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Summary 

We are interested in a medium composed of N periods including two perfectly bonded plates 

which exhibit a high acoustic impedance contrast. N is varied from 2 to 10. Among the 

propagative modes in this structure, we can detect the so-called vertical modes at low frequency. 

Their labeling is due to the fact that their dispersion curves are vertical in the (frequency, angle) 

plane. In addition, their cut-off frequencies are inferior to the lowest cut-off frequency of the 

modes propagating in each plate. These vertical modes are linked with the coupling effect 

occurring between the plates which have the strongest acoustic impedance in the periodic medium. 

Comparisons between the dispersion curves obtained in vacuum and the zeroes of the reflection 

coefficient of the water loaded periodic medium are presented. Approximate analytical 

expressions of the cut-off frequencies of the vertical modes are obtained by developing at the 

fourth order the trigonometric functions appearing in the dispersion equations. It can be of use for 

the inverse problem, to find phase velocities or thicknesses. 

PACS no. 43.20.El, 43.20.Gp, 43.20.Ks. 

1. Introduction
1

1D periodic media may be of interest for purposes 

such as wave guiding, filtering or resonator 

modeling. The dispersion equations of a periodic 

media composed of N periods, each one made of n 

isotropic plates are obtained by using a transfer 

matrix method. It is well known that the dispersion 

curves exhibit stop bands in which no propagative 

modes exist and pass bands in which those ones 

can be detected. At low frequency, it exists the so-

called vertical modes because their dispersion 

curves are vertical in a wide wave number domain 

[1-2]. They belong to the family of the structure 

modes which depend on the number N of periods 

and appear in the pass bands. The other family is 

named the period mode one, which only depends 

on the characteristics of a period and not on the 

number N. The period modes are strongly 

attenuated and are located in the stop bands or at 
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their limits. Another way to study the structure 

modes deals with the calculation of the reflection 

coefficient of the structure immersed in water, for 

instance. It exhibits minima which are linked with 

the propagation of guided modes. In the first 

section, we briefly recall how to obtain the 

dispersion equation for a periodic structure and its 

factorization in two equations, the one giving the 

period modes, the other the structure ones. The 

vertical modes are obtained from the second one, 

at low frequency. Approximate expressions of 

their cut-off frequencies are found by means of  

developments in Taylor series of trigonometric 

functions. They are good guesses for an exact 

calculation. In the second section, the expression 

of the reflection coefficient of the periodic medium 

immersed in water is presented. Comparisons 

between zeroes of the dispersion equation and 

zeroes of the reflection coefficient are given. In the 

third section, different approximate expressions 

are compared when the thicknesses of the layers in 

a period are varied. 
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In conclusion, some perspectives to this work are 

given. 

2. Dispersion equation of a periodic 
plane medium in vaccum 

In our study, we have considered N periods 

(2 < N < 10) composed of 2 plates : one aluminum 

plate (Al) perfectly bonded with a polyethylene 

(PE) one, immersed in vaccum. No viscoelasticity 

has been taken into account [3]. The geometry of 

the problem is given in Figure 1 : 

R T

1 2 N

z

x

Al PE

Figure 1. Geometry of the problem. 

In this figure, the case of the periodic media 

immersed in a fluid and insonified by an incident 

monochromatic plane wave is also considered. The 

reflection and transmission at normal incidence are 

studied in section 3. 

The values of the physical parameters are given in 

the following Table I : 

Table I. Acoustic properties of the layers. 

Medium d (mm)
ρ

(kg/m
3
)

cL

(m/s) 
Z 

(MRa)
Al 2 2800 6380 17.9 
PE 2 940 2370 2.22 

Water − 1000 1470 1.47 
Z : acoustic impedance ; ρ : density ; cL : 

longitudinal velocity ; d : thickness. 

We consider that harmonic waves propagate in 

each layer and are described by the following 

potential : 

( ) ( ) ( )xz z
j k x tjk z jk zx,z, t Ae Be e

−ω−ψ = +  (1) 

By writing the continuity of the normal 

displacement zu z= ∂ψ ∂  and of the normal stress 
2

zzT = −ρω ψ  at each interface between the layers, 

we can link between two adjacent periods state 

vectors whose components are the normal 

displacement and stress. It is performed by using a 

transfer matrix [4], denoted as Tp. 

This matrix has the following form : 

p p

p

p p

a   jb
T

jc  d
= , with apdp+bpcp =1. (2) 

The eigenvalues ν  of the transfer matrix are 

solutions of the characteristic equation [5-6]: 
2 s 1 0ν − ν + = , with s = ( a+d)/2. (3) 

The global transfer matrix of N periods, denoted as 

TNp, which relates the output and input state 

vectors is the N
th

 power of the transfer matrix of a 

period. It is shown that TNp can be obtained from 

the following relation : 

Np N 1 p N 2T U (s)T U (s)I− −= − , (4) 

where the functions Un(s) are the Chebyshev 

polynomials of the second kind and I is the identity 

matrix. 

The global transfer matrix TNp has the same form 

as the period transfer matrix, but depends on 

elements denoted as aNp, bNp, cNp and dNp. The 

element of interest here is cNp which expresses as 

cNp = cpUN−1(s). Indeed, when the periodic medium 

is in vaccum, the normal stresses at the boundary 

limits are equal to zero and it implies that : 

 cNp = 0 (5) 

It defines the dispersion equation of the periodic 

medium [6]. We can note that it is factorized.  

The nullity of cP gives the period modes and the 

(N−1) zeroes of the Chebyshev polynomial UN−1(s) 

correspond to the structure modes. The values of 

the parameter sk corresponding to those zeroes can 

be written as [6] : 

k

k
s cos

N
= π , with 1 < k < (N−1) (6) 

In the following, we are mainly interested in the 

structure modes which are propagative whereas the 

period ones are strongly attenuated. Moreover, we 

have chosen to analyze the vertical modes at low 

frequency. 

When a period is composed of two layers, the 

parameter s expresses as : 

1 2
1 2 1 2

2 1

Z Z1
s cos cos sin sin

2 Z Z
= ϕ ϕ − + ϕ ϕ  (7), 

where 
1,2

1,2

L1,2

d

c

ω
ϕ =  (d1,2 : thicknesses of the layers, 

cL1,2 : longitudinal phase velocities) and the terms 

Z1,2 are the acoustic impedances of the layers 

defined as Z1,2 = ρ1,2cL1,2 (Table I). 
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For conciseness, we introduce these constants : 

1 2

2 1

Z Z
K

Z Z
= +  and 1

2

r
ϕ

=
ϕ

For a given number N of periods, equations (6) 

and (7) give the values of sk and allows to obtain 

the values of ϕ2. In addition, with the assumption 

of low frequency, we can consider that the 

estimated value φ of ϕ2 is very small compared to 

unity. So, developments in Taylor series of the 

trigonometric functions appearing in the 

expression of the parameter are possible. 

Developments at the fourth order of equation (7) 

with s = sk (equation (6)) lead to the following 

polynomial in order to find φ : 
4 2a b c 0φ + φ + =  (8) 

with 2 3 4a (1 2Kr 6r 2Kr r ) / 24= + + + +
2b (1 Kr r ) / 2= − + +

kc 1 s= −

At the fourth order, the solutions have the 

following form : 

(4)

k

b

2a

− − ∆
φ = , with 2b 4ac∆ = −  (9) 

This expression is valid since ∆ > 0, i.e. : 

( )

2 2 3 4

k 2 3 4

1 2Kr (3K 6)r 2Kr r
s

2 1 2Kr 6r 2Kr r

+ + − + +
<

+ + + +
 (10) 

For a given sk, there are also limit values of the 

parameter r or K, which can lead to a negative 

discriminator. Especially for the r parameter, one 

can write : 

0∆ =     
i 4

i

i 1

(r r ) 0
=

=

− =∏  (11) 

with r1 = r+, r2 = 1/r+, r3 = r−, r4 = 1/r−. 

When we limit the development at the second 

order, one obtains : 

(2) k
k 2

2(1 s )

1 Kr r

−
φ =

+ +
 (12) 

The cut-off frequencies are given by : 

(2,4) (2,4)L2
k k

2

c
f

2 d
= φ

π
 (13) 

An alternative method consists in using the 

Newton-Raphson iterative algorithm : 

( )
( )

(NR )

k(NR ) (NR )

k k (NR )

k

g (n)
(n 1) (n)

g ' (n)

φ
φ + = φ −

φ
 (14) 

with kg( ) cos r cos (K / 2)sin r sin sφ = φ φ − φ φ − , 
(NR ) (2)

k k(0)φ = φ , and n the iteration number. 

By this method, we quickly converge to the zeroes 

of the function. 

3. Reflection coefficient of a plane 
periodic structure 

3.1. Theoretical basis 

In this section, we are particularly interested in 

low frequency modes called vertical modes. It is 

justified by the plot of their dispersion curves [7] 

in the plane frequency f versus incidence angle θ
for a N = 5 periods structure (Figure 2 (a)). They 

are obtained with the zeroes of |R|
2
. We can 

observe (Figure 2 (b)) the N−1 = 4 vertical 

dispersion curves between θ = 0 and 10°, what 

justifies the name of vertical modes. 

Figure 2. Theoretical dispersion curves obtained from 

the reflection coefficient |R|
2
 in the case of N = 5 

periods (a) for f = 0 to 8 MHz and (b) for f = 0 to 0,6 

MHz. 

The Debye series decomposition method [8] 

allows to write the reflection coefficient at normal 

incidence. It takes into account multiple reflections 

at the interfaces between constitutive layers. This 

recursive approach ensures a numerical stability. 



FORUM ACUSTICUM 2011 Khaled, Maréchal, Lenoir, Chenouni: Vertical modes of a periodic medium 

27. June - 1. July, Aalborg 

At first, we define the Fresnel reflection and 

transmission coefficients at the interface between 

the layers indexed m and m+1 : (15)

m2 jm 1 m
m,m 1

m 1 m

Z Z
R e

Z Z

β+
+

+

−
=

+
 (14a) 

and m 1 mj( )m 1
m,m 1

m 1 m

2Z
T e

Z Z
+− β −β+

+

+

=
+

 (14b) 

Mutually, at the interface between the layers 

indexed m+1 and m : 

m 12 jm m 1
m 1,m

m m 1

Z Z
R e

Z Z
+− β+

+

+

−
=

+
 (14c) 

with m 1 mj( )m
m 1,m

m 1 m

2Z
T e

Z Z
+− β −β

+

+

=
+

 (14d) 

with βm = ωzm/cLm and βm+1 = ωzm/cL m+1 are 

phases which depends on the interface positions 

zm, between the layers m and m+1. 

The global reflection coefficient of the structure is 

calculated from the layer m = M down to 1 : 

12 23 21
12

21 23

T T
R R

1 R

ρ
= +

− ρ
 (16) 

with 
m,m 1 m 1,m 2 m 1,m

m,m 1 m,m 1

m 1,m m 1,m 2

T T
R

1 R

+ + + +

+ +

+ + +

ρ
ρ = +

− ρ

for 2 ≤ m ≤ M and M 1,M 2 M 1,M 2R+ + + +ρ =

As a result (Figure 3), the energy reflection 

coefficient |R|
2
 is compared to the second kind 

Chebyshev polynomial of order N−1, UN−1(s) 

defined in section 2. We note a remarkable 

coincidence between the zeroes of |R|
2
, denoted as 

(R)

N 1f − , and those of UN−1(s). This is valid not only 

for the vertical modes, but also for all the structure 

modes at higher frequency. In this case one 

verifies N−1 = 9 vertical modes corresponding to 

the roots of UN−1(s), and N−1 zeroes of |R|
2
. 

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

f (kHz)

k = 9

Figure 3. Theoretical reflection coefficient |R|
2
 (solid) 

and UN−1(s) (dashed) in the case of N = 10 periods. 

3.2. Validity of approximations 

In this subsection, we verify the validity of 

approximate expressions (2,4)

kf  (equations (9), (12) 

and (13)) relatively to the exact (R)

N 1f − ,. 

In Table II, we compare the exact value of (R)

kf  to 

the approximate values (2,4)

kf . We note that the 

convergence of the approximated values (2,4)

kf  is 

increased between the order 2 and order 4. More 

precisely, the maximum relative error ε(2,4)
, 

obtained for the higher frequency mode is given 

by : 
(2,4) (R )

(2,4) N 1 N 1

(R )

N 1

f f

f

− −

−

−
ε =  (17) 

Here, it is compared for N = 10 : 

(2) 201 181
10%

201

−
ε = ≈  (18) 

and (4) 193 195
1%

193

−
ε = ≈  (19) 

The second order development does not give 

sufficient accurate results, whereas the fourth 

order development gives correct values. 

Nevertheless, the precision depends on parameters 

K, r et sk. Moreover, the case of a fourth order 

development, we need to verify the condition 

given by equation (10). 

Table II. Cut-off frequencies. 

N (R)

kf  (kHz) (2)

kf  (kHz) (4)

kf  (kHz) 

2 137 131 137 

5 58 

112 

159 

193 

57 

109 

150 

176 

58 

112 

160 

195 

10 29 

58 

86 

112 

137 

159 

178 

193 

203 

29 

57 

84 

109 

131 

150 

165 

176 

183 

29 

58 

85 

112 

137 

160 

180 

195 

205 

As expected (equation (6)), there are common 

values of parameter sk when N = 2, 5 and 10 

periods. In a more general way, if we consider two 

periodic structures one having N1 periods the 

second having N2 periods, and if N2 is a multiple 

of N1, then one obtains common roots sk and thus 

identical cut-off frequencies fk. 



FORUM ACUSTICUM 2011 Khaled, Maréchal, Lenoir, Chenouni: Vertical modes of a periodic medium 

27. June - 1. July, Aalborg 

4. Application to a variation of layer 
thicknesses 

In this section the thicknesses of layers d1,2 are 

varied from 0 to 10 mm, whereas the other 

parameters are left constant. We still consider a 10 

period medium. The cut-off frequency (R)

kf , 

determined from the last zero of the reflection 

coefficient corresponding to the last vertical mode, 

i.e. k = N−1 = 9, (Figure 4) is compared to the  
(2)

kf  and (4)

kf  approximate values. According to 

equations (12) and (13), the highest cut-off 

frequency of vertical modes is linked with the 

minimum value of the parameter s, i.e. s9 = 

cos (9π/10). 

The frequency of the last vertical mode is plotted 

as a function of the thicknesses d1 and d2, in the 

following Figures 4, 5 and 6. 

Isovalue curves of the frequency of the last vertical 

mode (2)

9f  and (4)

9f  are shown in Figures 5 (a) and 

6 (a), respectively. Isovalue curves of the relative 

errors ε(2)
 and ε(4)

, dealing with the maximum cut-

off frequency (R)

9f  (Figure 4) are shown in Figures 

5 (b) and 6 (b), respectively. 
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Figure 4. Exact cut-off frequency 
(R)

N 1f −  (kHz) for 

N = 10. 

We recall that the approximate frequency (2)

9f  is 

obtained as follows : 

(2) 9L2
9 2

2

2(1 s )c
f

2 d 1 Kr r

−
=

π + +
 (20) 

with L2 1

L1 2

c d
r

c d
=

The equation (20) explains the decreasing 

evolution of the isovalue curves (Figure 5 (a)). 

We can notice that there is an important relative 

error ε(2)
 (Figure 5 (b)) for small values of d1 and 

d2. Moreover, ε(2)
 is never less than 5% whatever 

the thickness values. 
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Figure 5. (a) Approximated cut-off frequency 
(2)

N 1f −

(kHz), and (b) relative error ε(2)
 (%) dealing with the 

maximum cut-off frequency 
(R)

N 1f −  for N = 10. 

Dealing with the isovalue curves of (4)

9f  (Figure 6 

(a)), the validity domain is also compared to the 

exact solution (Figure 4). 

In Figure 6, three zones are delimited by red 

dashed lines. In the inner zone, there is a good 

agreement between the exact (R)

9f  and approximate 
(4)

9f  frequencies, and ε(4)
 is inferior to 10% . In the 

outer zones, the expression of (4)

9f  is not correct 

because the discriminator ∆ (equation (10)) is 

negative. In that case, the obtained frequencies are 

complex. Nevertheless, we have plotted their real 

parts. 
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The red dashed lines are defined by the limit 

values of r, which are defined by ∆ = 0 (equations 

(10) and (11)). We obtain two physical roots 

(equation (11)), r1 = r+ = 0.12 and r2 = 1/r+ = 8.16. 

The property r1r2 = 1 is due to the fact that the 

order of the layers in a period is indifferent. 

Although the precision of the fourth order solution 

(Figure 5) is improved relatively to that of the 

second order solution (Figure 6), it is also limited 

and an alternative method must be used. 

The Newton-Raphson iterative algorithm offers an 

interesting trade-off between precision and 

calculation time. To implement this algorithm, the 
(2)

9f  are good guesses. The relative error dealing 

with the exact solution is quickly reduced. Only 

three iterations of the method (equation (14)) allow 

to reach values of ε(NR)
 inferior to 0.1%. 
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Figure 6. (a) Approximated cut-off frequency 
(4)

N 1f −

(kHz), and (b) relative error ε(4)
 (%) dealing with the 

maximum cut-off frequency 
(R)

N 1f −  for N = 10. 

The association of the development at the second 

order resulting in (2)

kf  and the Newton-Raphson 

method permits the accurate determination of cut-

off frequencies (NR )

kf  of the vertical modes, 

whatever the values of k and N. 

5. Conclusion 

This work dealt with the study of the vertical 

modes of periodic structures. These are 

propagative modes observed at low frequency. 

Their cut-off frequencies depend on the 

geometrical and physical properties of the 

constitutive layers. It is shown in this paper that 

we can obtain an approximate expression of those 

ones. Nevertheless, these developments at the 

second and fourth orders are not precise enough to 

accurately determine the cut-off frequencies. 

Numerically, using the Newton-Raphson method, 

the result can be as precise as wanted. This method 

can be used to solve an inverse problem. 

As a perspective of this work, a parametric study 

of the impedance ratio, i.e. K parameter, would be 

interesting. 
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