due to the increases of volume thickness is
lower when there are more cameras. Eventually, the influence
of one camera calibration error (angle deviation) is shown
in figure 22. An error in one camera angular position has
dramatic effects on the reconstruction quality. The maximum
error that can be allowed is no more than 0.5° (corresponding
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Figure 21. Comparison in terms of reconstruction quality for
different camera numbers and volume thicknesses.
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Figure 22. Influence of a calibration error of one camera on the
reconstruction quality.

to a maximum localization error of one particle radius in one
image (on the edge)). Itis interesting to observe that the angular
error modifies largely the reconstructed laser sheet profile, as
shown in figure 23. The ratio between the intensity in the laser
sheet and outside decreases, proving an intensification of the
ghost particles’ intensity.

Different parameters influence the particle volume
reconstruction and modify the quality of the reconstruction.
Similar to the results for numerical data, it is also important to
validate these on real data.

4. Experimental results

The findings from section 3 are applied to some experimental
measurements. A pulsed jet in cross flow was used to compare
different techniques. The experimental setup is described in
Vernet et al (2009). The jet in a cross-flow experiment takes
place in a water channel. A horizontal flat floor was placed in
the channel to generate a 20 mm thick boundary layer close to
the jet nozzle. The square jet of L = 30 mm width has a mean
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Figure 23. Influence of a calibration error of one camera on laser
sheet profiles.

Figure 24. Cameras’ setup used for Tomo-PIV measurements.

injection velocity U j- Itis pulsed at 1 Hz frequency, with an
amplitude giving a jet velocity varying between 0 and Zﬁj.
The non-dimensional numbers (equation (17)) characterizing
the flow are the jet-to-cross-flow ratio R between the mean
jet velocity ﬁj and the cross-flow velocity Uy (R = 1) and
the Reynolds number Re; based on the mean jet velocity, the
characteristic length L (defined as the length of the square
orifice) and the kinematic viscosity v (Re; = 500):
UL U;
v Ucf ’

The measurement setup consists of four 1600x 1200
cameras, coupled with a 200 mJ Nd:YAG laser. The 25 mm
laser sheet is coming from the top; the cameras’ configuration
is shown in figure 24. Some prisms are added on the channel
walls to prevent image astigmatism.

Several preprocessing techniques were tried, but only two
were presented here. Two sets of images were used:

Re; R= (17)



Figure 25. Example of raw acquisition image.

Figure 26. Example of image filtered with a background subtraction
(computed using a temporal median filter of size 5 on five images).

e raw images (leading to large reconstruction times) and

o filtered images, reducing the strong reflections in the
images for the two cameras 1 and 2 (see figure 24) and
using a temporal median filter with five images on each
pixel to compute the background.

The effect of the preprocessing is shown in figures 25 and
26. The gray levels are inverted. The background subtraction
eliminates the reflections, but creates at the bottom of the
images a black region corresponding to the laser reflection at
the bottom of the tank, hence a black region is introduced in the
volume. A misalignment correction was applied, decreasing
the calibration misalignment errors from around 3 pixels to
less than 0.1 pixels. The BIMART algorithm (block size
4) with eight iterations is used. The relaxation parameter is
set automatically to 0.388. A volume Gaussian filtering is
applied and the threshold filter is automatically set to 0.004.
The resulting volume size is 1041x645x202 voxels with
2.74 x 1073 mm? voxel volume. The images are characterized
by ppp =~ 0.048 and Ns =~ 83%. The rather high density
and reflections make it difficult to obtain good results. The
correlation final interrogation window size is 48x48x48
with 75% overlap. Two results are presented: one without

Figure 27. Example of velocity field, computed without
misalignment correction, with vorticity component perpendicular to
the plane image iso-contours.

Figure 28. Example of velocity field, with vorticity component
perpendicular to the plane image iso-contours.

the misalignment correction (figure 27) and one with (figure
28). The iso-contours of vorticity component perpendicular
to the plane considered are displayed with different colors.
The visible areas correspond to a vorticity level above 1 s~
The enhancement of the result is obvious from a physical
point of view: even if the symmetry plane is rather similar,
the longitudinal structures do not exist in the uncorrected
fields, while they appear clearly in the corrected one. The
final velocity field shows the typical structures usually present
in the jet in cross flow. The entrainment under the jet is clearly
visible.



5. Discussion

In the literature, several parametric studies have already been
performed. Elsinga and others performed 2D simulations, and
for example Worth and Nickels (2008) showed that the results
for Q, are lower in 3D. The results depend also on the particle
size. Hence, it is not always easy to compare the results.

The influence of several parameters has already been
tested. The initialization was investigated by Worth and
Nickels (2008), but the test was less extended. The use of the
different weighting functions has not really been compared in
the literature. The number of iterations, the seeding density,
the image noise, the relaxation parameter, the 3D filtering
and the camera angles were the principal parameters
investigated. Globally, the present results are similar to the
previous results, when it is possible to compare. The principal
gains that are obtained here are as follows:

e there is a gain in stability of the reconstruction quality
results till the limit of 0.05 ppp (Ns around 70%), which
is the same as previous studies;

BIMART, a generalized version of the -classical
algorithms, which is a good compromise between speed
gain and accuracy;

a new way to apply SFIT (Discetti and Astarita 2011b),
not after each iteration but only at the beginning, and
combined with a volume threshold;

the relaxation parameter has to be adapted to the final
number of iterations and

the volume enlargement that reduces the impact of noise,
which was something known in the community, but not
studied and published systematically.

Some optimization results may not be universal, such as
the vtl, the initialization with SMART_FAST or the SMART
relaxation optimization, but at least, the experimentalists and
the programmers are aware that some parameters can be
changed in order to improve the reconstruction quality.

6. Conclusion

The MART algorithm family was studied and optimized. The
generalization to BIMART is interesting, as the reconstruction
time is comparable to the SMART reconstruction time, but
with a better accuracy. The most favorable algorithm using
the synthetic data presented herein was BIMART with block
size equal to four, using eight iterations and with a disc-
intersect or the Gaussian functions as the weighting functions.
An initialization with minLOS is necessary to reduce the
computation time. By adding a few iterations of a fast
version of SMART (four typically), the computation time
can be decreased slightly. It was found that the relaxation
parameter should be carefully selected based on the number
of iterations to ensure the most rapid convergence and to
avoid divergence. During the reconstruction, a filter (during
the five first iterations) combined with a threshold (given by
equation (16) as a function of Ns) should be applied to improve
the reconstruction and correlation qualities. A particle size of
around 3 voxels in diameter is ideal to improve the correlation
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quality. The image signal ratio should not exceed 70% for
1% error on the velocity field and 80% for 5% error. Camera
configurations should be carefully planned before undertaking
experiments, with a viewing angle of 27°+£7° for four cameras
in cross configuration and an angle of 21°43° for the planar
configuration. The volume should also be reconstructed wider
by 10% on each side than the laser sheet, especially for noisy
data. A misalignment correction procedure must be applied
systematically.

The BIMART algorithm can be parallelized easily
because of its block architecture. This algorithm includes some
a priori knowledge about the data to reconstruct (maximum
of entropy, particles elongated in Z direction) but it would
also be beneficial to add some stronger a priori, specifying
that we want to reconstruct spherical particles. This has been
partly proposed by Wieneke (2011). Another approach is
MENT (Bilsky et al 2012), which would reduce drastically
the memory consumption (and also the computation time), but
still the reconstruction quality is lower than SMART. Also
great care should be taken to apply the preprocessing of the
images as the result (in terms of quality and computation time)
depends strongly on our capacity to eliminate the background
and keep only the particles. Recently, a new filtering procedure
has been proposed by de Silva er al (2013) to eliminate a
posteriori reconstructed particles: it should be tested if this
filter is equivalent somehow to the combination of volume
Gaussian filter and threshold proposed in this study.
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