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Introduction 1

1D periodic media may be of interest for purposes such as wave guiding, filtering or resonator modeling. The dispersion equations of a periodic media composed of N periods, each one made of n isotropic plates are obtained by using a transfer matrix method. It is well known that the dispersion curves exhibit stop bands in which no propagative modes exist and pass bands in which those ones can be detected. At low frequency, it exists the socalled vertical modes because their dispersion curves are vertical in a wide wave number domain [START_REF] Lenoir | Subwavelength ultrasonic measurement of a very thin fluid layer thickness in a trilayer[END_REF][START_REF] Coulouvrat | Lamb-type waves in symmetric solid-fluid-solid trilayer[END_REF]. They belong to the family of the structure modes which depend on the number N of periods and appear in the pass bands. The other family is named the period mode one, which only depends on the characteristics of a period and not on the number N. The period modes are strongly attenuated and are located in the stop bands or at 1 (c) European Acoustics Association their limits. Another way to study the structure modes deals with the calculation of the reflection coefficient of the structure immersed in water, for instance. It exhibits minima which are linked with the propagation of guided modes. In the first section, we briefly recall how to obtain the dispersion equation for a periodic structure and its factorization in two equations, the one giving the period modes, the other the structure ones. The vertical modes are obtained from the second one, at low frequency. Approximate expressions of their cut-off frequencies are found by means of developments in Taylor series of trigonometric functions. They are good guesses for an exact calculation. In the second section, the expression of the reflection coefficient of the periodic medium immersed in water is presented. Comparisons between zeroes of the dispersion equation and zeroes of the reflection coefficient are given. In the third section, different approximate expressions are compared when the thicknesses of the layers in a period are varied.

In conclusion, some perspectives to this work are given.

Dispersion equation of a periodic plane medium in vaccum

In our study, we have considered N periods (2 < N < 10) composed of 2 plates : one aluminum plate (Al) perfectly bonded with a polyethylene (PE) one, immersed in vaccum. No viscoelasticity has been taken into account [START_REF] Lenoir | Study of plane periodic multilayered viscoelastic media: Experiment and simulation[END_REF]. The geometry of the problem is given in Figure 1 : In this figure, the case of the periodic media immersed in a fluid and insonified by an incident monochromatic plane wave is also considered. The reflection and transmission at normal incidence are studied in section 3. The values of the physical parameters are given in the following Table I : We consider that harmonic waves propagate in each layer and are described by the following potential :

( ) ( ) ( ) x z z j k x t jk z jk z x, z, t Ae Be e -ω - ψ = + (1) 
By writing the continuity of the normal displacement z u z = ∂ψ ∂ and of the normal stress 2 zz T = -ρω ψ at each interface between the layers, we can link between two adjacent periods state vectors whose components are the normal displacement and stress. It is performed by using a transfer matrix [START_REF] Rousseau | Floquet wave properties in a periodically layered medium[END_REF], denoted as T p . This matrix has the following form : 

The eigenvalues ν of the transfer matrix are solutions of the characteristic equation [START_REF] Gatignol | Polynômes de Tchebytchev et modes de transmission totale dans les multicouches périodiques[END_REF][START_REF] Gatignol | Two Families of Modal Waves for Periodic Structures with Two Field Functions: A Cayleigh-Hamilton Approach[END_REF]:

2 s 1 0 ν -ν + = , with s = ( a+d)/2.

(3) The global transfer matrix of N periods, denoted as T Np , which relates the output and input state vectors is the N th power of the transfer matrix of a period. It is shown that T Np can be obtained from the following relation :

Np N 1 p N 2 T U (s)T U (s)I - - = - , (4) 
where the functions U n (s) are the Chebyshev polynomials of the second kind and I is the identity matrix.

The global transfer matrix T Np has the same form as the period transfer matrix, but depends on elements denoted as a Np , b Np , c Np and d Np . The element of interest here is c Np which expresses as c Np = c p U N-1 (s). Indeed, when the periodic medium is in vaccum, the normal stresses at the boundary limits are equal to zero and it implies that : c Np = 0 (5) It defines the dispersion equation of the periodic medium [START_REF] Gatignol | Two Families of Modal Waves for Periodic Structures with Two Field Functions: A Cayleigh-Hamilton Approach[END_REF]. We can note that it is factorized. The nullity of c P gives the period modes and the (N-1) zeroes of the Chebyshev polynomial U N-1 (s) correspond to the structure modes. The values of the parameter s k corresponding to those zeroes can be written as [START_REF] Gatignol | Two Families of Modal Waves for Periodic Structures with Two Field Functions: A Cayleigh-Hamilton Approach[END_REF] :

k k s cos N = π , with 1 < k < (N-1) (6) 
In the following, we are mainly interested in the structure modes which are propagative whereas the period ones are strongly attenuated. Moreover, we have chosen to analyze the vertical modes at low frequency. When a period is composed of two layers, the parameter s expresses as : I).

1 2 1 2 1 2 2 1 Z Z 1 s cos cos sin sin 2 Z Z = ϕ ϕ - + ϕ ϕ (7) 
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For conciseness, we introduce these constants :

1 2 2 1 Z Z K Z Z = + and 1 2 r ϕ = ϕ
For a given number N of periods, equations ( 6) and ( 7) give the values of s k and allows to obtain the values of ϕ 2 . In addition, with the assumption of low frequency, we can consider that the estimated value φ of ϕ 2 is very small compared to unity. So, developments in Taylor series of the trigonometric functions appearing in the expression of the parameter are possible. Developments at the fourth order of equation ( 7) with s = s k (equation ( 6)) lead to the following polynomial in order to find φ : 

--∆ φ = , with 2 b 4ac ∆ = - (9) 
This expression is valid since ∆ > 0, i.e. :

( )

2 2 3 4 k 2 3 4
1 2Kr (3K 6)r 2Kr r s 2 1 2Kr 6r 2Kr r

+ + - + + < + + + + ( 10 
)
For a given s k , there are also limit values of the parameter r or K, which can lead to a negative discriminator. Especially for the r parameter, one can write :

0 ∆ = i 4 i i 1 (r r ) 0 = = -= ∏ (11)
with r 1 = r + , r 2 = 1/r + , r 3 = r -, r 4 = 1/r -. When we limit the development at the second order, one obtains :

(2) k k 2 2(1 s ) 1 Kr r - φ = + + (12)
The cut-off frequencies are given by :

(2,4) (2,4) L2 k k 2 c f 2 d = φ π ( 13 
)
An alternative method consists in using the Newton-Raphson iterative algorithm : (0) φ = φ , and n the iteration number. By this method, we quickly converge to the zeroes of the function.

( ) ( ) ( NR ) k ( NR ) ( NR ) k k ( NR ) k g (n) (n 1) (n) g ' (n) φ φ + = φ - φ ( 

3.

Reflection coefficient of a plane periodic structure

Theoretical basis

In this section, we are particularly interested in low frequency modes called vertical modes. It is justified by the plot of their dispersion curves [START_REF] Maréchal | Effets de dépériodisation dans une structure multicouche plane viscoélastique : expérience et simulation, 10ème Congrès Français d'Acoustique[END_REF] in the plane frequency f versus incidence angle θ for a N = 5 periods structure (Figure 2 The Debye series decomposition method [START_REF] Conoir | Réflexion et Transmission par une plaque fluide[END_REF] allows to write the reflection coefficient at normal incidence. It takes into account multiple reflections at the interfaces between constitutive layers. This recursive approach ensures a numerical stability. 

T T R R 1 R ρ = + - ρ (16) with m,m 1 m 1,m 2 m 1,m m,m 1 m,m 1 m 1,m m 1,m 2 T T R 1 R + + + + + + + + + ρ ρ = + - ρ for 2 ≤ m ≤ M and M 1,M 2 M 1,M 2 R + + + + ρ =
As a result (Figure 3), the energy reflection coefficient |R| 2 is compared to the second kind Chebyshev polynomial of order N-1, U N-1 (s) defined in section 2. We note a remarkable coincidence between the zeroes of |R| 2 , denoted as

(R ) N 1
f -, and those of U N-1 (s). This is valid not only for the vertical modes, but also for all the structure modes at higher frequency. In this case one verifies N-1 = 9 vertical modes corresponding to the roots of U N-1 (s), and N-1 zeroes of |R| 2 . 

Validity of approximations

In this subsection, we verify the validity of approximate expressions (2,4) k f (equations ( 9), ( 12) and ( 13)) relatively to the exact (R ) N 1 f -,.

In Table II, we compare the exact value of (R ) k f to the approximate values (2,4) k f . We note that the convergence of the approximated values (2,4) k f is increased between the order 2 and order 4. More precisely, the maximum relative error ε (2,4) , obtained for the higher frequency mode is given by :

(2,4) ( R ) (2,4) N 1 N 1 (R ) N 1 f f f - - - - ε = (17)
Here, it is compared for N = 10 :

(2)

201 181 10% 201

- ε = ≈ (18)
and ( 4)

193 195 1% 193 - ε = ≈ (19) 
The second order development does not give sufficient accurate results, whereas the fourth order development gives correct values.

Nevertheless, the precision depends on parameters K, r et s k . Moreover, the case of a fourth order development, we need to verify the condition given by equation (10). As expected (equation ( 6)), there are common values of parameter s k when N = 2, 5 and 10 periods. In a more general way, if we consider two periodic structures one having N 1 periods the second having N 2 periods, and if N 2 is a multiple of N 1 , then one obtains common roots s k and thus identical cut-off frequencies f k .

Application to a variation of layer thicknesses

In this section the thicknesses of layers d 1,2 are varied from 0 to 10 mm, whereas the other parameters are left constant. We still consider a 10 period medium. The cut-off frequency (R ) k f , determined from the last zero of the reflection coefficient corresponding to the last vertical mode, i.e. k = N-1 = 9, (Figure 4) is compared to the (2) k f and (4) k f approximate values. According to equations ( 12) and ( 13), the highest cut-off frequency of vertical modes is linked with the minimum value of the parameter s, i.e. s 9 = cos (9π/10). The frequency of the last vertical mode is plotted as a function of the thicknesses d 1 and d 2 , in the following Figures 4, 5 and6. Isovalue curves of the frequency of the last vertical mode (2) 9 f and (4) 9 f are shown in Figures 5 (a) and 6 (a), respectively. Isovalue curves of the relative errors ε (2) and ε (4) , dealing with the maximum cutoff frequency (R ) 9 f (Figure 4) are shown in Figures 5 (b) and 6 (b), respectively. We recall that the approximate frequency (2) 9 f is obtained as follows : We can notice that there is an important relative error ε (2) (Figure 5 (b)) for small values of d 1 and d 2 . Moreover, ε (2) is never less than 5% whatever the thickness values. Dealing with the isovalue curves of (4) 9 f (Figure 6 (a)), the validity domain is also compared to the exact solution (Figure 4). In Figure 6, three zones are delimited by red dashed lines. In the inner zone, there is a good agreement between the exact (R ) 9 f and approximate (4) 9

f frequencies, and ε (4) is inferior to 10% . In the outer zones, the expression of (4) 9 f is not correct because the discriminator ∆ (equation (10)) is negative. In that case, the obtained frequencies are complex. Nevertheless, we have plotted their real parts. The red dashed lines are defined by the limit values of r, which are defined by ∆ = 0 (equations (10) and ( 11)). We obtain two physical roots (equation (11)), r 1 = r + = 0.12 and r 2 = 1/r + = 8.16. The property r 1 r 2 = 1 is due to the fact that the order of the layers in a period is indifferent. Although the precision of the fourth order solution (Figure 5) is improved relatively to that of the second order solution (Figure 6), it is also limited and an alternative method must be used. The Newton-Raphson iterative algorithm offers an interesting trade-off between precision and calculation time. To implement this algorithm, the (2) 9 f are good guesses. The relative error dealing with the exact solution is quickly reduced. Only three iterations of the method (equation ( 14)) allow to reach values of ε (NR) inferior to 0.1%. The association of the development at the second order resulting in (2) k f and the Newton-Raphson method permits the accurate determination of cutoff frequencies (NR ) k f of the vertical modes, whatever the values of k and N.

Conclusion

This work dealt with the study of the vertical modes of periodic structures. These are propagative modes observed at low frequency. Their cut-off frequencies depend on the geometrical and physical properties of the constitutive layers. It is shown in this paper that we can obtain an approximate expression of those ones. Nevertheless, these developments at the second and fourth orders are not precise enough to accurately determine the cut-off frequencies. Numerically, using the Newton-Raphson method, the result can be as precise as wanted. This method can be used to solve an inverse problem.

As a perspective of this work, a parametric study of the impedance ratio, i.e. K parameter, would be interesting.
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 1 Figure 1. Geometry of the problem.

  p d p +b p c p =1.

  ,2 : thicknesses of the layers, c L1,2 : longitudinal phase velocities) and the terms Z 1,2 are the acoustic impedances of the layers defined as Z 1,2 = ρ 1,2 c L1,2 (Table

  At the fourth order, the solutions have the following form :

  (a)). They are obtained with the zeroes of |R| 2 . We can observe (Figure 2 (b)) the N-1 = 4 vertical dispersion curves between θ = 0 and 10°, what justifies the name of vertical modes.

Figure 2 .

 2 Figure 2. Theoretical dispersion curves obtained from the reflection coefficient |R| 2 in the case of N = 5 periods (a) for f = 0 to 8 MHz and (b) for f = 0 to 0,6 MHz.

  At first, we define the Fresnel reflection and transmission coefficients at the interface between the layers indexed m and m+1 :with β m = ωz m /c Lm and β m+1 = ωz m /c L m+1 are phases which depends on the interface positions z m , between the layers m and m+1. The global reflection coefficient of the structure is calculated from the layer m = M down to 1 :

Figure 3 .

 3 Figure 3. Theoretical reflection coefficient |R| 2 (solid) and U N-1 (s) (dashed) in the case of N = 10 periods.

Figure 4 .

 4 Figure 4. Exact cut-off frequency (R ) N 1 f -(kHz) for

  The equation (20) explains the decreasing evolution of the isovalue curves (Figure5(a)).

Figure 5 . 1 f

 51 Figure 5. (a) Approximated cut-off frequency (2) N 1 f - (kHz), and (b) relative error ε (2) (%) dealing with the maximum cut-off frequency (R ) N 1 f -for N = 10.

Figure 6 . 1 f

 61 Figure 6. (a) Approximated cut-off frequency (4) N 1 f - (kHz), and (b) relative error ε (4) (%) dealing with the maximum cut-off frequency (R ) N 1 f -for N = 10.

Table I .

 I Acoustic properties of the layers.

	Medium	d (mm)	ρ (kg/m 3 )	c L (m/s)	Z (MRa)
	Al	2	2800	6380	17.9
	PE	2	940	2370	2.22
	Water	-	1000	1470	1.47
	Z : acoustic impedance ; ρ : density ; c L :
	longitudinal velocity ; d : thickness.	

Table II

 II 

		. Cut-off frequencies.	
	N	f	(R ) k	(kHz)	(2) k f (kHz)	(4) k f (kHz)
	2		137	131	137
	5			58	57	58
			112	109	112
			159	150	160
			193	176	195
	10			29	29	29
				58	57	58
				86	84	85
			112	109	112
			137	131	137
			159	150	160
			178	165	180
			193	176	195
			203	183	205
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